f853117b87
use the type names directly in the function declaration rather than (void *arg1, void *arg2) Change-Id: I3d1e6c42d384d8e628d7f2075fa561c2c5e20749
1483 lines
52 KiB
C
1483 lines
52 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h> // qsort()
|
|
|
|
#include "./vp9_rtcd.h"
|
|
#include "./vpx_scale_rtcd.h"
|
|
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vpx_ports/mem_ops.h"
|
|
#include "vpx_scale/vpx_scale.h"
|
|
|
|
#include "vp9/common/vp9_alloccommon.h"
|
|
#include "vp9/common/vp9_common.h"
|
|
#include "vp9/common/vp9_entropy.h"
|
|
#include "vp9/common/vp9_entropymode.h"
|
|
#include "vp9/common/vp9_idct.h"
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/common/vp9_quant_common.h"
|
|
#include "vp9/common/vp9_reconintra.h"
|
|
#include "vp9/common/vp9_reconinter.h"
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
#include "vp9/common/vp9_thread.h"
|
|
#include "vp9/common/vp9_tile_common.h"
|
|
|
|
#include "vp9/decoder/vp9_decodeframe.h"
|
|
#include "vp9/decoder/vp9_detokenize.h"
|
|
#include "vp9/decoder/vp9_decodemv.h"
|
|
#include "vp9/decoder/vp9_decoder.h"
|
|
#include "vp9/decoder/vp9_dsubexp.h"
|
|
#include "vp9/decoder/vp9_dthread.h"
|
|
#include "vp9/decoder/vp9_read_bit_buffer.h"
|
|
#include "vp9/decoder/vp9_reader.h"
|
|
|
|
#define MAX_VP9_HEADER_SIZE 80
|
|
|
|
static int is_compound_reference_allowed(const VP9_COMMON *cm) {
|
|
int i;
|
|
for (i = 1; i < REFS_PER_FRAME; ++i)
|
|
if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1])
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void setup_compound_reference_mode(VP9_COMMON *cm) {
|
|
if (cm->ref_frame_sign_bias[LAST_FRAME] ==
|
|
cm->ref_frame_sign_bias[GOLDEN_FRAME]) {
|
|
cm->comp_fixed_ref = ALTREF_FRAME;
|
|
cm->comp_var_ref[0] = LAST_FRAME;
|
|
cm->comp_var_ref[1] = GOLDEN_FRAME;
|
|
} else if (cm->ref_frame_sign_bias[LAST_FRAME] ==
|
|
cm->ref_frame_sign_bias[ALTREF_FRAME]) {
|
|
cm->comp_fixed_ref = GOLDEN_FRAME;
|
|
cm->comp_var_ref[0] = LAST_FRAME;
|
|
cm->comp_var_ref[1] = ALTREF_FRAME;
|
|
} else {
|
|
cm->comp_fixed_ref = LAST_FRAME;
|
|
cm->comp_var_ref[0] = GOLDEN_FRAME;
|
|
cm->comp_var_ref[1] = ALTREF_FRAME;
|
|
}
|
|
}
|
|
|
|
static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
|
|
return len != 0 && len <= (size_t)(end - start);
|
|
}
|
|
|
|
static int decode_unsigned_max(struct vp9_read_bit_buffer *rb, int max) {
|
|
const int data = vp9_rb_read_literal(rb, get_unsigned_bits(max));
|
|
return data > max ? max : data;
|
|
}
|
|
|
|
static TX_MODE read_tx_mode(vp9_reader *r) {
|
|
TX_MODE tx_mode = vp9_read_literal(r, 2);
|
|
if (tx_mode == ALLOW_32X32)
|
|
tx_mode += vp9_read_bit(r);
|
|
return tx_mode;
|
|
}
|
|
|
|
static void read_tx_mode_probs(struct tx_probs *tx_probs, vp9_reader *r) {
|
|
int i, j;
|
|
|
|
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
|
|
for (j = 0; j < TX_SIZES - 3; ++j)
|
|
vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]);
|
|
|
|
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
|
|
for (j = 0; j < TX_SIZES - 2; ++j)
|
|
vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]);
|
|
|
|
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
|
|
for (j = 0; j < TX_SIZES - 1; ++j)
|
|
vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]);
|
|
}
|
|
|
|
static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vp9_reader *r) {
|
|
int i, j;
|
|
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
|
|
for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
|
|
vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]);
|
|
}
|
|
|
|
static void read_inter_mode_probs(FRAME_CONTEXT *fc, vp9_reader *r) {
|
|
int i, j;
|
|
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
|
|
for (j = 0; j < INTER_MODES - 1; ++j)
|
|
vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]);
|
|
}
|
|
|
|
static REFERENCE_MODE read_frame_reference_mode(const VP9_COMMON *cm,
|
|
vp9_reader *r) {
|
|
if (is_compound_reference_allowed(cm)) {
|
|
return vp9_read_bit(r) ? (vp9_read_bit(r) ? REFERENCE_MODE_SELECT
|
|
: COMPOUND_REFERENCE)
|
|
: SINGLE_REFERENCE;
|
|
} else {
|
|
return SINGLE_REFERENCE;
|
|
}
|
|
}
|
|
|
|
static void read_frame_reference_mode_probs(VP9_COMMON *cm, vp9_reader *r) {
|
|
FRAME_CONTEXT *const fc = &cm->fc;
|
|
int i;
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT)
|
|
for (i = 0; i < COMP_INTER_CONTEXTS; ++i)
|
|
vp9_diff_update_prob(r, &fc->comp_inter_prob[i]);
|
|
|
|
if (cm->reference_mode != COMPOUND_REFERENCE)
|
|
for (i = 0; i < REF_CONTEXTS; ++i) {
|
|
vp9_diff_update_prob(r, &fc->single_ref_prob[i][0]);
|
|
vp9_diff_update_prob(r, &fc->single_ref_prob[i][1]);
|
|
}
|
|
|
|
if (cm->reference_mode != SINGLE_REFERENCE)
|
|
for (i = 0; i < REF_CONTEXTS; ++i)
|
|
vp9_diff_update_prob(r, &fc->comp_ref_prob[i]);
|
|
}
|
|
|
|
static void update_mv_probs(vp9_prob *p, int n, vp9_reader *r) {
|
|
int i;
|
|
for (i = 0; i < n; ++i)
|
|
if (vp9_read(r, MV_UPDATE_PROB))
|
|
p[i] = (vp9_read_literal(r, 7) << 1) | 1;
|
|
}
|
|
|
|
static void read_mv_probs(nmv_context *ctx, int allow_hp, vp9_reader *r) {
|
|
int i, j;
|
|
|
|
update_mv_probs(ctx->joints, MV_JOINTS - 1, r);
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
nmv_component *const comp_ctx = &ctx->comps[i];
|
|
update_mv_probs(&comp_ctx->sign, 1, r);
|
|
update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r);
|
|
update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r);
|
|
update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r);
|
|
}
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
nmv_component *const comp_ctx = &ctx->comps[i];
|
|
for (j = 0; j < CLASS0_SIZE; ++j)
|
|
update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r);
|
|
update_mv_probs(comp_ctx->fp, 3, r);
|
|
}
|
|
|
|
if (allow_hp) {
|
|
for (i = 0; i < 2; ++i) {
|
|
nmv_component *const comp_ctx = &ctx->comps[i];
|
|
update_mv_probs(&comp_ctx->class0_hp, 1, r);
|
|
update_mv_probs(&comp_ctx->hp, 1, r);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void setup_plane_dequants(VP9_COMMON *cm, MACROBLOCKD *xd, int q_index) {
|
|
int i;
|
|
xd->plane[0].dequant = cm->y_dequant[q_index];
|
|
|
|
for (i = 1; i < MAX_MB_PLANE; i++)
|
|
xd->plane[i].dequant = cm->uv_dequant[q_index];
|
|
}
|
|
|
|
static void inverse_transform_block(MACROBLOCKD* xd, int plane, int block,
|
|
TX_SIZE tx_size, uint8_t *dst, int stride,
|
|
int eob) {
|
|
struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
if (eob > 0) {
|
|
TX_TYPE tx_type = DCT_DCT;
|
|
int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
|
|
if (xd->lossless) {
|
|
tx_type = DCT_DCT;
|
|
vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
|
|
} else {
|
|
const PLANE_TYPE plane_type = pd->plane_type;
|
|
switch (tx_size) {
|
|
case TX_4X4:
|
|
tx_type = get_tx_type_4x4(plane_type, xd, block);
|
|
vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob);
|
|
break;
|
|
case TX_8X8:
|
|
tx_type = get_tx_type(plane_type, xd);
|
|
vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob);
|
|
break;
|
|
case TX_16X16:
|
|
tx_type = get_tx_type(plane_type, xd);
|
|
vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
|
|
break;
|
|
case TX_32X32:
|
|
tx_type = DCT_DCT;
|
|
vp9_idct32x32_add(dqcoeff, dst, stride, eob);
|
|
break;
|
|
default:
|
|
assert(0 && "Invalid transform size");
|
|
}
|
|
}
|
|
|
|
if (eob == 1) {
|
|
vpx_memset(dqcoeff, 0, 2 * sizeof(dqcoeff[0]));
|
|
} else {
|
|
if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10)
|
|
vpx_memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
|
|
else if (tx_size == TX_32X32 && eob <= 34)
|
|
vpx_memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
|
|
else
|
|
vpx_memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
|
|
}
|
|
}
|
|
}
|
|
|
|
struct intra_args {
|
|
VP9_COMMON *cm;
|
|
MACROBLOCKD *xd;
|
|
vp9_reader *r;
|
|
};
|
|
|
|
static void predict_and_reconstruct_intra_block(int plane, int block,
|
|
BLOCK_SIZE plane_bsize,
|
|
TX_SIZE tx_size, void *arg) {
|
|
struct intra_args *const args = (struct intra_args *)arg;
|
|
VP9_COMMON *const cm = args->cm;
|
|
MACROBLOCKD *const xd = args->xd;
|
|
struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
const PREDICTION_MODE mode = (plane == 0) ? get_y_mode(mi, block)
|
|
: mi->mbmi.uv_mode;
|
|
int x, y;
|
|
uint8_t *dst;
|
|
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y);
|
|
dst = &pd->dst.buf[4 * y * pd->dst.stride + 4 * x];
|
|
|
|
vp9_predict_intra_block(xd, block >> (tx_size << 1),
|
|
b_width_log2(plane_bsize), tx_size, mode,
|
|
dst, pd->dst.stride, dst, pd->dst.stride,
|
|
x, y, plane);
|
|
|
|
if (!mi->mbmi.skip) {
|
|
const int eob = vp9_decode_block_tokens(cm, xd, plane, block,
|
|
plane_bsize, x, y, tx_size,
|
|
args->r);
|
|
inverse_transform_block(xd, plane, block, tx_size, dst, pd->dst.stride,
|
|
eob);
|
|
}
|
|
}
|
|
|
|
struct inter_args {
|
|
VP9_COMMON *cm;
|
|
MACROBLOCKD *xd;
|
|
vp9_reader *r;
|
|
int *eobtotal;
|
|
};
|
|
|
|
static void reconstruct_inter_block(int plane, int block,
|
|
BLOCK_SIZE plane_bsize,
|
|
TX_SIZE tx_size, void *arg) {
|
|
struct inter_args *args = (struct inter_args *)arg;
|
|
VP9_COMMON *const cm = args->cm;
|
|
MACROBLOCKD *const xd = args->xd;
|
|
struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
int x, y, eob;
|
|
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y);
|
|
eob = vp9_decode_block_tokens(cm, xd, plane, block, plane_bsize, x, y,
|
|
tx_size, args->r);
|
|
inverse_transform_block(xd, plane, block, tx_size,
|
|
&pd->dst.buf[4 * y * pd->dst.stride + 4 * x],
|
|
pd->dst.stride, eob);
|
|
*args->eobtotal += eob;
|
|
}
|
|
|
|
static MB_MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
|
|
const TileInfo *const tile,
|
|
BLOCK_SIZE bsize, int mi_row, int mi_col) {
|
|
const int bw = num_8x8_blocks_wide_lookup[bsize];
|
|
const int bh = num_8x8_blocks_high_lookup[bsize];
|
|
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
|
|
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
|
|
const int offset = mi_row * cm->mi_stride + mi_col;
|
|
int x, y;
|
|
|
|
xd->mi = cm->mi_grid_visible + offset;
|
|
xd->mi[0] = &cm->mi[offset];
|
|
xd->mi[0]->mbmi.sb_type = bsize;
|
|
for (y = 0; y < y_mis; ++y)
|
|
for (x = !y; x < x_mis; ++x)
|
|
xd->mi[y * cm->mi_stride + x] = xd->mi[0];
|
|
|
|
set_skip_context(xd, mi_row, mi_col);
|
|
|
|
// Distance of Mb to the various image edges. These are specified to 8th pel
|
|
// as they are always compared to values that are in 1/8th pel units
|
|
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
|
|
|
|
vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
|
|
return &xd->mi[0]->mbmi;
|
|
}
|
|
|
|
static void set_ref(VP9_COMMON *const cm, MACROBLOCKD *const xd,
|
|
int idx, int mi_row, int mi_col) {
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
RefBuffer *ref_buffer = &cm->frame_refs[mbmi->ref_frame[idx] - LAST_FRAME];
|
|
xd->block_refs[idx] = ref_buffer;
|
|
if (!vp9_is_valid_scale(&ref_buffer->sf))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
|
|
"Invalid scale factors");
|
|
if (ref_buffer->buf->corrupted)
|
|
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
|
|
"Block reference is corrupt");
|
|
vp9_setup_pre_planes(xd, idx, ref_buffer->buf, mi_row, mi_col,
|
|
&ref_buffer->sf);
|
|
xd->corrupted |= ref_buffer->buf->corrupted;
|
|
}
|
|
|
|
static void decode_block(VP9_COMMON *const cm, MACROBLOCKD *const xd,
|
|
const TileInfo *const tile,
|
|
int mi_row, int mi_col,
|
|
vp9_reader *r, BLOCK_SIZE bsize) {
|
|
const int less8x8 = bsize < BLOCK_8X8;
|
|
MB_MODE_INFO *mbmi = set_offsets(cm, xd, tile, bsize, mi_row, mi_col);
|
|
vp9_read_mode_info(cm, xd, tile, mi_row, mi_col, r);
|
|
|
|
if (less8x8)
|
|
bsize = BLOCK_8X8;
|
|
|
|
if (mbmi->skip) {
|
|
reset_skip_context(xd, bsize);
|
|
} else {
|
|
if (cm->seg.enabled)
|
|
setup_plane_dequants(cm, xd, vp9_get_qindex(&cm->seg, mbmi->segment_id,
|
|
cm->base_qindex));
|
|
}
|
|
|
|
if (!is_inter_block(mbmi)) {
|
|
struct intra_args arg = { cm, xd, r };
|
|
vp9_foreach_transformed_block(xd, bsize,
|
|
predict_and_reconstruct_intra_block, &arg);
|
|
} else {
|
|
// Setup
|
|
set_ref(cm, xd, 0, mi_row, mi_col);
|
|
if (has_second_ref(mbmi))
|
|
set_ref(cm, xd, 1, mi_row, mi_col);
|
|
|
|
// Prediction
|
|
vp9_dec_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
|
|
|
|
// Reconstruction
|
|
if (!mbmi->skip) {
|
|
int eobtotal = 0;
|
|
struct inter_args arg = { cm, xd, r, &eobtotal };
|
|
vp9_foreach_transformed_block(xd, bsize, reconstruct_inter_block, &arg);
|
|
if (!less8x8 && eobtotal == 0)
|
|
mbmi->skip = 1; // skip loopfilter
|
|
}
|
|
}
|
|
|
|
xd->corrupted |= vp9_reader_has_error(r);
|
|
}
|
|
|
|
static PARTITION_TYPE read_partition(VP9_COMMON *cm, MACROBLOCKD *xd, int hbs,
|
|
int mi_row, int mi_col, BLOCK_SIZE bsize,
|
|
vp9_reader *r) {
|
|
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
|
|
const vp9_prob *const probs = get_partition_probs(cm, ctx);
|
|
const int has_rows = (mi_row + hbs) < cm->mi_rows;
|
|
const int has_cols = (mi_col + hbs) < cm->mi_cols;
|
|
PARTITION_TYPE p;
|
|
|
|
if (has_rows && has_cols)
|
|
p = (PARTITION_TYPE)vp9_read_tree(r, vp9_partition_tree, probs);
|
|
else if (!has_rows && has_cols)
|
|
p = vp9_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ;
|
|
else if (has_rows && !has_cols)
|
|
p = vp9_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT;
|
|
else
|
|
p = PARTITION_SPLIT;
|
|
|
|
if (!cm->frame_parallel_decoding_mode)
|
|
++cm->counts.partition[ctx][p];
|
|
|
|
return p;
|
|
}
|
|
|
|
static void decode_partition(VP9_COMMON *const cm, MACROBLOCKD *const xd,
|
|
const TileInfo *const tile,
|
|
int mi_row, int mi_col,
|
|
vp9_reader* r, BLOCK_SIZE bsize) {
|
|
const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2;
|
|
PARTITION_TYPE partition;
|
|
BLOCK_SIZE subsize, uv_subsize;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
partition = read_partition(cm, xd, hbs, mi_row, mi_col, bsize, r);
|
|
subsize = get_subsize(bsize, partition);
|
|
uv_subsize = ss_size_lookup[subsize][cm->subsampling_x][cm->subsampling_y];
|
|
if (subsize >= BLOCK_8X8 && uv_subsize == BLOCK_INVALID)
|
|
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
|
|
"Invalid block size.");
|
|
if (subsize < BLOCK_8X8) {
|
|
decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
|
|
} else {
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
|
|
break;
|
|
case PARTITION_HORZ:
|
|
decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
|
|
if (mi_row + hbs < cm->mi_rows)
|
|
decode_block(cm, xd, tile, mi_row + hbs, mi_col, r, subsize);
|
|
break;
|
|
case PARTITION_VERT:
|
|
decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
|
|
if (mi_col + hbs < cm->mi_cols)
|
|
decode_block(cm, xd, tile, mi_row, mi_col + hbs, r, subsize);
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
decode_partition(cm, xd, tile, mi_row, mi_col, r, subsize);
|
|
decode_partition(cm, xd, tile, mi_row, mi_col + hbs, r, subsize);
|
|
decode_partition(cm, xd, tile, mi_row + hbs, mi_col, r, subsize);
|
|
decode_partition(cm, xd, tile, mi_row + hbs, mi_col + hbs, r, subsize);
|
|
break;
|
|
default:
|
|
assert(0 && "Invalid partition type");
|
|
}
|
|
}
|
|
|
|
// update partition context
|
|
if (bsize >= BLOCK_8X8 &&
|
|
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
|
|
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
|
|
}
|
|
|
|
static void setup_token_decoder(const uint8_t *data,
|
|
const uint8_t *data_end,
|
|
size_t read_size,
|
|
struct vpx_internal_error_info *error_info,
|
|
vp9_reader *r,
|
|
vpx_decrypt_cb decrypt_cb,
|
|
void *decrypt_state) {
|
|
// Validate the calculated partition length. If the buffer
|
|
// described by the partition can't be fully read, then restrict
|
|
// it to the portion that can be (for EC mode) or throw an error.
|
|
if (!read_is_valid(data, read_size, data_end))
|
|
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
|
|
"Truncated packet or corrupt tile length");
|
|
|
|
if (vp9_reader_init(r, data, read_size, decrypt_cb, decrypt_state))
|
|
vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate bool decoder %d", 1);
|
|
}
|
|
|
|
static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs,
|
|
vp9_reader *r) {
|
|
int i, j, k, l, m;
|
|
|
|
if (vp9_read_bit(r))
|
|
for (i = 0; i < PLANE_TYPES; ++i)
|
|
for (j = 0; j < REF_TYPES; ++j)
|
|
for (k = 0; k < COEF_BANDS; ++k)
|
|
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
|
|
for (m = 0; m < UNCONSTRAINED_NODES; ++m)
|
|
vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]);
|
|
}
|
|
|
|
static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode,
|
|
vp9_reader *r) {
|
|
const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
|
|
TX_SIZE tx_size;
|
|
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
|
|
read_coef_probs_common(fc->coef_probs[tx_size], r);
|
|
}
|
|
|
|
static void setup_segmentation(struct segmentation *seg,
|
|
struct vp9_read_bit_buffer *rb) {
|
|
int i, j;
|
|
|
|
seg->update_map = 0;
|
|
seg->update_data = 0;
|
|
|
|
seg->enabled = vp9_rb_read_bit(rb);
|
|
if (!seg->enabled)
|
|
return;
|
|
|
|
// Segmentation map update
|
|
seg->update_map = vp9_rb_read_bit(rb);
|
|
if (seg->update_map) {
|
|
for (i = 0; i < SEG_TREE_PROBS; i++)
|
|
seg->tree_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8)
|
|
: MAX_PROB;
|
|
|
|
seg->temporal_update = vp9_rb_read_bit(rb);
|
|
if (seg->temporal_update) {
|
|
for (i = 0; i < PREDICTION_PROBS; i++)
|
|
seg->pred_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8)
|
|
: MAX_PROB;
|
|
} else {
|
|
for (i = 0; i < PREDICTION_PROBS; i++)
|
|
seg->pred_probs[i] = MAX_PROB;
|
|
}
|
|
}
|
|
|
|
// Segmentation data update
|
|
seg->update_data = vp9_rb_read_bit(rb);
|
|
if (seg->update_data) {
|
|
seg->abs_delta = vp9_rb_read_bit(rb);
|
|
|
|
vp9_clearall_segfeatures(seg);
|
|
|
|
for (i = 0; i < MAX_SEGMENTS; i++) {
|
|
for (j = 0; j < SEG_LVL_MAX; j++) {
|
|
int data = 0;
|
|
const int feature_enabled = vp9_rb_read_bit(rb);
|
|
if (feature_enabled) {
|
|
vp9_enable_segfeature(seg, i, j);
|
|
data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j));
|
|
if (vp9_is_segfeature_signed(j))
|
|
data = vp9_rb_read_bit(rb) ? -data : data;
|
|
}
|
|
vp9_set_segdata(seg, i, j, data);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void setup_loopfilter(struct loopfilter *lf,
|
|
struct vp9_read_bit_buffer *rb) {
|
|
lf->filter_level = vp9_rb_read_literal(rb, 6);
|
|
lf->sharpness_level = vp9_rb_read_literal(rb, 3);
|
|
|
|
// Read in loop filter deltas applied at the MB level based on mode or ref
|
|
// frame.
|
|
lf->mode_ref_delta_update = 0;
|
|
|
|
lf->mode_ref_delta_enabled = vp9_rb_read_bit(rb);
|
|
if (lf->mode_ref_delta_enabled) {
|
|
lf->mode_ref_delta_update = vp9_rb_read_bit(rb);
|
|
if (lf->mode_ref_delta_update) {
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_REF_LF_DELTAS; i++)
|
|
if (vp9_rb_read_bit(rb))
|
|
lf->ref_deltas[i] = vp9_rb_read_signed_literal(rb, 6);
|
|
|
|
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
|
|
if (vp9_rb_read_bit(rb))
|
|
lf->mode_deltas[i] = vp9_rb_read_signed_literal(rb, 6);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int read_delta_q(struct vp9_read_bit_buffer *rb, int *delta_q) {
|
|
const int old = *delta_q;
|
|
*delta_q = vp9_rb_read_bit(rb) ? vp9_rb_read_signed_literal(rb, 4) : 0;
|
|
return old != *delta_q;
|
|
}
|
|
|
|
static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd,
|
|
struct vp9_read_bit_buffer *rb) {
|
|
int update = 0;
|
|
|
|
cm->base_qindex = vp9_rb_read_literal(rb, QINDEX_BITS);
|
|
update |= read_delta_q(rb, &cm->y_dc_delta_q);
|
|
update |= read_delta_q(rb, &cm->uv_dc_delta_q);
|
|
update |= read_delta_q(rb, &cm->uv_ac_delta_q);
|
|
if (update)
|
|
vp9_init_dequantizer(cm);
|
|
|
|
xd->lossless = cm->base_qindex == 0 &&
|
|
cm->y_dc_delta_q == 0 &&
|
|
cm->uv_dc_delta_q == 0 &&
|
|
cm->uv_ac_delta_q == 0;
|
|
}
|
|
|
|
static INTERP_FILTER read_interp_filter(struct vp9_read_bit_buffer *rb) {
|
|
const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH,
|
|
EIGHTTAP,
|
|
EIGHTTAP_SHARP,
|
|
BILINEAR };
|
|
return vp9_rb_read_bit(rb) ? SWITCHABLE
|
|
: literal_to_filter[vp9_rb_read_literal(rb, 2)];
|
|
}
|
|
|
|
void vp9_read_frame_size(struct vp9_read_bit_buffer *rb,
|
|
int *width, int *height) {
|
|
const int w = vp9_rb_read_literal(rb, 16) + 1;
|
|
const int h = vp9_rb_read_literal(rb, 16) + 1;
|
|
*width = w;
|
|
*height = h;
|
|
}
|
|
|
|
static void setup_display_size(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
|
|
cm->display_width = cm->width;
|
|
cm->display_height = cm->height;
|
|
if (vp9_rb_read_bit(rb))
|
|
vp9_read_frame_size(rb, &cm->display_width, &cm->display_height);
|
|
}
|
|
|
|
static void resize_context_buffers(VP9_COMMON *cm, int width, int height) {
|
|
#if CONFIG_SIZE_LIMIT
|
|
if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
|
|
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
|
|
"Width and height beyond allowed size.");
|
|
#endif
|
|
if (cm->width != width || cm->height != height) {
|
|
const int new_mi_rows =
|
|
ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
|
|
const int new_mi_cols =
|
|
ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
|
|
|
|
// Allocations in vp9_alloc_context_buffers() depend on individual
|
|
// dimensions as well as the overall size.
|
|
if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) {
|
|
if (vp9_alloc_context_buffers(cm, width, height))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate context buffers");
|
|
} else {
|
|
vp9_set_mb_mi(cm, width, height);
|
|
}
|
|
vp9_init_context_buffers(cm);
|
|
cm->width = width;
|
|
cm->height = height;
|
|
}
|
|
}
|
|
|
|
static void setup_frame_size(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
|
|
int width, height;
|
|
vp9_read_frame_size(rb, &width, &height);
|
|
resize_context_buffers(cm, width, height);
|
|
setup_display_size(cm, rb);
|
|
|
|
if (vp9_realloc_frame_buffer(
|
|
get_frame_new_buffer(cm), cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth,
|
|
#endif
|
|
VP9_DEC_BORDER_IN_PIXELS,
|
|
&cm->frame_bufs[cm->new_fb_idx].raw_frame_buffer, cm->get_fb_cb,
|
|
cm->cb_priv)) {
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate frame buffer");
|
|
}
|
|
}
|
|
|
|
static void setup_frame_size_with_refs(VP9_COMMON *cm,
|
|
struct vp9_read_bit_buffer *rb) {
|
|
int width, height;
|
|
int found = 0, i;
|
|
int has_valid_ref_frame = 0;
|
|
for (i = 0; i < REFS_PER_FRAME; ++i) {
|
|
if (vp9_rb_read_bit(rb)) {
|
|
YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf;
|
|
width = buf->y_crop_width;
|
|
height = buf->y_crop_height;
|
|
if (buf->corrupted) {
|
|
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
|
|
"Frame reference is corrupt");
|
|
}
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
vp9_read_frame_size(rb, &width, &height);
|
|
|
|
if (width <=0 || height <= 0)
|
|
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
|
|
"Invalid frame size");
|
|
|
|
// Check to make sure at least one of frames that this frame references
|
|
// has valid dimensions.
|
|
for (i = 0; i < REFS_PER_FRAME; ++i) {
|
|
RefBuffer *const ref_frame = &cm->frame_refs[i];
|
|
has_valid_ref_frame |= valid_ref_frame_size(ref_frame->buf->y_crop_width,
|
|
ref_frame->buf->y_crop_height,
|
|
width, height);
|
|
}
|
|
if (!has_valid_ref_frame)
|
|
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
|
|
"Referenced frame has invalid size");
|
|
|
|
resize_context_buffers(cm, width, height);
|
|
setup_display_size(cm, rb);
|
|
|
|
if (vp9_realloc_frame_buffer(
|
|
get_frame_new_buffer(cm), cm->width, cm->height,
|
|
cm->subsampling_x, cm->subsampling_y,
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
cm->use_highbitdepth,
|
|
#endif
|
|
VP9_DEC_BORDER_IN_PIXELS,
|
|
&cm->frame_bufs[cm->new_fb_idx].raw_frame_buffer, cm->get_fb_cb,
|
|
cm->cb_priv)) {
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate frame buffer");
|
|
}
|
|
}
|
|
|
|
static void setup_tile_info(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
|
|
int min_log2_tile_cols, max_log2_tile_cols, max_ones;
|
|
vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
|
|
|
|
// columns
|
|
max_ones = max_log2_tile_cols - min_log2_tile_cols;
|
|
cm->log2_tile_cols = min_log2_tile_cols;
|
|
while (max_ones-- && vp9_rb_read_bit(rb))
|
|
cm->log2_tile_cols++;
|
|
|
|
if (cm->log2_tile_cols > 6)
|
|
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
|
|
"Invalid number of tile columns");
|
|
|
|
// rows
|
|
cm->log2_tile_rows = vp9_rb_read_bit(rb);
|
|
if (cm->log2_tile_rows)
|
|
cm->log2_tile_rows += vp9_rb_read_bit(rb);
|
|
}
|
|
|
|
typedef struct TileBuffer {
|
|
const uint8_t *data;
|
|
size_t size;
|
|
int col; // only used with multi-threaded decoding
|
|
} TileBuffer;
|
|
|
|
// Reads the next tile returning its size and adjusting '*data' accordingly
|
|
// based on 'is_last'.
|
|
static void get_tile_buffer(const uint8_t *const data_end,
|
|
int is_last,
|
|
struct vpx_internal_error_info *error_info,
|
|
const uint8_t **data,
|
|
vpx_decrypt_cb decrypt_cb, void *decrypt_state,
|
|
TileBuffer *buf) {
|
|
size_t size;
|
|
|
|
if (!is_last) {
|
|
if (!read_is_valid(*data, 4, data_end))
|
|
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
|
|
"Truncated packet or corrupt tile length");
|
|
|
|
if (decrypt_cb) {
|
|
uint8_t be_data[4];
|
|
decrypt_cb(decrypt_state, *data, be_data, 4);
|
|
size = mem_get_be32(be_data);
|
|
} else {
|
|
size = mem_get_be32(*data);
|
|
}
|
|
*data += 4;
|
|
|
|
if (size > (size_t)(data_end - *data))
|
|
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
|
|
"Truncated packet or corrupt tile size");
|
|
} else {
|
|
size = data_end - *data;
|
|
}
|
|
|
|
buf->data = *data;
|
|
buf->size = size;
|
|
|
|
*data += size;
|
|
}
|
|
|
|
static void get_tile_buffers(VP9Decoder *pbi,
|
|
const uint8_t *data, const uint8_t *data_end,
|
|
int tile_cols, int tile_rows,
|
|
TileBuffer (*tile_buffers)[1 << 6]) {
|
|
int r, c;
|
|
|
|
for (r = 0; r < tile_rows; ++r) {
|
|
for (c = 0; c < tile_cols; ++c) {
|
|
const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1);
|
|
TileBuffer *const buf = &tile_buffers[r][c];
|
|
buf->col = c;
|
|
get_tile_buffer(data_end, is_last, &pbi->common.error, &data,
|
|
pbi->decrypt_cb, pbi->decrypt_state, buf);
|
|
}
|
|
}
|
|
}
|
|
|
|
static const uint8_t *decode_tiles(VP9Decoder *pbi,
|
|
const uint8_t *data,
|
|
const uint8_t *data_end) {
|
|
VP9_COMMON *const cm = &pbi->common;
|
|
const VP9WorkerInterface *const winterface = vp9_get_worker_interface();
|
|
const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
|
|
const int tile_cols = 1 << cm->log2_tile_cols;
|
|
const int tile_rows = 1 << cm->log2_tile_rows;
|
|
TileBuffer tile_buffers[4][1 << 6];
|
|
int tile_row, tile_col;
|
|
int mi_row, mi_col;
|
|
TileData *tile_data = NULL;
|
|
|
|
if (cm->lf.filter_level && pbi->lf_worker.data1 == NULL) {
|
|
CHECK_MEM_ERROR(cm, pbi->lf_worker.data1,
|
|
vpx_memalign(32, sizeof(LFWorkerData)));
|
|
pbi->lf_worker.hook = (VP9WorkerHook)vp9_loop_filter_worker;
|
|
if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) {
|
|
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
|
|
"Loop filter thread creation failed");
|
|
}
|
|
}
|
|
|
|
if (cm->lf.filter_level) {
|
|
LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1;
|
|
// Be sure to sync as we might be resuming after a failed frame decode.
|
|
winterface->sync(&pbi->lf_worker);
|
|
lf_data->frame_buffer = get_frame_new_buffer(cm);
|
|
lf_data->cm = cm;
|
|
vp9_copy(lf_data->planes, pbi->mb.plane);
|
|
lf_data->stop = 0;
|
|
lf_data->y_only = 0;
|
|
vp9_loop_filter_frame_init(cm, cm->lf.filter_level);
|
|
}
|
|
|
|
assert(tile_rows <= 4);
|
|
assert(tile_cols <= (1 << 6));
|
|
|
|
// Note: this memset assumes above_context[0], [1] and [2]
|
|
// are allocated as part of the same buffer.
|
|
vpx_memset(cm->above_context, 0,
|
|
sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols);
|
|
|
|
vpx_memset(cm->above_seg_context, 0,
|
|
sizeof(*cm->above_seg_context) * aligned_cols);
|
|
|
|
get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers);
|
|
|
|
if (pbi->tile_data == NULL ||
|
|
(tile_cols * tile_rows) != pbi->total_tiles) {
|
|
vpx_free(pbi->tile_data);
|
|
CHECK_MEM_ERROR(
|
|
cm,
|
|
pbi->tile_data,
|
|
vpx_memalign(32, tile_cols * tile_rows * (sizeof(*pbi->tile_data))));
|
|
pbi->total_tiles = tile_rows * tile_cols;
|
|
}
|
|
|
|
// Load all tile information into tile_data.
|
|
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
|
|
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
|
|
TileInfo tile;
|
|
const TileBuffer *const buf = &tile_buffers[tile_row][tile_col];
|
|
tile_data = pbi->tile_data + tile_cols * tile_row + tile_col;
|
|
tile_data->cm = cm;
|
|
tile_data->xd = pbi->mb;
|
|
tile_data->xd.corrupted = 0;
|
|
vp9_tile_init(&tile, tile_data->cm, tile_row, tile_col);
|
|
setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
|
|
&tile_data->bit_reader, pbi->decrypt_cb,
|
|
pbi->decrypt_state);
|
|
init_macroblockd(cm, &tile_data->xd);
|
|
vp9_zero(tile_data->xd.dqcoeff);
|
|
}
|
|
}
|
|
|
|
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
|
|
TileInfo tile;
|
|
vp9_tile_set_row(&tile, cm, tile_row);
|
|
for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end;
|
|
mi_row += MI_BLOCK_SIZE) {
|
|
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
|
|
const int col = pbi->inv_tile_order ?
|
|
tile_cols - tile_col - 1 : tile_col;
|
|
tile_data = pbi->tile_data + tile_cols * tile_row + col;
|
|
vp9_tile_set_col(&tile, tile_data->cm, col);
|
|
vp9_zero(tile_data->xd.left_context);
|
|
vp9_zero(tile_data->xd.left_seg_context);
|
|
for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
|
|
mi_col += MI_BLOCK_SIZE) {
|
|
decode_partition(tile_data->cm, &tile_data->xd, &tile, mi_row, mi_col,
|
|
&tile_data->bit_reader, BLOCK_64X64);
|
|
}
|
|
pbi->mb.corrupted |= tile_data->xd.corrupted;
|
|
}
|
|
// Loopfilter one row.
|
|
if (cm->lf.filter_level && !pbi->mb.corrupted) {
|
|
const int lf_start = mi_row - MI_BLOCK_SIZE;
|
|
LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1;
|
|
|
|
// delay the loopfilter by 1 macroblock row.
|
|
if (lf_start < 0) continue;
|
|
|
|
// decoding has completed: finish up the loop filter in this thread.
|
|
if (mi_row + MI_BLOCK_SIZE >= cm->mi_rows) continue;
|
|
|
|
winterface->sync(&pbi->lf_worker);
|
|
lf_data->start = lf_start;
|
|
lf_data->stop = mi_row;
|
|
if (pbi->max_threads > 1) {
|
|
winterface->launch(&pbi->lf_worker);
|
|
} else {
|
|
winterface->execute(&pbi->lf_worker);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Loopfilter remaining rows in the frame.
|
|
if (cm->lf.filter_level && !pbi->mb.corrupted) {
|
|
LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1;
|
|
winterface->sync(&pbi->lf_worker);
|
|
lf_data->start = lf_data->stop;
|
|
lf_data->stop = cm->mi_rows;
|
|
winterface->execute(&pbi->lf_worker);
|
|
}
|
|
|
|
// Get last tile data.
|
|
tile_data = pbi->tile_data + tile_cols * tile_rows - 1;
|
|
|
|
return vp9_reader_find_end(&tile_data->bit_reader);
|
|
}
|
|
|
|
static int tile_worker_hook(TileWorkerData *const tile_data,
|
|
const TileInfo *const tile) {
|
|
int mi_row, mi_col;
|
|
|
|
for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
|
|
mi_row += MI_BLOCK_SIZE) {
|
|
vp9_zero(tile_data->xd.left_context);
|
|
vp9_zero(tile_data->xd.left_seg_context);
|
|
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
|
|
mi_col += MI_BLOCK_SIZE) {
|
|
decode_partition(tile_data->cm, &tile_data->xd, tile,
|
|
mi_row, mi_col, &tile_data->bit_reader, BLOCK_64X64);
|
|
}
|
|
}
|
|
return !tile_data->xd.corrupted;
|
|
}
|
|
|
|
// sorts in descending order
|
|
static int compare_tile_buffers(const void *a, const void *b) {
|
|
const TileBuffer *const buf1 = (const TileBuffer*)a;
|
|
const TileBuffer *const buf2 = (const TileBuffer*)b;
|
|
if (buf1->size < buf2->size) {
|
|
return 1;
|
|
} else if (buf1->size == buf2->size) {
|
|
return 0;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static const uint8_t *decode_tiles_mt(VP9Decoder *pbi,
|
|
const uint8_t *data,
|
|
const uint8_t *data_end) {
|
|
VP9_COMMON *const cm = &pbi->common;
|
|
const VP9WorkerInterface *const winterface = vp9_get_worker_interface();
|
|
const uint8_t *bit_reader_end = NULL;
|
|
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
|
|
const int tile_cols = 1 << cm->log2_tile_cols;
|
|
const int tile_rows = 1 << cm->log2_tile_rows;
|
|
const int num_workers = MIN(pbi->max_threads & ~1, tile_cols);
|
|
TileBuffer tile_buffers[1][1 << 6];
|
|
int n;
|
|
int final_worker = -1;
|
|
|
|
assert(tile_cols <= (1 << 6));
|
|
assert(tile_rows == 1);
|
|
(void)tile_rows;
|
|
|
|
// TODO(jzern): See if we can remove the restriction of passing in max
|
|
// threads to the decoder.
|
|
if (pbi->num_tile_workers == 0) {
|
|
const int num_threads = pbi->max_threads & ~1;
|
|
int i;
|
|
// TODO(jzern): Allocate one less worker, as in the current code we only
|
|
// use num_threads - 1 workers.
|
|
CHECK_MEM_ERROR(cm, pbi->tile_workers,
|
|
vpx_malloc(num_threads * sizeof(*pbi->tile_workers)));
|
|
for (i = 0; i < num_threads; ++i) {
|
|
VP9Worker *const worker = &pbi->tile_workers[i];
|
|
++pbi->num_tile_workers;
|
|
|
|
winterface->init(worker);
|
|
CHECK_MEM_ERROR(cm, worker->data1,
|
|
vpx_memalign(32, sizeof(TileWorkerData)));
|
|
CHECK_MEM_ERROR(cm, worker->data2, vpx_malloc(sizeof(TileInfo)));
|
|
if (i < num_threads - 1 && !winterface->reset(worker)) {
|
|
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
|
|
"Tile decoder thread creation failed");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reset tile decoding hook
|
|
for (n = 0; n < num_workers; ++n) {
|
|
winterface->sync(&pbi->tile_workers[n]);
|
|
pbi->tile_workers[n].hook = (VP9WorkerHook)tile_worker_hook;
|
|
}
|
|
|
|
// Note: this memset assumes above_context[0], [1] and [2]
|
|
// are allocated as part of the same buffer.
|
|
vpx_memset(cm->above_context, 0,
|
|
sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols);
|
|
vpx_memset(cm->above_seg_context, 0,
|
|
sizeof(*cm->above_seg_context) * aligned_mi_cols);
|
|
|
|
// Load tile data into tile_buffers
|
|
get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers);
|
|
|
|
// Sort the buffers based on size in descending order.
|
|
qsort(tile_buffers[0], tile_cols, sizeof(tile_buffers[0][0]),
|
|
compare_tile_buffers);
|
|
|
|
// Rearrange the tile buffers such that per-tile group the largest, and
|
|
// presumably the most difficult, tile will be decoded in the main thread.
|
|
// This should help minimize the number of instances where the main thread is
|
|
// waiting for a worker to complete.
|
|
{
|
|
int group_start = 0;
|
|
while (group_start < tile_cols) {
|
|
const TileBuffer largest = tile_buffers[0][group_start];
|
|
const int group_end = MIN(group_start + num_workers, tile_cols) - 1;
|
|
memmove(tile_buffers[0] + group_start, tile_buffers[0] + group_start + 1,
|
|
(group_end - group_start) * sizeof(tile_buffers[0][0]));
|
|
tile_buffers[0][group_end] = largest;
|
|
group_start = group_end + 1;
|
|
}
|
|
}
|
|
|
|
n = 0;
|
|
while (n < tile_cols) {
|
|
int i;
|
|
for (i = 0; i < num_workers && n < tile_cols; ++i) {
|
|
VP9Worker *const worker = &pbi->tile_workers[i];
|
|
TileWorkerData *const tile_data = (TileWorkerData*)worker->data1;
|
|
TileInfo *const tile = (TileInfo*)worker->data2;
|
|
TileBuffer *const buf = &tile_buffers[0][n];
|
|
|
|
tile_data->cm = cm;
|
|
tile_data->xd = pbi->mb;
|
|
tile_data->xd.corrupted = 0;
|
|
vp9_tile_init(tile, tile_data->cm, 0, buf->col);
|
|
setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
|
|
&tile_data->bit_reader, pbi->decrypt_cb,
|
|
pbi->decrypt_state);
|
|
init_macroblockd(cm, &tile_data->xd);
|
|
vp9_zero(tile_data->xd.dqcoeff);
|
|
|
|
worker->had_error = 0;
|
|
if (i == num_workers - 1 || n == tile_cols - 1) {
|
|
winterface->execute(worker);
|
|
} else {
|
|
winterface->launch(worker);
|
|
}
|
|
|
|
if (buf->col == tile_cols - 1) {
|
|
final_worker = i;
|
|
}
|
|
|
|
++n;
|
|
}
|
|
|
|
for (; i > 0; --i) {
|
|
VP9Worker *const worker = &pbi->tile_workers[i - 1];
|
|
pbi->mb.corrupted |= !winterface->sync(worker);
|
|
}
|
|
if (final_worker > -1) {
|
|
TileWorkerData *const tile_data =
|
|
(TileWorkerData*)pbi->tile_workers[final_worker].data1;
|
|
bit_reader_end = vp9_reader_find_end(&tile_data->bit_reader);
|
|
final_worker = -1;
|
|
}
|
|
}
|
|
|
|
return bit_reader_end;
|
|
}
|
|
|
|
static void error_handler(void *data) {
|
|
VP9_COMMON *const cm = (VP9_COMMON *)data;
|
|
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
|
|
}
|
|
|
|
int vp9_read_sync_code(struct vp9_read_bit_buffer *const rb) {
|
|
return vp9_rb_read_literal(rb, 8) == VP9_SYNC_CODE_0 &&
|
|
vp9_rb_read_literal(rb, 8) == VP9_SYNC_CODE_1 &&
|
|
vp9_rb_read_literal(rb, 8) == VP9_SYNC_CODE_2;
|
|
}
|
|
|
|
BITSTREAM_PROFILE vp9_read_profile(struct vp9_read_bit_buffer *rb) {
|
|
int profile = vp9_rb_read_bit(rb);
|
|
profile |= vp9_rb_read_bit(rb) << 1;
|
|
if (profile > 2)
|
|
profile += vp9_rb_read_bit(rb);
|
|
return (BITSTREAM_PROFILE) profile;
|
|
}
|
|
|
|
static void read_bitdepth_colorspace_sampling(
|
|
VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
|
|
if (cm->profile >= PROFILE_2)
|
|
cm->bit_depth = vp9_rb_read_bit(rb) ? VPX_BITS_12 : VPX_BITS_10;
|
|
cm->color_space = (COLOR_SPACE)vp9_rb_read_literal(rb, 3);
|
|
if (cm->color_space != SRGB) {
|
|
vp9_rb_read_bit(rb); // [16,235] (including xvycc) vs [0,255] range
|
|
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
|
|
cm->subsampling_x = vp9_rb_read_bit(rb);
|
|
cm->subsampling_y = vp9_rb_read_bit(rb);
|
|
if (cm->subsampling_x == 1 && cm->subsampling_y == 1)
|
|
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
|
|
"4:2:0 color not supported in profile 1 or 3");
|
|
if (vp9_rb_read_bit(rb))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
|
|
"Reserved bit set");
|
|
} else {
|
|
cm->subsampling_y = cm->subsampling_x = 1;
|
|
}
|
|
} else {
|
|
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
|
|
// Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed.
|
|
// 4:2:2 or 4:4:0 chroma sampling is not allowed.
|
|
cm->subsampling_y = cm->subsampling_x = 0;
|
|
if (vp9_rb_read_bit(rb))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
|
|
"Reserved bit set");
|
|
} else {
|
|
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
|
|
"4:4:4 color not supported in profile 0 or 2");
|
|
}
|
|
}
|
|
}
|
|
|
|
static size_t read_uncompressed_header(VP9Decoder *pbi,
|
|
struct vp9_read_bit_buffer *rb) {
|
|
VP9_COMMON *const cm = &pbi->common;
|
|
size_t sz;
|
|
int i;
|
|
|
|
cm->last_frame_type = cm->frame_type;
|
|
|
|
if (vp9_rb_read_literal(rb, 2) != VP9_FRAME_MARKER)
|
|
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
|
|
"Invalid frame marker");
|
|
|
|
cm->profile = vp9_read_profile(rb);
|
|
|
|
if (cm->profile >= MAX_PROFILES)
|
|
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
|
|
"Unsupported bitstream profile");
|
|
|
|
cm->show_existing_frame = vp9_rb_read_bit(rb);
|
|
if (cm->show_existing_frame) {
|
|
// Show an existing frame directly.
|
|
const int frame_to_show = cm->ref_frame_map[vp9_rb_read_literal(rb, 3)];
|
|
|
|
if (frame_to_show < 0 || cm->frame_bufs[frame_to_show].ref_count < 1)
|
|
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
|
|
"Buffer %d does not contain a decoded frame",
|
|
frame_to_show);
|
|
|
|
ref_cnt_fb(cm->frame_bufs, &cm->new_fb_idx, frame_to_show);
|
|
pbi->refresh_frame_flags = 0;
|
|
cm->lf.filter_level = 0;
|
|
cm->show_frame = 1;
|
|
return 0;
|
|
}
|
|
|
|
cm->frame_type = (FRAME_TYPE) vp9_rb_read_bit(rb);
|
|
cm->show_frame = vp9_rb_read_bit(rb);
|
|
cm->error_resilient_mode = vp9_rb_read_bit(rb);
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
if (!vp9_read_sync_code(rb))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
|
|
"Invalid frame sync code");
|
|
|
|
read_bitdepth_colorspace_sampling(cm, rb);
|
|
pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
|
|
|
|
for (i = 0; i < REFS_PER_FRAME; ++i) {
|
|
cm->frame_refs[i].idx = -1;
|
|
cm->frame_refs[i].buf = NULL;
|
|
}
|
|
|
|
setup_frame_size(cm, rb);
|
|
} else {
|
|
cm->intra_only = cm->show_frame ? 0 : vp9_rb_read_bit(rb);
|
|
|
|
cm->reset_frame_context = cm->error_resilient_mode ?
|
|
0 : vp9_rb_read_literal(rb, 2);
|
|
|
|
if (cm->intra_only) {
|
|
if (!vp9_read_sync_code(rb))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
|
|
"Invalid frame sync code");
|
|
if (cm->profile > PROFILE_0) {
|
|
read_bitdepth_colorspace_sampling(cm, rb);
|
|
} else {
|
|
// NOTE: The intra-only frame header does not include the specification
|
|
// of either the color format or color sub-sampling in profile 0. VP9
|
|
// specifies that the default color space should be YUV 4:2:0 in this
|
|
// case (normative).
|
|
cm->color_space = BT_601;
|
|
cm->subsampling_y = cm->subsampling_x = 1;
|
|
}
|
|
|
|
pbi->refresh_frame_flags = vp9_rb_read_literal(rb, REF_FRAMES);
|
|
setup_frame_size(cm, rb);
|
|
} else {
|
|
pbi->refresh_frame_flags = vp9_rb_read_literal(rb, REF_FRAMES);
|
|
for (i = 0; i < REFS_PER_FRAME; ++i) {
|
|
const int ref = vp9_rb_read_literal(rb, REF_FRAMES_LOG2);
|
|
const int idx = cm->ref_frame_map[ref];
|
|
RefBuffer *const ref_frame = &cm->frame_refs[i];
|
|
ref_frame->idx = idx;
|
|
ref_frame->buf = &cm->frame_bufs[idx].buf;
|
|
cm->ref_frame_sign_bias[LAST_FRAME + i] = vp9_rb_read_bit(rb);
|
|
}
|
|
|
|
setup_frame_size_with_refs(cm, rb);
|
|
|
|
cm->allow_high_precision_mv = vp9_rb_read_bit(rb);
|
|
cm->interp_filter = read_interp_filter(rb);
|
|
|
|
for (i = 0; i < REFS_PER_FRAME; ++i) {
|
|
RefBuffer *const ref_buf = &cm->frame_refs[i];
|
|
vp9_setup_scale_factors_for_frame(&ref_buf->sf,
|
|
ref_buf->buf->y_crop_width,
|
|
ref_buf->buf->y_crop_height,
|
|
cm->width, cm->height);
|
|
if (vp9_is_scaled(&ref_buf->sf))
|
|
vp9_extend_frame_borders(ref_buf->buf);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!cm->error_resilient_mode) {
|
|
cm->refresh_frame_context = vp9_rb_read_bit(rb);
|
|
cm->frame_parallel_decoding_mode = vp9_rb_read_bit(rb);
|
|
} else {
|
|
cm->refresh_frame_context = 0;
|
|
cm->frame_parallel_decoding_mode = 1;
|
|
}
|
|
|
|
// This flag will be overridden by the call to vp9_setup_past_independence
|
|
// below, forcing the use of context 0 for those frame types.
|
|
cm->frame_context_idx = vp9_rb_read_literal(rb, FRAME_CONTEXTS_LOG2);
|
|
|
|
if (frame_is_intra_only(cm) || cm->error_resilient_mode)
|
|
vp9_setup_past_independence(cm);
|
|
|
|
setup_loopfilter(&cm->lf, rb);
|
|
setup_quantization(cm, &pbi->mb, rb);
|
|
setup_segmentation(&cm->seg, rb);
|
|
|
|
setup_tile_info(cm, rb);
|
|
sz = vp9_rb_read_literal(rb, 16);
|
|
|
|
if (sz == 0)
|
|
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
|
|
"Invalid header size");
|
|
|
|
return sz;
|
|
}
|
|
|
|
static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data,
|
|
size_t partition_size) {
|
|
VP9_COMMON *const cm = &pbi->common;
|
|
MACROBLOCKD *const xd = &pbi->mb;
|
|
FRAME_CONTEXT *const fc = &cm->fc;
|
|
vp9_reader r;
|
|
int k;
|
|
|
|
if (vp9_reader_init(&r, data, partition_size, pbi->decrypt_cb,
|
|
pbi->decrypt_state))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate bool decoder 0");
|
|
|
|
cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r);
|
|
if (cm->tx_mode == TX_MODE_SELECT)
|
|
read_tx_mode_probs(&fc->tx_probs, &r);
|
|
read_coef_probs(fc, cm->tx_mode, &r);
|
|
|
|
for (k = 0; k < SKIP_CONTEXTS; ++k)
|
|
vp9_diff_update_prob(&r, &fc->skip_probs[k]);
|
|
|
|
if (!frame_is_intra_only(cm)) {
|
|
nmv_context *const nmvc = &fc->nmvc;
|
|
int i, j;
|
|
|
|
read_inter_mode_probs(fc, &r);
|
|
|
|
if (cm->interp_filter == SWITCHABLE)
|
|
read_switchable_interp_probs(fc, &r);
|
|
|
|
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
|
|
vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]);
|
|
|
|
cm->reference_mode = read_frame_reference_mode(cm, &r);
|
|
if (cm->reference_mode != SINGLE_REFERENCE)
|
|
setup_compound_reference_mode(cm);
|
|
read_frame_reference_mode_probs(cm, &r);
|
|
|
|
for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
|
|
for (i = 0; i < INTRA_MODES - 1; ++i)
|
|
vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]);
|
|
|
|
for (j = 0; j < PARTITION_CONTEXTS; ++j)
|
|
for (i = 0; i < PARTITION_TYPES - 1; ++i)
|
|
vp9_diff_update_prob(&r, &fc->partition_prob[j][i]);
|
|
|
|
read_mv_probs(nmvc, cm->allow_high_precision_mv, &r);
|
|
}
|
|
|
|
return vp9_reader_has_error(&r);
|
|
}
|
|
|
|
void vp9_init_dequantizer(VP9_COMMON *cm) {
|
|
int q;
|
|
|
|
for (q = 0; q < QINDEX_RANGE; q++) {
|
|
cm->y_dequant[q][0] = vp9_dc_quant(q, cm->y_dc_delta_q);
|
|
cm->y_dequant[q][1] = vp9_ac_quant(q, 0);
|
|
|
|
cm->uv_dequant[q][0] = vp9_dc_quant(q, cm->uv_dc_delta_q);
|
|
cm->uv_dequant[q][1] = vp9_ac_quant(q, cm->uv_ac_delta_q);
|
|
}
|
|
}
|
|
|
|
#ifdef NDEBUG
|
|
#define debug_check_frame_counts(cm) (void)0
|
|
#else // !NDEBUG
|
|
// Counts should only be incremented when frame_parallel_decoding_mode and
|
|
// error_resilient_mode are disabled.
|
|
static void debug_check_frame_counts(const VP9_COMMON *const cm) {
|
|
FRAME_COUNTS zero_counts;
|
|
vp9_zero(zero_counts);
|
|
assert(cm->frame_parallel_decoding_mode || cm->error_resilient_mode);
|
|
assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode,
|
|
sizeof(cm->counts.y_mode)));
|
|
assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode,
|
|
sizeof(cm->counts.uv_mode)));
|
|
assert(!memcmp(cm->counts.partition, zero_counts.partition,
|
|
sizeof(cm->counts.partition)));
|
|
assert(!memcmp(cm->counts.coef, zero_counts.coef,
|
|
sizeof(cm->counts.coef)));
|
|
assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch,
|
|
sizeof(cm->counts.eob_branch)));
|
|
assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp,
|
|
sizeof(cm->counts.switchable_interp)));
|
|
assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode,
|
|
sizeof(cm->counts.inter_mode)));
|
|
assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter,
|
|
sizeof(cm->counts.intra_inter)));
|
|
assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter,
|
|
sizeof(cm->counts.comp_inter)));
|
|
assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref,
|
|
sizeof(cm->counts.single_ref)));
|
|
assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref,
|
|
sizeof(cm->counts.comp_ref)));
|
|
assert(!memcmp(&cm->counts.tx, &zero_counts.tx, sizeof(cm->counts.tx)));
|
|
assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip)));
|
|
assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv)));
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
static struct vp9_read_bit_buffer* init_read_bit_buffer(
|
|
VP9Decoder *pbi,
|
|
struct vp9_read_bit_buffer *rb,
|
|
const uint8_t *data,
|
|
const uint8_t *data_end,
|
|
uint8_t *clear_data /* buffer size MAX_VP9_HEADER_SIZE */) {
|
|
rb->bit_offset = 0;
|
|
rb->error_handler = error_handler;
|
|
rb->error_handler_data = &pbi->common;
|
|
if (pbi->decrypt_cb) {
|
|
const int n = (int)MIN(MAX_VP9_HEADER_SIZE, data_end - data);
|
|
pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n);
|
|
rb->bit_buffer = clear_data;
|
|
rb->bit_buffer_end = clear_data + n;
|
|
} else {
|
|
rb->bit_buffer = data;
|
|
rb->bit_buffer_end = data_end;
|
|
}
|
|
return rb;
|
|
}
|
|
|
|
void vp9_decode_frame(VP9Decoder *pbi,
|
|
const uint8_t *data, const uint8_t *data_end,
|
|
const uint8_t **p_data_end) {
|
|
VP9_COMMON *const cm = &pbi->common;
|
|
MACROBLOCKD *const xd = &pbi->mb;
|
|
struct vp9_read_bit_buffer rb = { NULL, NULL, 0, NULL, 0};
|
|
|
|
uint8_t clear_data[MAX_VP9_HEADER_SIZE];
|
|
const size_t first_partition_size = read_uncompressed_header(pbi,
|
|
init_read_bit_buffer(pbi, &rb, data, data_end, clear_data));
|
|
const int tile_rows = 1 << cm->log2_tile_rows;
|
|
const int tile_cols = 1 << cm->log2_tile_cols;
|
|
YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
|
|
xd->cur_buf = new_fb;
|
|
|
|
if (!first_partition_size) {
|
|
// showing a frame directly
|
|
*p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2);
|
|
return;
|
|
}
|
|
|
|
data += vp9_rb_bytes_read(&rb);
|
|
if (!read_is_valid(data, first_partition_size, data_end))
|
|
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
|
|
"Truncated packet or corrupt header length");
|
|
|
|
init_macroblockd(cm, &pbi->mb);
|
|
|
|
if (!cm->error_resilient_mode)
|
|
set_prev_mi(cm);
|
|
else
|
|
cm->prev_mi = NULL;
|
|
|
|
setup_plane_dequants(cm, xd, cm->base_qindex);
|
|
vp9_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
|
|
|
|
cm->fc = cm->frame_contexts[cm->frame_context_idx];
|
|
vp9_zero(cm->counts);
|
|
vp9_zero(xd->dqcoeff);
|
|
|
|
xd->corrupted = 0;
|
|
new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size);
|
|
|
|
// TODO(jzern): remove frame_parallel_decoding_mode restriction for
|
|
// single-frame tile decoding.
|
|
if (pbi->max_threads > 1 && tile_rows == 1 && tile_cols > 1 &&
|
|
cm->frame_parallel_decoding_mode) {
|
|
*p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end);
|
|
if (!xd->corrupted) {
|
|
// If multiple threads are used to decode tiles, then we use those threads
|
|
// to do parallel loopfiltering.
|
|
vp9_loop_filter_frame_mt(new_fb, pbi, cm, cm->lf.filter_level, 0);
|
|
}
|
|
} else {
|
|
*p_data_end = decode_tiles(pbi, data + first_partition_size, data_end);
|
|
}
|
|
|
|
new_fb->corrupted |= xd->corrupted;
|
|
|
|
if (!new_fb->corrupted) {
|
|
if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
|
|
vp9_adapt_coef_probs(cm);
|
|
|
|
if (!frame_is_intra_only(cm)) {
|
|
vp9_adapt_mode_probs(cm);
|
|
vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
|
|
}
|
|
} else {
|
|
debug_check_frame_counts(cm);
|
|
}
|
|
} else {
|
|
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
|
|
"Decode failed. Frame data is corrupted.");
|
|
}
|
|
|
|
if (cm->refresh_frame_context)
|
|
cm->frame_contexts[cm->frame_context_idx] = cm->fc;
|
|
}
|