vpx/vp8/decoder/decodemv.c
Ronald S. Bultje 18433aef17 Compound prediction for splitmv macroblocks.
Change-Id: I0af3395500b1cb0ed629249eb6636a0c9322cb18
2012-04-18 14:05:39 -07:00

1137 lines
37 KiB
C

/*
Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "treereader.h"
#include "vp8/common/entropymv.h"
#include "vp8/common/entropymode.h"
#include "onyxd_int.h"
#include "vp8/common/findnearmv.h"
#include "vp8/common/seg_common.h"
#include "vp8/common/pred_common.h"
#include "vp8/common/entropy.h"
#if CONFIG_DEBUG
#include <assert.h>
#endif
//#define DEBUG_DEC_MV
#ifdef DEBUG_DEC_MV
int dec_mvcount = 0;
#endif
static int vp8_read_bmode(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_bmode_tree, p);
return i;
}
static int vp8_read_ymode(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_ymode_tree, p);
return i;
}
static int vp8_kfread_ymode(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_kf_ymode_tree, p);
return i;
}
static int vp8_read_i8x8_mode(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_i8x8_mode_tree, p);
return i;
}
static int vp8_read_uv_mode(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_uv_mode_tree, p);
return i;
}
// This function reads the current macro block's segnent id from the bitstream
// It should only be called if a segment map update is indicated.
static void vp8_read_mb_segid(vp8_reader *r, MB_MODE_INFO *mi, MACROBLOCKD *x)
{
/* Is segmentation enabled */
if (x->segmentation_enabled && x->update_mb_segmentation_map)
{
/* If so then read the segment id. */
if (vp8_read(r, x->mb_segment_tree_probs[0]))
mi->segment_id = (unsigned char)(2 + vp8_read(r, x->mb_segment_tree_probs[2]));
else
mi->segment_id = (unsigned char)(vp8_read(r, x->mb_segment_tree_probs[1]));
}
}
extern const int vp8_i8x8_block[4];
static void vp8_kfread_modes(VP8D_COMP *pbi,
MODE_INFO *m,
int mb_row,
int mb_col)
{
VP8_COMMON *const cm = & pbi->common;
vp8_reader *const bc = & pbi->bc;
const int mis = pbi->common.mode_info_stride;
int map_index = mb_row * pbi->common.mb_cols + mb_col;
MB_PREDICTION_MODE y_mode;
// Read the Macroblock segmentation map if it is being updated explicitly
// this frame (reset to 0 by default).
m->mbmi.segment_id = 0;
if (pbi->mb.update_mb_segmentation_map)
{
vp8_read_mb_segid(bc, &m->mbmi, &pbi->mb);
pbi->common.last_frame_seg_map[map_index] = m->mbmi.segment_id;
}
m->mbmi.mb_skip_coeff = 0;
if ( pbi->common.mb_no_coeff_skip &&
( !segfeature_active( &pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB ) ||
( get_segdata( &pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB ) != 0 ) ) )
{
#if CONFIG_NEWENTROPY
MACROBLOCKD *const xd = & pbi->mb;
m->mbmi.mb_skip_coeff = vp8_read(bc, get_pred_prob(cm, xd, PRED_MBSKIP));
#else
m->mbmi.mb_skip_coeff = vp8_read(bc, pbi->prob_skip_false);
#endif
}
else
{
if ( segfeature_active( &pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB ) &&
( get_segdata( &pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB ) == 0 ) )
{
m->mbmi.mb_skip_coeff = 1;
}
else
m->mbmi.mb_skip_coeff = 0;
}
#if CONFIG_QIMODE
y_mode = (MB_PREDICTION_MODE) vp8_kfread_ymode(bc,
pbi->common.kf_ymode_prob[pbi->common.kf_ymode_probs_index]);
#else
y_mode = (MB_PREDICTION_MODE) vp8_kfread_ymode(
bc, pbi->common.kf_ymode_prob);
#endif
#if CONFIG_COMP_INTRA_PRED
m->mbmi.second_mode = (MB_PREDICTION_MODE) (DC_PRED - 1);
#endif
m->mbmi.ref_frame = INTRA_FRAME;
if ((m->mbmi.mode = y_mode) == B_PRED)
{
int i = 0;
#if CONFIG_COMP_INTRA_PRED
int use_comp_pred = vp8_read(bc, 128);
#endif
do
{
const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
const B_PREDICTION_MODE L = left_block_mode(m, i);
m->bmi[i].as_mode.first =
(B_PREDICTION_MODE) vp8_read_bmode(
bc, pbi->common.kf_bmode_prob [A] [L]);
#if CONFIG_COMP_INTRA_PRED
if (use_comp_pred)
{
m->bmi[i].as_mode.second =
(B_PREDICTION_MODE) vp8_read_bmode(
bc, pbi->common.kf_bmode_prob [A] [L]);
}
else
{
m->bmi[i].as_mode.second = (B_PREDICTION_MODE) (B_DC_PRED - 1);
}
#endif
}
while (++i < 16);
}
if((m->mbmi.mode = y_mode) == I8X8_PRED)
{
int i;
int mode8x8;
for(i=0;i<4;i++)
{
int ib = vp8_i8x8_block[i];
mode8x8 = vp8_read_i8x8_mode(bc, pbi->common.i8x8_mode_prob);
m->bmi[ib+0].as_mode.first= mode8x8;
m->bmi[ib+1].as_mode.first= mode8x8;
m->bmi[ib+4].as_mode.first= mode8x8;
m->bmi[ib+5].as_mode.first= mode8x8;
#if CONFIG_COMP_INTRA_PRED
m->bmi[ib+0].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1);
m->bmi[ib+1].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1);
m->bmi[ib+4].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1);
m->bmi[ib+5].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1);
#endif
}
}
else
#if CONFIG_UVINTRA
m->mbmi.uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(bc,
pbi->common.kf_uv_mode_prob[m->mbmi.mode]);
#else
m->mbmi.uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(bc,
pbi->common.kf_uv_mode_prob);
#endif
#if CONFIG_COMP_INTRA_PRED
m->mbmi.second_uv_mode = (MB_PREDICTION_MODE) (DC_PRED - 1);
#endif
}
static int read_mvcomponent(vp8_reader *r, const MV_CONTEXT *mvc)
{
const vp8_prob *const p = (const vp8_prob *) mvc;
int x = 0;
if (vp8_read(r, p [mvpis_short])) /* Large */
{
int i = 0;
do
{
x += vp8_read(r, p [MVPbits + i]) << i;
}
while (++i < mvnum_short_bits);
i = mvlong_width - 1; /* Skip bit 3, which is sometimes implicit */
do
{
x += vp8_read(r, p [MVPbits + i]) << i;
}
while (--i > mvnum_short_bits);
if (!(x & ~((2<<mvnum_short_bits)-1)) || vp8_read(r, p [MVPbits + mvnum_short_bits]))
x += (mvnum_short);
}
else /* small */
x = vp8_treed_read(r, vp8_small_mvtree, p + MVPshort);
if (x && vp8_read(r, p [MVPsign]))
x = -x;
return x;
}
static void read_mv(vp8_reader *r, MV *mv, const MV_CONTEXT *mvc)
{
mv->row = (short)(read_mvcomponent(r, mvc) << 1);
mv->col = (short)(read_mvcomponent(r, ++mvc) << 1);
#ifdef DEBUG_DEC_MV
int i;
printf("%d (np): %d %d\n", dec_mvcount++, mv->row, mv->col);
//for (i=0; i<MVPcount;++i) printf(" %d", (&mvc[-1])->prob[i]); printf("\n");
//for (i=0; i<MVPcount;++i) printf(" %d", (&mvc[0])->prob[i]); printf("\n");
#endif
}
static void read_mvcontexts(vp8_reader *bc, MV_CONTEXT *mvc)
{
int i = 0;
do
{
const vp8_prob *up = vp8_mv_update_probs[i].prob;
vp8_prob *p = (vp8_prob *)(mvc + i);
vp8_prob *const pstop = p + MVPcount;
do
{
if (vp8_read(bc, *up++))
{
const vp8_prob x = (vp8_prob)vp8_read_literal(bc, 7);
*p = x ? x << 1 : 1;
}
}
while (++p < pstop);
}
while (++i < 2);
}
#if CONFIG_HIGH_PRECISION_MV
static int read_mvcomponent_hp(vp8_reader *r, const MV_CONTEXT_HP *mvc)
{
const vp8_prob *const p = (const vp8_prob *) mvc;
int x = 0;
if (vp8_read(r, p [mvpis_short_hp])) /* Large */
{
int i = 0;
do
{
x += vp8_read(r, p [MVPbits_hp + i]) << i;
}
while (++i < mvnum_short_bits_hp);
i = mvlong_width_hp - 1; /* Skip bit 3, which is sometimes implicit */
do
{
x += vp8_read(r, p [MVPbits_hp + i]) << i;
}
while (--i > mvnum_short_bits_hp);
if (!(x & ~((2<<mvnum_short_bits_hp)-1)) || vp8_read(r, p [MVPbits_hp + mvnum_short_bits_hp]))
x += (mvnum_short_hp);
}
else /* small */
x = vp8_treed_read(r, vp8_small_mvtree_hp, p + MVPshort_hp);
if (x && vp8_read(r, p [MVPsign_hp]))
x = -x;
return x;
}
static void read_mv_hp(vp8_reader *r, MV *mv, const MV_CONTEXT_HP *mvc)
{
mv->row = (short)(read_mvcomponent_hp(r, mvc));
mv->col = (short)(read_mvcomponent_hp(r, ++mvc));
#ifdef DEBUG_DEC_MV
int i;
printf("%d (hp): %d %d\n", dec_mvcount++, mv->row, mv->col);
//for (i=0; i<MVPcount_hp;++i) printf(" %d", (&mvc[-1])->prob[i]); printf("\n");
//for (i=0; i<MVPcount_hp;++i) printf(" %d", (&mvc[0])->prob[i]); printf("\n");
#endif
}
static void read_mvcontexts_hp(vp8_reader *bc, MV_CONTEXT_HP *mvc)
{
int i = 0;
do
{
const vp8_prob *up = vp8_mv_update_probs_hp[i].prob;
vp8_prob *p = (vp8_prob *)(mvc + i);
vp8_prob *const pstop = p + MVPcount_hp;
do
{
if (vp8_read(bc, *up++))
{
const vp8_prob x = (vp8_prob)vp8_read_literal(bc, 7);
*p = x ? x << 1 : 1;
}
}
while (++p < pstop);
}
while (++i < 2);
}
#endif /* CONFIG_HIGH_PRECISION_MV */
// Read the referncence frame
static MV_REFERENCE_FRAME read_ref_frame( VP8D_COMP *pbi,
vp8_reader *const bc,
unsigned char segment_id )
{
MV_REFERENCE_FRAME ref_frame;
int seg_ref_active;
int seg_ref_count = 0;
VP8_COMMON *const cm = & pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
seg_ref_active = segfeature_active( xd,
segment_id,
SEG_LVL_REF_FRAME );
// If segment coding enabled does the segment allow for more than one
// possible reference frame
if ( seg_ref_active )
{
seg_ref_count = check_segref( xd, segment_id, INTRA_FRAME ) +
check_segref( xd, segment_id, LAST_FRAME ) +
check_segref( xd, segment_id, GOLDEN_FRAME ) +
check_segref( xd, segment_id, ALTREF_FRAME );
}
// Segment reference frame features not available or allows for
// multiple reference frame options
if ( !seg_ref_active || (seg_ref_count > 1) )
{
// Values used in prediction model coding
unsigned char prediction_flag;
vp8_prob pred_prob;
MV_REFERENCE_FRAME pred_ref;
// Get the context probability the prediction flag
pred_prob = get_pred_prob( cm, xd, PRED_REF );
// Read the prediction status flag
prediction_flag = (unsigned char)vp8_read( bc, pred_prob );
// Store the prediction flag.
set_pred_flag( xd, PRED_REF, prediction_flag );
// Get the predicted reference frame.
pred_ref = get_pred_ref( cm, xd );
// If correctly predicted then use the predicted value
if ( prediction_flag )
{
ref_frame = pred_ref;
}
// else decode the explicitly coded value
else
{
vp8_prob mod_refprobs[PREDICTION_PROBS];
vpx_memcpy( mod_refprobs,
cm->mod_refprobs[pred_ref], sizeof(mod_refprobs) );
// If segment coding enabled blank out options that cant occur by
// setting the branch probability to 0.
if ( seg_ref_active )
{
mod_refprobs[INTRA_FRAME] *=
check_segref( xd, segment_id, INTRA_FRAME );
mod_refprobs[LAST_FRAME] *=
check_segref( xd, segment_id, LAST_FRAME );
mod_refprobs[GOLDEN_FRAME] *=
( check_segref( xd, segment_id, GOLDEN_FRAME ) *
check_segref( xd, segment_id, ALTREF_FRAME ) );
}
// Default to INTRA_FRAME (value 0)
ref_frame = INTRA_FRAME;
// Do we need to decode the Intra/Inter branch
if ( mod_refprobs[0] )
ref_frame = (MV_REFERENCE_FRAME) vp8_read(bc, mod_refprobs[0]);
else
ref_frame ++;
if (ref_frame)
{
// Do we need to decode the Last/Gf_Arf branch
if ( mod_refprobs[1] )
ref_frame += vp8_read(bc, mod_refprobs[1]);
else
ref_frame++;
if ( ref_frame > 1 )
{
// Do we need to decode the GF/Arf branch
if ( mod_refprobs[2] )
ref_frame += vp8_read(bc, mod_refprobs[2]);
else
{
if ( seg_ref_active )
{
if ( (pred_ref == GOLDEN_FRAME) ||
!check_segref( xd, segment_id, GOLDEN_FRAME) )
{
ref_frame = ALTREF_FRAME;
}
else
ref_frame = GOLDEN_FRAME;
}
else
ref_frame = (pred_ref == GOLDEN_FRAME)
? ALTREF_FRAME : GOLDEN_FRAME;
}
}
}
}
}
// Segment reference frame features are enabled
else
{
// The reference frame for the mb is considered as correclty predicted
// if it is signaled at the segment level for the purposes of the
// common prediction model
set_pred_flag( xd, PRED_REF, 1 );
ref_frame = get_pred_ref( cm, xd );
}
return (MV_REFERENCE_FRAME)ref_frame;
}
static MB_PREDICTION_MODE read_mv_ref(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_mv_ref_tree, p);
return (MB_PREDICTION_MODE)i;
}
static B_PREDICTION_MODE sub_mv_ref(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_sub_mv_ref_tree, p);
return (B_PREDICTION_MODE)i;
}
#ifdef VPX_MODE_COUNT
unsigned int vp8_mv_cont_count[5][4] =
{
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 }
};
#endif
static const unsigned char mbsplit_fill_count[4] = {8, 8, 4, 1};
static const unsigned char mbsplit_fill_offset[4][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{ 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15},
{ 0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15},
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
};
static void mb_mode_mv_init(VP8D_COMP *pbi)
{
VP8_COMMON *const cm = & pbi->common;
vp8_reader *const bc = & pbi->bc;
MV_CONTEXT *const mvc = pbi->common.fc.mvc;
#if CONFIG_HIGH_PRECISION_MV
MV_CONTEXT_HP *const mvc_hp = pbi->common.fc.mvc_hp;
MACROBLOCKD *const xd = & pbi->mb;
#endif
#if CONFIG_NEWENTROPY
vpx_memset(cm->mbskip_pred_probs, 0, sizeof(cm->mbskip_pred_probs));
#else
pbi->prob_skip_false = 0;
#endif
if (pbi->common.mb_no_coeff_skip)
{
#if CONFIG_NEWENTROPY
int k;
for (k=0; k<MBSKIP_CONTEXTS; ++k)
cm->mbskip_pred_probs[k] = (vp8_prob)vp8_read_literal(bc, 8);
#else
pbi->prob_skip_false = (vp8_prob)vp8_read_literal(bc, 8);
#endif
}
if(pbi->common.frame_type != KEY_FRAME)
{
// Decode the baseline probabilities for decoding reference frame
cm->prob_intra_coded = (vp8_prob)vp8_read_literal(bc, 8);
cm->prob_last_coded = (vp8_prob)vp8_read_literal(bc, 8);
cm->prob_gf_coded = (vp8_prob)vp8_read_literal(bc, 8);
// Computes a modified set of probabilities for use when reference
// frame prediction fails.
compute_mod_refprobs( cm );
pbi->common.comp_pred_mode = vp8_read(bc, 128);
if (cm->comp_pred_mode)
cm->comp_pred_mode += vp8_read(bc, 128);
if (cm->comp_pred_mode == HYBRID_PREDICTION)
{
int i;
for ( i = 0; i < COMP_PRED_CONTEXTS; i++ )
cm->prob_comppred[i] = (vp8_prob)vp8_read_literal(bc, 8);
}
if (vp8_read_bit(bc))
{
int i = 0;
do
{
cm->fc.ymode_prob[i] = (vp8_prob) vp8_read_literal(bc, 8);
}
while (++i < VP8_YMODES-1);
}
#if CONFIG_UVINTRA
//vp8_read_bit(bc);
#else
if (vp8_read_bit(bc))
{
int i = 0;
do
{
cm->fc.uv_mode_prob[i] = (vp8_prob) vp8_read_literal(bc, 8);
}
while (++i < VP8_UV_MODES-1);
}
#endif /* CONFIG_UVINTRA */
#if CONFIG_HIGH_PRECISION_MV
if (xd->allow_high_precision_mv)
read_mvcontexts_hp(bc, mvc_hp);
else
#endif
read_mvcontexts(bc, mvc);
}
}
// This function either reads the segment id for the current macroblock from
// the bitstream or if the value is temporally predicted asserts the predicted
// value
static void read_mb_segment_id ( VP8D_COMP *pbi,
int mb_row, int mb_col )
{
vp8_reader *const bc = & pbi->bc;
VP8_COMMON *const cm = & pbi->common;
MACROBLOCKD *const xd = & pbi->mb;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *mbmi = &mi->mbmi;
int index = mb_row * pbi->common.mb_cols + mb_col;
if (xd->segmentation_enabled)
{
if (xd->update_mb_segmentation_map)
{
// Is temporal coding of the segment id for this mb enabled.
if (cm->temporal_update)
{
// Get the context based probability for reading the
// prediction status flag
vp8_prob pred_prob =
get_pred_prob( cm, xd, PRED_SEG_ID );
// Read the prediction status flag
unsigned char seg_pred_flag =
(unsigned char)vp8_read(bc, pred_prob );
// Store the prediction flag.
set_pred_flag( xd, PRED_SEG_ID, seg_pred_flag );
// If the value is flagged as correctly predicted
// then use the predicted value
if ( seg_pred_flag )
{
mbmi->segment_id = get_pred_mb_segid( cm, index );
}
// Else .... decode it explicitly
else
{
vp8_read_mb_segid(bc, mbmi, xd );
cm->last_frame_seg_map[index] = mbmi->segment_id;
}
}
// Normal unpredicted coding mode
else
{
vp8_read_mb_segid(bc, mbmi, xd);
cm->last_frame_seg_map[index] = mbmi->segment_id;
}
}
}
else
{
// The encoder explicitly sets the segment_id to 0
// when segmentation is disabled
mbmi->segment_id = 0;
}
}
static void read_mb_modes_mv(VP8D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi,
MODE_INFO *prev_mi,
int mb_row, int mb_col)
{
VP8_COMMON *const cm = & pbi->common;
vp8_reader *const bc = & pbi->bc;
MV_CONTEXT *const mvc = pbi->common.fc.mvc;
#if CONFIG_HIGH_PRECISION_MV
MV_CONTEXT_HP *const mvc_hp = pbi->common.fc.mvc_hp;
#endif
const int mis = pbi->common.mode_info_stride;
MACROBLOCKD *const xd = & pbi->mb;
int_mv *const mv = & mbmi->mv;
int mb_to_left_edge;
int mb_to_right_edge;
int mb_to_top_edge;
int mb_to_bottom_edge;
mb_to_top_edge = xd->mb_to_top_edge;
mb_to_bottom_edge = xd->mb_to_bottom_edge;
mb_to_top_edge -= LEFT_TOP_MARGIN;
mb_to_bottom_edge += RIGHT_BOTTOM_MARGIN;
mbmi->need_to_clamp_mvs = 0;
mbmi->need_to_clamp_secondmv = 0;
mbmi->second_ref_frame = 0;
/* Distance of Mb to the various image edges.
* These specified to 8th pel as they are always compared to MV values that are in 1/8th pel units
*/
xd->mb_to_left_edge =
mb_to_left_edge = -((mb_col * 16) << 3);
mb_to_left_edge -= LEFT_TOP_MARGIN;
xd->mb_to_right_edge =
mb_to_right_edge = ((pbi->common.mb_cols - 1 - mb_col) * 16) << 3;
mb_to_right_edge += RIGHT_BOTTOM_MARGIN;
// Make sure the MACROBLOCKD mode info pointer is pointed at the
// correct entry for the current macroblock.
xd->mode_info_context = mi;
// Read the macroblock segment id.
read_mb_segment_id ( pbi, mb_row, mb_col );
if ( pbi->common.mb_no_coeff_skip &&
( !segfeature_active( xd,
mbmi->segment_id, SEG_LVL_EOB ) ||
(get_segdata( xd, mbmi->segment_id, SEG_LVL_EOB ) != 0) ) )
{
// Read the macroblock coeff skip flag if this feature is in use,
// else default to 0
#if CONFIG_NEWENTROPY
mbmi->mb_skip_coeff = vp8_read(bc, get_pred_prob(cm, xd, PRED_MBSKIP));
#else
mbmi->mb_skip_coeff = vp8_read(bc, pbi->prob_skip_false);
#endif
}
else
{
if ( segfeature_active( xd,
mbmi->segment_id, SEG_LVL_EOB ) &&
(get_segdata( xd, mbmi->segment_id, SEG_LVL_EOB ) == 0) )
{
mbmi->mb_skip_coeff = 1;
}
else
mbmi->mb_skip_coeff = 0;
}
// Read the reference frame
mbmi->ref_frame = read_ref_frame( pbi, bc, mbmi->segment_id );
// If reference frame is an Inter frame
if (mbmi->ref_frame)
{
int rct[4];
int_mv nearest, nearby, best_mv;
int_mv nearest_second, nearby_second, best_mv_second;
vp8_prob mv_ref_p [VP8_MVREFS-1];
vp8_find_near_mvs(xd, mi,
prev_mi,
&nearest, &nearby, &best_mv, rct,
mbmi->ref_frame, pbi->common.ref_frame_sign_bias);
vp8_mv_ref_probs(&pbi->common, mv_ref_p, rct);
// Is the segment level mode feature enabled for this segment
if ( segfeature_active( xd, mbmi->segment_id, SEG_LVL_MODE ) )
{
mbmi->mode =
get_segdata( xd, mbmi->segment_id, SEG_LVL_MODE );
}
else
{
mbmi->mode = read_mv_ref(bc, mv_ref_p);
vp8_accum_mv_refs(&pbi->common, mbmi->mode, rct);
}
if ( cm->comp_pred_mode == COMP_PREDICTION_ONLY ||
(cm->comp_pred_mode == HYBRID_PREDICTION &&
vp8_read(bc, get_pred_prob( cm, xd, PRED_COMP ))) )
{
/* Since we have 3 reference frames, we can only have 3 unique
* combinations of combinations of 2 different reference frames
* (A-G, G-L or A-L). In the bitstream, we use this to simply
* derive the second reference frame from the first reference
* frame, by saying it's the next one in the enumerator, and
* if that's > n_refs, then the second reference frame is the
* first one in the enumerator. */
mbmi->second_ref_frame = mbmi->ref_frame + 1;
if (mbmi->second_ref_frame == 4)
mbmi->second_ref_frame = 1;
vp8_find_near_mvs(xd, mi,
prev_mi,
&nearest_second, &nearby_second, &best_mv_second, rct,
mbmi->second_ref_frame, pbi->common.ref_frame_sign_bias);
}
else
{
mbmi->second_ref_frame = 0;
}
mbmi->uv_mode = DC_PRED;
switch (mbmi->mode)
{
case SPLITMV:
{
const int s = mbmi->partitioning =
vp8_treed_read(bc, vp8_mbsplit_tree, vp8_mbsplit_probs);
const int num_p = vp8_mbsplit_count [s];
int j = 0;
mbmi->need_to_clamp_mvs = 0;
do /* for each subset j */
{
int_mv leftmv, abovemv, second_leftmv, second_abovemv;
int_mv blockmv, secondmv;
int k; /* first block in subset j */
int mv_contz;
int blockmode;
k = vp8_mbsplit_offset[s][j];
leftmv.as_int = left_block_mv(mi, k);
abovemv.as_int = above_block_mv(mi, k, mis);
if (mbmi->second_ref_frame)
{
second_leftmv.as_int = left_block_second_mv(mi, k);
second_abovemv.as_int = above_block_second_mv(mi, k, mis);
}
mv_contz = vp8_mv_cont(&leftmv, &abovemv);
blockmode = sub_mv_ref(bc, vp8_sub_mv_ref_prob2 [mv_contz]);
switch (blockmode)
{
case NEW4X4:
#if CONFIG_HIGH_PRECISION_MV
if (xd->allow_high_precision_mv)
read_mv_hp(bc, &blockmv.as_mv, (const MV_CONTEXT_HP *) mvc_hp);
else
#endif
read_mv(bc, &blockmv.as_mv, (const MV_CONTEXT *) mvc);
blockmv.as_mv.row += best_mv.as_mv.row;
blockmv.as_mv.col += best_mv.as_mv.col;
if (mbmi->second_ref_frame)
{
#if CONFIG_HIGH_PRECISION_MV
if (xd->allow_high_precision_mv)
read_mv_hp(bc, &secondmv.as_mv, (const MV_CONTEXT_HP *) mvc_hp);
else
#endif
read_mv(bc, &secondmv.as_mv, (const MV_CONTEXT *) mvc);
secondmv.as_mv.row += best_mv_second.as_mv.row;
secondmv.as_mv.col += best_mv_second.as_mv.col;
}
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][3]++;
#endif
break;
case LEFT4X4:
blockmv.as_int = leftmv.as_int;
if (mbmi->second_ref_frame)
secondmv.as_int = second_leftmv.as_int;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][0]++;
#endif
break;
case ABOVE4X4:
blockmv.as_int = abovemv.as_int;
if (mbmi->second_ref_frame)
secondmv.as_int = second_abovemv.as_int;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][1]++;
#endif
break;
case ZERO4X4:
blockmv.as_int = 0;
if (mbmi->second_ref_frame)
secondmv.as_int = 0;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][2]++;
#endif
break;
default:
break;
}
mbmi->need_to_clamp_mvs |= vp8_check_mv_bounds(&blockmv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->second_ref_frame)
{
mbmi->need_to_clamp_mvs |= vp8_check_mv_bounds(&secondmv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
}
{
/* Fill (uniform) modes, mvs of jth subset.
Must do it here because ensuing subsets can
refer back to us via "left" or "above". */
const unsigned char *fill_offset;
unsigned int fill_count = mbsplit_fill_count[s];
fill_offset = &mbsplit_fill_offset[s][(unsigned char)j * mbsplit_fill_count[s]];
do {
mi->bmi[ *fill_offset].as_mv.first.as_int = blockmv.as_int;
if (mbmi->second_ref_frame)
mi->bmi[ *fill_offset].as_mv.second.as_int = secondmv.as_int;
fill_offset++;
}while (--fill_count);
}
}
while (++j < num_p);
}
mv->as_int = mi->bmi[15].as_mv.first.as_int;
mbmi->second_mv.as_int = mi->bmi[15].as_mv.second.as_int;
break; /* done with SPLITMV */
case NEARMV:
mv->as_int = nearby.as_int;
/* Clip "next_nearest" so that it does not extend to far out of image */
vp8_clamp_mv(mv, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
if (mbmi->second_ref_frame)
{
mbmi->second_mv.as_int = nearby_second.as_int;
vp8_clamp_mv(&mbmi->second_mv, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
}
break;
case NEARESTMV:
mv->as_int = nearest.as_int;
/* Clip "next_nearest" so that it does not extend to far out of image */
vp8_clamp_mv(mv, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
if (mbmi->second_ref_frame)
{
mbmi->second_mv.as_int = nearest_second.as_int;
vp8_clamp_mv(&mbmi->second_mv, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
}
break;
case ZEROMV:
mv->as_int = 0;
if (mbmi->second_ref_frame)
mbmi->second_mv.as_int = 0;
break;
case NEWMV:
#if CONFIG_HIGH_PRECISION_MV
if (xd->allow_high_precision_mv)
read_mv_hp(bc, &mv->as_mv, (const MV_CONTEXT_HP *) mvc_hp);
else
#endif
read_mv(bc, &mv->as_mv, (const MV_CONTEXT *) mvc);
mv->as_mv.row += best_mv.as_mv.row;
mv->as_mv.col += best_mv.as_mv.col;
/* Don't need to check this on NEARMV and NEARESTMV modes
* since those modes clamp the MV. The NEWMV mode does not,
* so signal to the prediction stage whether special
* handling may be required.
*/
mbmi->need_to_clamp_mvs = vp8_check_mv_bounds(mv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->second_ref_frame)
{
#if CONFIG_HIGH_PRECISION_MV
if (xd->allow_high_precision_mv)
read_mv_hp(bc, &mbmi->second_mv.as_mv,
(const MV_CONTEXT_HP *) mvc_hp);
else
#endif
read_mv(bc, &mbmi->second_mv.as_mv, (const MV_CONTEXT *) mvc);
mbmi->second_mv.as_mv.row += best_mv_second.as_mv.row;
mbmi->second_mv.as_mv.col += best_mv_second.as_mv.col;
mbmi->need_to_clamp_secondmv |= vp8_check_mv_bounds(&mbmi->second_mv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
}
break;
default:;
#if CONFIG_DEBUG
assert(0);
#endif
}
}
else
{
/* required for left and above block mv */
mbmi->mv.as_int = 0;
if ( segfeature_active( xd, mbmi->segment_id, SEG_LVL_MODE ) )
mbmi->mode = (MB_PREDICTION_MODE)
get_segdata( xd, mbmi->segment_id, SEG_LVL_MODE );
else
{
mbmi->mode = (MB_PREDICTION_MODE)
vp8_read_ymode(bc, pbi->common.fc.ymode_prob);
}
#if CONFIG_COMP_INTRA_PRED
mbmi->second_mode = (MB_PREDICTION_MODE) (DC_PRED - 1);
#endif
// If MB mode is BPRED read the block modes
if (mbmi->mode == B_PRED)
{
int j = 0;
#if CONFIG_COMP_INTRA_PRED
int use_comp_pred = vp8_read(bc, 128);
#endif
do
{
mi->bmi[j].as_mode.first = (B_PREDICTION_MODE)vp8_read_bmode(bc, pbi->common.fc.bmode_prob);
#if CONFIG_COMP_INTRA_PRED
if (use_comp_pred)
{
mi->bmi[j].as_mode.second = (B_PREDICTION_MODE)vp8_read_bmode(bc, pbi->common.fc.bmode_prob);
}
else
{
mi->bmi[j].as_mode.second = (B_PREDICTION_MODE) (B_DC_PRED - 1);
}
#endif
}
while (++j < 16);
}
if(mbmi->mode == I8X8_PRED)
{
int i;
int mode8x8;
for(i=0;i<4;i++)
{
int ib = vp8_i8x8_block[i];
mode8x8 = vp8_read_i8x8_mode(bc, pbi->common.i8x8_mode_prob);
mi->bmi[ib+0].as_mode.first= mode8x8;
mi->bmi[ib+1].as_mode.first= mode8x8;
mi->bmi[ib+4].as_mode.first= mode8x8;
mi->bmi[ib+5].as_mode.first= mode8x8;
#if CONFIG_COMP_INTRA_PRED
mi->bmi[ib+0].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1);
mi->bmi[ib+1].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1);
mi->bmi[ib+4].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1);
mi->bmi[ib+5].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1);
#endif
}
}
else
#if CONFIG_UVINTRA
mbmi->uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(bc,
pbi->common.fc.uv_mode_prob[mbmi->mode]);
#else
mbmi->uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(bc,
pbi->common.fc.uv_mode_prob);
#endif /*CONFIG_UVINTRA*/
#if CONFIG_COMP_INTRA_PRED
mbmi->second_uv_mode = (MB_PREDICTION_MODE) (DC_PRED - 1);
#endif
}
}
void vp8_decode_mode_mvs(VP8D_COMP *pbi)
{
int i;
VP8_COMMON *cm = &pbi->common;
MODE_INFO *mi = cm->mi;
MACROBLOCKD *const xd = &pbi->mb;
int sb_row, sb_col;
int sb_rows = (cm->mb_rows + 1)>>1;
int sb_cols = (cm->mb_cols + 1)>>1;
int row_delta[4] = { 0, +1, 0, -1};
int col_delta[4] = {+1, -1, +1, +1};
MODE_INFO *prev_mi = cm->prev_mi;
mb_mode_mv_init(pbi);
#if CONFIG_QIMODE
if(cm->frame_type==KEY_FRAME && !cm->kf_ymode_probs_update)
{
cm->kf_ymode_probs_index = vp8_read_literal(&pbi->bc, 3);
}
#endif
for (sb_row=0; sb_row<sb_rows; sb_row++)
{
int mb_col = 0;
int mb_row = (sb_row <<1);
for (sb_col=0; sb_col<sb_cols; sb_col++)
{
for ( i=0; i<4; i++ )
{
int mb_to_top_edge;
int mb_to_bottom_edge;
int dy = row_delta[i];
int dx = col_delta[i];
int offset_extended = dy * cm->mode_info_stride + dx;
if ((mb_row >= cm->mb_rows) || (mb_col >= cm->mb_cols))
{
/* next macroblock */
mb_row += dy;
mb_col += dx;
mi += offset_extended;
prev_mi += offset_extended;
continue;
}
// Make sure the MacroBlockD mode info pointer is set correctly
xd->mode_info_context = mi;
xd->prev_mode_info_context = prev_mi;
pbi->mb.mb_to_top_edge = mb_to_top_edge = -((mb_row * 16)) << 3;
mb_to_top_edge -= LEFT_TOP_MARGIN;
pbi->mb.mb_to_bottom_edge =
mb_to_bottom_edge =
((pbi->common.mb_rows - 1 - mb_row) * 16) << 3;
mb_to_bottom_edge += RIGHT_BOTTOM_MARGIN;
if(cm->frame_type == KEY_FRAME)
vp8_kfread_modes(pbi, mi, mb_row, mb_col);
else
read_mb_modes_mv(pbi, mi, &mi->mbmi, prev_mi, mb_row,
mb_col);
/* next macroblock */
mb_row += dy;
mb_col += dx;
mi += offset_extended;
prev_mi += offset_extended;
}
}
mi += cm->mode_info_stride + (1 - (cm->mb_cols & 0x1));
prev_mi += cm->mode_info_stride + (1 - (cm->mb_cols & 0x1));
}
}