vpx/vp9/encoder/vp9_segmentation.c
Ronald S. Bultje f496f601fb Add tile column size limits (256 pixels min, 4096 pixels max).
This is after discussion with the hardware team. Update the unit test
to take these sizes into account. Split out some duplicate code into
a separate file so it can be shared.

Change-Id: I8311d11b0191d8bb37e8eb4ac962beb217e1bff5
2013-02-12 10:33:34 -08:00

380 lines
14 KiB
C

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "limits.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_tile_common.h"
void vp9_update_gf_useage_maps(VP9_COMP *cpi, VP9_COMMON *cm, MACROBLOCK *x) {
int mb_row, mb_col;
MODE_INFO *this_mb_mode_info = cm->mi;
x->gf_active_ptr = (signed char *)cpi->gf_active_flags;
if ((cm->frame_type == KEY_FRAME) || (cpi->refresh_golden_frame)) {
// Reset Gf useage monitors
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
} else {
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
// If using golden then set GF active flag if not already set.
// If using last frame 0,0 mode then leave flag as it is
// else if using non 0,0 motion or intra modes then clear
// flag if it is currently set
if ((this_mb_mode_info->mbmi.ref_frame == GOLDEN_FRAME) ||
(this_mb_mode_info->mbmi.ref_frame == ALTREF_FRAME)) {
if (*(x->gf_active_ptr) == 0) {
*(x->gf_active_ptr) = 1;
cpi->gf_active_count++;
}
} else if ((this_mb_mode_info->mbmi.mode != ZEROMV) &&
*(x->gf_active_ptr)) {
*(x->gf_active_ptr) = 0;
cpi->gf_active_count--;
}
x->gf_active_ptr++; // Step onto next entry
this_mb_mode_info++; // skip to next mb
}
// this is to account for the border
this_mb_mode_info++;
}
}
}
void vp9_enable_segmentation(VP9_PTR ptr) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
// Set the appropriate feature bit
cpi->mb.e_mbd.segmentation_enabled = 1;
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
void vp9_disable_segmentation(VP9_PTR ptr) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
// Clear the appropriate feature bit
cpi->mb.e_mbd.segmentation_enabled = 0;
}
void vp9_set_segmentation_map(VP9_PTR ptr,
unsigned char *segmentation_map) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
// Copy in the new segmentation map
vpx_memcpy(cpi->segmentation_map, segmentation_map,
(cpi->common.mb_rows * cpi->common.mb_cols));
// Signal that the map should be updated.
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
void vp9_set_segment_data(VP9_PTR ptr,
signed char *feature_data,
unsigned char abs_delta) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
cpi->mb.e_mbd.mb_segment_abs_delta = abs_delta;
vpx_memcpy(cpi->mb.e_mbd.segment_feature_data, feature_data,
sizeof(cpi->mb.e_mbd.segment_feature_data));
// TBD ?? Set the feature mask
// vpx_memcpy(cpi->mb.e_mbd.segment_feature_mask, 0,
// sizeof(cpi->mb.e_mbd.segment_feature_mask));
}
// Based on set of segment counts calculate a probability tree
static void calc_segtree_probs(MACROBLOCKD *xd,
int *segcounts,
vp9_prob *segment_tree_probs) {
int count1, count2;
// Total count for all segments
count1 = segcounts[0] + segcounts[1];
count2 = segcounts[2] + segcounts[3];
// Work out probabilities of each segment
segment_tree_probs[0] = get_binary_prob(count1, count2);
segment_tree_probs[1] = get_prob(segcounts[0], count1);
segment_tree_probs[2] = get_prob(segcounts[2], count2);
}
// Based on set of segment counts and probabilities calculate a cost estimate
static int cost_segmap(MACROBLOCKD *xd,
int *segcounts,
vp9_prob *probs) {
int cost;
int count1, count2;
// Cost the top node of the tree
count1 = segcounts[0] + segcounts[1];
count2 = segcounts[2] + segcounts[3];
cost = count1 * vp9_cost_zero(probs[0]) +
count2 * vp9_cost_one(probs[0]);
// Now add the cost of each individual segment branch
if (count1 > 0)
cost += segcounts[0] * vp9_cost_zero(probs[1]) +
segcounts[1] * vp9_cost_one(probs[1]);
if (count2 > 0)
cost += segcounts[2] * vp9_cost_zero(probs[2]) +
segcounts[3] * vp9_cost_one(probs[2]);
return cost;
}
// Based on set of segment counts calculate a probability tree
static void calc_segtree_probs_pred(MACROBLOCKD *xd,
int (*segcounts)[MAX_MB_SEGMENTS],
vp9_prob *segment_tree_probs,
vp9_prob *mod_probs) {
int count[4];
assert(!segcounts[0][0] && !segcounts[1][1] &&
!segcounts[2][2] && !segcounts[3][3]);
// Total count for all segments
count[0] = segcounts[3][0] + segcounts[1][0] + segcounts[2][0];
count[1] = segcounts[2][1] + segcounts[0][1] + segcounts[3][1];
count[2] = segcounts[0][2] + segcounts[3][2] + segcounts[1][2];
count[3] = segcounts[1][3] + segcounts[2][3] + segcounts[0][3];
// Work out probabilities of each segment
segment_tree_probs[0] = get_binary_prob(count[0] + count[1],
count[2] + count[3]);
segment_tree_probs[1] = get_binary_prob(count[0], count[1]);
segment_tree_probs[2] = get_binary_prob(count[2], count[3]);
// now work out modified counts that the decoder would have
count[0] = segment_tree_probs[0] * segment_tree_probs[1];
count[1] = segment_tree_probs[0] * (256 - segment_tree_probs[1]);
count[2] = (256 - segment_tree_probs[0]) * segment_tree_probs[2];
count[3] = (256 - segment_tree_probs[0]) * (256 - segment_tree_probs[2]);
// Work out modified probabilties depending on what segment was predicted
mod_probs[0] = get_binary_prob(count[1], count[2] + count[3]);
mod_probs[1] = get_binary_prob(count[0], count[2] + count[3]);
mod_probs[2] = get_binary_prob(count[0] + count[1], count[3]);
mod_probs[3] = get_binary_prob(count[0] + count[1], count[2]);
}
// Based on set of segment counts and probabilities calculate a cost estimate
static int cost_segmap_pred(MACROBLOCKD *xd,
int (*segcounts)[MAX_MB_SEGMENTS],
vp9_prob *probs, vp9_prob *mod_probs) {
int pred_seg, cost = 0;
for (pred_seg = 0; pred_seg < MAX_MB_SEGMENTS; pred_seg++) {
int count1, count2;
// Cost the top node of the tree
count1 = segcounts[pred_seg][0] + segcounts[pred_seg][1];
count2 = segcounts[pred_seg][2] + segcounts[pred_seg][3];
cost += count1 * vp9_cost_zero(mod_probs[pred_seg]) +
count2 * vp9_cost_one(mod_probs[pred_seg]);
// Now add the cost of each individual segment branch
if (pred_seg >= 2 && count1) {
cost += segcounts[pred_seg][0] * vp9_cost_zero(probs[1]) +
segcounts[pred_seg][1] * vp9_cost_one(probs[1]);
} else if (pred_seg < 2 && count2 > 0) {
cost += segcounts[pred_seg][2] * vp9_cost_zero(probs[2]) +
segcounts[pred_seg][3] * vp9_cost_one(probs[2]);
}
}
return cost;
}
static void count_segs(VP9_COMP *cpi,
MODE_INFO *mi,
int *no_pred_segcounts,
int (*temporal_predictor_count)[2],
int (*t_unpred_seg_counts)[MAX_MB_SEGMENTS],
int mb_size, int mb_row, int mb_col) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
const int segmap_index = mb_row * cm->mb_cols + mb_col;
const int segment_id = mi->mbmi.segment_id;
xd->mode_info_context = mi;
xd->mb_to_top_edge = -((mb_row * 16) << 3);
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_bottom_edge = ((cm->mb_rows - mb_size - mb_row) * 16) << 3;
xd->mb_to_right_edge = ((cm->mb_cols - mb_size - mb_col) * 16) << 3;
// Count the number of hits on each segment with no prediction
no_pred_segcounts[segment_id]++;
// Temporal prediction not allowed on key frames
if (cm->frame_type != KEY_FRAME) {
// Test to see if the segment id matches the predicted value.
const int pred_seg_id = vp9_get_pred_mb_segid(cm, xd, segmap_index);
const int seg_predicted = (segment_id == pred_seg_id);
// Get the segment id prediction context
const int pred_context = vp9_get_pred_context(cm, xd, PRED_SEG_ID);
// Store the prediction status for this mb and update counts
// as appropriate
vp9_set_pred_flag(xd, PRED_SEG_ID, seg_predicted);
temporal_predictor_count[pred_context][seg_predicted]++;
if (!seg_predicted)
// Update the "unpredicted" segment count
t_unpred_seg_counts[pred_seg_id][segment_id]++;
}
}
void vp9_choose_segmap_coding_method(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
int no_pred_cost;
int t_pred_cost = INT_MAX;
int i;
int tile, mb_row, mb_col;
int temporal_predictor_count[PREDICTION_PROBS][2];
int no_pred_segcounts[MAX_MB_SEGMENTS];
int t_unpred_seg_counts[MAX_MB_SEGMENTS][MAX_MB_SEGMENTS];
vp9_prob no_pred_tree[MB_FEATURE_TREE_PROBS];
vp9_prob t_pred_tree[MB_FEATURE_TREE_PROBS];
vp9_prob t_pred_tree_mod[MAX_MB_SEGMENTS];
vp9_prob t_nopred_prob[PREDICTION_PROBS];
const int mis = cm->mode_info_stride;
MODE_INFO *mi_ptr, *mi;
// Set default state for the segment tree probabilities and the
// temporal coding probabilities
vpx_memset(xd->mb_segment_tree_probs, 255,
sizeof(xd->mb_segment_tree_probs));
vpx_memset(cm->segment_pred_probs, 255,
sizeof(cm->segment_pred_probs));
vpx_memset(no_pred_segcounts, 0, sizeof(no_pred_segcounts));
vpx_memset(t_unpred_seg_counts, 0, sizeof(t_unpred_seg_counts));
vpx_memset(temporal_predictor_count, 0, sizeof(temporal_predictor_count));
// First of all generate stats regarding how well the last segment map
// predicts this one
for (tile = 0; tile < cm->tile_columns; tile++) {
cm->cur_tile_idx = tile;
vp9_get_tile_offsets(cm, &cm->cur_tile_mb_col_start,
&cm->cur_tile_mb_col_end);
mi_ptr = cm->mi + cm->cur_tile_mb_col_start;
for (mb_row = 0; mb_row < cm->mb_rows; mb_row += 4, mi_ptr += 4 * mis) {
mi = mi_ptr;
for (mb_col = cm->cur_tile_mb_col_start;
mb_col < cm->cur_tile_mb_col_end; mb_col += 4, mi += 4) {
if (mi->mbmi.sb_type == BLOCK_SIZE_SB64X64) {
count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count,
t_unpred_seg_counts, 4, mb_row, mb_col);
} else {
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) << 1, y_idx = i & 2;
MODE_INFO *sb_mi = mi + y_idx * mis + x_idx;
if (mb_col + x_idx >= cm->mb_cols ||
mb_row + y_idx >= cm->mb_rows) {
continue;
}
if (sb_mi->mbmi.sb_type) {
assert(sb_mi->mbmi.sb_type == BLOCK_SIZE_SB32X32);
count_segs(cpi, sb_mi, no_pred_segcounts,
temporal_predictor_count, t_unpred_seg_counts, 2,
mb_row + y_idx, mb_col + x_idx);
} else {
int j;
for (j = 0; j < 4; j++) {
const int x_idx_mb = x_idx + (j & 1);
const int y_idx_mb = y_idx + (j >> 1);
MODE_INFO *mb_mi = mi + x_idx_mb + y_idx_mb * mis;
if (mb_col + x_idx_mb >= cm->mb_cols ||
mb_row + y_idx_mb >= cm->mb_rows) {
continue;
}
assert(mb_mi->mbmi.sb_type == BLOCK_SIZE_MB16X16);
count_segs(cpi, mb_mi, no_pred_segcounts,
temporal_predictor_count, t_unpred_seg_counts,
1, mb_row + y_idx_mb, mb_col + x_idx_mb);
}
}
}
}
}
}
}
// Work out probability tree for coding segments without prediction
// and the cost.
calc_segtree_probs(xd, no_pred_segcounts, no_pred_tree);
no_pred_cost = cost_segmap(xd, no_pred_segcounts, no_pred_tree);
// Key frames cannot use temporal prediction
if (cm->frame_type != KEY_FRAME) {
// Work out probability tree for coding those segments not
// predicted using the temporal method and the cost.
calc_segtree_probs_pred(xd, t_unpred_seg_counts, t_pred_tree,
t_pred_tree_mod);
t_pred_cost = cost_segmap_pred(xd, t_unpred_seg_counts, t_pred_tree,
t_pred_tree_mod);
// Add in the cost of the signalling for each prediction context
for (i = 0; i < PREDICTION_PROBS; i++) {
t_nopred_prob[i] = get_binary_prob(temporal_predictor_count[i][0],
temporal_predictor_count[i][1]);
// Add in the predictor signaling cost
t_pred_cost += (temporal_predictor_count[i][0] *
vp9_cost_zero(t_nopred_prob[i])) +
(temporal_predictor_count[i][1] *
vp9_cost_one(t_nopred_prob[i]));
}
}
// Now choose which coding method to use.
if (t_pred_cost < no_pred_cost) {
cm->temporal_update = 1;
vpx_memcpy(xd->mb_segment_tree_probs,
t_pred_tree, sizeof(t_pred_tree));
vpx_memcpy(xd->mb_segment_mispred_tree_probs,
t_pred_tree_mod, sizeof(t_pred_tree_mod));
vpx_memcpy(&cm->segment_pred_probs,
t_nopred_prob, sizeof(t_nopred_prob));
} else {
cm->temporal_update = 0;
vpx_memcpy(xd->mb_segment_tree_probs,
no_pred_tree, sizeof(no_pred_tree));
}
}