vpx/test/fdct4x4_test.cc
Yaowu Xu bc484ebf06 fix unit test failure on win32 vs2008 build
The mix use of double type and simd code caused invalid values stored
in double variables, further caused unit tests to fail. The failures
were only observed on x86-win32-vs9 build with vs2008.

Change-Id: If0131754a3bf217a5ace303b7963e8f5162c34b5
2013-08-08 18:51:51 -07:00

191 lines
5.9 KiB
C++

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/include/gtest/gtest.h"
extern "C" {
#include "vp9_rtcd.h"
}
#include "acm_random.h"
#include "vpx/vpx_integer.h"
#include "vpx_ports/mem.h"
using libvpx_test::ACMRandom;
namespace {
void fdct4x4(int16_t *in, int16_t *out, uint8_t* /*dst*/,
int stride, int /*tx_type*/) {
vp9_short_fdct4x4_c(in, out, stride);
}
void idct4x4_add(int16_t* /*in*/, int16_t *out, uint8_t *dst,
int stride, int /*tx_type*/) {
vp9_short_idct4x4_add_c(out, dst, stride >> 1);
}
void fht4x4(int16_t *in, int16_t *out, uint8_t* /*dst*/,
int stride, int tx_type) {
vp9_short_fht4x4_c(in, out, stride >> 1, tx_type);
}
void iht4x4_add(int16_t* /*in*/, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
vp9_short_iht4x4_add_c(out, dst, stride >> 1, tx_type);
}
class FwdTrans4x4Test : public ::testing::TestWithParam<int> {
public:
virtual ~FwdTrans4x4Test() {}
virtual void SetUp() {
tx_type_ = GetParam();
if (tx_type_ == 0) {
fwd_txfm_ = fdct4x4;
inv_txfm_ = idct4x4_add;
} else {
fwd_txfm_ = fht4x4;
inv_txfm_ = iht4x4_add;
}
}
protected:
void RunFwdTxfm(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
(*fwd_txfm_)(in, out, dst, stride, tx_type);
}
void RunInvTxfm(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
(*inv_txfm_)(in, out, dst, stride, tx_type);
}
int tx_type_;
void (*fwd_txfm_)(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type);
void (*inv_txfm_)(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type);
};
TEST_P(FwdTrans4x4Test, SignBiasCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 16);
DECLARE_ALIGNED_ARRAY(16, int16_t, test_output_block, 16);
const int pitch = 8;
int count_sign_block[16][2];
const int count_test_block = 1000000;
memset(count_sign_block, 0, sizeof(count_sign_block));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 16; ++j)
test_input_block[j] = rnd.Rand8() - rnd.Rand8();
RunFwdTxfm(test_input_block, test_output_block, NULL, pitch, tx_type_);
for (int j = 0; j < 16; ++j) {
if (test_output_block[j] < 0)
++count_sign_block[j][0];
else if (test_output_block[j] > 0)
++count_sign_block[j][1];
}
}
for (int j = 0; j < 16; ++j) {
const bool bias_acceptable = (abs(count_sign_block[j][0] -
count_sign_block[j][1]) < 10000);
EXPECT_TRUE(bias_acceptable)
<< "Error: 4x4 FDCT/FHT has a sign bias > 1%"
<< " for input range [-255, 255] at index " << j
<< " tx_type " << tx_type_;
}
memset(count_sign_block, 0, sizeof(count_sign_block));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-15, 15].
for (int j = 0; j < 16; ++j)
test_input_block[j] = (rnd.Rand8() >> 4) - (rnd.Rand8() >> 4);
RunFwdTxfm(test_input_block, test_output_block, NULL, pitch, tx_type_);
for (int j = 0; j < 16; ++j) {
if (test_output_block[j] < 0)
++count_sign_block[j][0];
else if (test_output_block[j] > 0)
++count_sign_block[j][1];
}
}
for (int j = 0; j < 16; ++j) {
const bool bias_acceptable = (abs(count_sign_block[j][0] -
count_sign_block[j][1]) < 100000);
EXPECT_TRUE(bias_acceptable)
<< "Error: 4x4 FDCT/FHT has a sign bias > 10%"
<< " for input range [-15, 15] at index " << j;
}
}
TEST_P(FwdTrans4x4Test, RoundTripErrorCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int max_error = 0;
int total_error = 0;
const int count_test_block = 1000000;
for (int i = 0; i < count_test_block; ++i) {
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 16);
DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, 16);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 16);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, 16);
for (int j = 0; j < 16; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
}
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 16; ++j)
test_input_block[j] = src[j] - dst[j];
const int pitch = 8;
RunFwdTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_);
for (int j = 0; j < 16; ++j) {
if(test_temp_block[j] > 0) {
test_temp_block[j] += 2;
test_temp_block[j] /= 4;
test_temp_block[j] *= 4;
} else {
test_temp_block[j] -= 2;
test_temp_block[j] /= 4;
test_temp_block[j] *= 4;
}
}
// inverse transform and reconstruct the pixel block
RunInvTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_);
for (int j = 0; j < 16; ++j) {
const int diff = dst[j] - src[j];
const int error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
}
}
EXPECT_GE(1, max_error)
<< "Error: FDCT/IDCT or FHT/IHT has an individual roundtrip error > 1";
EXPECT_GE(count_test_block, total_error)
<< "Error: FDCT/IDCT or FHT/IHT has average "
<< "roundtrip error > 1 per block";
}
INSTANTIATE_TEST_CASE_P(VP9, FwdTrans4x4Test, ::testing::Range(0, 4));
} // namespace