Files
vpx/vp9/encoder/vp9_bitstream.c
Jingning Han f7a39d7f08 Make the tile coding syntax support large scale tile decoding
This commit makes the bit-stream syntax support fast selective tile
decoding in a large scale tile array. It reduces the computational
complexity of computing the target tile offset in the bit-stream
from quadratic to linear scale, while maintaining relatively small
stack space requirement (in the order of 1024 bytes instead of 1M
bytes). The overhead cost due to tile separation remains identical.

Change-Id: Id60c6915733d33a627f49e167c57d2534e70aa96
2015-05-26 12:54:00 -07:00

2424 lines
83 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "vpx/vpx_encoder.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem_ops.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_mvref_common.h"
#if CONFIG_PALETTE
#include "vp9/common/vp9_palette.h"
#endif // CONFIG_PALETTE
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_cost.h"
#include "vp9/encoder/vp9_bitstream.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_subexp.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/encoder/vp9_write_bit_buffer.h"
static struct vp9_token intra_mode_encodings[INTRA_MODES];
static struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS];
static struct vp9_token partition_encodings[PARTITION_TYPES];
static struct vp9_token inter_mode_encodings[INTER_MODES];
#if CONFIG_EXT_TX
static struct vp9_token ext_tx_encodings[EXT_TX_TYPES];
#endif
#if CONFIG_PALETTE
static struct vp9_token palette_size_encodings[PALETTE_SIZES];
static struct vp9_token palette_color_encodings[PALETTE_COLORS];
#endif // CONFIG_PALETTE
#if CONFIG_COPY_MODE
static struct vp9_token copy_mode_encodings_l2[2];
static struct vp9_token copy_mode_encodings[COPY_MODE_COUNT - 1];
#endif
#if CONFIG_NEW_INTER
static struct vp9_token inter_compound_mode_encodings[INTER_COMPOUND_MODES];
#endif // CONFIG_NEW_INTER
#if CONFIG_GLOBAL_MOTION
static struct vp9_token global_motion_types_encodings[GLOBAL_MOTION_TYPES];
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_SUPERTX
static int vp9_check_supertx(VP9_COMMON *cm, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
MODE_INFO *mi;
mi = cm->mi + (mi_row * cm->mi_stride + mi_col);
return mi[0].mbmi.tx_size == bsize_to_tx_size(bsize) &&
mi[0].mbmi.sb_type < bsize;
}
#endif // CONFIG_SUPERTX
void vp9_entropy_mode_init() {
vp9_tokens_from_tree(intra_mode_encodings, vp9_intra_mode_tree);
vp9_tokens_from_tree(switchable_interp_encodings, vp9_switchable_interp_tree);
vp9_tokens_from_tree(partition_encodings, vp9_partition_tree);
vp9_tokens_from_tree(inter_mode_encodings, vp9_inter_mode_tree);
#if CONFIG_EXT_TX
vp9_tokens_from_tree(ext_tx_encodings, vp9_ext_tx_tree);
#endif
#if CONFIG_PALETTE
vp9_tokens_from_tree(palette_size_encodings, vp9_palette_size_tree);
vp9_tokens_from_tree(palette_color_encodings, vp9_palette_color_tree);
#endif // CONFIG_PALETTE
#if CONFIG_NEW_INTER
vp9_tokens_from_tree(inter_compound_mode_encodings,
vp9_inter_compound_mode_tree);
#endif // CONFIG_NEW_INTER
#if CONFIG_COPY_MODE
vp9_tokens_from_tree(copy_mode_encodings_l2, vp9_copy_mode_tree_l2);
vp9_tokens_from_tree(copy_mode_encodings, vp9_copy_mode_tree);
#endif // CONFIG_COPY_MODE
#if CONFIG_GLOBAL_MOTION
vp9_tokens_from_tree(global_motion_types_encodings,
vp9_global_motion_types_tree);
#endif // CONFIG_GLOBAL_MOTION
}
static void write_intra_mode(vp9_writer *w, PREDICTION_MODE mode,
const vp9_prob *probs) {
vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
}
static void write_inter_mode(vp9_writer *w, PREDICTION_MODE mode,
const vp9_prob *probs) {
assert(is_inter_mode(mode));
vp9_write_token(w, vp9_inter_mode_tree, probs,
&inter_mode_encodings[INTER_OFFSET(mode)]);
}
#if CONFIG_COPY_MODE
static void write_copy_mode(VP9_COMMON *cm, vp9_writer *w, COPY_MODE mode,
int inter_ref_count, int copy_mode_context) {
if (inter_ref_count == 2) {
vp9_write_token(w, vp9_copy_mode_tree_l2,
cm->fc.copy_mode_probs_l2[copy_mode_context],
&copy_mode_encodings_l2[mode - REF0]);
} else if (inter_ref_count > 2) {
vp9_write_token(w, vp9_copy_mode_tree,
cm->fc.copy_mode_probs[copy_mode_context],
&copy_mode_encodings[mode - REF0]);
}
}
#endif // CONFIG_COPY_MODE
#if CONFIG_NEW_INTER
static void write_inter_compound_mode(vp9_writer *w, PREDICTION_MODE mode,
const vp9_prob *probs) {
assert(is_inter_compound_mode(mode));
vp9_write_token(w, vp9_inter_compound_mode_tree, probs,
&inter_compound_mode_encodings[INTER_COMPOUND_OFFSET(mode)]);
}
#endif // CONFIG_NEW_INTER
static void encode_unsigned_max(struct vp9_write_bit_buffer *wb,
int data, int max) {
vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
}
static void prob_diff_update(const vp9_tree_index *tree,
vp9_prob probs[/*n - 1*/],
const unsigned int counts[/*n - 1*/],
int n, vp9_writer *w) {
int i;
unsigned int branch_ct[32][2];
// Assuming max number of probabilities <= 32
assert(n <= 32);
vp9_tree_probs_from_distribution(tree, branch_ct, counts);
for (i = 0; i < n - 1; ++i)
vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
}
static int prob_diff_update_savings(const vp9_tree_index *tree,
vp9_prob probs[/*n - 1*/],
const unsigned int counts[/*n - 1*/],
int n) {
int i;
unsigned int branch_ct[32][2];
int savings = 0;
// Assuming max number of probabilities <= 32
assert(n <= 32);
vp9_tree_probs_from_distribution(tree, branch_ct, counts);
for (i = 0; i < n - 1; ++i) {
savings += vp9_cond_prob_diff_update_savings(&probs[i], branch_ct[i]);
}
return savings;
}
static void write_selected_tx_size(const VP9_COMMON *cm,
const MACROBLOCKD *xd,
TX_SIZE tx_size, BLOCK_SIZE bsize,
vp9_writer *w) {
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd,
&cm->fc.tx_probs);
vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
if (tx_size != TX_8X8 && max_tx_size >= TX_32X32) {
vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
#if CONFIG_TX64X64
if (tx_size != TX_16X16 && max_tx_size >= TX_64X64)
vp9_write(w, tx_size != TX_32X32, tx_probs[3]);
#endif
}
}
}
static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, const MODE_INFO *mi, vp9_writer *w) {
if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int skip = mi->mbmi.skip;
vp9_write(w, skip, vp9_get_skip_prob(cm, xd));
return skip;
}
}
static void update_skip_probs(VP9_COMMON *cm, vp9_writer *w) {
int k;
for (k = 0; k < SKIP_CONTEXTS; ++k)
vp9_cond_prob_diff_update(w, &cm->fc.skip_probs[k], cm->counts.skip[k]);
}
static void update_switchable_interp_probs(VP9_COMMON *cm, vp9_writer *w) {
int j;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
prob_diff_update(vp9_switchable_interp_tree,
cm->fc.switchable_interp_prob[j],
cm->counts.switchable_interp[j], SWITCHABLE_FILTERS, w);
}
#if CONFIG_EXT_TX
static void update_ext_tx_probs(VP9_COMMON *cm, vp9_writer *w) {
const int savings_thresh = vp9_cost_one(GROUP_DIFF_UPDATE_PROB) -
vp9_cost_zero(GROUP_DIFF_UPDATE_PROB);
int i;
int savings = 0;
int do_update = 0;
for (i = TX_4X4; i <= TX_16X16; ++i) {
savings += prob_diff_update_savings(vp9_ext_tx_tree, cm->fc.ext_tx_prob[i],
cm->counts.ext_tx[i], EXT_TX_TYPES);
}
do_update = savings > savings_thresh;
vp9_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = TX_4X4; i <= TX_16X16; ++i) {
prob_diff_update(vp9_ext_tx_tree, cm->fc.ext_tx_prob[i],
cm->counts.ext_tx[i], EXT_TX_TYPES, w);
}
}
}
#endif // CONFIG_EXT_TX
#if CONFIG_SUPERTX
static void update_supertx_probs(VP9_COMMON *cm, vp9_writer *w) {
const int savings_thresh = vp9_cost_one(GROUP_DIFF_UPDATE_PROB) -
vp9_cost_zero(GROUP_DIFF_UPDATE_PROB);
int i, j;
int savings = 0;
int do_update = 0;
for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) {
for (j = 1; j < TX_SIZES; ++j) {
savings +=
vp9_cond_prob_diff_update_savings(&cm->fc.supertx_prob[i][j],
cm->counts.supertx[i][j]);
}
}
do_update = savings > savings_thresh;
vp9_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) {
for (j = 1; j < TX_SIZES; ++j) {
vp9_cond_prob_diff_update(w, &cm->fc.supertx_prob[i][j],
cm->counts.supertx[i][j]);
}
}
}
}
#endif // CONFIG_SUPERTX
#if CONFIG_NEW_INTER
static void update_inter_compound_mode_probs(VP9_COMMON *cm, vp9_writer *w) {
const int savings_thresh = vp9_cost_one(GROUP_DIFF_UPDATE_PROB) -
vp9_cost_zero(GROUP_DIFF_UPDATE_PROB);
int i;
int savings = 0;
int do_update = 0;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
savings += prob_diff_update_savings(vp9_inter_compound_mode_tree,
cm->fc.inter_compound_mode_probs[i],
cm->counts.inter_compound_mode[i],
INTER_COMPOUND_MODES);
}
do_update = savings > savings_thresh;
vp9_write(w, do_update, GROUP_DIFF_UPDATE_PROB);
if (do_update) {
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
prob_diff_update(vp9_inter_compound_mode_tree,
cm->fc.inter_compound_mode_probs[i],
cm->counts.inter_compound_mode[i],
INTER_COMPOUND_MODES, w);
}
}
}
#endif // CONFIG_NEW_INTER
static void pack_mb_tokens(vp9_writer *w,
TOKENEXTRA **tp, const TOKENEXTRA *const stop,
vpx_bit_depth_t bit_depth) {
TOKENEXTRA *p = *tp;
while (p < stop && p->token != EOSB_TOKEN) {
const int t = p->token;
const struct vp9_token *const a = &vp9_coef_encodings[t];
int i = 0;
int v = a->value;
int n = a->len;
#if CONFIG_VP9_HIGHBITDEPTH
const vp9_extra_bit *b;
if (bit_depth == VPX_BITS_12)
b = &vp9_extra_bits_high12[t];
else if (bit_depth == VPX_BITS_10)
b = &vp9_extra_bits_high10[t];
else
b = &vp9_extra_bits[t];
#else
const vp9_extra_bit *const b = &vp9_extra_bits[t];
(void) bit_depth;
#endif // CONFIG_VP9_HIGHBITDEPTH
/* skip one or two nodes */
if (p->skip_eob_node) {
n -= p->skip_eob_node;
i = 2 * p->skip_eob_node;
}
// TODO(jbb): expanding this can lead to big gains. It allows
// much better branch prediction and would enable us to avoid numerous
// lookups and compares.
// If we have a token that's in the constrained set, the coefficient tree
// is split into two treed writes. The first treed write takes care of the
// unconstrained nodes. The second treed write takes care of the
// constrained nodes.
#if CONFIG_TX_SKIP
if (p->is_pxd_token && FOR_SCREEN_CONTENT) {
vp9_write_tree(w, vp9_coef_tree, p->context_tree, v, n, i);
} else {
#endif // CONFIG_TX_SKIP
if (t >= TWO_TOKEN && t < EOB_TOKEN) {
int len = UNCONSTRAINED_NODES - p->skip_eob_node;
int bits = v >> (n - len);
vp9_write_tree(w, vp9_coef_tree, p->context_tree, bits, len, i);
vp9_write_tree(w, vp9_coef_con_tree,
vp9_pareto8_full[p->context_tree[PIVOT_NODE] - 1],
v, n - len, 0);
} else {
vp9_write_tree(w, vp9_coef_tree, p->context_tree, v, n, i);
}
#if CONFIG_TX_SKIP
}
#endif // CONFIG_TX_SKIP
if (b->base_val) {
const int e = p->extra, l = b->len;
if (l) {
const unsigned char *pb = b->prob;
int v = e >> 1;
int n = l; /* number of bits in v, assumed nonzero */
int i = 0;
do {
const int bb = (v >> --n) & 1;
vp9_write(w, bb, pb[i >> 1]);
i = b->tree[i + bb];
} while (n);
}
vp9_write_bit(w, e & 1);
}
++p;
}
*tp = p + (p->token == EOSB_TOKEN);
}
static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
int segment_id) {
if (seg->enabled && seg->update_map)
vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
}
// This function encodes the reference frame
static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *xd,
vp9_writer *w) {
const MB_MODE_INFO *const mbmi = &xd->mi[0].src_mi->mbmi;
const int is_compound = has_second_ref(mbmi);
const int segment_id = mbmi->segment_id;
// If segment level coding of this signal is disabled...
// or the segment allows multiple reference frame options
if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
assert(!is_compound);
assert(mbmi->ref_frame[0] ==
vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
} else {
// does the feature use compound prediction or not
// (if not specified at the frame/segment level)
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
vp9_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
} else {
assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE));
}
if (is_compound) {
vp9_write(w, mbmi->ref_frame[0] == GOLDEN_FRAME,
vp9_get_pred_prob_comp_ref_p(cm, xd));
} else {
const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
vp9_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
if (bit0) {
const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
vp9_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
}
}
}
}
static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
vp9_writer *w) {
VP9_COMMON *const cm = &cpi->common;
const nmv_context *nmvc = &cm->fc.nmvc;
const MACROBLOCK *const x = &cpi->mb;
const MACROBLOCKD *const xd = &x->e_mbd;
const struct segmentation *const seg = &cm->seg;
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const PREDICTION_MODE mode = mbmi->mode;
const int segment_id = mbmi->segment_id;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int allow_hp = cm->allow_high_precision_mv;
const int is_inter = is_inter_block(mbmi);
const int is_compound = has_second_ref(mbmi);
int skip, ref;
#if CONFIG_COPY_MODE
int copy_mode_context = vp9_get_copy_mode_context(xd);
if (bsize >= BLOCK_8X8 && mbmi->inter_ref_count > 0) {
vp9_write(w, mbmi->copy_mode != NOREF,
cm->fc.copy_noref_prob[copy_mode_context][bsize]);
if (mbmi->copy_mode != NOREF)
write_copy_mode(cm, w, mbmi->copy_mode, mbmi->inter_ref_count,
copy_mode_context);
}
#endif
if (seg->update_map) {
if (seg->temporal_update) {
const int pred_flag = mbmi->seg_id_predicted;
vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
vp9_write(w, pred_flag, pred_prob);
if (!pred_flag)
write_segment_id(w, seg, segment_id);
} else {
write_segment_id(w, seg, segment_id);
}
}
#if CONFIG_SUPERTX
if (supertx_enabled)
skip = mbmi->skip;
else
skip = write_skip(cm, xd, segment_id, mi, w);
#else
skip = write_skip(cm, xd, segment_id, mi, w);
#endif // CONFIG_SUPERTX
#if CONFIG_SUPERTX
if (!supertx_enabled) {
#endif
#if CONFIG_COPY_MODE
if (mbmi->copy_mode == NOREF)
#endif
if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
vp9_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
#if CONFIG_SUPERTX
}
#endif
#if CONFIG_PALETTE
if (!is_inter && bsize >= BLOCK_8X8 && cm->allow_palette_mode) {
int n, i, j, k, rows, cols, palette_ctx, color_ctx;
int color_new_idx = -1, color_order[PALETTE_MAX_SIZE];
uint8_t buffer[4096];
const MODE_INFO *above_mi = xd->up_available ?
xd->mi[-xd->mi_stride].src_mi : NULL;
const MODE_INFO *left_mi = xd->left_available ?
xd->mi[-1].src_mi : NULL;
palette_ctx = 0;
if (above_mi)
palette_ctx += (above_mi->mbmi.palette_enabled[0] == 1);
if (left_mi)
palette_ctx += (left_mi->mbmi.palette_enabled[0] == 1);
vp9_write(w, mbmi->palette_enabled[0],
cm->fc.palette_enabled_prob[bsize - BLOCK_8X8][palette_ctx]);
vp9_write(w, mbmi->palette_enabled[1],
cm->fc.palette_uv_enabled_prob[mbmi->palette_enabled[0]]);
if (mbmi->palette_enabled[0]) {
rows = 4 * num_4x4_blocks_high_lookup[bsize];
cols = 4 * num_4x4_blocks_wide_lookup[bsize];
n = mbmi->palette_size[0];
vp9_write_token(w, vp9_palette_size_tree,
cm->fc.palette_size_prob[bsize - BLOCK_8X8],
&palette_size_encodings[n - 2]);
for (i = 0; i < n; i++)
vp9_write_literal(w, mbmi->palette_colors[i], 8);
memcpy(buffer, mbmi->palette_color_map,
rows * cols * sizeof(buffer[0]));
vp9_write_literal(w, buffer[0], vp9_ceil_log2(n));
for (i = 0; i < rows; i++) {
for (j = (i == 0 ? 1 : 0); j < cols; j++) {
color_ctx = vp9_get_palette_color_context(buffer, cols, i, j, n,
color_order);
for (k = 0; k < n; k++)
if (buffer[i * cols + j] == color_order[k]) {
color_new_idx = k;
break;
}
vp9_write_token(w, vp9_palette_color_tree,
cm->fc.palette_color_prob[n - 2][color_ctx],
&palette_color_encodings[color_new_idx]);
}
}
}
if (mbmi->palette_enabled[1]) {
rows = 4 * num_4x4_blocks_high_lookup[bsize] >>
xd->plane[1].subsampling_y;
cols = 4 * num_4x4_blocks_wide_lookup[bsize] >>
xd->plane[1].subsampling_x;
n = mbmi->palette_size[1];
if (xd->plane[1].subsampling_x && xd->plane[1].subsampling_y) {
vp9_write_token(w, vp9_palette_size_tree,
cm->fc.palette_uv_size_prob[bsize - BLOCK_8X8],
&palette_size_encodings[n - 2]);
}
for (i = 0; i < n; i++)
vp9_write_literal(w, mbmi->palette_colors[PALETTE_MAX_SIZE + i], 8);
for (i = 0; i < n; i++)
vp9_write_literal(w, mbmi->palette_colors[2 * PALETTE_MAX_SIZE + i], 8);
if (xd->plane[1].subsampling_x && xd->plane[1].subsampling_y) {
memcpy(buffer, mbmi->palette_uv_color_map,
rows * cols * sizeof(buffer[0]));
vp9_write_literal(w, buffer[0], vp9_ceil_log2(n));
for (i = 0; i < rows; i++) {
for (j = (i == 0 ? 1 : 0); j < cols; j++) {
color_ctx = vp9_get_palette_color_context(buffer, cols, i, j, n,
color_order);
for (k = 0; k < n; k++)
if (buffer[i * cols + j] == color_order[k]) {
color_new_idx = k;
break;
}
vp9_write_token(w, vp9_palette_color_tree,
cm->fc.palette_uv_color_prob[n - 2][color_ctx],
&palette_color_encodings[color_new_idx]);
}
}
}
}
}
#endif
if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif // CONFIG_SUPERTX
#if CONFIG_PALETTE
!mbmi->palette_enabled[0] &&
#endif // CONFIG_PALETTE
!(is_inter &&
(skip || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
write_selected_tx_size(cm, xd, mbmi->tx_size, bsize, w);
}
#if CONFIG_EXT_TX
if (is_inter &&
mbmi->tx_size < TX_32X32 &&
cm->base_qindex > 0 &&
bsize >= BLOCK_8X8 &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif
!mbmi->skip &&
!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
vp9_write_token(w, vp9_ext_tx_tree, cm->fc.ext_tx_prob[mbmi->tx_size],
&ext_tx_encodings[mbmi->ext_txfrm]);
}
#endif // CONFIG_EXT_TX
#if CONFIG_TX_SKIP
if (bsize >= BLOCK_8X8) {
int q_idx = vp9_get_qindex(seg, segment_id, cm->base_qindex);
int try_tx_skip = is_inter ? q_idx <= tx_skip_q_thresh_inter :
q_idx <= tx_skip_q_thresh_intra;
#if CONFIG_COPY_MODE
if (mbmi->copy_mode != NOREF) {
try_tx_skip = 0;
}
#endif // CONFIG_COPY_MODE
#if CONFIG_SUPERTX
if (try_tx_skip && !supertx_enabled) {
#else
if (try_tx_skip && (!skip || !is_inter)) {
#endif // CONFIG_SUPERTX
if (xd->lossless) {
#if CONFIG_SUPERTX
if (1)
#else
if (mbmi->tx_size == TX_4X4)
#endif // CONFIG_SUPERTX
vp9_write(w, mbmi->tx_skip[0], cm->fc.y_tx_skip_prob[is_inter]);
#if CONFIG_SUPERTX
if (1)
#else
if (get_uv_tx_size(mbmi, &xd->plane[1]) == TX_4X4)
#endif // CONFIG_SUPERTX
vp9_write(w, mbmi->tx_skip[1],
cm->fc.uv_tx_skip_prob[mbmi->tx_skip[0]]);
} else {
vp9_write(w, mbmi->tx_skip[0], cm->fc.y_tx_skip_prob[is_inter]);
vp9_write(w, mbmi->tx_skip[1],
cm->fc.uv_tx_skip_prob[mbmi->tx_skip[0]]);
}
}
}
#endif // CONFIG_TX_SKIP
if (!is_inter) {
if (bsize >= BLOCK_8X8) {
#if CONFIG_PALETTE
if (!mbmi->palette_enabled[0])
write_intra_mode(w, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
#else
write_intra_mode(w, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
#endif // CONFIG_PALETTE
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mode) && is_filter_enabled(mbmi->tx_size)
#if CONFIG_PALETTE
&& !mbmi->palette_enabled[0]
#endif // CONFIG_PALETTE
) {
vp9_write(w, mbmi->filterbit,
cm->fc.filterintra_prob[mbmi->tx_size][mode]);
}
#endif // CONFIG_FILTERINTRA
} else {
int idx, idy;
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
write_intra_mode(w, b_mode, cm->fc.y_mode_prob[0]);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(b_mode)) {
vp9_write(w, mi->b_filter_info[idy * 2 + idx],
cm->fc.filterintra_prob[0][b_mode]);
}
#endif // CONFIG_FILTERINTRA
}
}
}
#if CONFIG_PALETTE
if (!mbmi->palette_enabled[1])
#endif // CONFIG_PALETTE
#if CONFIG_INTRABC
if (!is_intrabc_mode(mode))
#endif // CONFIG_INTRABC
write_intra_mode(w, mbmi->uv_mode, cm->fc.uv_mode_prob[mode]);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mbmi->uv_mode) &&
is_filter_enabled(get_uv_tx_size(mbmi, &xd->plane[1]))
#if CONFIG_PALETTE
&& !mbmi->palette_enabled[1]
#endif // CONFIG_PALETTE
) {
vp9_write(w, mbmi->uv_filterbit,
cm->fc.filterintra_prob[get_uv_tx_size(mbmi, &xd->plane[1])][mbmi->uv_mode]);
}
#endif // CONFIG_FILTERINTRA
#if CONFIG_COPY_MODE
} else if (mbmi->copy_mode == NOREF) {
#else
} else {
#endif // CONFIG_COPY_MODE
const int mode_ctx = mbmi->mode_context[mbmi->ref_frame[0]];
const vp9_prob *const inter_probs = cm->fc.inter_mode_probs[mode_ctx];
#if CONFIG_NEW_INTER
const vp9_prob *const inter_compound_probs =
cm->fc.inter_compound_mode_probs[mode_ctx];
#endif // CONFIG_NEW_INTER
write_ref_frames(cm, xd, w);
// If segment skip is not enabled code the mode.
if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
if (bsize >= BLOCK_8X8) {
#if CONFIG_NEW_INTER
if (is_inter_compound_mode(mode))
write_inter_compound_mode(w, mode, inter_compound_probs);
else if (is_inter_mode(mode))
#endif // CONFIG_NEW_INTER
write_inter_mode(w, mode, inter_probs);
}
}
if (cm->interp_filter == SWITCHABLE) {
const int ctx = vp9_get_pred_context_switchable_interp(xd);
vp9_write_token(w, vp9_switchable_interp_tree,
cm->fc.switchable_interp_prob[ctx],
&switchable_interp_encodings[mbmi->interp_filter]);
++cpi->interp_filter_selected[0][mbmi->interp_filter];
} else {
assert(mbmi->interp_filter == cm->interp_filter);
}
#if CONFIG_INTERINTRA
if (cpi->common.reference_mode != COMPOUND_REFERENCE &&
is_interintra_allowed(bsize) &&
is_inter_mode(mode) &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif // CONFIG_SUPERTX
mbmi->ref_frame[1] <= INTRA_FRAME) {
vp9_write(w, mbmi->ref_frame[1] == INTRA_FRAME,
cm->fc.interintra_prob[bsize]);
if (mbmi->ref_frame[1] == INTRA_FRAME) {
write_intra_mode(w, mbmi->interintra_mode,
cm->fc.y_mode_prob[size_group_lookup[bsize]]);
#if CONFIG_WEDGE_PARTITION
if (get_wedge_bits(bsize)) {
vp9_write(w, mbmi->use_wedge_interintra,
cm->fc.wedge_interintra_prob[bsize]);
if (mbmi->use_wedge_interintra) {
vp9_write_literal(w, mbmi->interintra_wedge_index,
get_wedge_bits(bsize));
}
}
#endif // CONFIG_WEDGE_PARTITION
}
}
#endif // CONFIG_INTERINTRA
if (bsize < BLOCK_8X8) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int j = idy * 2 + idx;
const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
#if CONFIG_NEW_INTER
if (is_inter_compound_mode(b_mode))
write_inter_compound_mode(w, b_mode, inter_compound_probs);
else if (is_inter_mode(b_mode))
#endif // CONFIG_NEW_INTER
write_inter_mode(w, b_mode, inter_probs);
#if CONFIG_NEW_INTER
if (b_mode == NEWMV || b_mode == NEW2MV ||
b_mode == NEW_NEWMV) {
#else
if (b_mode == NEWMV) {
#endif // CONFIG_NEW_INTER
for (ref = 0; ref < 1 + is_compound; ++ref) {
vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
#if CONFIG_NEW_INTER
&mi->bmi[j].ref_mv[ref].as_mv,
#else
&mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
#endif // CONFIG_NEW_INTER
nmvc, allow_hp);
}
}
#if CONFIG_NEW_INTER
else if (b_mode == NEAREST_NEWMV || b_mode == NEAR_NEWMV) {
vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[1].as_mv,
&mi->bmi[j].ref_mv[1].as_mv, nmvc, allow_hp);
} else if (b_mode == NEW_NEARESTMV || b_mode == NEW_NEARMV) {
vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[0].as_mv,
&mi->bmi[j].ref_mv[0].as_mv, nmvc, allow_hp);
}
#endif // CONFIG_NEW_INTER
}
}
} else {
#if CONFIG_NEW_INTER
if (mode == NEWMV || mode == NEW2MV || mode == NEW_NEWMV) {
#else
if (mode == NEWMV) {
#endif // CONFIG_NEW_INTER
for (ref = 0; ref < 1 + is_compound; ++ref) {
#if CONFIG_NEW_INTER
if (mode == NEW2MV)
vp9_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
&mbmi->ref_mvs[mbmi->ref_frame[ref]][1].as_mv, nmvc,
allow_hp);
else
#endif // CONFIG_NEW_INTER
vp9_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
&mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, nmvc,
allow_hp);
}
}
#if CONFIG_NEW_INTER
else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
vp9_encode_mv(cpi, w, &mbmi->mv[1].as_mv,
&mbmi->ref_mvs[mbmi->ref_frame[1]][0].as_mv, nmvc,
allow_hp);
} else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
vp9_encode_mv(cpi, w, &mbmi->mv[0].as_mv,
&mbmi->ref_mvs[mbmi->ref_frame[0]][0].as_mv, nmvc,
allow_hp);
}
#endif // CONFIG_NEW_INTER
}
#if CONFIG_WEDGE_PARTITION
if (cm->reference_mode != SINGLE_REFERENCE &&
#if CONFIG_NEW_INTER
is_inter_compound_mode(mode) &&
#endif // CONFIG_NEW_INTER
get_wedge_bits(bsize) &&
mbmi->ref_frame[1] > INTRA_FRAME) {
vp9_write(w, mbmi->use_wedge_interinter,
cm->fc.wedge_interinter_prob[bsize]);
if (mbmi->use_wedge_interinter)
vp9_write_literal(w, mbmi->interinter_wedge_index,
get_wedge_bits(bsize));
}
#endif // CONFIG_NEW_INTER
}
}
static void write_mb_modes_kf(const VP9_COMMON *cm,
#if CONFIG_PALETTE
MACROBLOCKD *xd,
#else
const MACROBLOCKD *xd,
#endif // CONFIG_PALETTE
#if CONFIG_INTRABC
int mi_row, int mi_col,
#endif // CONFIG_INTRABC
MODE_INFO *mi_8x8, vp9_writer *w) {
const struct segmentation *const seg = &cm->seg;
const MODE_INFO *const mi = mi_8x8;
const MODE_INFO *const above_mi = mi_8x8[-xd->mi_stride].src_mi;
const MODE_INFO *const left_mi =
xd->left_available ? mi_8x8[-1].src_mi : NULL;
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
#if CONFIG_INTRABC
const nmv_context *ndvc = &cm->fc.ndvc;
int_mv dv_ref;
vp9_find_ref_dv(&dv_ref, mi_row, mi_col);
#endif // CONFIG_INTRABC
if (seg->update_map)
write_segment_id(w, seg, mbmi->segment_id);
write_skip(cm, xd, mbmi->segment_id, mi, w);
#if CONFIG_PALETTE
if (bsize >= BLOCK_8X8 && cm->allow_palette_mode) {
int n, m1, m2, i, j, k, rows, cols, palette_ctx, color_ctx;
int color_new_idx = -1, color_order[PALETTE_MAX_SIZE];
uint8_t buffer[4096];
palette_ctx = 0;
if (above_mi)
palette_ctx += (above_mi->mbmi.palette_enabled[0] == 1);
if (left_mi)
palette_ctx += (left_mi->mbmi.palette_enabled[0] == 1);
vp9_write(w, mbmi->palette_enabled[0],
cm->fc.palette_enabled_prob[bsize - BLOCK_8X8][palette_ctx]);
vp9_write(w, mbmi->palette_enabled[1],
cm->fc.palette_uv_enabled_prob[mbmi->palette_enabled[0]]);
if (mbmi->palette_enabled[0]) {
rows = 4 * num_4x4_blocks_high_lookup[bsize];
cols = 4 * num_4x4_blocks_wide_lookup[bsize];
n = mbmi->palette_size[0];
m1 = mbmi->palette_indexed_size;
m2 = mbmi->palette_literal_size;
vp9_write_token(w, vp9_palette_size_tree,
cm->fc.palette_size_prob[bsize - BLOCK_8X8],
&palette_size_encodings[mbmi->palette_size[0] - 2]);
if ((xd->plane[1].subsampling_x && xd->plane[1].subsampling_y)
|| !mbmi->palette_enabled[1])
vp9_encode_uniform(w, MIN(mbmi->palette_size[0] + 1, 8),
mbmi->palette_indexed_size);
if (PALETTE_DELTA_BIT)
vp9_write_literal(w, mbmi->palette_delta_bitdepth, PALETTE_DELTA_BIT);
if (m1 > 0) {
for (i = 0; i < m1; i++)
vp9_write_literal(w, mbmi->palette_indexed_colors[i],
vp9_ceil_log2(mbmi->current_palette_size));
if (mbmi->palette_delta_bitdepth > 0) {
for (i = 0; i < m1; i++) {
vp9_write_bit(w, mbmi->palette_color_delta[i] < 0);
vp9_write_literal(w, abs(mbmi->palette_color_delta[i]),
mbmi->palette_delta_bitdepth);
}
}
}
if (m2 > 0) {
for (i = 0; i < m2; i++)
vp9_write_literal(w, mbmi->palette_literal_colors[i], 8);
}
memcpy(buffer, mbmi->palette_color_map,
rows * cols * sizeof(buffer[0]));
vp9_write_literal(w, buffer[0], vp9_ceil_log2(n));
for (i = 0; i < rows; i++) {
for (j = (i == 0 ? 1 : 0); j < cols; j++) {
color_ctx = vp9_get_palette_color_context(buffer, cols, i, j, n,
color_order);
for (k = 0; k < n; k++)
if (buffer[i * cols + j] == color_order[k]) {
color_new_idx = k;
break;
}
vp9_write_token(w, vp9_palette_color_tree,
cm->fc.palette_color_prob[n - 2][color_ctx],
&palette_color_encodings[color_new_idx]);
}
}
}
if (mbmi->palette_enabled[1]) {
rows = 4 * num_4x4_blocks_high_lookup[bsize] >>
xd->plane[1].subsampling_y;
cols = 4 * num_4x4_blocks_wide_lookup[bsize] >>
xd->plane[1].subsampling_x;
n = mbmi->palette_size[1];
if (xd->plane[1].subsampling_x && xd->plane[1].subsampling_y) {
vp9_write_token(w, vp9_palette_size_tree,
cm->fc.palette_uv_size_prob[bsize - BLOCK_8X8],
&palette_size_encodings[n - 2]);
}
for (i = 0; i < n; i++)
vp9_write_literal(w, mbmi->palette_colors[PALETTE_MAX_SIZE + i], 8);
for (i = 0; i < n; i++)
vp9_write_literal(w, mbmi->palette_colors[2 * PALETTE_MAX_SIZE + i], 8);
if (xd->plane[1].subsampling_x && xd->plane[1].subsampling_y) {
memcpy(buffer, mbmi->palette_uv_color_map,
rows * cols * sizeof(buffer[0]));
vp9_write_literal(w, buffer[0], vp9_ceil_log2(n));
for (i = 0; i < rows; i++) {
for (j = (i == 0 ? 1 : 0); j < cols; j++) {
color_ctx = vp9_get_palette_color_context(buffer, cols, i, j, n,
color_order);
for (k = 0; k < n; k++)
if (buffer[i * cols + j] == color_order[k]) {
color_new_idx = k;
break;
}
vp9_write_token(w, vp9_palette_color_tree,
cm->fc.palette_uv_color_prob[n - 2][color_ctx],
&palette_color_encodings[color_new_idx]);
}
}
}
}
}
if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
!mbmi->palette_enabled[0])
#else
if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
#endif
write_selected_tx_size(cm, xd, mbmi->tx_size, bsize, w);
#if CONFIG_TX_SKIP
if (bsize >= BLOCK_8X8) {
int q_idx = vp9_get_qindex(seg, mbmi->segment_id, cm->base_qindex);
int try_tx_skip = q_idx <= tx_skip_q_thresh_intra;
if (try_tx_skip) {
if (xd->lossless) {
if (mbmi->tx_size == TX_4X4)
vp9_write(w, mbmi->tx_skip[0], cm->fc.y_tx_skip_prob[0]);
if (get_uv_tx_size(mbmi, &xd->plane[1]) == TX_4X4)
vp9_write(w, mbmi->tx_skip[1],
cm->fc.uv_tx_skip_prob[mbmi->tx_skip[0]]);
} else {
vp9_write(w, mbmi->tx_skip[0], cm->fc.y_tx_skip_prob[0]);
vp9_write(w, mbmi->tx_skip[1],
cm->fc.uv_tx_skip_prob[mbmi->tx_skip[0]]);
}
}
}
#endif
if (bsize >= BLOCK_8X8) {
#if CONFIG_PALETTE
if (!mbmi->palette_enabled[0])
write_intra_mode(w, mbmi->mode,
get_y_mode_probs(mi, above_mi, left_mi, 0));
#else
write_intra_mode(w, mbmi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
#endif // CONFIG_PALETTE
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mbmi->mode) && is_filter_enabled(mbmi->tx_size)
#if CONFIG_PALETTE
&& !mbmi->palette_enabled[0]
#endif // CONFIG_PALETTE
)
vp9_write(w, mbmi->filterbit,
cm->fc.filterintra_prob[mbmi->tx_size][mbmi->mode]);
#endif // CONFIG_FILTERINTRA
#if CONFIG_INTRABC
if (mbmi->mode == NEWDV) {
vp9_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, ndvc);
}
#endif // CONFIG_INTRABC
} else {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int block = idy * 2 + idx;
write_intra_mode(w, mi->bmi[block].as_mode,
get_y_mode_probs(mi, above_mi, left_mi, block));
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[block].as_mode))
vp9_write(w, mi->b_filter_info[block],
cm->fc.filterintra_prob[0][mi->bmi[block].as_mode]);
#endif
}
}
}
#if CONFIG_PALETTE
if (!mbmi->palette_enabled[1])
#endif // CONFIG_PALETTE
#if CONFIG_INTRABC
if (!is_intrabc_mode(mbmi->mode))
#endif // CONFIG_INTRABC
write_intra_mode(w, mbmi->uv_mode, vp9_kf_uv_mode_prob[mbmi->mode]);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mbmi->uv_mode) &&
is_filter_enabled(get_uv_tx_size(mbmi, &xd->plane[1]))
#if CONFIG_PALETTE
&& !mbmi->palette_enabled[1]
#endif // CONFIG_PALETTE
)
vp9_write(w, mbmi->uv_filterbit,
cm->fc.filterintra_prob[get_uv_tx_size(mbmi, &xd->plane[1])][mbmi->uv_mode]);
#endif // CONFIG_FILTERINTRA
}
static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
vp9_writer *w, TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col) {
const VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
MODE_INFO *m;
xd->mi = cm->mi + (mi_row * cm->mi_stride + mi_col);
m = xd->mi;
set_mi_row_col(xd, tile,
mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
cm->mi_rows, cm->mi_cols);
if (frame_is_intra_only(cm)) {
write_mb_modes_kf(cm, xd,
#if CONFIG_INTRABC
mi_row, mi_col,
#endif // CONFIG_INTRABC
xd->mi, w);
} else {
pack_inter_mode_mvs(cpi, m,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
w);
}
#if CONFIG_SUPERTX
if (!supertx_enabled) {
#endif
assert(*tok < tok_end);
pack_mb_tokens(w, tok, tok_end, cm->bit_depth);
#if CONFIG_SUPERTX
}
#endif
}
static void write_partition(const VP9_COMMON *const cm,
const MACROBLOCKD *const xd,
int hbs, int mi_row, int mi_col,
PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) {
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
const vp9_prob *const probs = get_partition_probs(cm, ctx);
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
if (has_rows && has_cols) {
vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
} else if (!has_rows && has_cols) {
assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
vp9_write(w, p == PARTITION_SPLIT, probs[1]);
} else if (has_rows && !has_cols) {
assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
vp9_write(w, p == PARTITION_SPLIT, probs[2]);
} else {
assert(p == PARTITION_SPLIT);
}
}
static void write_modes_sb(VP9_COMP *cpi,
const TileInfo *const tile, vp9_writer *w,
TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col, BLOCK_SIZE bsize) {
const VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
const int bsl = b_width_log2_lookup[bsize];
const int bs = (1 << bsl) / 4;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
MODE_INFO *m = NULL;
#if CONFIG_SUPERTX
const int pack_token = !supertx_enabled;
#endif
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
m = cm->mi[mi_row * cm->mi_stride + mi_col].src_mi;
partition = partition_lookup[bsl][m->mbmi.sb_type];
write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
subsize = get_subsize(bsize, partition);
#if CONFIG_SUPERTX
xd->mi = m;
set_mi_row_col(xd, tile,
mi_row, num_8x8_blocks_high_lookup[bsize],
mi_col, num_8x8_blocks_wide_lookup[bsize],
cm->mi_rows, cm->mi_cols);
if (!supertx_enabled && cm->frame_type != KEY_FRAME &&
partition != PARTITION_NONE && bsize <= MAX_SUPERTX_BLOCK_SIZE &&
!xd->lossless) {
TX_SIZE supertx_size = bsize_to_tx_size(bsize);
vp9_prob prob =
cm->fc.supertx_prob[partition_supertx_context_lookup[partition]]
[supertx_size];
supertx_enabled = (xd->mi[0].mbmi.tx_size == supertx_size);
vp9_write(w, supertx_enabled, prob);
if (supertx_enabled) {
vp9_write(w, xd->mi[0].mbmi.skip, vp9_get_skip_prob(cm, xd));
#if CONFIG_EXT_TX
if (supertx_size <= TX_16X16 && !xd->mi[0].mbmi.skip)
vp9_write_token(w, vp9_ext_tx_tree, cm->fc.ext_tx_prob[supertx_size],
&ext_tx_encodings[xd->mi[0].mbmi.ext_txfrm]);
#endif
}
}
#endif // CONFIG_SUPERTX
if (subsize < BLOCK_8X8) {
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col);
} else {
switch (partition) {
case PARTITION_NONE:
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col);
break;
case PARTITION_HORZ:
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col);
if (mi_row + bs < cm->mi_rows)
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + bs, mi_col);
break;
case PARTITION_VERT:
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col);
if (mi_col + bs < cm->mi_cols)
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col + bs);
break;
case PARTITION_SPLIT:
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col + bs, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + bs, mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + bs, mi_col + bs, subsize);
break;
default:
assert(0);
}
}
#if CONFIG_SUPERTX
if (partition != PARTITION_NONE && supertx_enabled && pack_token) {
assert(*tok < tok_end);
pack_mb_tokens(w, tok, tok_end, cm->bit_depth);
}
#endif
// update partition context
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
}
static void write_modes(VP9_COMP *cpi,
const TileInfo *const tile, vp9_writer *w,
TOKENEXTRA **tok, const TOKENEXTRA *const tok_end) {
int mi_row, mi_col;
for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
mi_row += MI_BLOCK_SIZE) {
vp9_zero(cpi->mb.e_mbd.left_seg_context);
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE)
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
0,
#endif
mi_row, mi_col, BLOCK_64X64);
}
}
static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size,
vp9_coeff_stats *coef_branch_ct,
vp9_coeff_probs_model *coef_probs) {
vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size];
unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
cpi->common.counts.eob_branch[tx_size];
int i, j, k, l, m;
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
vp9_tree_probs_from_distribution(vp9_coef_tree,
coef_branch_ct[i][j][k][l],
coef_counts[i][j][k][l]);
coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
coef_branch_ct[i][j][k][l][0][0];
for (m = 0; m < UNCONSTRAINED_NODES; ++m)
coef_probs[i][j][k][l][m] = get_binary_prob(
coef_branch_ct[i][j][k][l][m][0],
coef_branch_ct[i][j][k][l][m][1]);
}
}
}
}
}
static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
TX_SIZE tx_size,
vp9_coeff_stats *frame_branch_ct,
vp9_coeff_probs_model *new_coef_probs) {
vp9_coeff_probs_model *old_coef_probs = cpi->common.fc.coef_probs[tx_size];
const vp9_prob upd = DIFF_UPDATE_PROB;
const int entropy_nodes_update = UNCONSTRAINED_NODES;
int i, j, k, l, t;
switch (cpi->sf.use_fast_coef_updates) {
case TWO_LOOP: {
/* dry run to see if there is any update at all needed */
int savings = 0;
int update[2] = {0, 0};
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
for (t = 0; t < entropy_nodes_update; ++t) {
vp9_prob newp = new_coef_probs[i][j][k][l][t];
const vp9_prob oldp = old_coef_probs[i][j][k][l][t];
int s;
int u = 0;
if (t == PIVOT_NODE)
s = vp9_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_coef_probs[i][j][k][l], &newp, upd);
else
s = vp9_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
if (s > 0 && newp != oldp)
u = 1;
if (u)
savings += s - (int)(vp9_cost_zero(upd));
else
savings -= (int)(vp9_cost_zero(upd));
update[u]++;
}
}
}
}
}
// printf("Update %d %d, savings %d\n", update[0], update[1], savings);
/* Is coef updated at all */
if (update[1] == 0 || savings < 0) {
vp9_write_bit(bc, 0);
return;
}
vp9_write_bit(bc, 1);
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
// calc probs and branch cts for this frame only
for (t = 0; t < entropy_nodes_update; ++t) {
vp9_prob newp = new_coef_probs[i][j][k][l][t];
vp9_prob *oldp = old_coef_probs[i][j][k][l] + t;
const vp9_prob upd = DIFF_UPDATE_PROB;
int s;
int u = 0;
if (t == PIVOT_NODE)
s = vp9_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_coef_probs[i][j][k][l], &newp, upd);
else
s = vp9_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t],
*oldp, &newp, upd);
if (s > 0 && newp != *oldp)
u = 1;
vp9_write(bc, u, upd);
if (u) {
/* send/use new probability */
vp9_write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
}
return;
}
case ONE_LOOP:
case ONE_LOOP_REDUCED: {
const int prev_coef_contexts_to_update =
cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED ?
COEFF_CONTEXTS >> 1 : COEFF_CONTEXTS;
const int coef_band_to_update =
cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED ?
COEF_BANDS >> 1 : COEF_BANDS;
int updates = 0;
int noupdates_before_first = 0;
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
// calc probs and branch cts for this frame only
for (t = 0; t < entropy_nodes_update; ++t) {
vp9_prob newp = new_coef_probs[i][j][k][l][t];
vp9_prob *oldp = old_coef_probs[i][j][k][l] + t;
int s;
int u = 0;
if (l >= prev_coef_contexts_to_update ||
k >= coef_band_to_update) {
u = 0;
} else {
if (t == PIVOT_NODE)
s = vp9_prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_coef_probs[i][j][k][l], &newp, upd);
else
s = vp9_prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t],
*oldp, &newp, upd);
if (s > 0 && newp != *oldp)
u = 1;
}
updates += u;
if (u == 0 && updates == 0) {
noupdates_before_first++;
continue;
}
if (u == 1 && updates == 1) {
int v;
// first update
vp9_write_bit(bc, 1);
for (v = 0; v < noupdates_before_first; ++v)
vp9_write(bc, 0, upd);
}
vp9_write(bc, u, upd);
if (u) {
/* send/use new probability */
vp9_write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
}
if (updates == 0) {
vp9_write_bit(bc, 0); // no updates
}
return;
}
default:
assert(0);
}
}
#if CONFIG_TX_SKIP
static void build_tree_distribution_pxd(VP9_COMP *cpi, TX_SIZE tx_size,
vp9_coeff_stats_pxd *coef_branch_ct,
vp9_coeff_probs_pxd *coef_probs) {
vp9_coeff_counts_pxd *coef_counts = cpi->common.counts.coef_pxd[tx_size];
unsigned int (*eob_branch_ct)[REF_TYPES][COEFF_CONTEXTS] =
cpi->common.counts.eob_branch_pxd[tx_size];
int i, j, l, m;
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (l = 0; l < COEFF_CONTEXTS; ++l) {
vp9_tree_probs_from_distribution(vp9_coef_tree,
coef_branch_ct[i][j][l],
coef_counts[i][j][l]);
coef_branch_ct[i][j][l][0][1] = eob_branch_ct[i][j][l] -
coef_branch_ct[i][j][l][0][0];
for (m = 0; m < ENTROPY_NODES; ++m)
coef_probs[i][j][l][m] = get_binary_prob(
coef_branch_ct[i][j][l][m][0],
coef_branch_ct[i][j][l][m][1]);
}
}
}
}
static void update_coef_probs_common_pxd(vp9_writer* const bc, VP9_COMP *cpi,
TX_SIZE tx_size,
vp9_coeff_stats_pxd *frame_branch_ct,
vp9_coeff_probs_pxd *new_coef_probs) {
vp9_coeff_probs_pxd *old_coef_probs = cpi->common.fc.coef_probs_pxd[tx_size];
const vp9_prob upd = DIFF_UPDATE_PROB;
const int entropy_nodes_update = ENTROPY_NODES;
int i, j, l, t;
switch (cpi->sf.use_fast_coef_updates) {
case TWO_LOOP: {
/* dry run to see if there is any update at all needed */
int savings = 0;
int update[2] = {0, 0};
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (l = 0; l < COEFF_CONTEXTS; ++l) {
for (t = 0; t < entropy_nodes_update; ++t) {
vp9_prob newp = new_coef_probs[i][j][l][t];
const vp9_prob oldp = old_coef_probs[i][j][l][t];
int s;
int u = 0;
s = vp9_prob_diff_update_savings_search(
frame_branch_ct[i][j][l][t], oldp, &newp, upd);
if (s > 0 && newp != oldp)
u = 1;
if (u)
savings += s - (int)(vp9_cost_zero(upd));
else
savings -= (int)(vp9_cost_zero(upd));
update[u]++;
}
}
}
}
if (update[1] == 0 || savings < 0) {
vp9_write_bit(bc, 0);
return;
}
vp9_write_bit(bc, 1);
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (l = 0; l < COEFF_CONTEXTS; ++l) {
// calc probs and branch cts for this frame only
for (t = 0; t < entropy_nodes_update; ++t) {
vp9_prob newp = new_coef_probs[i][j][l][t];
vp9_prob *oldp = old_coef_probs[i][j][l] + t;
const vp9_prob upd = DIFF_UPDATE_PROB;
int s;
int u = 0;
s = vp9_prob_diff_update_savings_search(
frame_branch_ct[i][j][l][t],
*oldp, &newp, upd);
if (s > 0 && newp != *oldp)
u = 1;
vp9_write(bc, u, upd);
if (u) {
/* send/use new probability */
vp9_write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
return;
}
case ONE_LOOP:
case ONE_LOOP_REDUCED: {
int updates = 0;
int noupdates_before_first = 0;
for (i = 0; i < PLANE_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (l = 0; l < COEFF_CONTEXTS; ++l) {
// calc probs and branch cts for this frame only
for (t = 0; t < entropy_nodes_update; ++t) {
vp9_prob newp = new_coef_probs[i][j][l][t];
vp9_prob *oldp = old_coef_probs[i][j][l] + t;
int s;
int u = 0;
s = vp9_prob_diff_update_savings_search(
frame_branch_ct[i][j][l][t],
*oldp, &newp, upd);
if (s > 0 && newp != *oldp)
u = 1;
updates += u;
if (u == 0 && updates == 0) {
noupdates_before_first++;
continue;
}
if (u == 1 && updates == 1) {
int v;
// first update
vp9_write_bit(bc, 1);
for (v = 0; v < noupdates_before_first; ++v)
vp9_write(bc, 0, upd);
}
vp9_write(bc, u, upd);
if (u) {
// send/use new probability
vp9_write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
if (updates == 0) {
vp9_write_bit(bc, 0); // no updates
}
return;
}
default:
assert(0);
}
}
#endif // CONFIG_TX_SKIP
static void update_coef_probs(VP9_COMP *cpi, vp9_writer* w) {
const TX_MODE tx_mode = cpi->common.tx_mode;
const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
TX_SIZE tx_size;
vp9_coeff_stats frame_branch_ct[TX_SIZES][PLANE_TYPES];
vp9_coeff_probs_model frame_coef_probs[TX_SIZES][PLANE_TYPES];
#if CONFIG_TX_SKIP
vp9_coeff_stats_pxd frame_branch_ct_pxd[TX_SIZES][PLANE_TYPES];
vp9_coeff_probs_pxd frame_coef_probs_pxd[TX_SIZES][PLANE_TYPES];
#endif // CONFIG_TX_SKIP
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
build_tree_distribution(cpi, tx_size, frame_branch_ct[tx_size],
frame_coef_probs[tx_size]);
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
update_coef_probs_common(w, cpi, tx_size, frame_branch_ct[tx_size],
frame_coef_probs[tx_size]);
#if CONFIG_TX_SKIP
if (FOR_SCREEN_CONTENT) {
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
build_tree_distribution_pxd(cpi, tx_size, frame_branch_ct_pxd[tx_size],
frame_coef_probs_pxd[tx_size]);
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
update_coef_probs_common_pxd(w, cpi, tx_size,
frame_branch_ct_pxd[tx_size],
frame_coef_probs_pxd[tx_size]);
}
#endif // CONFIG_TX_SKIP
}
static void encode_loopfilter(VP9_COMMON *cm,
struct vp9_write_bit_buffer *wb) {
int i;
struct loopfilter *lf = &cm->lf;
// Encode the loop filter level and type
vp9_wb_write_literal(wb, lf->filter_level, 6);
vp9_wb_write_literal(wb, lf->sharpness_level, 3);
// Write out loop filter deltas applied at the MB level based on mode or
// ref frame (if they are enabled).
vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
if (lf->mode_ref_delta_enabled) {
vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
if (lf->mode_ref_delta_update) {
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
const int delta = lf->ref_deltas[i];
const int changed = delta != lf->last_ref_deltas[i];
vp9_wb_write_bit(wb, changed);
if (changed) {
lf->last_ref_deltas[i] = delta;
vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
vp9_wb_write_bit(wb, delta < 0);
}
}
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
const int delta = lf->mode_deltas[i];
const int changed = delta != lf->last_mode_deltas[i];
vp9_wb_write_bit(wb, changed);
if (changed) {
lf->last_mode_deltas[i] = delta;
vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
vp9_wb_write_bit(wb, delta < 0);
}
}
}
}
#if CONFIG_LOOP_POSTFILTER
vp9_wb_write_bit(wb, lf->bilateral_level != lf->last_bilateral_level);
if (lf->bilateral_level != lf->last_bilateral_level) {
int level = lf->bilateral_level -
(lf->bilateral_level > lf->last_bilateral_level);
vp9_wb_write_literal(wb, level,
vp9_bilateral_level_bits(cm));
}
#endif // CONFIG_LOOP_POSTFILTER
}
static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
if (delta_q != 0) {
vp9_wb_write_bit(wb, 1);
vp9_wb_write_literal(wb, abs(delta_q), 4);
vp9_wb_write_bit(wb, delta_q < 0);
} else {
vp9_wb_write_bit(wb, 0);
}
}
static void encode_quantization(const VP9_COMMON *const cm,
struct vp9_write_bit_buffer *wb) {
vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
write_delta_q(wb, cm->y_dc_delta_q);
write_delta_q(wb, cm->uv_dc_delta_q);
write_delta_q(wb, cm->uv_ac_delta_q);
}
static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd,
struct vp9_write_bit_buffer *wb) {
int i, j;
const struct segmentation *seg = &cm->seg;
vp9_wb_write_bit(wb, seg->enabled);
if (!seg->enabled)
return;
// Segmentation map
vp9_wb_write_bit(wb, seg->update_map);
if (seg->update_map) {
// Select the coding strategy (temporal or spatial)
vp9_choose_segmap_coding_method(cm, xd);
// Write out probabilities used to decode unpredicted macro-block segments
for (i = 0; i < SEG_TREE_PROBS; i++) {
const int prob = seg->tree_probs[i];
const int update = prob != MAX_PROB;
vp9_wb_write_bit(wb, update);
if (update)
vp9_wb_write_literal(wb, prob, 8);
}
// Write out the chosen coding method.
vp9_wb_write_bit(wb, seg->temporal_update);
if (seg->temporal_update) {
for (i = 0; i < PREDICTION_PROBS; i++) {
const int prob = seg->pred_probs[i];
const int update = prob != MAX_PROB;
vp9_wb_write_bit(wb, update);
if (update)
vp9_wb_write_literal(wb, prob, 8);
}
}
}
// Segmentation data
vp9_wb_write_bit(wb, seg->update_data);
if (seg->update_data) {
vp9_wb_write_bit(wb, seg->abs_delta);
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
const int active = vp9_segfeature_active(seg, i, j);
vp9_wb_write_bit(wb, active);
if (active) {
const int data = vp9_get_segdata(seg, i, j);
const int data_max = vp9_seg_feature_data_max(j);
if (vp9_is_segfeature_signed(j)) {
encode_unsigned_max(wb, abs(data), data_max);
vp9_wb_write_bit(wb, data < 0);
} else {
encode_unsigned_max(wb, data, data_max);
}
}
}
}
}
}
static void encode_txfm_probs(VP9_COMMON *cm, vp9_writer *w) {
// Mode
#if CONFIG_TX64X64
if (cm->tx_mode == ALLOW_16X16 || cm->tx_mode == ALLOW_32X32) {
vp9_write_literal(w, 2, 2);
vp9_write_bit(w, cm->tx_mode == ALLOW_32X32);
} else if (cm->tx_mode == ALLOW_64X64 || cm->tx_mode == TX_MODE_SELECT) {
vp9_write_literal(w, 3, 2);
vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
} else {
vp9_write_literal(w, cm->tx_mode, 2);
}
#else
vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
if (cm->tx_mode >= ALLOW_32X32)
vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
#endif // CONFIG_TX64X64
// Probabilities
if (cm->tx_mode == TX_MODE_SELECT) {
int i, j;
unsigned int ct_8x8p[1][2];
unsigned int ct_16x16p[2][2];
unsigned int ct_32x32p[3][2];
#if CONFIG_TX64X64
unsigned int ct_64x64p[4][2];
#endif
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], ct_8x8p);
for (j = 0; j < 1; j++)
vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], ct_8x8p[j]);
}
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], ct_16x16p);
for (j = 0; j < 2; j++)
vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j],
ct_16x16p[j]);
}
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p);
for (j = 0; j < 3; j++)
vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j],
ct_32x32p[j]);
}
#if CONFIG_TX64X64
for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
tx_counts_to_branch_counts_64x64(cm->counts.tx.p64x64[i], ct_64x64p);
for (j = 0; j < 4; j++)
vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p64x64[i][j],
ct_64x64p[j]);
}
#endif // CONFIG_TX64X64
}
}
static void write_interp_filter(INTERP_FILTER filter,
struct vp9_write_bit_buffer *wb) {
#if CONFIG_BITSTREAM_FIXES
vp9_wb_write_bit(wb, filter == SWITCHABLE);
if (filter != SWITCHABLE)
vp9_wb_write_literal(wb, filter, 2);
#else
const int filter_to_literal[] = { 1, 0, 2, 3 };
vp9_wb_write_bit(wb, filter == SWITCHABLE);
if (filter != SWITCHABLE)
vp9_wb_write_literal(wb, filter_to_literal[filter], 2);
#endif
}
static void fix_interp_filter(VP9_COMMON *cm) {
if (cm->interp_filter == SWITCHABLE) {
// Check to see if only one of the filters is actually used
int count[SWITCHABLE_FILTERS];
int i, j, c = 0;
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
count[i] = 0;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
count[i] += cm->counts.switchable_interp[j][i];
c += (count[i] > 0);
}
if (c == 1) {
// Only one filter is used. So set the filter at frame level
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
if (count[i]) {
cm->interp_filter = i;
break;
}
}
}
}
}
static void write_tile_info(const VP9_COMMON *const cm,
struct vp9_write_bit_buffer *wb) {
#if CONFIG_ROW_TILE
int tile_width = mi_cols_aligned_to_sb(cm->tile_width) >> MI_BLOCK_SIZE_LOG2;
int tile_height =
mi_cols_aligned_to_sb(cm->tile_height) >> MI_BLOCK_SIZE_LOG2;
vp9_wb_write_literal(wb, tile_width, 6);
vp9_wb_write_literal(wb, tile_height, 6);
#else
int min_log2_tiles, max_log2_tiles, ones;
vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tiles, &max_log2_tiles);
// columns
ones = cm->log2_tile_cols - min_log2_tiles;
while (ones--)
vp9_wb_write_bit(wb, 1);
if (cm->log2_tile_cols < max_log2_tiles)
vp9_wb_write_bit(wb, 0);
// rows
vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
if (cm->log2_tile_rows != 0)
vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
#endif
}
static int get_refresh_mask(VP9_COMP *cpi) {
if (vp9_preserve_existing_gf(cpi)) {
// We have decided to preserve the previously existing golden frame as our
// new ARF frame. However, in the short term we leave it in the GF slot and,
// if we're updating the GF with the current decoded frame, we save it
// instead to the ARF slot.
// Later, in the function vp9_encoder.c:vp9_update_reference_frames() we
// will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
// there so that it can be done outside of the recode loop.
// Note: This is highly specific to the use of ARF as a forward reference,
// and this needs to be generalized as other uses are implemented
// (like RTC/temporal scalability).
return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
(cpi->refresh_golden_frame << cpi->alt_fb_idx);
} else {
int arf_idx = cpi->alt_fb_idx;
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_idx = gf_group->arf_update_idx[gf_group->index];
}
return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
(cpi->refresh_golden_frame << cpi->gld_fb_idx) |
(cpi->refresh_alt_ref_frame << arf_idx);
}
}
static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
VP9_COMMON *const cm = &cpi->common;
vp9_writer residual_bc;
int tile_row, tile_col;
#if CONFIG_ROW_TILE
TOKENEXTRA *(*tok)[1024] = cpi->tile_tok;
TileInfo (*tile)[1024] = cpi->tile_info;
#else
TOKENEXTRA *tok[4][1 << 6];
TileInfo tile[4][1 << 6];
#endif
TOKENEXTRA *tok_end;
size_t total_size = 0;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
TOKENEXTRA *pre_tok = cpi->tok;
int tile_tok = 0;
vpx_memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) *
mi_cols_aligned_to_sb(cm->mi_cols));
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
vp9_tile_init(&tile[tile_row][tile_col], cm, tile_row, tile_col);
tok[tile_row][tile_col] = pre_tok + tile_tok;
pre_tok = tok[tile_row][tile_col];
tile_tok = allocated_tokens(tile[tile_row][tile_col]);
}
}
#if CONFIG_ROW_TILE
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
int is_last_col = (tile_col == tile_cols - 1);
size_t col_offset = total_size;
if (!is_last_col)
total_size += 4;
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
const TileInfo * const ptile = &tile[tile_row][tile_col];
tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];
if (tile_row < tile_rows - 1)
vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
else
vp9_start_encode(&residual_bc, data_ptr + total_size);
write_modes(cpi, ptile, &residual_bc, &tok[tile_row][tile_col], tok_end);
assert(tok[tile_row][tile_col] == tok_end);
vp9_stop_encode(&residual_bc);
if (tile_row < tile_rows - 1) {
// size of this tile
mem_put_be32(data_ptr + total_size, residual_bc.pos);
total_size += 4;
}
total_size += residual_bc.pos;
}
if (!is_last_col)
mem_put_be32(data_ptr + col_offset, total_size - col_offset - 4);
}
#else
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
const TileInfo * const ptile = &tile[tile_row][tile_col];
tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];
if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
else
vp9_start_encode(&residual_bc, data_ptr + total_size);
write_modes(cpi, ptile, &residual_bc, &tok[tile_row][tile_col], tok_end);
assert(tok[tile_row][tile_col] == tok_end);
vp9_stop_encode(&residual_bc);
if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
// size of this tile
mem_put_be32(data_ptr + total_size, residual_bc.pos);
total_size += 4;
}
total_size += residual_bc.pos;
}
}
#endif
return total_size;
}
static void write_display_size(const VP9_COMMON *cm,
struct vp9_write_bit_buffer *wb) {
const int scaling_active = cm->width != cm->display_width ||
cm->height != cm->display_height;
vp9_wb_write_bit(wb, scaling_active);
if (scaling_active) {
vp9_wb_write_literal(wb, cm->display_width - 1, 16);
vp9_wb_write_literal(wb, cm->display_height - 1, 16);
}
}
static void write_frame_size(const VP9_COMMON *cm,
struct vp9_write_bit_buffer *wb) {
vp9_wb_write_literal(wb, cm->width - 1, 16);
vp9_wb_write_literal(wb, cm->height - 1, 16);
write_display_size(cm, wb);
}
static void write_frame_size_with_refs(VP9_COMP *cpi,
struct vp9_write_bit_buffer *wb) {
VP9_COMMON *const cm = &cpi->common;
int found = 0;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
found = cm->width == cfg->y_crop_width &&
cm->height == cfg->y_crop_height;
// Set "found" to 0 for temporal svc and for spatial svc key frame
if (cpi->use_svc &&
((cpi->svc.number_temporal_layers > 1 &&
cpi->oxcf.rc_mode == VPX_CBR) ||
(cpi->svc.number_spatial_layers > 1 &&
cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame) ||
(is_two_pass_svc(cpi) &&
cpi->svc.encode_empty_frame_state == ENCODING &&
cpi->svc.layer_context[0].frames_from_key_frame <
cpi->svc.number_temporal_layers + 1))) {
found = 0;
}
vp9_wb_write_bit(wb, found);
if (found) {
break;
}
}
if (!found) {
vp9_wb_write_literal(wb, cm->width - 1, 16);
vp9_wb_write_literal(wb, cm->height - 1, 16);
}
write_display_size(cm, wb);
}
static void write_sync_code(struct vp9_write_bit_buffer *wb) {
vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
}
static void write_profile(BITSTREAM_PROFILE profile,
struct vp9_write_bit_buffer *wb) {
switch (profile) {
case PROFILE_0:
vp9_wb_write_literal(wb, 0, 2);
break;
case PROFILE_1:
vp9_wb_write_literal(wb, 2, 2);
break;
case PROFILE_2:
vp9_wb_write_literal(wb, 1, 2);
break;
case PROFILE_3:
vp9_wb_write_literal(wb, 6, 3);
break;
default:
assert(0);
}
}
static void write_bitdepth_colorspace_sampling(
VP9_COMMON *const cm, struct vp9_write_bit_buffer *wb) {
if (cm->profile >= PROFILE_2) {
assert(cm->bit_depth > VPX_BITS_8);
vp9_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1);
}
vp9_wb_write_literal(wb, cm->color_space, 3);
if (cm->color_space != VPX_CS_SRGB) {
vp9_wb_write_bit(wb, 0); // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
vp9_wb_write_bit(wb, cm->subsampling_x);
vp9_wb_write_bit(wb, cm->subsampling_y);
vp9_wb_write_bit(wb, 0); // unused
} else {
assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
}
} else {
assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
vp9_wb_write_bit(wb, 0); // unused
}
}
static void write_uncompressed_header(VP9_COMP *cpi,
struct vp9_write_bit_buffer *wb) {
VP9_COMMON *const cm = &cpi->common;
vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
write_profile(cm->profile, wb);
vp9_wb_write_bit(wb, 0); // show_existing_frame
vp9_wb_write_bit(wb, cm->frame_type);
vp9_wb_write_bit(wb, cm->show_frame);
vp9_wb_write_bit(wb, cm->error_resilient_mode);
if (cm->frame_type == KEY_FRAME) {
write_sync_code(wb);
write_bitdepth_colorspace_sampling(cm, wb);
write_frame_size(cm, wb);
} else {
// In spatial svc if it's not error_resilient_mode then we need to code all
// visible frames as invisible. But we need to keep the show_frame flag so
// that the publisher could know whether it is supposed to be visible.
// So we will code the show_frame flag as it is. Then code the intra_only
// bit here. This will make the bitstream incompatible. In the player we
// will change to show_frame flag to 0, then add an one byte frame with
// show_existing_frame flag which tells the decoder which frame we want to
// show.
if (!cm->show_frame)
vp9_wb_write_bit(wb, cm->intra_only);
if (!cm->error_resilient_mode)
vp9_wb_write_literal(wb, cm->reset_frame_context, 2);
if (cm->intra_only) {
write_sync_code(wb);
// Note for profile 0, 420 8bpp is assumed.
if (cm->profile > PROFILE_0) {
write_bitdepth_colorspace_sampling(cm, wb);
}
vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
write_frame_size(cm, wb);
} else {
MV_REFERENCE_FRAME ref_frame;
vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
vp9_wb_write_literal(wb, get_ref_frame_idx(cpi, ref_frame),
REF_FRAMES_LOG2);
vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
}
write_frame_size_with_refs(cpi, wb);
vp9_wb_write_bit(wb, cm->allow_high_precision_mv);
fix_interp_filter(cm);
write_interp_filter(cm->interp_filter, wb);
}
}
if (!cm->error_resilient_mode) {
vp9_wb_write_bit(wb, cm->refresh_frame_context);
vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
}
vp9_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
encode_loopfilter(cm, wb);
encode_quantization(cm, wb);
encode_segmentation(cm, &cpi->mb.e_mbd, wb);
write_tile_info(cm, wb);
}
#if CONFIG_GLOBAL_MOTION
static void write_global_motion_params(Global_Motion_Params *params,
vp9_prob *probs,
vp9_writer *w) {
GLOBAL_MOTION_TYPE gmtype;
if (params->zoom == 0 && params->rotation == 0) {
if (params->mv.as_int == 0)
gmtype = GLOBAL_ZERO;
else
gmtype = GLOBAL_TRANSLATION;
} else {
gmtype = GLOBAL_ROTZOOM;
}
vp9_write_token(w, vp9_global_motion_types_tree, probs,
&global_motion_types_encodings[gmtype]);
switch (gmtype) {
case GLOBAL_ZERO:
break;
case GLOBAL_TRANSLATION:
vp9_write_primitive_symmetric(w, params->mv.as_mv.col,
ABS_TRANSLATION_BITS);
vp9_write_primitive_symmetric(w, params->mv.as_mv.row,
ABS_TRANSLATION_BITS);
break;
case GLOBAL_ROTZOOM:
vp9_write_primitive_symmetric(w, params->mv.as_mv.col,
ABS_TRANSLATION_BITS);
vp9_write_primitive_symmetric(w, params->mv.as_mv.row,
ABS_TRANSLATION_BITS);
vp9_write_primitive_symmetric(w, params->zoom, ABS_ZOOM_BITS);
vp9_write_primitive_symmetric(w, params->rotation, ABS_ROTATION_BITS);
break;
default:
assert(0);
}
}
static void write_global_motion(VP9_COMP *cpi, vp9_writer *w) {
VP9_COMMON *const cm = &cpi->common;
int frame, i;
for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
for (i = 0; i < cm->num_global_motion[frame]; ++i) {
if (!cpi->global_motion_used[frame]) {
vpx_memset(
cm->global_motion[frame], 0,
MAX_GLOBAL_MOTION_MODELS * sizeof(*cm->global_motion[frame]));
}
write_global_motion_params(
cm->global_motion[frame], cm->fc.global_motion_types_prob, w);
/*
printf("Ref %d [%d] (used %d): %d %d %d %d\n",
frame, cm->current_video_frame, cpi->global_motion_used[frame],
cm->global_motion[frame][i].zoom,
cm->global_motion[frame][i].rotation,
cm->global_motion[frame][i].mv.as_mv.col,
cm->global_motion[frame][i].mv.as_mv.row);
*/
}
}
}
#endif
static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
VP9_COMMON *const cm = &cpi->common;
#if !CONFIG_TX_SKIP || CONFIG_SUPERTX
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
#endif
FRAME_CONTEXT *const fc = &cm->fc;
vp9_writer header_bc;
vp9_start_encode(&header_bc, data);
#if CONFIG_TX_SKIP
encode_txfm_probs(cm, &header_bc);
#else
if (xd->lossless)
cm->tx_mode = ONLY_4X4;
else
encode_txfm_probs(cm, &header_bc);
#endif
update_coef_probs(cpi, &header_bc);
update_skip_probs(cm, &header_bc);
if (!frame_is_intra_only(cm)) {
int i;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i) {
prob_diff_update(vp9_inter_mode_tree, cm->fc.inter_mode_probs[i],
cm->counts.inter_mode[i], INTER_MODES, &header_bc);
}
#if CONFIG_NEW_INTER
update_inter_compound_mode_probs(cm, &header_bc);
#endif // CONFIG_NEW_INTER
if (cm->interp_filter == SWITCHABLE)
update_switchable_interp_probs(cm, &header_bc);
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
cm->counts.intra_inter[i]);
if (cm->allow_comp_inter_inter) {
const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
const int use_hybrid_pred =
cm->reference_mode == REFERENCE_MODE_SELECT;
vp9_write_bit(&header_bc, use_compound_pred);
if (use_compound_pred) {
vp9_write_bit(&header_bc, use_hybrid_pred);
if (use_hybrid_pred)
for (i = 0; i < COMP_INTER_CONTEXTS; i++)
vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
cm->counts.comp_inter[i]);
}
}
if (cm->reference_mode != COMPOUND_REFERENCE) {
for (i = 0; i < REF_CONTEXTS; i++) {
vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
cm->counts.single_ref[i][0]);
vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
cm->counts.single_ref[i][1]);
}
}
if (cm->reference_mode != SINGLE_REFERENCE)
for (i = 0; i < REF_CONTEXTS; i++)
vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
cm->counts.comp_ref[i]);
for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
prob_diff_update(vp9_intra_mode_tree, cm->fc.y_mode_prob[i],
cm->counts.y_mode[i], INTRA_MODES, &header_bc);
for (i = 0; i < PARTITION_CONTEXTS; ++i)
prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
cm->counts.partition[i], PARTITION_TYPES, &header_bc);
vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc);
#if CONFIG_EXT_TX
update_ext_tx_probs(cm, &header_bc);
#endif
#if CONFIG_SUPERTX
if (!xd->lossless)
update_supertx_probs(cm, &header_bc);
#endif
#if CONFIG_TX_SKIP
for (i = 0; i < 2; i++)
vp9_cond_prob_diff_update(&header_bc, &fc->y_tx_skip_prob[i],
cm->counts.y_tx_skip[i]);
for (i = 0; i < 2; i++)
vp9_cond_prob_diff_update(&header_bc, &fc->uv_tx_skip_prob[i],
cm->counts.uv_tx_skip[i]);
#endif
#if CONFIG_COPY_MODE
for (i = 0; i < COPY_MODE_CONTEXTS; i++) {
prob_diff_update(vp9_copy_mode_tree_l2, cm->fc.copy_mode_probs_l2[i],
cm->counts.copy_mode_l2[i], 2, &header_bc);
prob_diff_update(vp9_copy_mode_tree, cm->fc.copy_mode_probs[i],
cm->counts.copy_mode[i], COPY_MODE_COUNT - 1,
&header_bc);
}
#endif
#if CONFIG_INTERINTRA
if (cm->reference_mode != COMPOUND_REFERENCE) {
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i)) {
vp9_cond_prob_diff_update(&header_bc,
&fc->interintra_prob[i],
cm->counts.interintra[i]);
}
}
#if CONFIG_WEDGE_PARTITION
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i) && get_wedge_bits(i))
vp9_cond_prob_diff_update(&header_bc,
&fc->wedge_interintra_prob[i],
cm->counts.wedge_interintra[i]);
}
#endif // CONFIG_WEDGE_PARTITION
}
#endif // CONFIG_INTERINTRA
#if CONFIG_WEDGE_PARTITION
if (cm->reference_mode != SINGLE_REFERENCE) {
for (i = 0; i < BLOCK_SIZES; i++)
if (get_wedge_bits(i))
vp9_cond_prob_diff_update(&header_bc,
&fc->wedge_interinter_prob[i],
cm->counts.wedge_interinter[i]);
}
#endif // CONFIG_WEDGE_PARTITION
#if CONFIG_GLOBAL_MOTION
write_global_motion(cpi, &header_bc);
#endif // CONFIG_GLOBAL_MOTION
}
#if CONFIG_PALETTE
if (frame_is_intra_only(cm))
vp9_write_bit(&header_bc, cm->allow_palette_mode);
#endif
vp9_stop_encode(&header_bc);
assert(header_bc.pos <= 0xffff);
return header_bc.pos;
}
void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
uint8_t *data = dest;
size_t first_part_size, uncompressed_hdr_size;
struct vp9_write_bit_buffer wb = {data, 0};
struct vp9_write_bit_buffer saved_wb;
write_uncompressed_header(cpi, &wb);
saved_wb = wb;
vp9_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size
uncompressed_hdr_size = vp9_wb_bytes_written(&wb);
data += uncompressed_hdr_size;
vp9_clear_system_state();
first_part_size = write_compressed_header(cpi, data);
data += first_part_size;
// TODO(jbb): Figure out what to do if first_part_size > 16 bits.
vp9_wb_write_literal(&saved_wb, (int)first_part_size, 16);
data += encode_tiles(cpi, data);
*size = data - dest;
}