vpx/vp9/encoder/vp9_mcomp.c

2473 lines
92 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_mcomp.h"
// #define NEW_DIAMOND_SEARCH
static INLINE const uint8_t *get_buf_from_mv(const struct buf_2d *buf,
const MV *mv) {
return &buf->buf[mv->row * buf->stride + mv->col];
}
void vp9_set_mv_search_range(MvLimits *mv_limits, const MV *mv) {
int col_min = (mv->col >> 3) - MAX_FULL_PEL_VAL + (mv->col & 7 ? 1 : 0);
int row_min = (mv->row >> 3) - MAX_FULL_PEL_VAL + (mv->row & 7 ? 1 : 0);
int col_max = (mv->col >> 3) + MAX_FULL_PEL_VAL;
int row_max = (mv->row >> 3) + MAX_FULL_PEL_VAL;
col_min = VPXMAX(col_min, (MV_LOW >> 3) + 1);
row_min = VPXMAX(row_min, (MV_LOW >> 3) + 1);
col_max = VPXMIN(col_max, (MV_UPP >> 3) - 1);
row_max = VPXMIN(row_max, (MV_UPP >> 3) - 1);
// Get intersection of UMV window and valid MV window to reduce # of checks
// in diamond search.
if (mv_limits->col_min < col_min) mv_limits->col_min = col_min;
if (mv_limits->col_max > col_max) mv_limits->col_max = col_max;
if (mv_limits->row_min < row_min) mv_limits->row_min = row_min;
if (mv_limits->row_max > row_max) mv_limits->row_max = row_max;
}
int vp9_init_search_range(int size) {
int sr = 0;
// Minimum search size no matter what the passed in value.
size = VPXMAX(16, size);
while ((size << sr) < MAX_FULL_PEL_VAL) sr++;
sr = VPXMIN(sr, MAX_MVSEARCH_STEPS - 2);
return sr;
}
static INLINE int mv_cost(const MV *mv, const int *joint_cost,
int *const comp_cost[2]) {
assert(mv->row >= -MV_MAX && mv->row < MV_MAX);
assert(mv->col >= -MV_MAX && mv->col < MV_MAX);
return joint_cost[vp9_get_mv_joint(mv)] + comp_cost[0][mv->row] +
comp_cost[1][mv->col];
}
int vp9_mv_bit_cost(const MV *mv, const MV *ref, const int *mvjcost,
int *mvcost[2], int weight) {
const MV diff = { mv->row - ref->row, mv->col - ref->col };
return ROUND_POWER_OF_TWO(mv_cost(&diff, mvjcost, mvcost) * weight, 7);
}
#define PIXEL_TRANSFORM_ERROR_SCALE 4
static int mv_err_cost(const MV *mv, const MV *ref, const int *mvjcost,
int *mvcost[2], int error_per_bit) {
if (mvcost) {
const MV diff = { mv->row - ref->row, mv->col - ref->col };
// This product sits at a 32-bit ceiling right now and any additional
// accuracy in either bit cost or error cost will cause it to overflow.
return ROUND_POWER_OF_TWO(
(unsigned)mv_cost(&diff, mvjcost, mvcost) * error_per_bit,
RDDIV_BITS + VP9_PROB_COST_SHIFT - RD_EPB_SHIFT +
PIXEL_TRANSFORM_ERROR_SCALE);
}
return 0;
}
static int mvsad_err_cost(const MACROBLOCK *x, const MV *mv, const MV *ref,
int sad_per_bit) {
const MV diff = { mv->row - ref->row, mv->col - ref->col };
return ROUND_POWER_OF_TWO(
(unsigned)mv_cost(&diff, x->nmvjointsadcost, x->nmvsadcost) * sad_per_bit,
VP9_PROB_COST_SHIFT);
}
void vp9_init_dsmotion_compensation(search_site_config *cfg, int stride) {
int len;
int ss_count = 0;
for (len = MAX_FIRST_STEP; len > 0; len /= 2) {
// Generate offsets for 4 search sites per step.
const MV ss_mvs[] = { { -len, 0 }, { len, 0 }, { 0, -len }, { 0, len } };
int i;
for (i = 0; i < 4; ++i, ++ss_count) {
cfg->ss_mv[ss_count] = ss_mvs[i];
cfg->ss_os[ss_count] = ss_mvs[i].row * stride + ss_mvs[i].col;
}
}
cfg->searches_per_step = 4;
cfg->total_steps = ss_count / cfg->searches_per_step;
}
void vp9_init3smotion_compensation(search_site_config *cfg, int stride) {
int len;
int ss_count = 0;
for (len = MAX_FIRST_STEP; len > 0; len /= 2) {
// Generate offsets for 8 search sites per step.
const MV ss_mvs[8] = { { -len, 0 }, { len, 0 }, { 0, -len },
{ 0, len }, { -len, -len }, { -len, len },
{ len, -len }, { len, len } };
int i;
for (i = 0; i < 8; ++i, ++ss_count) {
cfg->ss_mv[ss_count] = ss_mvs[i];
cfg->ss_os[ss_count] = ss_mvs[i].row * stride + ss_mvs[i].col;
}
}
cfg->searches_per_step = 8;
cfg->total_steps = ss_count / cfg->searches_per_step;
}
// convert motion vector component to offset for sv[a]f calc
static INLINE int sp(int x) { return x & 7; }
static INLINE const uint8_t *pre(const uint8_t *buf, int stride, int r, int c) {
return &buf[(r >> 3) * stride + (c >> 3)];
}
#if CONFIG_VP9_HIGHBITDEPTH
/* checks if (r, c) has better score than previous best */
#define CHECK_BETTER(v, r, c) \
if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \
int64_t tmpmse; \
const MV mv = { r, c }; \
const MV ref_mv = { rr, rc }; \
if (second_pred == NULL) { \
thismse = vfp->svf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), z, \
src_stride, &sse); \
} else { \
thismse = vfp->svaf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), z, \
src_stride, &sse, second_pred); \
} \
tmpmse = thismse; \
tmpmse += mv_err_cost(&mv, &ref_mv, mvjcost, mvcost, error_per_bit); \
if (tmpmse >= INT_MAX) { \
v = INT_MAX; \
} else if ((v = (uint32_t)tmpmse) < besterr) { \
besterr = v; \
br = r; \
bc = c; \
*distortion = thismse; \
*sse1 = sse; \
} \
} else { \
v = INT_MAX; \
}
#else
/* checks if (r, c) has better score than previous best */
#define CHECK_BETTER(v, r, c) \
if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \
const MV mv = { r, c }; \
const MV ref_mv = { rr, rc }; \
if (second_pred == NULL) \
thismse = vfp->svf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), z, \
src_stride, &sse); \
else \
thismse = vfp->svaf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), z, \
src_stride, &sse, second_pred); \
if ((v = mv_err_cost(&mv, &ref_mv, mvjcost, mvcost, error_per_bit) + \
thismse) < besterr) { \
besterr = v; \
br = r; \
bc = c; \
*distortion = thismse; \
*sse1 = sse; \
} \
} else { \
v = INT_MAX; \
}
#endif
#define FIRST_LEVEL_CHECKS \
{ \
unsigned int left, right, up, down, diag; \
CHECK_BETTER(left, tr, tc - hstep); \
CHECK_BETTER(right, tr, tc + hstep); \
CHECK_BETTER(up, tr - hstep, tc); \
CHECK_BETTER(down, tr + hstep, tc); \
whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2); \
switch (whichdir) { \
case 0: CHECK_BETTER(diag, tr - hstep, tc - hstep); break; \
case 1: CHECK_BETTER(diag, tr - hstep, tc + hstep); break; \
case 2: CHECK_BETTER(diag, tr + hstep, tc - hstep); break; \
case 3: CHECK_BETTER(diag, tr + hstep, tc + hstep); break; \
} \
}
#define SECOND_LEVEL_CHECKS \
{ \
int kr, kc; \
unsigned int second; \
if (tr != br && tc != bc) { \
kr = br - tr; \
kc = bc - tc; \
CHECK_BETTER(second, tr + kr, tc + 2 * kc); \
CHECK_BETTER(second, tr + 2 * kr, tc + kc); \
} else if (tr == br && tc != bc) { \
kc = bc - tc; \
CHECK_BETTER(second, tr + hstep, tc + 2 * kc); \
CHECK_BETTER(second, tr - hstep, tc + 2 * kc); \
switch (whichdir) { \
case 0: \
case 1: CHECK_BETTER(second, tr + hstep, tc + kc); break; \
case 2: \
case 3: CHECK_BETTER(second, tr - hstep, tc + kc); break; \
} \
} else if (tr != br && tc == bc) { \
kr = br - tr; \
CHECK_BETTER(second, tr + 2 * kr, tc + hstep); \
CHECK_BETTER(second, tr + 2 * kr, tc - hstep); \
switch (whichdir) { \
case 0: \
case 2: CHECK_BETTER(second, tr + kr, tc + hstep); break; \
case 1: \
case 3: CHECK_BETTER(second, tr + kr, tc - hstep); break; \
} \
} \
}
// TODO(yunqingwang): SECOND_LEVEL_CHECKS_BEST was a rewrote of
// SECOND_LEVEL_CHECKS, and SECOND_LEVEL_CHECKS should be rewritten
// later in the same way.
#define SECOND_LEVEL_CHECKS_BEST \
{ \
unsigned int second; \
int br0 = br; \
int bc0 = bc; \
assert(tr == br || tc == bc); \
if (tr == br && tc != bc) { \
kc = bc - tc; \
} else if (tr != br && tc == bc) { \
kr = br - tr; \
} \
CHECK_BETTER(second, br0 + kr, bc0); \
CHECK_BETTER(second, br0, bc0 + kc); \
if (br0 != br || bc0 != bc) { \
CHECK_BETTER(second, br0 + kr, bc0 + kc); \
} \
}
#define SETUP_SUBPEL_SEARCH \
const uint8_t *const z = x->plane[0].src.buf; \
const int src_stride = x->plane[0].src.stride; \
const MACROBLOCKD *xd = &x->e_mbd; \
unsigned int besterr = UINT_MAX; \
unsigned int sse; \
unsigned int whichdir; \
int thismse; \
const unsigned int halfiters = iters_per_step; \
const unsigned int quarteriters = iters_per_step; \
const unsigned int eighthiters = iters_per_step; \
const int y_stride = xd->plane[0].pre[0].stride; \
const int offset = bestmv->row * y_stride + bestmv->col; \
const uint8_t *const y = xd->plane[0].pre[0].buf; \
\
int rr = ref_mv->row; \
int rc = ref_mv->col; \
int br = bestmv->row * 8; \
int bc = bestmv->col * 8; \
int hstep = 4; \
const int minc = VPXMAX(x->mv_limits.col_min * 8, ref_mv->col - MV_MAX); \
const int maxc = VPXMIN(x->mv_limits.col_max * 8, ref_mv->col + MV_MAX); \
const int minr = VPXMAX(x->mv_limits.row_min * 8, ref_mv->row - MV_MAX); \
const int maxr = VPXMIN(x->mv_limits.row_max * 8, ref_mv->row + MV_MAX); \
int tr = br; \
int tc = bc; \
\
bestmv->row *= 8; \
bestmv->col *= 8;
static unsigned int setup_center_error(
const MACROBLOCKD *xd, const MV *bestmv, const MV *ref_mv,
int error_per_bit, const vp9_variance_fn_ptr_t *vfp,
const uint8_t *const src, const int src_stride, const uint8_t *const y,
int y_stride, const uint8_t *second_pred, int w, int h, int offset,
int *mvjcost, int *mvcost[2], uint32_t *sse1, uint32_t *distortion) {
#if CONFIG_VP9_HIGHBITDEPTH
uint64_t besterr;
if (second_pred != NULL) {
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
DECLARE_ALIGNED(16, uint16_t, comp_pred16[64 * 64]);
vpx_highbd_comp_avg_pred(comp_pred16, second_pred, w, h, y + offset,
y_stride);
besterr =
vfp->vf(CONVERT_TO_BYTEPTR(comp_pred16), w, src, src_stride, sse1);
} else {
DECLARE_ALIGNED(16, uint8_t, comp_pred[64 * 64]);
vpx_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride);
besterr = vfp->vf(comp_pred, w, src, src_stride, sse1);
}
} else {
besterr = vfp->vf(y + offset, y_stride, src, src_stride, sse1);
}
*distortion = (uint32_t)besterr;
besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit);
if (besterr >= UINT_MAX) return UINT_MAX;
return (uint32_t)besterr;
#else
uint32_t besterr;
(void)xd;
if (second_pred != NULL) {
DECLARE_ALIGNED(16, uint8_t, comp_pred[64 * 64]);
vpx_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride);
besterr = vfp->vf(comp_pred, w, src, src_stride, sse1);
} else {
besterr = vfp->vf(y + offset, y_stride, src, src_stride, sse1);
}
*distortion = besterr;
besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit);
return besterr;
#endif // CONFIG_VP9_HIGHBITDEPTH
}
static INLINE int divide_and_round(const int n, const int d) {
return ((n < 0) ^ (d < 0)) ? ((n - d / 2) / d) : ((n + d / 2) / d);
}
static INLINE int is_cost_list_wellbehaved(int *cost_list) {
return cost_list[0] < cost_list[1] && cost_list[0] < cost_list[2] &&
cost_list[0] < cost_list[3] && cost_list[0] < cost_list[4];
}
// Returns surface minima estimate at given precision in 1/2^n bits.
// Assume a model for the cost surface: S = A(x - x0)^2 + B(y - y0)^2 + C
// For a given set of costs S0, S1, S2, S3, S4 at points
// (y, x) = (0, 0), (0, -1), (1, 0), (0, 1) and (-1, 0) respectively,
// the solution for the location of the minima (x0, y0) is given by:
// x0 = 1/2 (S1 - S3)/(S1 + S3 - 2*S0),
// y0 = 1/2 (S4 - S2)/(S4 + S2 - 2*S0).
// The code below is an integerized version of that.
static void get_cost_surf_min(int *cost_list, int *ir, int *ic, int bits) {
*ic = divide_and_round((cost_list[1] - cost_list[3]) * (1 << (bits - 1)),
(cost_list[1] - 2 * cost_list[0] + cost_list[3]));
*ir = divide_and_round((cost_list[4] - cost_list[2]) * (1 << (bits - 1)),
(cost_list[4] - 2 * cost_list[0] + cost_list[2]));
}
uint32_t vp9_skip_sub_pixel_tree(const MACROBLOCK *x, MV *bestmv,
const MV *ref_mv, int allow_hp,
int error_per_bit,
const vp9_variance_fn_ptr_t *vfp,
int forced_stop, int iters_per_step,
int *cost_list, int *mvjcost, int *mvcost[2],
uint32_t *distortion, uint32_t *sse1,
const uint8_t *second_pred, int w, int h) {
SETUP_SUBPEL_SEARCH;
besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, z,
src_stride, y, y_stride, second_pred, w, h,
offset, mvjcost, mvcost, sse1, distortion);
(void)halfiters;
(void)quarteriters;
(void)eighthiters;
(void)whichdir;
(void)allow_hp;
(void)forced_stop;
(void)hstep;
(void)rr;
(void)rc;
(void)minr;
(void)minc;
(void)maxr;
(void)maxc;
(void)tr;
(void)tc;
(void)sse;
(void)thismse;
(void)cost_list;
if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
(abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
return UINT_MAX;
return besterr;
}
uint32_t vp9_find_best_sub_pixel_tree_pruned_evenmore(
const MACROBLOCK *x, MV *bestmv, const MV *ref_mv, int allow_hp,
int error_per_bit, const vp9_variance_fn_ptr_t *vfp, int forced_stop,
int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2],
uint32_t *distortion, uint32_t *sse1, const uint8_t *second_pred, int w,
int h) {
SETUP_SUBPEL_SEARCH;
besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, z,
src_stride, y, y_stride, second_pred, w, h,
offset, mvjcost, mvcost, sse1, distortion);
(void)halfiters;
(void)quarteriters;
(void)eighthiters;
(void)whichdir;
(void)allow_hp;
(void)forced_stop;
(void)hstep;
if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) {
int ir, ic;
unsigned int minpt;
get_cost_surf_min(cost_list, &ir, &ic, 2);
if (ir != 0 || ic != 0) {
CHECK_BETTER(minpt, tr + 2 * ir, tc + 2 * ic);
}
} else {
FIRST_LEVEL_CHECKS;
if (halfiters > 1) {
SECOND_LEVEL_CHECKS;
}
tr = br;
tc = bc;
// Each subsequent iteration checks at least one point in common with
// the last iteration could be 2 ( if diag selected) 1/4 pel
// Note forced_stop: 0 - full, 1 - qtr only, 2 - half only
if (forced_stop != 2) {
hstep >>= 1;
FIRST_LEVEL_CHECKS;
if (quarteriters > 1) {
SECOND_LEVEL_CHECKS;
}
}
}
tr = br;
tc = bc;
if (allow_hp && use_mv_hp(ref_mv) && forced_stop == 0) {
hstep >>= 1;
FIRST_LEVEL_CHECKS;
if (eighthiters > 1) {
SECOND_LEVEL_CHECKS;
}
}
bestmv->row = br;
bestmv->col = bc;
if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
(abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
return UINT_MAX;
return besterr;
}
uint32_t vp9_find_best_sub_pixel_tree_pruned_more(
const MACROBLOCK *x, MV *bestmv, const MV *ref_mv, int allow_hp,
int error_per_bit, const vp9_variance_fn_ptr_t *vfp, int forced_stop,
int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2],
uint32_t *distortion, uint32_t *sse1, const uint8_t *second_pred, int w,
int h) {
SETUP_SUBPEL_SEARCH;
besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, z,
src_stride, y, y_stride, second_pred, w, h,
offset, mvjcost, mvcost, sse1, distortion);
if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) {
unsigned int minpt;
int ir, ic;
get_cost_surf_min(cost_list, &ir, &ic, 1);
if (ir != 0 || ic != 0) {
CHECK_BETTER(minpt, tr + ir * hstep, tc + ic * hstep);
}
} else {
FIRST_LEVEL_CHECKS;
if (halfiters > 1) {
SECOND_LEVEL_CHECKS;
}
}
// Each subsequent iteration checks at least one point in common with
// the last iteration could be 2 ( if diag selected) 1/4 pel
// Note forced_stop: 0 - full, 1 - qtr only, 2 - half only
if (forced_stop != 2) {
tr = br;
tc = bc;
hstep >>= 1;
FIRST_LEVEL_CHECKS;
if (quarteriters > 1) {
SECOND_LEVEL_CHECKS;
}
}
if (allow_hp && use_mv_hp(ref_mv) && forced_stop == 0) {
tr = br;
tc = bc;
hstep >>= 1;
FIRST_LEVEL_CHECKS;
if (eighthiters > 1) {
SECOND_LEVEL_CHECKS;
}
}
// These lines insure static analysis doesn't warn that
// tr and tc aren't used after the above point.
(void)tr;
(void)tc;
bestmv->row = br;
bestmv->col = bc;
if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
(abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
return UINT_MAX;
return besterr;
}
uint32_t vp9_find_best_sub_pixel_tree_pruned(
const MACROBLOCK *x, MV *bestmv, const MV *ref_mv, int allow_hp,
int error_per_bit, const vp9_variance_fn_ptr_t *vfp, int forced_stop,
int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2],
uint32_t *distortion, uint32_t *sse1, const uint8_t *second_pred, int w,
int h) {
SETUP_SUBPEL_SEARCH;
besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, z,
src_stride, y, y_stride, second_pred, w, h,
offset, mvjcost, mvcost, sse1, distortion);
if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX &&
cost_list[2] != INT_MAX && cost_list[3] != INT_MAX &&
cost_list[4] != INT_MAX) {
unsigned int left, right, up, down, diag;
whichdir = (cost_list[1] < cost_list[3] ? 0 : 1) +
(cost_list[2] < cost_list[4] ? 0 : 2);
switch (whichdir) {
case 0:
CHECK_BETTER(left, tr, tc - hstep);
CHECK_BETTER(down, tr + hstep, tc);
CHECK_BETTER(diag, tr + hstep, tc - hstep);
break;
case 1:
CHECK_BETTER(right, tr, tc + hstep);
CHECK_BETTER(down, tr + hstep, tc);
CHECK_BETTER(diag, tr + hstep, tc + hstep);
break;
case 2:
CHECK_BETTER(left, tr, tc - hstep);
CHECK_BETTER(up, tr - hstep, tc);
CHECK_BETTER(diag, tr - hstep, tc - hstep);
break;
case 3:
CHECK_BETTER(right, tr, tc + hstep);
CHECK_BETTER(up, tr - hstep, tc);
CHECK_BETTER(diag, tr - hstep, tc + hstep);
break;
}
} else {
FIRST_LEVEL_CHECKS;
if (halfiters > 1) {
SECOND_LEVEL_CHECKS;
}
}
tr = br;
tc = bc;
// Each subsequent iteration checks at least one point in common with
// the last iteration could be 2 ( if diag selected) 1/4 pel
// Note forced_stop: 0 - full, 1 - qtr only, 2 - half only
if (forced_stop != 2) {
hstep >>= 1;
FIRST_LEVEL_CHECKS;
if (quarteriters > 1) {
SECOND_LEVEL_CHECKS;
}
tr = br;
tc = bc;
}
if (allow_hp && use_mv_hp(ref_mv) && forced_stop == 0) {
hstep >>= 1;
FIRST_LEVEL_CHECKS;
if (eighthiters > 1) {
SECOND_LEVEL_CHECKS;
}
tr = br;
tc = bc;
}
// These lines insure static analysis doesn't warn that
// tr and tc aren't used after the above point.
(void)tr;
(void)tc;
bestmv->row = br;
bestmv->col = bc;
if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
(abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
return UINT_MAX;
return besterr;
}
/* clang-format off */
static const MV search_step_table[12] = {
// left, right, up, down
{ 0, -4 }, { 0, 4 }, { -4, 0 }, { 4, 0 },
{ 0, -2 }, { 0, 2 }, { -2, 0 }, { 2, 0 },
{ 0, -1 }, { 0, 1 }, { -1, 0 }, { 1, 0 }
};
/* clang-format on */
uint32_t vp9_find_best_sub_pixel_tree(
const MACROBLOCK *x, MV *bestmv, const MV *ref_mv, int allow_hp,
int error_per_bit, const vp9_variance_fn_ptr_t *vfp, int forced_stop,
int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2],
uint32_t *distortion, uint32_t *sse1, const uint8_t *second_pred, int w,
int h) {
const uint8_t *const z = x->plane[0].src.buf;
const uint8_t *const src_address = z;
const int src_stride = x->plane[0].src.stride;
const MACROBLOCKD *xd = &x->e_mbd;
unsigned int besterr = UINT_MAX;
unsigned int sse;
int thismse;
const int y_stride = xd->plane[0].pre[0].stride;
const int offset = bestmv->row * y_stride + bestmv->col;
const uint8_t *const y = xd->plane[0].pre[0].buf;
int rr = ref_mv->row;
int rc = ref_mv->col;
int br = bestmv->row * 8;
int bc = bestmv->col * 8;
int hstep = 4;
int iter, round = 3 - forced_stop;
const int minc = VPXMAX(x->mv_limits.col_min * 8, ref_mv->col - MV_MAX);
const int maxc = VPXMIN(x->mv_limits.col_max * 8, ref_mv->col + MV_MAX);
const int minr = VPXMAX(x->mv_limits.row_min * 8, ref_mv->row - MV_MAX);
const int maxr = VPXMIN(x->mv_limits.row_max * 8, ref_mv->row + MV_MAX);
int tr = br;
int tc = bc;
const MV *search_step = search_step_table;
int idx, best_idx = -1;
unsigned int cost_array[5];
int kr, kc;
if (!(allow_hp && use_mv_hp(ref_mv)))
if (round == 3) round = 2;
bestmv->row *= 8;
bestmv->col *= 8;
besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, z,
src_stride, y, y_stride, second_pred, w, h,
offset, mvjcost, mvcost, sse1, distortion);
(void)cost_list; // to silence compiler warning
for (iter = 0; iter < round; ++iter) {
// Check vertical and horizontal sub-pixel positions.
for (idx = 0; idx < 4; ++idx) {
tr = br + search_step[idx].row;
tc = bc + search_step[idx].col;
if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) {
const uint8_t *const pre_address = y + (tr >> 3) * y_stride + (tc >> 3);
MV this_mv;
this_mv.row = tr;
this_mv.col = tc;
if (second_pred == NULL)
thismse = vfp->svf(pre_address, y_stride, sp(tc), sp(tr), src_address,
src_stride, &sse);
else
thismse = vfp->svaf(pre_address, y_stride, sp(tc), sp(tr),
src_address, src_stride, &sse, second_pred);
cost_array[idx] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost,
mvcost, error_per_bit);
if (cost_array[idx] < besterr) {
best_idx = idx;
besterr = cost_array[idx];
*distortion = thismse;
*sse1 = sse;
}
} else {
cost_array[idx] = UINT_MAX;
}
}
// Check diagonal sub-pixel position
kc = (cost_array[0] <= cost_array[1] ? -hstep : hstep);
kr = (cost_array[2] <= cost_array[3] ? -hstep : hstep);
tc = bc + kc;
tr = br + kr;
if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) {
const uint8_t *const pre_address = y + (tr >> 3) * y_stride + (tc >> 3);
MV this_mv = { tr, tc };
if (second_pred == NULL)
thismse = vfp->svf(pre_address, y_stride, sp(tc), sp(tr), src_address,
src_stride, &sse);
else
thismse = vfp->svaf(pre_address, y_stride, sp(tc), sp(tr), src_address,
src_stride, &sse, second_pred);
cost_array[4] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost,
error_per_bit);
if (cost_array[4] < besterr) {
best_idx = 4;
besterr = cost_array[4];
*distortion = thismse;
*sse1 = sse;
}
} else {
cost_array[idx] = UINT_MAX;
}
if (best_idx < 4 && best_idx >= 0) {
br += search_step[best_idx].row;
bc += search_step[best_idx].col;
} else if (best_idx == 4) {
br = tr;
bc = tc;
}
if (iters_per_step > 1 && best_idx != -1) SECOND_LEVEL_CHECKS_BEST;
tr = br;
tc = bc;
search_step += 4;
hstep >>= 1;
best_idx = -1;
}
// Each subsequent iteration checks at least one point in common with
// the last iteration could be 2 ( if diag selected) 1/4 pel
// These lines insure static analysis doesn't warn that
// tr and tc aren't used after the above point.
(void)tr;
(void)tc;
bestmv->row = br;
bestmv->col = bc;
if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
(abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
return UINT_MAX;
return besterr;
}
#undef CHECK_BETTER
static INLINE int check_bounds(const MvLimits *mv_limits, int row, int col,
int range) {
return ((row - range) >= mv_limits->row_min) &
((row + range) <= mv_limits->row_max) &
((col - range) >= mv_limits->col_min) &
((col + range) <= mv_limits->col_max);
}
static INLINE int is_mv_in(const MvLimits *mv_limits, const MV *mv) {
return (mv->col >= mv_limits->col_min) && (mv->col <= mv_limits->col_max) &&
(mv->row >= mv_limits->row_min) && (mv->row <= mv_limits->row_max);
}
#define CHECK_BETTER \
{ \
if (thissad < bestsad) { \
if (use_mvcost) \
thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); \
if (thissad < bestsad) { \
bestsad = thissad; \
best_site = i; \
} \
} \
}
#define MAX_PATTERN_SCALES 11
#define MAX_PATTERN_CANDIDATES 8 // max number of canddiates per scale
#define PATTERN_CANDIDATES_REF 3 // number of refinement candidates
// Calculate and return a sad+mvcost list around an integer best pel.
static INLINE void calc_int_cost_list(const MACROBLOCK *x, const MV *ref_mv,
int sadpb,
const vp9_variance_fn_ptr_t *fn_ptr,
const MV *best_mv, int *cost_list) {
static const MV neighbors[4] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } };
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &x->e_mbd.plane[0].pre[0];
const MV fcenter_mv = { ref_mv->row >> 3, ref_mv->col >> 3 };
int br = best_mv->row;
int bc = best_mv->col;
MV this_mv;
int i;
unsigned int sse;
this_mv.row = br;
this_mv.col = bc;
cost_list[0] =
fn_ptr->vf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv),
in_what->stride, &sse) +
mvsad_err_cost(x, &this_mv, &fcenter_mv, sadpb);
if (check_bounds(&x->mv_limits, br, bc, 1)) {
for (i = 0; i < 4; i++) {
const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col };
cost_list[i + 1] = fn_ptr->vf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv),
in_what->stride, &sse) +
mv_err_cost(&this_mv, &fcenter_mv, x->nmvjointcost,
x->mvcost, x->errorperbit);
}
} else {
for (i = 0; i < 4; i++) {
const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col };
if (!is_mv_in(&x->mv_limits, &this_mv))
cost_list[i + 1] = INT_MAX;
else
cost_list[i + 1] = fn_ptr->vf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv),
in_what->stride, &sse) +
mv_err_cost(&this_mv, &fcenter_mv, x->nmvjointcost,
x->mvcost, x->errorperbit);
}
}
}
// Generic pattern search function that searches over multiple scales.
// Each scale can have a different number of candidates and shape of
// candidates as indicated in the num_candidates and candidates arrays
// passed into this function
//
static int vp9_pattern_search(
const MACROBLOCK *x, MV *ref_mv, int search_param, int sad_per_bit,
int do_init_search, int *cost_list, const vp9_variance_fn_ptr_t *vfp,
int use_mvcost, const MV *center_mv, MV *best_mv,
const int num_candidates[MAX_PATTERN_SCALES],
const MV candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES]) {
const MACROBLOCKD *const xd = &x->e_mbd;
static const int search_param_to_steps[MAX_MVSEARCH_STEPS] = {
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
};
int i, s, t;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
int br, bc;
int bestsad = INT_MAX;
int thissad;
int k = -1;
const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
int best_init_s = search_param_to_steps[search_param];
// adjust ref_mv to make sure it is within MV range
clamp_mv(ref_mv, x->mv_limits.col_min, x->mv_limits.col_max,
x->mv_limits.row_min, x->mv_limits.row_max);
br = ref_mv->row;
bc = ref_mv->col;
// Work out the start point for the search
bestsad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, ref_mv),
in_what->stride) +
mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
// Search all possible scales upto the search param around the center point
// pick the scale of the point that is best as the starting scale of
// further steps around it.
if (do_init_search) {
s = best_init_s;
best_init_s = -1;
for (t = 0; t <= s; ++t) {
int best_site = -1;
if (check_bounds(&x->mv_limits, br, bc, 1 << t)) {
for (i = 0; i < num_candidates[t]; i++) {
const MV this_mv = { br + candidates[t][i].row,
bc + candidates[t][i].col };
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
} else {
for (i = 0; i < num_candidates[t]; i++) {
const MV this_mv = { br + candidates[t][i].row,
bc + candidates[t][i].col };
if (!is_mv_in(&x->mv_limits, &this_mv)) continue;
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
}
if (best_site == -1) {
continue;
} else {
best_init_s = t;
k = best_site;
}
}
if (best_init_s != -1) {
br += candidates[best_init_s][k].row;
bc += candidates[best_init_s][k].col;
}
}
// If the center point is still the best, just skip this and move to
// the refinement step.
if (best_init_s != -1) {
int best_site = -1;
s = best_init_s;
do {
// No need to search all 6 points the 1st time if initial search was used
if (!do_init_search || s != best_init_s) {
if (check_bounds(&x->mv_limits, br, bc, 1 << s)) {
for (i = 0; i < num_candidates[s]; i++) {
const MV this_mv = { br + candidates[s][i].row,
bc + candidates[s][i].col };
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
} else {
for (i = 0; i < num_candidates[s]; i++) {
const MV this_mv = { br + candidates[s][i].row,
bc + candidates[s][i].col };
if (!is_mv_in(&x->mv_limits, &this_mv)) continue;
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
}
if (best_site == -1) {
continue;
} else {
br += candidates[s][best_site].row;
bc += candidates[s][best_site].col;
k = best_site;
}
}
do {
int next_chkpts_indices[PATTERN_CANDIDATES_REF];
best_site = -1;
next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
next_chkpts_indices[1] = k;
next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
if (check_bounds(&x->mv_limits, br, bc, 1 << s)) {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
const MV this_mv = {
br + candidates[s][next_chkpts_indices[i]].row,
bc + candidates[s][next_chkpts_indices[i]].col
};
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
} else {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
const MV this_mv = {
br + candidates[s][next_chkpts_indices[i]].row,
bc + candidates[s][next_chkpts_indices[i]].col
};
if (!is_mv_in(&x->mv_limits, &this_mv)) continue;
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
}
if (best_site != -1) {
k = next_chkpts_indices[best_site];
br += candidates[s][k].row;
bc += candidates[s][k].col;
}
} while (best_site != -1);
} while (s--);
}
// Returns the one-away integer pel sad values around the best as follows:
// cost_list[0]: cost at the best integer pel
// cost_list[1]: cost at delta {0, -1} (left) from the best integer pel
// cost_list[2]: cost at delta { 1, 0} (bottom) from the best integer pel
// cost_list[3]: cost at delta { 0, 1} (right) from the best integer pel
// cost_list[4]: cost at delta {-1, 0} (top) from the best integer pel
if (cost_list) {
const MV best_mv = { br, bc };
calc_int_cost_list(x, &fcenter_mv, sad_per_bit, vfp, &best_mv, cost_list);
}
best_mv->row = br;
best_mv->col = bc;
return bestsad;
}
// A specialized function where the smallest scale search candidates
// are 4 1-away neighbors, and cost_list is non-null
// TODO(debargha): Merge this function with the one above. Also remove
// use_mvcost option since it is always 1, to save unnecessary branches.
static int vp9_pattern_search_sad(
const MACROBLOCK *x, MV *ref_mv, int search_param, int sad_per_bit,
int do_init_search, int *cost_list, const vp9_variance_fn_ptr_t *vfp,
int use_mvcost, const MV *center_mv, MV *best_mv,
const int num_candidates[MAX_PATTERN_SCALES],
const MV candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES]) {
const MACROBLOCKD *const xd = &x->e_mbd;
static const int search_param_to_steps[MAX_MVSEARCH_STEPS] = {
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
};
int i, s, t;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
int br, bc;
int bestsad = INT_MAX;
int thissad;
int k = -1;
const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
int best_init_s = search_param_to_steps[search_param];
// adjust ref_mv to make sure it is within MV range
clamp_mv(ref_mv, x->mv_limits.col_min, x->mv_limits.col_max,
x->mv_limits.row_min, x->mv_limits.row_max);
br = ref_mv->row;
bc = ref_mv->col;
if (cost_list != NULL) {
cost_list[0] = cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] =
INT_MAX;
}
// Work out the start point for the search
bestsad = vfp->sdf(what->buf, what->stride, get_buf_from_mv(in_what, ref_mv),
in_what->stride) +
mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
// Search all possible scales upto the search param around the center point
// pick the scale of the point that is best as the starting scale of
// further steps around it.
if (do_init_search) {
s = best_init_s;
best_init_s = -1;
for (t = 0; t <= s; ++t) {
int best_site = -1;
if (check_bounds(&x->mv_limits, br, bc, 1 << t)) {
for (i = 0; i < num_candidates[t]; i++) {
const MV this_mv = { br + candidates[t][i].row,
bc + candidates[t][i].col };
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
} else {
for (i = 0; i < num_candidates[t]; i++) {
const MV this_mv = { br + candidates[t][i].row,
bc + candidates[t][i].col };
if (!is_mv_in(&x->mv_limits, &this_mv)) continue;
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
}
if (best_site == -1) {
continue;
} else {
best_init_s = t;
k = best_site;
}
}
if (best_init_s != -1) {
br += candidates[best_init_s][k].row;
bc += candidates[best_init_s][k].col;
}
}
// If the center point is still the best, just skip this and move to
// the refinement step.
if (best_init_s != -1) {
int do_sad = (num_candidates[0] == 4 && cost_list != NULL);
int best_site = -1;
s = best_init_s;
for (; s >= do_sad; s--) {
if (!do_init_search || s != best_init_s) {
if (check_bounds(&x->mv_limits, br, bc, 1 << s)) {
for (i = 0; i < num_candidates[s]; i++) {
const MV this_mv = { br + candidates[s][i].row,
bc + candidates[s][i].col };
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
} else {
for (i = 0; i < num_candidates[s]; i++) {
const MV this_mv = { br + candidates[s][i].row,
bc + candidates[s][i].col };
if (!is_mv_in(&x->mv_limits, &this_mv)) continue;
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
}
if (best_site == -1) {
continue;
} else {
br += candidates[s][best_site].row;
bc += candidates[s][best_site].col;
k = best_site;
}
}
do {
int next_chkpts_indices[PATTERN_CANDIDATES_REF];
best_site = -1;
next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
next_chkpts_indices[1] = k;
next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
if (check_bounds(&x->mv_limits, br, bc, 1 << s)) {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
const MV this_mv = {
br + candidates[s][next_chkpts_indices[i]].row,
bc + candidates[s][next_chkpts_indices[i]].col
};
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
} else {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
const MV this_mv = {
br + candidates[s][next_chkpts_indices[i]].row,
bc + candidates[s][next_chkpts_indices[i]].col
};
if (!is_mv_in(&x->mv_limits, &this_mv)) continue;
thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
}
if (best_site != -1) {
k = next_chkpts_indices[best_site];
br += candidates[s][k].row;
bc += candidates[s][k].col;
}
} while (best_site != -1);
}
// Note: If we enter the if below, then cost_list must be non-NULL.
if (s == 0) {
cost_list[0] = bestsad;
if (!do_init_search || s != best_init_s) {
if (check_bounds(&x->mv_limits, br, bc, 1 << s)) {
for (i = 0; i < num_candidates[s]; i++) {
const MV this_mv = { br + candidates[s][i].row,
bc + candidates[s][i].col };
cost_list[i + 1] = thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
} else {
for (i = 0; i < num_candidates[s]; i++) {
const MV this_mv = { br + candidates[s][i].row,
bc + candidates[s][i].col };
if (!is_mv_in(&x->mv_limits, &this_mv)) continue;
cost_list[i + 1] = thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
}
if (best_site != -1) {
br += candidates[s][best_site].row;
bc += candidates[s][best_site].col;
k = best_site;
}
}
while (best_site != -1) {
int next_chkpts_indices[PATTERN_CANDIDATES_REF];
best_site = -1;
next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1;
next_chkpts_indices[1] = k;
next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1;
cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = INT_MAX;
cost_list[((k + 2) % 4) + 1] = cost_list[0];
cost_list[0] = bestsad;
if (check_bounds(&x->mv_limits, br, bc, 1 << s)) {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
const MV this_mv = {
br + candidates[s][next_chkpts_indices[i]].row,
bc + candidates[s][next_chkpts_indices[i]].col
};
cost_list[next_chkpts_indices[i] + 1] = thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
} else {
for (i = 0; i < PATTERN_CANDIDATES_REF; i++) {
const MV this_mv = {
br + candidates[s][next_chkpts_indices[i]].row,
bc + candidates[s][next_chkpts_indices[i]].col
};
if (!is_mv_in(&x->mv_limits, &this_mv)) {
cost_list[next_chkpts_indices[i] + 1] = INT_MAX;
continue;
}
cost_list[next_chkpts_indices[i] + 1] = thissad =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
CHECK_BETTER
}
}
if (best_site != -1) {
k = next_chkpts_indices[best_site];
br += candidates[s][k].row;
bc += candidates[s][k].col;
}
}
}
}
// Returns the one-away integer pel sad values around the best as follows:
// cost_list[0]: sad at the best integer pel
// cost_list[1]: sad at delta {0, -1} (left) from the best integer pel
// cost_list[2]: sad at delta { 1, 0} (bottom) from the best integer pel
// cost_list[3]: sad at delta { 0, 1} (right) from the best integer pel
// cost_list[4]: sad at delta {-1, 0} (top) from the best integer pel
if (cost_list) {
static const MV neighbors[4] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } };
if (cost_list[0] == INT_MAX) {
cost_list[0] = bestsad;
if (check_bounds(&x->mv_limits, br, bc, 1)) {
for (i = 0; i < 4; i++) {
const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col };
cost_list[i + 1] =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
}
} else {
for (i = 0; i < 4; i++) {
const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col };
if (!is_mv_in(&x->mv_limits, &this_mv))
cost_list[i + 1] = INT_MAX;
else
cost_list[i + 1] =
vfp->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &this_mv), in_what->stride);
}
}
} else {
if (use_mvcost) {
for (i = 0; i < 4; i++) {
const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col };
if (cost_list[i + 1] != INT_MAX) {
cost_list[i + 1] +=
mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
}
}
}
}
}
best_mv->row = br;
best_mv->col = bc;
return bestsad;
}
int vp9_get_mvpred_var(const MACROBLOCK *x, const MV *best_mv,
const MV *center_mv, const vp9_variance_fn_ptr_t *vfp,
int use_mvcost) {
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
const MV mv = { best_mv->row * 8, best_mv->col * 8 };
uint32_t unused;
#if CONFIG_VP9_HIGHBITDEPTH
uint64_t err =
vfp->vf(what->buf, what->stride, get_buf_from_mv(in_what, best_mv),
in_what->stride, &unused);
err += (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost,
x->errorperbit)
: 0);
if (err >= INT_MAX) return INT_MAX;
return (int)err;
#else
return vfp->vf(what->buf, what->stride, get_buf_from_mv(in_what, best_mv),
in_what->stride, &unused) +
(use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost,
x->errorperbit)
: 0);
#endif
}
int vp9_get_mvpred_av_var(const MACROBLOCK *x, const MV *best_mv,
const MV *center_mv, const uint8_t *second_pred,
const vp9_variance_fn_ptr_t *vfp, int use_mvcost) {
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
const MV mv = { best_mv->row * 8, best_mv->col * 8 };
unsigned int unused;
return vfp->svaf(get_buf_from_mv(in_what, best_mv), in_what->stride, 0, 0,
what->buf, what->stride, &unused, second_pred) +
(use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost,
x->errorperbit)
: 0);
}
static int hex_search(const MACROBLOCK *x, MV *ref_mv, int search_param,
int sad_per_bit, int do_init_search, int *cost_list,
const vp9_variance_fn_ptr_t *vfp, int use_mvcost,
const MV *center_mv, MV *best_mv) {
// First scale has 8-closest points, the rest have 6 points in hex shape
// at increasing scales
static const int hex_num_candidates[MAX_PATTERN_SCALES] = { 8, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6 };
// Note that the largest candidate step at each scale is 2^scale
/* clang-format off */
static const MV hex_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
{ { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 },
{ -1, 0 } },
{ { -1, -2 }, { 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 } },
{ { -2, -4 }, { 2, -4 }, { 4, 0 }, { 2, 4 }, { -2, 4 }, { -4, 0 } },
{ { -4, -8 }, { 4, -8 }, { 8, 0 }, { 4, 8 }, { -4, 8 }, { -8, 0 } },
{ { -8, -16 }, { 8, -16 }, { 16, 0 }, { 8, 16 }, { -8, 16 }, { -16, 0 } },
{ { -16, -32 }, { 16, -32 }, { 32, 0 }, { 16, 32 }, { -16, 32 },
{ -32, 0 } },
{ { -32, -64 }, { 32, -64 }, { 64, 0 }, { 32, 64 }, { -32, 64 },
{ -64, 0 } },
{ { -64, -128 }, { 64, -128 }, { 128, 0 }, { 64, 128 }, { -64, 128 },
{ -128, 0 } },
{ { -128, -256 }, { 128, -256 }, { 256, 0 }, { 128, 256 }, { -128, 256 },
{ -256, 0 } },
{ { -256, -512 }, { 256, -512 }, { 512, 0 }, { 256, 512 }, { -256, 512 },
{ -512, 0 } },
{ { -512, -1024 }, { 512, -1024 }, { 1024, 0 }, { 512, 1024 },
{ -512, 1024 }, { -1024, 0 } }
};
/* clang-format on */
return vp9_pattern_search(
x, ref_mv, search_param, sad_per_bit, do_init_search, cost_list, vfp,
use_mvcost, center_mv, best_mv, hex_num_candidates, hex_candidates);
}
static int bigdia_search(const MACROBLOCK *x, MV *ref_mv, int search_param,
int sad_per_bit, int do_init_search, int *cost_list,
const vp9_variance_fn_ptr_t *vfp, int use_mvcost,
const MV *center_mv, MV *best_mv) {
// First scale has 4-closest points, the rest have 8 points in diamond
// shape at increasing scales
static const int bigdia_num_candidates[MAX_PATTERN_SCALES] = {
4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
};
// Note that the largest candidate step at each scale is 2^scale
/* clang-format off */
static const MV
bigdia_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
{ { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } },
{ { -1, -1 }, { 0, -2 }, { 1, -1 }, { 2, 0 }, { 1, 1 }, { 0, 2 },
{ -1, 1 }, { -2, 0 } },
{ { -2, -2 }, { 0, -4 }, { 2, -2 }, { 4, 0 }, { 2, 2 }, { 0, 4 },
{ -2, 2 }, { -4, 0 } },
{ { -4, -4 }, { 0, -8 }, { 4, -4 }, { 8, 0 }, { 4, 4 }, { 0, 8 },
{ -4, 4 }, { -8, 0 } },
{ { -8, -8 }, { 0, -16 }, { 8, -8 }, { 16, 0 }, { 8, 8 }, { 0, 16 },
{ -8, 8 }, { -16, 0 } },
{ { -16, -16 }, { 0, -32 }, { 16, -16 }, { 32, 0 }, { 16, 16 },
{ 0, 32 }, { -16, 16 }, { -32, 0 } },
{ { -32, -32 }, { 0, -64 }, { 32, -32 }, { 64, 0 }, { 32, 32 },
{ 0, 64 }, { -32, 32 }, { -64, 0 } },
{ { -64, -64 }, { 0, -128 }, { 64, -64 }, { 128, 0 }, { 64, 64 },
{ 0, 128 }, { -64, 64 }, { -128, 0 } },
{ { -128, -128 }, { 0, -256 }, { 128, -128 }, { 256, 0 }, { 128, 128 },
{ 0, 256 }, { -128, 128 }, { -256, 0 } },
{ { -256, -256 }, { 0, -512 }, { 256, -256 }, { 512, 0 }, { 256, 256 },
{ 0, 512 }, { -256, 256 }, { -512, 0 } },
{ { -512, -512 }, { 0, -1024 }, { 512, -512 }, { 1024, 0 },
{ 512, 512 }, { 0, 1024 }, { -512, 512 }, { -1024, 0 } }
};
/* clang-format on */
return vp9_pattern_search_sad(
x, ref_mv, search_param, sad_per_bit, do_init_search, cost_list, vfp,
use_mvcost, center_mv, best_mv, bigdia_num_candidates, bigdia_candidates);
}
static int square_search(const MACROBLOCK *x, MV *ref_mv, int search_param,
int sad_per_bit, int do_init_search, int *cost_list,
const vp9_variance_fn_ptr_t *vfp, int use_mvcost,
const MV *center_mv, MV *best_mv) {
// All scales have 8 closest points in square shape
static const int square_num_candidates[MAX_PATTERN_SCALES] = {
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
};
// Note that the largest candidate step at each scale is 2^scale
/* clang-format off */
static const MV
square_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = {
{ { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
{ -1, 1 }, { -1, 0 } },
{ { -2, -2 }, { 0, -2 }, { 2, -2 }, { 2, 0 }, { 2, 2 }, { 0, 2 },
{ -2, 2 }, { -2, 0 } },
{ { -4, -4 }, { 0, -4 }, { 4, -4 }, { 4, 0 }, { 4, 4 }, { 0, 4 },
{ -4, 4 }, { -4, 0 } },
{ { -8, -8 }, { 0, -8 }, { 8, -8 }, { 8, 0 }, { 8, 8 }, { 0, 8 },
{ -8, 8 }, { -8, 0 } },
{ { -16, -16 }, { 0, -16 }, { 16, -16 }, { 16, 0 }, { 16, 16 },
{ 0, 16 }, { -16, 16 }, { -16, 0 } },
{ { -32, -32 }, { 0, -32 }, { 32, -32 }, { 32, 0 }, { 32, 32 },
{ 0, 32 }, { -32, 32 }, { -32, 0 } },
{ { -64, -64 }, { 0, -64 }, { 64, -64 }, { 64, 0 }, { 64, 64 },
{ 0, 64 }, { -64, 64 }, { -64, 0 } },
{ { -128, -128 }, { 0, -128 }, { 128, -128 }, { 128, 0 }, { 128, 128 },
{ 0, 128 }, { -128, 128 }, { -128, 0 } },
{ { -256, -256 }, { 0, -256 }, { 256, -256 }, { 256, 0 }, { 256, 256 },
{ 0, 256 }, { -256, 256 }, { -256, 0 } },
{ { -512, -512 }, { 0, -512 }, { 512, -512 }, { 512, 0 }, { 512, 512 },
{ 0, 512 }, { -512, 512 }, { -512, 0 } },
{ { -1024, -1024 }, { 0, -1024 }, { 1024, -1024 }, { 1024, 0 },
{ 1024, 1024 }, { 0, 1024 }, { -1024, 1024 }, { -1024, 0 } }
};
/* clang-format on */
return vp9_pattern_search(
x, ref_mv, search_param, sad_per_bit, do_init_search, cost_list, vfp,
use_mvcost, center_mv, best_mv, square_num_candidates, square_candidates);
}
static int fast_hex_search(const MACROBLOCK *x, MV *ref_mv, int search_param,
int sad_per_bit,
int do_init_search, // must be zero for fast_hex
int *cost_list, const vp9_variance_fn_ptr_t *vfp,
int use_mvcost, const MV *center_mv, MV *best_mv) {
return hex_search(x, ref_mv, VPXMAX(MAX_MVSEARCH_STEPS - 2, search_param),
sad_per_bit, do_init_search, cost_list, vfp, use_mvcost,
center_mv, best_mv);
}
static int fast_dia_search(const MACROBLOCK *x, MV *ref_mv, int search_param,
int sad_per_bit, int do_init_search, int *cost_list,
const vp9_variance_fn_ptr_t *vfp, int use_mvcost,
const MV *center_mv, MV *best_mv) {
return bigdia_search(x, ref_mv, VPXMAX(MAX_MVSEARCH_STEPS - 2, search_param),
sad_per_bit, do_init_search, cost_list, vfp, use_mvcost,
center_mv, best_mv);
}
#undef CHECK_BETTER
// Exhuastive motion search around a given centre position with a given
// step size.
static int exhuastive_mesh_search(const MACROBLOCK *x, MV *ref_mv, MV *best_mv,
int range, int step, int sad_per_bit,
const vp9_variance_fn_ptr_t *fn_ptr,
const MV *center_mv) {
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
MV fcenter_mv = { center_mv->row, center_mv->col };
unsigned int best_sad = INT_MAX;
int r, c, i;
int start_col, end_col, start_row, end_row;
int col_step = (step > 1) ? step : 4;
assert(step >= 1);
clamp_mv(&fcenter_mv, x->mv_limits.col_min, x->mv_limits.col_max,
x->mv_limits.row_min, x->mv_limits.row_max);
*best_mv = fcenter_mv;
best_sad =
fn_ptr->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &fcenter_mv), in_what->stride) +
mvsad_err_cost(x, &fcenter_mv, ref_mv, sad_per_bit);
start_row = VPXMAX(-range, x->mv_limits.row_min - fcenter_mv.row);
start_col = VPXMAX(-range, x->mv_limits.col_min - fcenter_mv.col);
end_row = VPXMIN(range, x->mv_limits.row_max - fcenter_mv.row);
end_col = VPXMIN(range, x->mv_limits.col_max - fcenter_mv.col);
for (r = start_row; r <= end_row; r += step) {
for (c = start_col; c <= end_col; c += col_step) {
// Step > 1 means we are not checking every location in this pass.
if (step > 1) {
const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c };
unsigned int sad =
fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &mv),
in_what->stride);
if (sad < best_sad) {
sad += mvsad_err_cost(x, &mv, ref_mv, sad_per_bit);
if (sad < best_sad) {
best_sad = sad;
*best_mv = mv;
}
}
} else {
// 4 sads in a single call if we are checking every location
if (c + 3 <= end_col) {
unsigned int sads[4];
const uint8_t *addrs[4];
for (i = 0; i < 4; ++i) {
const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i };
addrs[i] = get_buf_from_mv(in_what, &mv);
}
fn_ptr->sdx4df(what->buf, what->stride, addrs, in_what->stride, sads);
for (i = 0; i < 4; ++i) {
if (sads[i] < best_sad) {
const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i };
const unsigned int sad =
sads[i] + mvsad_err_cost(x, &mv, ref_mv, sad_per_bit);
if (sad < best_sad) {
best_sad = sad;
*best_mv = mv;
}
}
}
} else {
for (i = 0; i < end_col - c; ++i) {
const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i };
unsigned int sad =
fn_ptr->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &mv), in_what->stride);
if (sad < best_sad) {
sad += mvsad_err_cost(x, &mv, ref_mv, sad_per_bit);
if (sad < best_sad) {
best_sad = sad;
*best_mv = mv;
}
}
}
}
}
}
}
return best_sad;
}
int vp9_diamond_search_sad_c(const MACROBLOCK *x, const search_site_config *cfg,
MV *ref_mv, MV *best_mv, int search_param,
int sad_per_bit, int *num00,
const vp9_variance_fn_ptr_t *fn_ptr,
const MV *center_mv) {
int i, j, step;
const MACROBLOCKD *const xd = &x->e_mbd;
uint8_t *what = x->plane[0].src.buf;
const int what_stride = x->plane[0].src.stride;
const uint8_t *in_what;
const int in_what_stride = xd->plane[0].pre[0].stride;
const uint8_t *best_address;
unsigned int bestsad = INT_MAX;
int best_site = -1;
int last_site = -1;
int ref_row;
int ref_col;
// search_param determines the length of the initial step and hence the number
// of iterations.
// 0 = initial step (MAX_FIRST_STEP) pel
// 1 = (MAX_FIRST_STEP/2) pel,
// 2 = (MAX_FIRST_STEP/4) pel...
// const search_site *ss = &cfg->ss[search_param * cfg->searches_per_step];
const MV *ss_mv = &cfg->ss_mv[search_param * cfg->searches_per_step];
const intptr_t *ss_os = &cfg->ss_os[search_param * cfg->searches_per_step];
const int tot_steps = cfg->total_steps - search_param;
const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
clamp_mv(ref_mv, x->mv_limits.col_min, x->mv_limits.col_max,
x->mv_limits.row_min, x->mv_limits.row_max);
ref_row = ref_mv->row;
ref_col = ref_mv->col;
*num00 = 0;
best_mv->row = ref_row;
best_mv->col = ref_col;
// Work out the start point for the search
in_what = xd->plane[0].pre[0].buf + ref_row * in_what_stride + ref_col;
best_address = in_what;
// Check the starting position
bestsad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride) +
mvsad_err_cost(x, best_mv, &fcenter_mv, sad_per_bit);
i = 0;
for (step = 0; step < tot_steps; step++) {
int all_in = 1, t;
// All_in is true if every one of the points we are checking are within
// the bounds of the image.
all_in &= ((best_mv->row + ss_mv[i].row) > x->mv_limits.row_min);
all_in &= ((best_mv->row + ss_mv[i + 1].row) < x->mv_limits.row_max);
all_in &= ((best_mv->col + ss_mv[i + 2].col) > x->mv_limits.col_min);
all_in &= ((best_mv->col + ss_mv[i + 3].col) < x->mv_limits.col_max);
// If all the pixels are within the bounds we don't check whether the
// search point is valid in this loop, otherwise we check each point
// for validity..
if (all_in) {
unsigned int sad_array[4];
for (j = 0; j < cfg->searches_per_step; j += 4) {
unsigned char const *block_offset[4];
for (t = 0; t < 4; t++) block_offset[t] = ss_os[i + t] + best_address;
fn_ptr->sdx4df(what, what_stride, block_offset, in_what_stride,
sad_array);
for (t = 0; t < 4; t++, i++) {
if (sad_array[t] < bestsad) {
const MV this_mv = { best_mv->row + ss_mv[i].row,
best_mv->col + ss_mv[i].col };
sad_array[t] +=
mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
if (sad_array[t] < bestsad) {
bestsad = sad_array[t];
best_site = i;
}
}
}
}
} else {
for (j = 0; j < cfg->searches_per_step; j++) {
// Trap illegal vectors
const MV this_mv = { best_mv->row + ss_mv[i].row,
best_mv->col + ss_mv[i].col };
if (is_mv_in(&x->mv_limits, &this_mv)) {
const uint8_t *const check_here = ss_os[i] + best_address;
unsigned int thissad =
fn_ptr->sdf(what, what_stride, check_here, in_what_stride);
if (thissad < bestsad) {
thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
if (thissad < bestsad) {
bestsad = thissad;
best_site = i;
}
}
}
i++;
}
}
if (best_site != last_site) {
best_mv->row += ss_mv[best_site].row;
best_mv->col += ss_mv[best_site].col;
best_address += ss_os[best_site];
last_site = best_site;
#if defined(NEW_DIAMOND_SEARCH)
while (1) {
const MV this_mv = { best_mv->row + ss_mv[best_site].row,
best_mv->col + ss_mv[best_site].col };
if (is_mv_in(&x->mv_limits, &this_mv)) {
const uint8_t *const check_here = ss_os[best_site] + best_address;
unsigned int thissad =
fn_ptr->sdf(what, what_stride, check_here, in_what_stride);
if (thissad < bestsad) {
thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
if (thissad < bestsad) {
bestsad = thissad;
best_mv->row += ss_mv[best_site].row;
best_mv->col += ss_mv[best_site].col;
best_address += ss_os[best_site];
continue;
}
}
}
break;
}
#endif
} else if (best_address == in_what) {
(*num00)++;
}
}
return bestsad;
}
static int vector_match(int16_t *ref, int16_t *src, int bwl) {
int best_sad = INT_MAX;
int this_sad;
int d;
int center, offset = 0;
int bw = 4 << bwl; // redundant variable, to be changed in the experiments.
for (d = 0; d <= bw; d += 16) {
this_sad = vpx_vector_var(&ref[d], src, bwl);
if (this_sad < best_sad) {
best_sad = this_sad;
offset = d;
}
}
center = offset;
for (d = -8; d <= 8; d += 16) {
int this_pos = offset + d;
// check limit
if (this_pos < 0 || this_pos > bw) continue;
this_sad = vpx_vector_var(&ref[this_pos], src, bwl);
if (this_sad < best_sad) {
best_sad = this_sad;
center = this_pos;
}
}
offset = center;
for (d = -4; d <= 4; d += 8) {
int this_pos = offset + d;
// check limit
if (this_pos < 0 || this_pos > bw) continue;
this_sad = vpx_vector_var(&ref[this_pos], src, bwl);
if (this_sad < best_sad) {
best_sad = this_sad;
center = this_pos;
}
}
offset = center;
for (d = -2; d <= 2; d += 4) {
int this_pos = offset + d;
// check limit
if (this_pos < 0 || this_pos > bw) continue;
this_sad = vpx_vector_var(&ref[this_pos], src, bwl);
if (this_sad < best_sad) {
best_sad = this_sad;
center = this_pos;
}
}
offset = center;
for (d = -1; d <= 1; d += 2) {
int this_pos = offset + d;
// check limit
if (this_pos < 0 || this_pos > bw) continue;
this_sad = vpx_vector_var(&ref[this_pos], src, bwl);
if (this_sad < best_sad) {
best_sad = this_sad;
center = this_pos;
}
}
return (center - (bw >> 1));
}
static const MV search_pos[4] = {
{ -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 },
};
unsigned int vp9_int_pro_motion_estimation(const VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row,
int mi_col) {
MACROBLOCKD *xd = &x->e_mbd;
MODE_INFO *mi = xd->mi[0];
struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0 } };
DECLARE_ALIGNED(16, int16_t, hbuf[128]);
DECLARE_ALIGNED(16, int16_t, vbuf[128]);
DECLARE_ALIGNED(16, int16_t, src_hbuf[64]);
DECLARE_ALIGNED(16, int16_t, src_vbuf[64]);
int idx;
const int bw = 4 << b_width_log2_lookup[bsize];
const int bh = 4 << b_height_log2_lookup[bsize];
const int search_width = bw << 1;
const int search_height = bh << 1;
const int src_stride = x->plane[0].src.stride;
const int ref_stride = xd->plane[0].pre[0].stride;
uint8_t const *ref_buf, *src_buf;
MV *tmp_mv = &xd->mi[0]->mv[0].as_mv;
unsigned int best_sad, tmp_sad, this_sad[4];
MV this_mv;
const int norm_factor = 3 + (bw >> 5);
const YV12_BUFFER_CONFIG *scaled_ref_frame =
vp9_get_scaled_ref_frame(cpi, mi->ref_frame[0]);
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0];
vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
}
#if CONFIG_VP9_HIGHBITDEPTH
// TODO(jingning): Implement integral projection functions for high bit-depth
// setting and remove this part of code.
if (xd->bd != 8) {
unsigned int this_sad;
tmp_mv->row = 0;
tmp_mv->col = 0;
this_sad = cpi->fn_ptr[bsize].sdf(x->plane[0].src.buf, src_stride,
xd->plane[0].pre[0].buf, ref_stride);
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
}
return this_sad;
}
#endif
// Set up prediction 1-D reference set
ref_buf = xd->plane[0].pre[0].buf - (bw >> 1);
for (idx = 0; idx < search_width; idx += 16) {
vpx_int_pro_row(&hbuf[idx], ref_buf, ref_stride, bh);
ref_buf += 16;
}
ref_buf = xd->plane[0].pre[0].buf - (bh >> 1) * ref_stride;
for (idx = 0; idx < search_height; ++idx) {
vbuf[idx] = vpx_int_pro_col(ref_buf, bw) >> norm_factor;
ref_buf += ref_stride;
}
// Set up src 1-D reference set
for (idx = 0; idx < bw; idx += 16) {
src_buf = x->plane[0].src.buf + idx;
vpx_int_pro_row(&src_hbuf[idx], src_buf, src_stride, bh);
}
src_buf = x->plane[0].src.buf;
for (idx = 0; idx < bh; ++idx) {
src_vbuf[idx] = vpx_int_pro_col(src_buf, bw) >> norm_factor;
src_buf += src_stride;
}
// Find the best match per 1-D search
tmp_mv->col = vector_match(hbuf, src_hbuf, b_width_log2_lookup[bsize]);
tmp_mv->row = vector_match(vbuf, src_vbuf, b_height_log2_lookup[bsize]);
this_mv = *tmp_mv;
src_buf = x->plane[0].src.buf;
ref_buf = xd->plane[0].pre[0].buf + this_mv.row * ref_stride + this_mv.col;
best_sad = cpi->fn_ptr[bsize].sdf(src_buf, src_stride, ref_buf, ref_stride);
{
const uint8_t *const pos[4] = {
ref_buf - ref_stride, ref_buf - 1, ref_buf + 1, ref_buf + ref_stride,
};
cpi->fn_ptr[bsize].sdx4df(src_buf, src_stride, pos, ref_stride, this_sad);
}
for (idx = 0; idx < 4; ++idx) {
if (this_sad[idx] < best_sad) {
best_sad = this_sad[idx];
tmp_mv->row = search_pos[idx].row + this_mv.row;
tmp_mv->col = search_pos[idx].col + this_mv.col;
}
}
if (this_sad[0] < this_sad[3])
this_mv.row -= 1;
else
this_mv.row += 1;
if (this_sad[1] < this_sad[2])
this_mv.col -= 1;
else
this_mv.col += 1;
ref_buf = xd->plane[0].pre[0].buf + this_mv.row * ref_stride + this_mv.col;
tmp_sad = cpi->fn_ptr[bsize].sdf(src_buf, src_stride, ref_buf, ref_stride);
if (best_sad > tmp_sad) {
*tmp_mv = this_mv;
best_sad = tmp_sad;
}
tmp_mv->row *= 8;
tmp_mv->col *= 8;
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
}
return best_sad;
}
// Runs sequence of diamond searches in smaller steps for RD.
/* do_refine: If last step (1-away) of n-step search doesn't pick the center
point as the best match, we will do a final 1-away diamond
refining search */
static int full_pixel_diamond(const VP9_COMP *cpi, MACROBLOCK *x, MV *mvp_full,
int step_param, int sadpb, int further_steps,
int do_refine, int *cost_list,
const vp9_variance_fn_ptr_t *fn_ptr,
const MV *ref_mv, MV *dst_mv) {
MV temp_mv;
int thissme, n, num00 = 0;
int bestsme = cpi->diamond_search_sad(x, &cpi->ss_cfg, mvp_full, &temp_mv,
step_param, sadpb, &n, fn_ptr, ref_mv);
if (bestsme < INT_MAX)
bestsme = vp9_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1);
*dst_mv = temp_mv;
// If there won't be more n-step search, check to see if refining search is
// needed.
if (n > further_steps) do_refine = 0;
while (n < further_steps) {
++n;
if (num00) {
num00--;
} else {
thissme = cpi->diamond_search_sad(x, &cpi->ss_cfg, mvp_full, &temp_mv,
step_param + n, sadpb, &num00, fn_ptr,
ref_mv);
if (thissme < INT_MAX)
thissme = vp9_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1);
// check to see if refining search is needed.
if (num00 > further_steps - n) do_refine = 0;
if (thissme < bestsme) {
bestsme = thissme;
*dst_mv = temp_mv;
}
}
}
// final 1-away diamond refining search
if (do_refine) {
const int search_range = 8;
MV best_mv = *dst_mv;
thissme = vp9_refining_search_sad(x, &best_mv, sadpb, search_range, fn_ptr,
ref_mv);
if (thissme < INT_MAX)
thissme = vp9_get_mvpred_var(x, &best_mv, ref_mv, fn_ptr, 1);
if (thissme < bestsme) {
bestsme = thissme;
*dst_mv = best_mv;
}
}
// Return cost list.
if (cost_list) {
calc_int_cost_list(x, ref_mv, sadpb, fn_ptr, dst_mv, cost_list);
}
return bestsme;
}
#define MIN_RANGE 7
#define MAX_RANGE 256
#define MIN_INTERVAL 1
// Runs an limited range exhaustive mesh search using a pattern set
// according to the encode speed profile.
static int full_pixel_exhaustive(VP9_COMP *cpi, MACROBLOCK *x,
MV *centre_mv_full, int sadpb, int *cost_list,
const vp9_variance_fn_ptr_t *fn_ptr,
const MV *ref_mv, MV *dst_mv) {
const SPEED_FEATURES *const sf = &cpi->sf;
MV temp_mv = { centre_mv_full->row, centre_mv_full->col };
MV f_ref_mv = { ref_mv->row >> 3, ref_mv->col >> 3 };
int bestsme;
int i;
int interval = sf->mesh_patterns[0].interval;
int range = sf->mesh_patterns[0].range;
int baseline_interval_divisor;
#if CONFIG_MULTITHREAD
if (NULL != x->search_count_mutex) pthread_mutex_lock(x->search_count_mutex);
#endif
// Keep track of number of exhaustive calls (this frame in this thread).
++(*x->ex_search_count_ptr);
#if CONFIG_MULTITHREAD
if (NULL != x->search_count_mutex)
pthread_mutex_unlock(x->search_count_mutex);
#endif
// Trap illegal values for interval and range for this function.
if ((range < MIN_RANGE) || (range > MAX_RANGE) || (interval < MIN_INTERVAL) ||
(interval > range))
return INT_MAX;
baseline_interval_divisor = range / interval;
// Check size of proposed first range against magnitude of the centre
// value used as a starting point.
range = VPXMAX(range, (5 * VPXMAX(abs(temp_mv.row), abs(temp_mv.col))) / 4);
range = VPXMIN(range, MAX_RANGE);
interval = VPXMAX(interval, range / baseline_interval_divisor);
// initial search
bestsme = exhuastive_mesh_search(x, &f_ref_mv, &temp_mv, range, interval,
sadpb, fn_ptr, &temp_mv);
if ((interval > MIN_INTERVAL) && (range > MIN_RANGE)) {
// Progressive searches with range and step size decreasing each time
// till we reach a step size of 1. Then break out.
for (i = 1; i < MAX_MESH_STEP; ++i) {
// First pass with coarser step and longer range
bestsme = exhuastive_mesh_search(
x, &f_ref_mv, &temp_mv, sf->mesh_patterns[i].range,
sf->mesh_patterns[i].interval, sadpb, fn_ptr, &temp_mv);
if (sf->mesh_patterns[i].interval == 1) break;
}
}
if (bestsme < INT_MAX)
bestsme = vp9_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1);
*dst_mv = temp_mv;
// Return cost list.
if (cost_list) {
calc_int_cost_list(x, ref_mv, sadpb, fn_ptr, dst_mv, cost_list);
}
return bestsme;
}
int vp9_full_search_sad_c(const MACROBLOCK *x, const MV *ref_mv,
int sad_per_bit, int distance,
const vp9_variance_fn_ptr_t *fn_ptr,
const MV *center_mv, MV *best_mv) {
int r, c;
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
const int row_min = VPXMAX(ref_mv->row - distance, x->mv_limits.row_min);
const int row_max = VPXMIN(ref_mv->row + distance, x->mv_limits.row_max);
const int col_min = VPXMAX(ref_mv->col - distance, x->mv_limits.col_min);
const int col_max = VPXMIN(ref_mv->col + distance, x->mv_limits.col_max);
const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
int best_sad =
fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, ref_mv),
in_what->stride) +
mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
*best_mv = *ref_mv;
for (r = row_min; r < row_max; ++r) {
for (c = col_min; c < col_max; ++c) {
const MV mv = { r, c };
const int sad =
fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &mv),
in_what->stride) +
mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
if (sad < best_sad) {
best_sad = sad;
*best_mv = mv;
}
}
}
return best_sad;
}
int vp9_full_search_sadx3(const MACROBLOCK *x, const MV *ref_mv,
int sad_per_bit, int distance,
const vp9_variance_fn_ptr_t *fn_ptr,
const MV *center_mv, MV *best_mv) {
int r;
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
const int row_min = VPXMAX(ref_mv->row - distance, x->mv_limits.row_min);
const int row_max = VPXMIN(ref_mv->row + distance, x->mv_limits.row_max);
const int col_min = VPXMAX(ref_mv->col - distance, x->mv_limits.col_min);
const int col_max = VPXMIN(ref_mv->col + distance, x->mv_limits.col_max);
const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
unsigned int best_sad =
fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, ref_mv),
in_what->stride) +
mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
*best_mv = *ref_mv;
for (r = row_min; r < row_max; ++r) {
int c = col_min;
const uint8_t *check_here = &in_what->buf[r * in_what->stride + c];
if (fn_ptr->sdx3f != NULL) {
while ((c + 2) < col_max) {
int i;
DECLARE_ALIGNED(16, uint32_t, sads[3]);
fn_ptr->sdx3f(what->buf, what->stride, check_here, in_what->stride,
sads);
for (i = 0; i < 3; ++i) {
unsigned int sad = sads[i];
if (sad < best_sad) {
const MV mv = { r, c };
sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
if (sad < best_sad) {
best_sad = sad;
*best_mv = mv;
}
}
++check_here;
++c;
}
}
}
while (c < col_max) {
unsigned int sad =
fn_ptr->sdf(what->buf, what->stride, check_here, in_what->stride);
if (sad < best_sad) {
const MV mv = { r, c };
sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
if (sad < best_sad) {
best_sad = sad;
*best_mv = mv;
}
}
++check_here;
++c;
}
}
return best_sad;
}
int vp9_full_search_sadx8(const MACROBLOCK *x, const MV *ref_mv,
int sad_per_bit, int distance,
const vp9_variance_fn_ptr_t *fn_ptr,
const MV *center_mv, MV *best_mv) {
int r;
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
const int row_min = VPXMAX(ref_mv->row - distance, x->mv_limits.row_min);
const int row_max = VPXMIN(ref_mv->row + distance, x->mv_limits.row_max);
const int col_min = VPXMAX(ref_mv->col - distance, x->mv_limits.col_min);
const int col_max = VPXMIN(ref_mv->col + distance, x->mv_limits.col_max);
const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
unsigned int best_sad =
fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, ref_mv),
in_what->stride) +
mvsad_err_cost(x, ref_mv, &fcenter_mv, sad_per_bit);
*best_mv = *ref_mv;
for (r = row_min; r < row_max; ++r) {
int c = col_min;
const uint8_t *check_here = &in_what->buf[r * in_what->stride + c];
if (fn_ptr->sdx8f != NULL) {
while ((c + 7) < col_max) {
int i;
DECLARE_ALIGNED(16, uint32_t, sads[8]);
fn_ptr->sdx8f(what->buf, what->stride, check_here, in_what->stride,
sads);
for (i = 0; i < 8; ++i) {
unsigned int sad = sads[i];
if (sad < best_sad) {
const MV mv = { r, c };
sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
if (sad < best_sad) {
best_sad = sad;
*best_mv = mv;
}
}
++check_here;
++c;
}
}
}
if (fn_ptr->sdx3f != NULL) {
while ((c + 2) < col_max) {
int i;
DECLARE_ALIGNED(16, uint32_t, sads[3]);
fn_ptr->sdx3f(what->buf, what->stride, check_here, in_what->stride,
sads);
for (i = 0; i < 3; ++i) {
unsigned int sad = sads[i];
if (sad < best_sad) {
const MV mv = { r, c };
sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
if (sad < best_sad) {
best_sad = sad;
*best_mv = mv;
}
}
++check_here;
++c;
}
}
}
while (c < col_max) {
unsigned int sad =
fn_ptr->sdf(what->buf, what->stride, check_here, in_what->stride);
if (sad < best_sad) {
const MV mv = { r, c };
sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
if (sad < best_sad) {
best_sad = sad;
*best_mv = mv;
}
}
++check_here;
++c;
}
}
return best_sad;
}
int vp9_refining_search_sad(const MACROBLOCK *x, MV *ref_mv, int error_per_bit,
int search_range,
const vp9_variance_fn_ptr_t *fn_ptr,
const MV *center_mv) {
const MACROBLOCKD *const xd = &x->e_mbd;
const MV neighbors[4] = { { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 } };
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
const uint8_t *best_address = get_buf_from_mv(in_what, ref_mv);
unsigned int best_sad =
fn_ptr->sdf(what->buf, what->stride, best_address, in_what->stride) +
mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit);
int i, j;
for (i = 0; i < search_range; i++) {
int best_site = -1;
const int all_in = ((ref_mv->row - 1) > x->mv_limits.row_min) &
((ref_mv->row + 1) < x->mv_limits.row_max) &
((ref_mv->col - 1) > x->mv_limits.col_min) &
((ref_mv->col + 1) < x->mv_limits.col_max);
if (all_in) {
unsigned int sads[4];
const uint8_t *const positions[4] = { best_address - in_what->stride,
best_address - 1, best_address + 1,
best_address + in_what->stride };
fn_ptr->sdx4df(what->buf, what->stride, positions, in_what->stride, sads);
for (j = 0; j < 4; ++j) {
if (sads[j] < best_sad) {
const MV mv = { ref_mv->row + neighbors[j].row,
ref_mv->col + neighbors[j].col };
sads[j] += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
if (sads[j] < best_sad) {
best_sad = sads[j];
best_site = j;
}
}
}
} else {
for (j = 0; j < 4; ++j) {
const MV mv = { ref_mv->row + neighbors[j].row,
ref_mv->col + neighbors[j].col };
if (is_mv_in(&x->mv_limits, &mv)) {
unsigned int sad =
fn_ptr->sdf(what->buf, what->stride,
get_buf_from_mv(in_what, &mv), in_what->stride);
if (sad < best_sad) {
sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
if (sad < best_sad) {
best_sad = sad;
best_site = j;
}
}
}
}
}
if (best_site == -1) {
break;
} else {
ref_mv->row += neighbors[best_site].row;
ref_mv->col += neighbors[best_site].col;
best_address = get_buf_from_mv(in_what, ref_mv);
}
}
return best_sad;
}
// This function is called when we do joint motion search in comp_inter_inter
// mode.
int vp9_refining_search_8p_c(const MACROBLOCK *x, MV *ref_mv, int error_per_bit,
int search_range,
const vp9_variance_fn_ptr_t *fn_ptr,
const MV *center_mv, const uint8_t *second_pred) {
const MV neighbors[8] = { { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 },
{ -1, -1 }, { 1, -1 }, { -1, 1 }, { 1, 1 } };
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[0];
const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 };
unsigned int best_sad = INT_MAX;
int i, j;
clamp_mv(ref_mv, x->mv_limits.col_min, x->mv_limits.col_max,
x->mv_limits.row_min, x->mv_limits.row_max);
best_sad =
fn_ptr->sdaf(what->buf, what->stride, get_buf_from_mv(in_what, ref_mv),
in_what->stride, second_pred) +
mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit);
for (i = 0; i < search_range; ++i) {
int best_site = -1;
for (j = 0; j < 8; ++j) {
const MV mv = { ref_mv->row + neighbors[j].row,
ref_mv->col + neighbors[j].col };
if (is_mv_in(&x->mv_limits, &mv)) {
unsigned int sad =
fn_ptr->sdaf(what->buf, what->stride, get_buf_from_mv(in_what, &mv),
in_what->stride, second_pred);
if (sad < best_sad) {
sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
if (sad < best_sad) {
best_sad = sad;
best_site = j;
}
}
}
}
if (best_site == -1) {
break;
} else {
ref_mv->row += neighbors[best_site].row;
ref_mv->col += neighbors[best_site].col;
}
}
return best_sad;
}
#define MIN_EX_SEARCH_LIMIT 128
static int is_exhaustive_allowed(VP9_COMP *cpi, MACROBLOCK *x) {
const SPEED_FEATURES *const sf = &cpi->sf;
int is_exhaustive_allowed;
int max_ex;
#if CONFIG_MULTITHREAD
if (NULL != x->search_count_mutex) pthread_mutex_lock(x->search_count_mutex);
#endif
max_ex = VPXMAX(MIN_EX_SEARCH_LIMIT,
(*x->m_search_count_ptr * sf->max_exaustive_pct) / 100);
is_exhaustive_allowed = sf->allow_exhaustive_searches &&
(sf->exhaustive_searches_thresh < INT_MAX) &&
(*x->ex_search_count_ptr <= max_ex) &&
!cpi->rc.is_src_frame_alt_ref;
#if CONFIG_MULTITHREAD
if (NULL != x->search_count_mutex)
pthread_mutex_unlock(x->search_count_mutex);
#endif
return is_exhaustive_allowed;
}
int vp9_full_pixel_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
MV *mvp_full, int step_param, int search_method,
int error_per_bit, int *cost_list, const MV *ref_mv,
MV *tmp_mv, int var_max, int rd) {
const SPEED_FEATURES *const sf = &cpi->sf;
const SEARCH_METHODS method = (SEARCH_METHODS)search_method;
vp9_variance_fn_ptr_t *fn_ptr = &cpi->fn_ptr[bsize];
int var = 0;
if (cost_list) {
cost_list[0] = INT_MAX;
cost_list[1] = INT_MAX;
cost_list[2] = INT_MAX;
cost_list[3] = INT_MAX;
cost_list[4] = INT_MAX;
}
switch (method) {
case FAST_DIAMOND:
var = fast_dia_search(x, mvp_full, step_param, error_per_bit, 0,
cost_list, fn_ptr, 1, ref_mv, tmp_mv);
break;
case FAST_HEX:
var = fast_hex_search(x, mvp_full, step_param, error_per_bit, 0,
cost_list, fn_ptr, 1, ref_mv, tmp_mv);
break;
case HEX:
var = hex_search(x, mvp_full, step_param, error_per_bit, 1, cost_list,
fn_ptr, 1, ref_mv, tmp_mv);
break;
case SQUARE:
var = square_search(x, mvp_full, step_param, error_per_bit, 1, cost_list,
fn_ptr, 1, ref_mv, tmp_mv);
break;
case BIGDIA:
var = bigdia_search(x, mvp_full, step_param, error_per_bit, 1, cost_list,
fn_ptr, 1, ref_mv, tmp_mv);
break;
case NSTEP:
var = full_pixel_diamond(cpi, x, mvp_full, step_param, error_per_bit,
MAX_MVSEARCH_STEPS - 1 - step_param, 1,
cost_list, fn_ptr, ref_mv, tmp_mv);
#if CONFIG_MULTITHREAD
if (NULL != x->search_count_mutex)
pthread_mutex_lock(x->search_count_mutex);
#endif
// Keep track of number of searches (this frame in this thread).
++(*x->m_search_count_ptr);
#if CONFIG_MULTITHREAD
if (NULL != x->search_count_mutex)
pthread_mutex_unlock(x->search_count_mutex);
#endif
// Should we allow a follow on exhaustive search?
if (is_exhaustive_allowed(cpi, x)) {
int64_t exhuastive_thr = sf->exhaustive_searches_thresh;
exhuastive_thr >>=
8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
// Threshold variance for an exhaustive full search.
if (var > exhuastive_thr) {
int var_ex;
MV tmp_mv_ex;
var_ex = full_pixel_exhaustive(cpi, x, tmp_mv, error_per_bit,
cost_list, fn_ptr, ref_mv, &tmp_mv_ex);
if (var_ex < var) {
var = var_ex;
*tmp_mv = tmp_mv_ex;
}
}
}
break;
default: assert(0 && "Invalid search method.");
}
if (method != NSTEP && rd && var < var_max)
var = vp9_get_mvpred_var(x, tmp_mv, ref_mv, fn_ptr, 1);
return var;
}