vpx/vp9/encoder/vp9_bitstream.c
Ronald S. Bultje 4d0ec7aacd Consistently use get_prob(), clip_prob() and newly added clip_pixel().
Add a function clip_pixel() to clip a pixel value to the [0,255] range
of allowed values, and use this where-ever appropriate (e.g. prediction,
reconstruction). Likewise, consistently use the recently added function
clip_prob(), which calculates a binary probability in the [1,255] range.
If possible, try to use get_prob() or its sister get_binary_prob() to
calculate binary probabilities, for consistency.

Since in some places, this means that binary probability calculations
are changed (we use {255,256}*count0/(total) in a range of places,
and all of these are now changed to use 256*count0+(total>>1)/total),
this changes the encoding result, so this patch warrants some extensive
testing.

Change-Id: Ibeeff8d886496839b8e0c0ace9ccc552351f7628
2012-12-12 10:01:19 -08:00

2302 lines
73 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp9/common/vp9_header.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/common/vp9_systemdependent.h"
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "vp9/common/vp9_pragmas.h"
#include "vpx/vpx_encoder.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/encoder/vp9_bitstream.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_treecoder.h"
#if defined(SECTIONBITS_OUTPUT)
unsigned __int64 Sectionbits[500];
#endif
#ifdef ENTROPY_STATS
int intra_mode_stats[VP9_KF_BINTRAMODES]
[VP9_KF_BINTRAMODES]
[VP9_KF_BINTRAMODES];
vp9_coeff_stats tree_update_hist_4x4[BLOCK_TYPES_4X4];
vp9_coeff_stats hybrid_tree_update_hist_4x4[BLOCK_TYPES_4X4];
vp9_coeff_stats tree_update_hist_8x8[BLOCK_TYPES_8X8];
vp9_coeff_stats hybrid_tree_update_hist_8x8[BLOCK_TYPES_8X8];
vp9_coeff_stats tree_update_hist_16x16[BLOCK_TYPES_16X16];
vp9_coeff_stats hybrid_tree_update_hist_16x16[BLOCK_TYPES_16X16];
vp9_coeff_stats tree_update_hist_32x32[BLOCK_TYPES_32X32];
extern unsigned int active_section;
#endif
#ifdef MODE_STATS
int count_mb_seg[4] = { 0, 0, 0, 0 };
#endif
#define vp9_cost_upd ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd)) >> 8)
#define vp9_cost_upd256 ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd)))
#define SEARCH_NEWP
static int update_bits[255];
static void compute_update_table() {
int i;
for (i = 0; i < 255; i++)
update_bits[i] = vp9_count_term_subexp(i, SUBEXP_PARAM, 255);
}
static int split_index(int i, int n, int modulus) {
int max1 = (n - 1 - modulus / 2) / modulus + 1;
if (i % modulus == modulus / 2) i = i / modulus;
else i = max1 + i - (i + modulus - modulus / 2) / modulus;
return i;
}
static int remap_prob(int v, int m) {
const int n = 256;
const int modulus = MODULUS_PARAM;
int i;
if ((m << 1) <= n)
i = vp9_recenter_nonneg(v, m) - 1;
else
i = vp9_recenter_nonneg(n - 1 - v, n - 1 - m) - 1;
i = split_index(i, n - 1, modulus);
return i;
}
static void write_prob_diff_update(vp9_writer *const bc,
vp9_prob newp, vp9_prob oldp) {
int delp = remap_prob(newp, oldp);
vp9_encode_term_subexp(bc, delp, SUBEXP_PARAM, 255);
}
static int prob_diff_update_cost(vp9_prob newp, vp9_prob oldp) {
int delp = remap_prob(newp, oldp);
return update_bits[delp] * 256;
}
static void update_mode(
vp9_writer *const bc,
int n,
vp9_token tok [/* n */],
vp9_tree tree,
vp9_prob Pnew [/* n-1 */],
vp9_prob Pcur [/* n-1 */],
unsigned int bct [/* n-1 */] [2],
const unsigned int num_events[/* n */]
) {
unsigned int new_b = 0, old_b = 0;
int i = 0;
vp9_tree_probs_from_distribution(n--, tok, tree,
Pnew, bct, num_events);
do {
new_b += cost_branch(bct[i], Pnew[i]);
old_b += cost_branch(bct[i], Pcur[i]);
} while (++i < n);
if (new_b + (n << 8) < old_b) {
int i = 0;
vp9_write_bit(bc, 1);
do {
const vp9_prob p = Pnew[i];
vp9_write_literal(bc, Pcur[i] = p ? p : 1, 8);
} while (++i < n);
} else
vp9_write_bit(bc, 0);
}
static void update_mbintra_mode_probs(VP9_COMP* const cpi,
vp9_writer* const bc) {
VP9_COMMON *const cm = &cpi->common;
{
vp9_prob Pnew [VP9_YMODES - 1];
unsigned int bct [VP9_YMODES - 1] [2];
update_mode(
bc, VP9_YMODES, vp9_ymode_encodings, vp9_ymode_tree,
Pnew, cm->fc.ymode_prob, bct, (unsigned int *)cpi->ymode_count
);
#if CONFIG_SUPERBLOCKS
update_mode(bc, VP9_I32X32_MODES, vp9_sb_ymode_encodings,
vp9_sb_ymode_tree, Pnew, cm->fc.sb_ymode_prob, bct,
(unsigned int *)cpi->sb_ymode_count);
#endif
}
}
void vp9_update_skip_probs(VP9_COMP *cpi) {
VP9_COMMON *const pc = &cpi->common;
int k;
for (k = 0; k < MBSKIP_CONTEXTS; ++k) {
pc->mbskip_pred_probs[k] = get_binary_prob(cpi->skip_false_count[k],
cpi->skip_true_count[k]);
}
}
static void update_switchable_interp_probs(VP9_COMP *cpi,
vp9_writer* const bc) {
VP9_COMMON *const pc = &cpi->common;
unsigned int branch_ct[32][2];
int i, j;
for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) {
vp9_tree_probs_from_distribution(
VP9_SWITCHABLE_FILTERS,
vp9_switchable_interp_encodings, vp9_switchable_interp_tree,
pc->fc.switchable_interp_prob[j], branch_ct,
cpi->switchable_interp_count[j]);
for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) {
if (pc->fc.switchable_interp_prob[j][i] < 1)
pc->fc.switchable_interp_prob[j][i] = 1;
vp9_write_literal(bc, pc->fc.switchable_interp_prob[j][i], 8);
}
}
}
// This function updates the reference frame prediction stats
static void update_refpred_stats(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int i;
vp9_prob new_pred_probs[PREDICTION_PROBS];
int old_cost, new_cost;
// Set the prediction probability structures to defaults
if (cm->frame_type == KEY_FRAME) {
// Set the prediction probabilities to defaults
cm->ref_pred_probs[0] = 120;
cm->ref_pred_probs[1] = 80;
cm->ref_pred_probs[2] = 40;
vpx_memset(cpi->ref_pred_probs_update, 0,
sizeof(cpi->ref_pred_probs_update));
} else {
// From the prediction counts set the probabilities for each context
for (i = 0; i < PREDICTION_PROBS; i++) {
new_pred_probs[i] = get_binary_prob(cpi->ref_pred_count[i][0],
cpi->ref_pred_count[i][1]);
// Decide whether or not to update the reference frame probs.
// Returned costs are in 1/256 bit units.
old_cost =
(cpi->ref_pred_count[i][0] * vp9_cost_zero(cm->ref_pred_probs[i])) +
(cpi->ref_pred_count[i][1] * vp9_cost_one(cm->ref_pred_probs[i]));
new_cost =
(cpi->ref_pred_count[i][0] * vp9_cost_zero(new_pred_probs[i])) +
(cpi->ref_pred_count[i][1] * vp9_cost_one(new_pred_probs[i]));
// Cost saving must be >= 8 bits (2048 in these units)
if ((old_cost - new_cost) >= 2048) {
cpi->ref_pred_probs_update[i] = 1;
cm->ref_pred_probs[i] = new_pred_probs[i];
} else
cpi->ref_pred_probs_update[i] = 0;
}
}
}
// This function is called to update the mode probability context used to encode
// inter modes. It assumes the branch counts table has already been populated
// prior to the actual packing of the bitstream (in rd stage or dummy pack)
//
// The branch counts table is re-populated during the actual pack stage and in
// the decoder to facilitate backwards update of the context.
static void update_mode_probs(VP9_COMMON *cm,
int mode_context[INTER_MODE_CONTEXTS][4]) {
int i, j;
unsigned int (*mv_ref_ct)[4][2];
vpx_memcpy(mode_context, cm->fc.vp9_mode_contexts,
sizeof(cm->fc.vp9_mode_contexts));
mv_ref_ct = cm->fc.mv_ref_ct;
for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
for (j = 0; j < 4; j++) {
int new_prob, old_cost, new_cost;
// Work out cost of coding branches with the old and optimal probability
old_cost = cost_branch256(mv_ref_ct[i][j], mode_context[i][j]);
new_prob = get_binary_prob(mv_ref_ct[i][j][0], mv_ref_ct[i][j][1]);
new_cost = cost_branch256(mv_ref_ct[i][j], new_prob);
// If cost saving is >= 14 bits then update the mode probability.
// This is the approximate net cost of updating one probability given
// that the no update case ismuch more common than the update case.
if (new_cost <= (old_cost - (14 << 8))) {
mode_context[i][j] = new_prob;
}
}
}
}
static void write_ymode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_ymode_tree, p, vp9_ymode_encodings + m);
}
static void kfwrite_ymode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_kf_ymode_tree, p, vp9_kf_ymode_encodings + m);
}
#if CONFIG_SUPERBLOCKS
static void write_sb_ymode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_sb_ymode_tree, p, vp9_sb_ymode_encodings + m);
}
static void sb_kfwrite_ymode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_uv_mode_tree, p, vp9_sb_kf_ymode_encodings + m);
}
#endif
static void write_i8x8_mode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_i8x8_mode_tree, p, vp9_i8x8_mode_encodings + m);
}
static void write_uv_mode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_uv_mode_tree, p, vp9_uv_mode_encodings + m);
}
static void write_bmode(vp9_writer *bc, int m, const vp9_prob *p) {
#if CONFIG_NEWBINTRAMODES
assert(m < B_CONTEXT_PRED - CONTEXT_PRED_REPLACEMENTS || m == B_CONTEXT_PRED);
if (m == B_CONTEXT_PRED) m -= CONTEXT_PRED_REPLACEMENTS;
#endif
write_token(bc, vp9_bmode_tree, p, vp9_bmode_encodings + m);
}
static void write_kf_bmode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_kf_bmode_tree, p, vp9_kf_bmode_encodings + m);
}
static void write_split(vp9_writer *bc, int x, const vp9_prob *p) {
write_token(
bc, vp9_mbsplit_tree, p, vp9_mbsplit_encodings + x);
}
static int prob_update_savings(const unsigned int *ct,
const vp9_prob oldp, const vp9_prob newp,
const vp9_prob upd) {
const int old_b = cost_branch256(ct, oldp);
const int new_b = cost_branch256(ct, newp);
const int update_b = 2048 + vp9_cost_upd256;
return (old_b - new_b - update_b);
}
static int prob_diff_update_savings(const unsigned int *ct,
const vp9_prob oldp, const vp9_prob newp,
const vp9_prob upd) {
const int old_b = cost_branch256(ct, oldp);
const int new_b = cost_branch256(ct, newp);
const int update_b = (newp == oldp ? 0 :
prob_diff_update_cost(newp, oldp) + vp9_cost_upd256);
return (old_b - new_b - update_b);
}
static int prob_diff_update_savings_search(const unsigned int *ct,
const vp9_prob oldp, vp9_prob *bestp,
const vp9_prob upd) {
const int old_b = cost_branch256(ct, oldp);
int new_b, update_b, savings, bestsavings, step;
vp9_prob newp, bestnewp;
bestsavings = 0;
bestnewp = oldp;
step = (*bestp > oldp ? -1 : 1);
for (newp = *bestp; newp != oldp; newp += step) {
new_b = cost_branch256(ct, newp);
update_b = prob_diff_update_cost(newp, oldp) + vp9_cost_upd256;
savings = old_b - new_b - update_b;
if (savings > bestsavings) {
bestsavings = savings;
bestnewp = newp;
}
}
*bestp = bestnewp;
return bestsavings;
}
static void vp9_cond_prob_update(vp9_writer *bc, vp9_prob *oldp, vp9_prob upd,
unsigned int *ct) {
vp9_prob newp;
int savings;
newp = get_binary_prob(ct[0], ct[1]);
savings = prob_update_savings(ct, *oldp, newp, upd);
if (savings > 0) {
vp9_write(bc, 1, upd);
vp9_write_literal(bc, newp, 8);
*oldp = newp;
} else {
vp9_write(bc, 0, upd);
}
}
static void pack_mb_tokens(vp9_writer* const bc,
TOKENEXTRA **tp,
const TOKENEXTRA *const stop) {
unsigned int split;
unsigned int shift;
int count = bc->count;
unsigned int range = bc->range;
unsigned int lowvalue = bc->lowvalue;
TOKENEXTRA *p = *tp;
while (p < stop) {
const int t = p->Token;
vp9_token *const a = vp9_coef_encodings + t;
const vp9_extra_bit_struct *const b = vp9_extra_bits + t;
int i = 0;
const unsigned char *pp = p->context_tree;
int v = a->value;
int n = a->Len;
if (t == EOSB_TOKEN)
{
++p;
break;
}
/* skip one or two nodes */
if (p->skip_eob_node) {
n -= p->skip_eob_node;
i = 2 * p->skip_eob_node;
}
do {
const int bb = (v >> --n) & 1;
split = 1 + (((range - 1) * pp[i >> 1]) >> 8);
i = vp9_coef_tree[i + bb];
if (bb) {
lowvalue += split;
range = range - split;
} else {
range = split;
}
shift = vp9_norm[range];
range <<= shift;
count += shift;
if (count >= 0) {
int offset = shift - count;
if ((lowvalue << (offset - 1)) & 0x80000000) {
int x = bc->pos - 1;
while (x >= 0 && bc->buffer[x] == 0xff) {
bc->buffer[x] = (unsigned char)0;
x--;
}
bc->buffer[x] += 1;
}
bc->buffer[bc->pos++] = (lowvalue >> (24 - offset));
lowvalue <<= offset;
shift = count;
lowvalue &= 0xffffff;
count -= 8;
}
lowvalue <<= shift;
} while (n);
if (b->base_val) {
const int e = p->Extra, L = b->Len;
if (L) {
const unsigned char *pp = b->prob;
int v = e >> 1;
int n = L; /* number of bits in v, assumed nonzero */
int i = 0;
do {
const int bb = (v >> --n) & 1;
split = 1 + (((range - 1) * pp[i >> 1]) >> 8);
i = b->tree[i + bb];
if (bb) {
lowvalue += split;
range = range - split;
} else {
range = split;
}
shift = vp9_norm[range];
range <<= shift;
count += shift;
if (count >= 0) {
int offset = shift - count;
if ((lowvalue << (offset - 1)) & 0x80000000) {
int x = bc->pos - 1;
while (x >= 0 && bc->buffer[x] == 0xff) {
bc->buffer[x] = (unsigned char)0;
x--;
}
bc->buffer[x] += 1;
}
bc->buffer[bc->pos++] = (lowvalue >> (24 - offset));
lowvalue <<= offset;
shift = count;
lowvalue &= 0xffffff;
count -= 8;
}
lowvalue <<= shift;
} while (n);
}
{
split = (range + 1) >> 1;
if (e & 1) {
lowvalue += split;
range = range - split;
} else {
range = split;
}
range <<= 1;
if ((lowvalue & 0x80000000)) {
int x = bc->pos - 1;
while (x >= 0 && bc->buffer[x] == 0xff) {
bc->buffer[x] = (unsigned char)0;
x--;
}
bc->buffer[x] += 1;
}
lowvalue <<= 1;
if (!++count) {
count = -8;
bc->buffer[bc->pos++] = (lowvalue >> 24);
lowvalue &= 0xffffff;
}
}
}
++p;
}
bc->count = count;
bc->lowvalue = lowvalue;
bc->range = range;
*tp = p;
}
static void write_partition_size(unsigned char *cx_data, int size) {
signed char csize;
csize = size & 0xff;
*cx_data = csize;
csize = (size >> 8) & 0xff;
*(cx_data + 1) = csize;
csize = (size >> 16) & 0xff;
*(cx_data + 2) = csize;
}
static void write_mv_ref
(
vp9_writer *bc, MB_PREDICTION_MODE m, const vp9_prob *p
) {
#if CONFIG_DEBUG
assert(NEARESTMV <= m && m <= SPLITMV);
#endif
write_token(bc, vp9_mv_ref_tree, p,
vp9_mv_ref_encoding_array - NEARESTMV + m);
}
#if CONFIG_SUPERBLOCKS
static void write_sb_mv_ref(vp9_writer *bc, MB_PREDICTION_MODE m,
const vp9_prob *p) {
#if CONFIG_DEBUG
assert(NEARESTMV <= m && m < SPLITMV);
#endif
write_token(bc, vp9_sb_mv_ref_tree, p,
vp9_sb_mv_ref_encoding_array - NEARESTMV + m);
}
#endif
static void write_sub_mv_ref
(
vp9_writer *bc, B_PREDICTION_MODE m, const vp9_prob *p
) {
#if CONFIG_DEBUG
assert(LEFT4X4 <= m && m <= NEW4X4);
#endif
write_token(bc, vp9_sub_mv_ref_tree, p,
vp9_sub_mv_ref_encoding_array - LEFT4X4 + m);
}
static void write_nmv(vp9_writer *bc, const MV *mv, const int_mv *ref,
const nmv_context *nmvc, int usehp) {
MV e;
e.row = mv->row - ref->as_mv.row;
e.col = mv->col - ref->as_mv.col;
vp9_encode_nmv(bc, &e, &ref->as_mv, nmvc);
vp9_encode_nmv_fp(bc, &e, &ref->as_mv, nmvc, usehp);
}
#if CONFIG_NEW_MVREF
static void vp9_write_mv_ref_id(vp9_writer *w,
vp9_prob * ref_id_probs,
int mv_ref_id) {
// Encode the index for the MV reference.
switch (mv_ref_id) {
case 0:
vp9_write(w, 0, ref_id_probs[0]);
break;
case 1:
vp9_write(w, 1, ref_id_probs[0]);
vp9_write(w, 0, ref_id_probs[1]);
break;
case 2:
vp9_write(w, 1, ref_id_probs[0]);
vp9_write(w, 1, ref_id_probs[1]);
vp9_write(w, 0, ref_id_probs[2]);
break;
case 3:
vp9_write(w, 1, ref_id_probs[0]);
vp9_write(w, 1, ref_id_probs[1]);
vp9_write(w, 1, ref_id_probs[2]);
break;
// TRAP.. This should not happen
default:
assert(0);
break;
}
}
#endif
// This function writes the current macro block's segnment id to the bitstream
// It should only be called if a segment map update is indicated.
static void write_mb_segid(vp9_writer *bc,
const MB_MODE_INFO *mi, const MACROBLOCKD *xd) {
// Encode the MB segment id.
int seg_id = mi->segment_id;
#if CONFIG_SUPERBLOCKS
if (mi->encoded_as_sb) {
if (xd->mb_to_right_edge >= 0)
seg_id = seg_id && xd->mode_info_context[1].mbmi.segment_id;
if (xd->mb_to_bottom_edge >= 0) {
seg_id = seg_id &&
xd->mode_info_context[xd->mode_info_stride].mbmi.segment_id;
if (xd->mb_to_right_edge >= 0)
seg_id = seg_id &&
xd->mode_info_context[xd->mode_info_stride + 1].mbmi.segment_id;
}
}
#endif
if (xd->segmentation_enabled && xd->update_mb_segmentation_map) {
switch (seg_id) {
case 0:
vp9_write(bc, 0, xd->mb_segment_tree_probs[0]);
vp9_write(bc, 0, xd->mb_segment_tree_probs[1]);
break;
case 1:
vp9_write(bc, 0, xd->mb_segment_tree_probs[0]);
vp9_write(bc, 1, xd->mb_segment_tree_probs[1]);
break;
case 2:
vp9_write(bc, 1, xd->mb_segment_tree_probs[0]);
vp9_write(bc, 0, xd->mb_segment_tree_probs[2]);
break;
case 3:
vp9_write(bc, 1, xd->mb_segment_tree_probs[0]);
vp9_write(bc, 1, xd->mb_segment_tree_probs[2]);
break;
// TRAP.. This should not happen
default:
vp9_write(bc, 0, xd->mb_segment_tree_probs[0]);
vp9_write(bc, 0, xd->mb_segment_tree_probs[1]);
break;
}
}
}
// This function encodes the reference frame
static void encode_ref_frame(vp9_writer *const bc,
VP9_COMMON *const cm,
MACROBLOCKD *xd,
int segment_id,
MV_REFERENCE_FRAME rf) {
int seg_ref_active;
int seg_ref_count = 0;
seg_ref_active = vp9_segfeature_active(xd,
segment_id,
SEG_LVL_REF_FRAME);
if (seg_ref_active) {
seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) +
vp9_check_segref(xd, segment_id, LAST_FRAME) +
vp9_check_segref(xd, segment_id, GOLDEN_FRAME) +
vp9_check_segref(xd, segment_id, ALTREF_FRAME);
}
// If segment level coding of this signal is disabled...
// or the segment allows multiple reference frame options
if (!seg_ref_active || (seg_ref_count > 1)) {
// Values used in prediction model coding
unsigned char prediction_flag;
vp9_prob pred_prob;
MV_REFERENCE_FRAME pred_rf;
// Get the context probability the prediction flag
pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF);
// Get the predicted value.
pred_rf = vp9_get_pred_ref(cm, xd);
// Did the chosen reference frame match its predicted value.
prediction_flag =
(xd->mode_info_context->mbmi.ref_frame == pred_rf);
vp9_set_pred_flag(xd, PRED_REF, prediction_flag);
vp9_write(bc, prediction_flag, pred_prob);
// If not predicted correctly then code value explicitly
if (!prediction_flag) {
vp9_prob mod_refprobs[PREDICTION_PROBS];
vpx_memcpy(mod_refprobs,
cm->mod_refprobs[pred_rf], sizeof(mod_refprobs));
// If segment coding enabled blank out options that cant occur by
// setting the branch probability to 0.
if (seg_ref_active) {
mod_refprobs[INTRA_FRAME] *=
vp9_check_segref(xd, segment_id, INTRA_FRAME);
mod_refprobs[LAST_FRAME] *=
vp9_check_segref(xd, segment_id, LAST_FRAME);
mod_refprobs[GOLDEN_FRAME] *=
(vp9_check_segref(xd, segment_id, GOLDEN_FRAME) *
vp9_check_segref(xd, segment_id, ALTREF_FRAME));
}
if (mod_refprobs[0]) {
vp9_write(bc, (rf != INTRA_FRAME), mod_refprobs[0]);
}
// Inter coded
if (rf != INTRA_FRAME) {
if (mod_refprobs[1]) {
vp9_write(bc, (rf != LAST_FRAME), mod_refprobs[1]);
}
if (rf != LAST_FRAME) {
if (mod_refprobs[2]) {
vp9_write(bc, (rf != GOLDEN_FRAME), mod_refprobs[2]);
}
}
}
}
}
// if using the prediction mdoel we have nothing further to do because
// the reference frame is fully coded by the segment
}
// Update the probabilities used to encode reference frame data
static void update_ref_probs(VP9_COMP *const cpi) {
VP9_COMMON *const cm = &cpi->common;
const int *const rfct = cpi->count_mb_ref_frame_usage;
const int rf_intra = rfct[INTRA_FRAME];
const int rf_inter = rfct[LAST_FRAME] +
rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
cm->prob_intra_coded = get_binary_prob(rf_intra, rf_inter);
cm->prob_last_coded = get_prob(rfct[LAST_FRAME], rf_inter);
cm->prob_gf_coded = get_binary_prob(rfct[GOLDEN_FRAME], rfct[ALTREF_FRAME]);
// Compute a modified set of probabilities to use when prediction of the
// reference frame fails
vp9_compute_mod_refprobs(cm);
}
static void pack_inter_mode_mvs(VP9_COMP *const cpi, vp9_writer *const bc) {
VP9_COMMON *const pc = &cpi->common;
const nmv_context *nmvc = &pc->fc.nmvc;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
MODE_INFO *m;
MODE_INFO *prev_m;
TOKENEXTRA *tok = cpi->tok;
TOKENEXTRA *tok_end = tok + cpi->tok_count;
const int mis = pc->mode_info_stride;
int mb_row, mb_col;
int row, col;
// Values used in prediction model coding
vp9_prob pred_prob;
unsigned char prediction_flag;
int row_delta[4] = { 0, +1, 0, -1};
int col_delta[4] = { +1, -1, +1, +1};
cpi->mb.partition_info = cpi->mb.pi;
mb_row = 0;
for (row = 0; row < pc->mb_rows; row += 2) {
m = pc->mi + row * mis;
prev_m = pc->prev_mi + row * mis;
mb_col = 0;
for (col = 0; col < pc->mb_cols; col += 2) {
int i;
// Process the 4 MBs in the order:
// top-left, top-right, bottom-left, bottom-right
#if CONFIG_SUPERBLOCKS
vp9_write(bc, m->mbmi.encoded_as_sb, pc->sb_coded);
#endif
for (i = 0; i < 4; i++) {
MB_MODE_INFO *mi;
MV_REFERENCE_FRAME rf;
MV_REFERENCE_FRAME sec_ref_frame;
MB_PREDICTION_MODE mode;
int segment_id, skip_coeff;
int dy = row_delta[i];
int dx = col_delta[i];
int offset_extended = dy * mis + dx;
if ((mb_row >= pc->mb_rows) || (mb_col >= pc->mb_cols)) {
// MB lies outside frame, move on
mb_row += dy;
mb_col += dx;
m += offset_extended;
prev_m += offset_extended;
cpi->mb.partition_info += offset_extended;
continue;
}
mi = &m->mbmi;
rf = mi->ref_frame;
sec_ref_frame = mi->second_ref_frame;
mode = mi->mode;
segment_id = mi->segment_id;
// Distance of Mb to the various image edges.
// These specified to 8th pel as they are always compared to MV
// values that are in 1/8th pel units
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
#if CONFIG_SUPERBLOCKS
if (mi->encoded_as_sb) {
xd->mb_to_right_edge = ((pc->mb_cols - 2 - mb_col) * 16) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 2 - mb_row) * 16) << 3;
} else {
#endif
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
#if CONFIG_SUPERBLOCKS
}
#endif
// Make sure the MacroBlockD mode info pointer is set correctly
xd->mode_info_context = m;
xd->prev_mode_info_context = prev_m;
#ifdef ENTROPY_STATS
active_section = 9;
#endif
if (cpi->mb.e_mbd.update_mb_segmentation_map) {
// Is temporal coding of the segment map enabled
if (pc->temporal_update) {
prediction_flag = vp9_get_pred_flag(xd, PRED_SEG_ID);
pred_prob = vp9_get_pred_prob(pc, xd, PRED_SEG_ID);
// Code the segment id prediction flag for this mb
vp9_write(bc, prediction_flag, pred_prob);
// If the mb segment id wasn't predicted code explicitly
if (!prediction_flag)
write_mb_segid(bc, mi, &cpi->mb.e_mbd);
} else {
// Normal unpredicted coding
write_mb_segid(bc, mi, &cpi->mb.e_mbd);
}
}
skip_coeff = 1;
if (pc->mb_no_coeff_skip &&
(!vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB) ||
(vp9_get_segdata(xd, segment_id, SEG_LVL_EOB) != 0))) {
skip_coeff = mi->mb_skip_coeff;
#if CONFIG_SUPERBLOCKS
if (mi->encoded_as_sb) {
skip_coeff &= m[1].mbmi.mb_skip_coeff;
skip_coeff &= m[mis].mbmi.mb_skip_coeff;
skip_coeff &= m[mis + 1].mbmi.mb_skip_coeff;
}
#endif
vp9_write(bc, skip_coeff,
vp9_get_pred_prob(pc, xd, PRED_MBSKIP));
}
// Encode the reference frame.
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_MODE)
|| vp9_get_segdata(xd, segment_id, SEG_LVL_MODE) >= NEARESTMV) {
encode_ref_frame(bc, pc, xd, segment_id, rf);
} else {
assert(rf == INTRA_FRAME);
}
if (rf == INTRA_FRAME) {
#ifdef ENTROPY_STATS
active_section = 6;
#endif
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
#if CONFIG_SUPERBLOCKS
if (m->mbmi.encoded_as_sb)
write_sb_ymode(bc, mode, pc->fc.sb_ymode_prob);
else
#endif
write_ymode(bc, mode, pc->fc.ymode_prob);
}
if (mode == B_PRED) {
int j = 0;
#if CONFIG_COMP_INTRA_PRED
int uses_second =
m->bmi[0].as_mode.second !=
(B_PREDICTION_MODE)(B_DC_PRED - 1);
vp9_write(bc, uses_second, DEFAULT_COMP_INTRA_PROB);
#endif
do {
#if CONFIG_COMP_INTRA_PRED
B_PREDICTION_MODE mode2 = m->bmi[j].as_mode.second;
#endif
write_bmode(bc, m->bmi[j].as_mode.first,
pc->fc.bmode_prob);
#if CONFIG_COMP_INTRA_PRED
if (uses_second) {
write_bmode(bc, mode2, pc->fc.bmode_prob);
}
#endif
} while (++j < 16);
}
if (mode == I8X8_PRED) {
write_i8x8_mode(bc, m->bmi[0].as_mode.first,
pc->fc.i8x8_mode_prob);
write_i8x8_mode(bc, m->bmi[2].as_mode.first,
pc->fc.i8x8_mode_prob);
write_i8x8_mode(bc, m->bmi[8].as_mode.first,
pc->fc.i8x8_mode_prob);
write_i8x8_mode(bc, m->bmi[10].as_mode.first,
pc->fc.i8x8_mode_prob);
} else {
write_uv_mode(bc, mi->uv_mode,
pc->fc.uv_mode_prob[mode]);
}
} else {
vp9_prob mv_ref_p [VP9_MVREFS - 1];
vp9_mv_ref_probs(&cpi->common, mv_ref_p, mi->mb_mode_context[rf]);
// #ifdef ENTROPY_STATS
#ifdef ENTROPY_STATS
accum_mv_refs(mode, ct);
active_section = 3;
#endif
// Is the segment coding of mode enabled
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
#if CONFIG_SUPERBLOCKS
if (mi->encoded_as_sb) {
write_sb_mv_ref(bc, mode, mv_ref_p);
} else
#endif
{
write_mv_ref(bc, mode, mv_ref_p);
}
vp9_accum_mv_refs(&cpi->common, mode, mi->mb_mode_context[rf]);
}
#if CONFIG_PRED_FILTER
// Is the prediction filter enabled
if (mode >= NEARESTMV && mode < SPLITMV) {
if (cpi->common.pred_filter_mode == 2)
vp9_write(bc, mi->pred_filter_enabled,
pc->prob_pred_filter_off);
else
assert(mi->pred_filter_enabled ==
cpi->common.pred_filter_mode);
}
#endif
if (mode >= NEARESTMV && mode <= SPLITMV)
{
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
write_token(bc, vp9_switchable_interp_tree,
vp9_get_pred_probs(&cpi->common, xd,
PRED_SWITCHABLE_INTERP),
vp9_switchable_interp_encodings +
vp9_switchable_interp_map[mi->interp_filter]);
} else {
assert (mi->interp_filter ==
cpi->common.mcomp_filter_type);
}
}
// does the feature use compound prediction or not
// (if not specified at the frame/segment level)
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
vp9_write(bc, mi->second_ref_frame > INTRA_FRAME,
vp9_get_pred_prob(pc, xd, PRED_COMP));
}
#if CONFIG_COMP_INTERINTRA_PRED
if (cpi->common.use_interintra &&
mode >= NEARESTMV && mode < SPLITMV &&
mi->second_ref_frame <= INTRA_FRAME) {
vp9_write(bc, mi->second_ref_frame == INTRA_FRAME,
pc->fc.interintra_prob);
// if (!cpi->dummy_packing)
// printf("-- %d (%d)\n", mi->second_ref_frame == INTRA_FRAME,
// pc->fc.interintra_prob);
if (mi->second_ref_frame == INTRA_FRAME) {
// if (!cpi->dummy_packing)
// printf("** %d %d\n", mi->interintra_mode,
// mi->interintra_uv_mode);
write_ymode(bc, mi->interintra_mode, pc->fc.ymode_prob);
#if SEPARATE_INTERINTRA_UV
write_uv_mode(bc, mi->interintra_uv_mode,
pc->fc.uv_mode_prob[mi->interintra_mode]);
#endif
}
}
#endif
#if CONFIG_NEW_MVREF
// if ((mode == NEWMV) || (mode == SPLITMV)) {
if (mode == NEWMV) {
// Encode the index of the choice.
vp9_write_mv_ref_id(bc,
xd->mb_mv_ref_id_probs[rf], mi->best_index);
cpi->best_ref_index_counts[rf][mi->best_index]++;
if (mi->second_ref_frame > 0) {
// Encode the index of the choice.
vp9_write_mv_ref_id(
bc, xd->mb_mv_ref_id_probs[mi->second_ref_frame],
mi->best_second_index);
cpi->best_ref_index_counts[mi->second_ref_frame]
[mi->best_second_index]++;
}
}
#endif
{
switch (mode) { /* new, split require MVs */
case NEWMV:
#ifdef ENTROPY_STATS
active_section = 5;
#endif
write_nmv(bc, &mi->mv[0].as_mv, &mi->best_mv,
(const nmv_context*) nmvc,
xd->allow_high_precision_mv);
if (mi->second_ref_frame > 0) {
write_nmv(bc, &mi->mv[1].as_mv, &mi->best_second_mv,
(const nmv_context*) nmvc,
xd->allow_high_precision_mv);
}
break;
case SPLITMV: {
int j = 0;
#ifdef MODE_STATS
++count_mb_seg [mi->partitioning];
#endif
write_split(bc, mi->partitioning, cpi->common.fc.mbsplit_prob);
cpi->mbsplit_count[mi->partitioning]++;
do {
B_PREDICTION_MODE blockmode;
int_mv blockmv;
const int *const L =
vp9_mbsplits [mi->partitioning];
int k = -1; /* first block in subset j */
int mv_contz;
int_mv leftmv, abovemv;
blockmode = cpi->mb.partition_info->bmi[j].mode;
blockmv = cpi->mb.partition_info->bmi[j].mv;
#if CONFIG_DEBUG
while (j != L[++k])
if (k >= 16)
assert(0);
#else
while (j != L[++k]);
#endif
leftmv.as_int = left_block_mv(m, k);
abovemv.as_int = above_block_mv(m, k, mis);
mv_contz = vp9_mv_cont(&leftmv, &abovemv);
write_sub_mv_ref(bc, blockmode,
cpi->common.fc.sub_mv_ref_prob [mv_contz]);
cpi->sub_mv_ref_count[mv_contz][blockmode - LEFT4X4]++;
if (blockmode == NEW4X4) {
#ifdef ENTROPY_STATS
active_section = 11;
#endif
write_nmv(bc, &blockmv.as_mv, &mi->best_mv,
(const nmv_context*) nmvc,
xd->allow_high_precision_mv);
if (mi->second_ref_frame > 0) {
write_nmv(bc,
&cpi->mb.partition_info->bmi[j].second_mv.as_mv,
&mi->best_second_mv,
(const nmv_context*) nmvc,
xd->allow_high_precision_mv);
}
}
} while (++j < cpi->mb.partition_info->count);
}
break;
default:
break;
}
}
}
if (((rf == INTRA_FRAME && mode <= I8X8_PRED) ||
(rf != INTRA_FRAME && !(mode == SPLITMV &&
mi->partitioning == PARTITIONING_4X4))) &&
pc->txfm_mode == TX_MODE_SELECT &&
!((pc->mb_no_coeff_skip && skip_coeff) ||
(vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB) &&
vp9_get_segdata(xd, segment_id, SEG_LVL_EOB) == 0))) {
TX_SIZE sz = mi->txfm_size;
// FIXME(rbultje) code ternary symbol once all experiments are merged
vp9_write(bc, sz != TX_4X4, pc->prob_tx[0]);
if (sz != TX_4X4 && mode != I8X8_PRED && mode != SPLITMV) {
vp9_write(bc, sz != TX_8X8, pc->prob_tx[1]);
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
if (mi->encoded_as_sb && sz != TX_8X8)
vp9_write(bc, sz != TX_16X16, pc->prob_tx[2]);
#endif
}
}
#ifdef ENTROPY_STATS
active_section = 1;
#endif
assert(tok < tok_end);
pack_mb_tokens(bc, &tok, tok_end);
#if CONFIG_SUPERBLOCKS
if (m->mbmi.encoded_as_sb) {
assert(!i);
mb_col += 2;
m += 2;
cpi->mb.partition_info += 2;
prev_m += 2;
break;
}
#endif
// Next MB
mb_row += dy;
mb_col += dx;
m += offset_extended;
prev_m += offset_extended;
cpi->mb.partition_info += offset_extended;
#if CONFIG_DEBUG
assert((prev_m - cpi->common.prev_mip) == (m - cpi->common.mip));
assert((prev_m - cpi->common.prev_mi) == (m - cpi->common.mi));
#endif
}
}
// Next SB
mb_row += 2;
m += mis + (1 - (pc->mb_cols & 0x1));
prev_m += mis + (1 - (pc->mb_cols & 0x1));
cpi->mb.partition_info += mis + (1 - (pc->mb_cols & 0x1));
}
}
static void write_mb_modes_kf(const VP9_COMMON *c,
const MACROBLOCKD *xd,
const MODE_INFO *m,
int mode_info_stride,
vp9_writer *const bc) {
int ym;
int segment_id;
ym = m->mbmi.mode;
segment_id = m->mbmi.segment_id;
if (xd->update_mb_segmentation_map) {
write_mb_segid(bc, &m->mbmi, xd);
}
if (c->mb_no_coeff_skip &&
(!vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB) ||
(vp9_get_segdata(xd, segment_id, SEG_LVL_EOB) != 0))) {
int skip_coeff = m->mbmi.mb_skip_coeff;
#if CONFIG_SUPERBLOCKS
const int mis = mode_info_stride;
if (m->mbmi.encoded_as_sb) {
skip_coeff &= m[1].mbmi.mb_skip_coeff;
skip_coeff &= m[mis].mbmi.mb_skip_coeff;
skip_coeff &= m[mis + 1].mbmi.mb_skip_coeff;
}
#endif
vp9_write(bc, skip_coeff,
vp9_get_pred_prob(c, xd, PRED_MBSKIP));
}
#if CONFIG_SUPERBLOCKS
if (m->mbmi.encoded_as_sb) {
sb_kfwrite_ymode(bc, ym,
c->sb_kf_ymode_prob[c->kf_ymode_probs_index]);
} else
#endif
{
kfwrite_ymode(bc, ym,
c->kf_ymode_prob[c->kf_ymode_probs_index]);
}
if (ym == B_PRED) {
const int mis = c->mode_info_stride;
int i = 0;
#if CONFIG_COMP_INTRA_PRED
int uses_second =
m->bmi[0].as_mode.second !=
(B_PREDICTION_MODE)(B_DC_PRED - 1);
vp9_write(bc, uses_second, DEFAULT_COMP_INTRA_PROB);
#endif
do {
const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
const B_PREDICTION_MODE L = left_block_mode(m, i);
const int bm = m->bmi[i].as_mode.first;
#if CONFIG_COMP_INTRA_PRED
const int bm2 = m->bmi[i].as_mode.second;
#endif
#ifdef ENTROPY_STATS
++intra_mode_stats [A] [L] [bm];
#endif
write_kf_bmode(bc, bm, c->kf_bmode_prob[A][L]);
#if CONFIG_COMP_INTRA_PRED
if (uses_second) {
write_kf_bmode(bc, bm2, c->kf_bmode_prob[A][L]);
}
#endif
} while (++i < 16);
}
if (ym == I8X8_PRED) {
write_i8x8_mode(bc, m->bmi[0].as_mode.first,
c->fc.i8x8_mode_prob);
// printf(" mode: %d\n", m->bmi[0].as_mode.first); fflush(stdout);
write_i8x8_mode(bc, m->bmi[2].as_mode.first,
c->fc.i8x8_mode_prob);
// printf(" mode: %d\n", m->bmi[2].as_mode.first); fflush(stdout);
write_i8x8_mode(bc, m->bmi[8].as_mode.first,
c->fc.i8x8_mode_prob);
// printf(" mode: %d\n", m->bmi[8].as_mode.first); fflush(stdout);
write_i8x8_mode(bc, m->bmi[10].as_mode.first,
c->fc.i8x8_mode_prob);
// printf(" mode: %d\n", m->bmi[10].as_mode.first); fflush(stdout);
} else
write_uv_mode(bc, m->mbmi.uv_mode, c->kf_uv_mode_prob[ym]);
if (ym <= I8X8_PRED && c->txfm_mode == TX_MODE_SELECT &&
!((c->mb_no_coeff_skip && m->mbmi.mb_skip_coeff) ||
(vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB) &&
vp9_get_segdata(xd, segment_id, SEG_LVL_EOB) == 0))) {
TX_SIZE sz = m->mbmi.txfm_size;
// FIXME(rbultje) code ternary symbol once all experiments are merged
vp9_write(bc, sz != TX_4X4, c->prob_tx[0]);
if (sz != TX_4X4 && ym <= TM_PRED) {
vp9_write(bc, sz != TX_8X8, c->prob_tx[1]);
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
if (m->mbmi.encoded_as_sb && sz != TX_8X8)
vp9_write(bc, sz != TX_16X16, c->prob_tx[2]);
#endif
}
}
}
static void write_kfmodes(VP9_COMP* const cpi, vp9_writer* const bc) {
VP9_COMMON *const c = &cpi->common;
const int mis = c->mode_info_stride;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
MODE_INFO *m;
int i;
int row, col;
int mb_row, mb_col;
int row_delta[4] = { 0, +1, 0, -1};
int col_delta[4] = { +1, -1, +1, +1};
TOKENEXTRA *tok = cpi->tok;
TOKENEXTRA *tok_end = tok + cpi->tok_count;
mb_row = 0;
for (row = 0; row < c->mb_rows; row += 2) {
m = c->mi + row * mis;
mb_col = 0;
for (col = 0; col < c->mb_cols; col += 2) {
#if CONFIG_SUPERBLOCKS
vp9_write(bc, m->mbmi.encoded_as_sb, c->sb_coded);
#endif
// Process the 4 MBs in the order:
// top-left, top-right, bottom-left, bottom-right
for (i = 0; i < 4; i++) {
int dy = row_delta[i];
int dx = col_delta[i];
int offset_extended = dy * mis + dx;
if ((mb_row >= c->mb_rows) || (mb_col >= c->mb_cols)) {
// MB lies outside frame, move on
mb_row += dy;
mb_col += dx;
m += offset_extended;
continue;
}
// Make sure the MacroBlockD mode info pointer is set correctly
xd->mode_info_context = m;
write_mb_modes_kf(c, xd, m, mis, bc);
#ifdef ENTROPY_STATS
active_section = 8;
#endif
assert(tok < tok_end);
pack_mb_tokens(bc, &tok, tok_end);
#if CONFIG_SUPERBLOCKS
if (m->mbmi.encoded_as_sb) {
assert(!i);
mb_col += 2;
m += 2;
break;
}
#endif
// Next MB
mb_row += dy;
mb_col += dx;
m += offset_extended;
}
}
mb_row += 2;
}
}
/* This function is used for debugging probability trees. */
static void print_prob_tree(vp9_coeff_probs *coef_probs) {
/* print coef probability tree */
int i, j, k, l;
FILE *f = fopen("enc_tree_probs.txt", "a");
fprintf(f, "{\n");
for (i = 0; i < BLOCK_TYPES_4X4; i++) {
fprintf(f, " {\n");
for (j = 0; j < COEF_BANDS; j++) {
fprintf(f, " {\n");
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
fprintf(f, " {");
for (l = 0; l < ENTROPY_NODES; l++) {
fprintf(f, "%3u, ",
(unsigned int)(coef_probs [i][j][k][l]));
}
fprintf(f, " }\n");
}
fprintf(f, " }\n");
}
fprintf(f, " }\n");
}
fprintf(f, "}\n");
fclose(f);
}
static void build_tree_distribution(vp9_coeff_probs *coef_probs,
vp9_coeff_count *coef_counts,
#ifdef ENTROPY_STATS
VP9_COMP *cpi,
vp9_coeff_accum *context_counters,
#endif
vp9_coeff_stats *coef_branch_ct,
int block_types) {
int i = 0, j, k;
#ifdef ENTROPY_STATS
int t = 0;
#endif
for (i = 0; i < block_types; ++i) {
for (j = 0; j < COEF_BANDS; ++j) {
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
vp9_tree_probs_from_distribution(MAX_ENTROPY_TOKENS,
vp9_coef_encodings, vp9_coef_tree,
coef_probs[i][j][k],
coef_branch_ct[i][j][k],
coef_counts[i][j][k]);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
context_counters[i][j][k][t] += coef_counts[i][j][k][t];
#endif
}
}
}
}
static void build_coeff_contexts(VP9_COMP *cpi) {
build_tree_distribution(cpi->frame_coef_probs_4x4,
cpi->coef_counts_4x4,
#ifdef ENTROPY_STATS
cpi, context_counters_4x4,
#endif
cpi->frame_branch_ct_4x4, BLOCK_TYPES_4X4);
build_tree_distribution(cpi->frame_hybrid_coef_probs_4x4,
cpi->hybrid_coef_counts_4x4,
#ifdef ENTROPY_STATS
cpi, hybrid_context_counters_4x4,
#endif
cpi->frame_hybrid_branch_ct_4x4, BLOCK_TYPES_4X4);
build_tree_distribution(cpi->frame_coef_probs_8x8,
cpi->coef_counts_8x8,
#ifdef ENTROPY_STATS
cpi, context_counters_8x8,
#endif
cpi->frame_branch_ct_8x8, BLOCK_TYPES_8X8);
build_tree_distribution(cpi->frame_hybrid_coef_probs_8x8,
cpi->hybrid_coef_counts_8x8,
#ifdef ENTROPY_STATS
cpi, hybrid_context_counters_8x8,
#endif
cpi->frame_hybrid_branch_ct_8x8, BLOCK_TYPES_8X8);
build_tree_distribution(cpi->frame_coef_probs_16x16,
cpi->coef_counts_16x16,
#ifdef ENTROPY_STATS
cpi, context_counters_16x16,
#endif
cpi->frame_branch_ct_16x16, BLOCK_TYPES_16X16);
build_tree_distribution(cpi->frame_hybrid_coef_probs_16x16,
cpi->hybrid_coef_counts_16x16,
#ifdef ENTROPY_STATS
cpi, hybrid_context_counters_16x16,
#endif
cpi->frame_hybrid_branch_ct_16x16, BLOCK_TYPES_16X16);
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
build_tree_distribution(cpi->frame_coef_probs_32x32,
cpi->coef_counts_32x32,
#ifdef ENTROPY_STATS
cpi, context_counters_32x32,
#endif
cpi->frame_branch_ct_32x32, BLOCK_TYPES_32X32);
#endif
}
static void update_coef_probs_common(vp9_writer* const bc,
#ifdef ENTROPY_STATS
VP9_COMP *cpi,
vp9_coeff_stats *tree_update_hist,
#endif
vp9_coeff_probs *new_frame_coef_probs,
vp9_coeff_probs *old_frame_coef_probs,
vp9_coeff_stats *frame_branch_ct,
int block_types) {
int i, j, k, t;
int update[2] = {0, 0};
int savings;
// vp9_prob bestupd = find_coef_update_prob(cpi);
/* dry run to see if there is any udpate at all needed */
savings = 0;
for (i = 0; i < block_types; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
int prev_coef_savings[ENTROPY_NODES] = {0};
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
for (t = 0; t < ENTROPY_NODES; ++t) {
vp9_prob newp = new_frame_coef_probs[i][j][k][t];
const vp9_prob oldp = old_frame_coef_probs[i][j][k][t];
const vp9_prob upd = COEF_UPDATE_PROB;
int s = prev_coef_savings[t];
int u = 0;
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(
frame_branch_ct[i][j][k][t],
oldp, &newp, upd);
if (s > 0 && newp != oldp)
u = 1;
if (u)
savings += s - (int)(vp9_cost_zero(upd));
else
savings -= (int)(vp9_cost_zero(upd));
#else
s = prob_update_savings(
frame_branch_ct[i][j][k][t],
oldp, newp, upd);
if (s > 0)
u = 1;
if (u)
savings += s;
#endif
update[u]++;
}
}
}
}
// printf("Update %d %d, savings %d\n", update[0], update[1], savings);
/* Is coef updated at all */
if (update[1] == 0 || savings < 0) {
vp9_write_bit(bc, 0);
} else {
vp9_write_bit(bc, 1);
for (i = 0; i < block_types; ++i) {
for (j = !i; j < COEF_BANDS; ++j) {
int prev_coef_savings[ENTROPY_NODES] = {0};
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
// calc probs and branch cts for this frame only
for (t = 0; t < ENTROPY_NODES; ++t) {
vp9_prob newp = new_frame_coef_probs[i][j][k][t];
vp9_prob *oldp = old_frame_coef_probs[i][j][k] + t;
const vp9_prob upd = COEF_UPDATE_PROB;
int s = prev_coef_savings[t];
int u = 0;
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
continue;
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search(
frame_branch_ct[i][j][k][t],
*oldp, &newp, upd);
if (s > 0 && newp != *oldp)
u = 1;
#else
s = prob_update_savings(
frame_branch_ct[i][j][k][t],
*oldp, newp, upd);
if (s > 0)
u = 1;
#endif
vp9_write(bc, u, upd);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
++tree_update_hist[i][j][k][t][u];
#endif
if (u) {
/* send/use new probability */
write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
}
}
static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) {
vp9_clear_system_state();
// Build the cofficient contexts based on counts collected in encode loop
build_coeff_contexts(cpi);
update_coef_probs_common(bc,
#ifdef ENTROPY_STATS
cpi,
tree_update_hist_4x4,
#endif
cpi->frame_coef_probs_4x4,
cpi->common.fc.coef_probs_4x4,
cpi->frame_branch_ct_4x4,
BLOCK_TYPES_4X4);
update_coef_probs_common(bc,
#ifdef ENTROPY_STATS
cpi,
hybrid_tree_update_hist_4x4,
#endif
cpi->frame_hybrid_coef_probs_4x4,
cpi->common.fc.hybrid_coef_probs_4x4,
cpi->frame_hybrid_branch_ct_4x4,
BLOCK_TYPES_4X4);
/* do not do this if not even allowed */
if (cpi->common.txfm_mode != ONLY_4X4) {
update_coef_probs_common(bc,
#ifdef ENTROPY_STATS
cpi,
tree_update_hist_8x8,
#endif
cpi->frame_coef_probs_8x8,
cpi->common.fc.coef_probs_8x8,
cpi->frame_branch_ct_8x8,
BLOCK_TYPES_8X8);
update_coef_probs_common(bc,
#ifdef ENTROPY_STATS
cpi,
hybrid_tree_update_hist_8x8,
#endif
cpi->frame_hybrid_coef_probs_8x8,
cpi->common.fc.hybrid_coef_probs_8x8,
cpi->frame_hybrid_branch_ct_8x8,
BLOCK_TYPES_8X8);
}
if (cpi->common.txfm_mode > ALLOW_8X8) {
update_coef_probs_common(bc,
#ifdef ENTROPY_STATS
cpi,
tree_update_hist_16x16,
#endif
cpi->frame_coef_probs_16x16,
cpi->common.fc.coef_probs_16x16,
cpi->frame_branch_ct_16x16,
BLOCK_TYPES_16X16);
update_coef_probs_common(bc,
#ifdef ENTROPY_STATS
cpi,
hybrid_tree_update_hist_16x16,
#endif
cpi->frame_hybrid_coef_probs_16x16,
cpi->common.fc.hybrid_coef_probs_16x16,
cpi->frame_hybrid_branch_ct_16x16,
BLOCK_TYPES_16X16);
}
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
if (cpi->common.txfm_mode > ALLOW_16X16) {
update_coef_probs_common(bc,
#ifdef ENTROPY_STATS
cpi,
tree_update_hist_32x32,
#endif
cpi->frame_coef_probs_32x32,
cpi->common.fc.coef_probs_32x32,
cpi->frame_branch_ct_32x32,
BLOCK_TYPES_32X32);
}
#endif
}
#ifdef PACKET_TESTING
FILE *vpxlogc = 0;
#endif
static void put_delta_q(vp9_writer *bc, int delta_q) {
if (delta_q != 0) {
vp9_write_bit(bc, 1);
vp9_write_literal(bc, abs(delta_q), 4);
if (delta_q < 0)
vp9_write_bit(bc, 1);
else
vp9_write_bit(bc, 0);
} else
vp9_write_bit(bc, 0);
}
static void decide_kf_ymode_entropy(VP9_COMP *cpi) {
int mode_cost[MB_MODE_COUNT];
int cost;
int bestcost = INT_MAX;
int bestindex = 0;
int i, j;
for (i = 0; i < 8; i++) {
vp9_cost_tokens(mode_cost, cpi->common.kf_ymode_prob[i], vp9_kf_ymode_tree);
cost = 0;
for (j = 0; j < VP9_YMODES; j++) {
cost += mode_cost[j] * cpi->ymode_count[j];
}
#if CONFIG_SUPERBLOCKS
vp9_cost_tokens(mode_cost, cpi->common.sb_kf_ymode_prob[i],
vp9_sb_ymode_tree);
for (j = 0; j < VP9_I32X32_MODES; j++) {
cost += mode_cost[j] * cpi->sb_ymode_count[j];
}
#endif
if (cost < bestcost) {
bestindex = i;
bestcost = cost;
}
}
cpi->common.kf_ymode_probs_index = bestindex;
}
static void segment_reference_frames(VP9_COMP *cpi) {
VP9_COMMON *oci = &cpi->common;
MODE_INFO *mi = oci->mi;
int ref[MAX_MB_SEGMENTS] = {0};
int i, j;
int mb_index = 0;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
for (i = 0; i < oci->mb_rows; i++) {
for (j = 0; j < oci->mb_cols; j++, mb_index++) {
ref[mi[mb_index].mbmi.segment_id] |= (1 << mi[mb_index].mbmi.ref_frame);
}
mb_index++;
}
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
vp9_enable_segfeature(xd, i, SEG_LVL_REF_FRAME);
vp9_set_segdata(xd, i, SEG_LVL_REF_FRAME, ref[i]);
}
}
void vp9_pack_bitstream(VP9_COMP *cpi, unsigned char *dest,
unsigned long *size) {
int i, j;
VP9_HEADER oh;
VP9_COMMON *const pc = &cpi->common;
vp9_writer header_bc, residual_bc;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
int extra_bytes_packed = 0;
unsigned char *cx_data = dest;
oh.show_frame = (int) pc->show_frame;
oh.type = (int)pc->frame_type;
oh.version = pc->version;
oh.first_partition_length_in_bytes = 0;
cx_data += 3;
#if defined(SECTIONBITS_OUTPUT)
Sectionbits[active_section = 1] += sizeof(VP9_HEADER) * 8 * 256;
#endif
compute_update_table();
/* vp9_kf_default_bmode_probs() is called in vp9_setup_key_frame() once
* for each K frame before encode frame. pc->kf_bmode_prob doesn't get
* changed anywhere else. No need to call it again here. --yw
* vp9_kf_default_bmode_probs( pc->kf_bmode_prob);
*/
/* every keyframe send startcode, width, height, scale factor, clamp
* and color type.
*/
if (oh.type == KEY_FRAME) {
int v;
// Start / synch code
cx_data[0] = 0x9D;
cx_data[1] = 0x01;
cx_data[2] = 0x2a;
v = (pc->horiz_scale << 14) | pc->Width;
cx_data[3] = v;
cx_data[4] = v >> 8;
v = (pc->vert_scale << 14) | pc->Height;
cx_data[5] = v;
cx_data[6] = v >> 8;
extra_bytes_packed = 7;
cx_data += extra_bytes_packed;
vp9_start_encode(&header_bc, cx_data);
// signal clr type
vp9_write_bit(&header_bc, pc->clr_type);
vp9_write_bit(&header_bc, pc->clamp_type);
} else {
vp9_start_encode(&header_bc, cx_data);
}
// Signal whether or not Segmentation is enabled
vp9_write_bit(&header_bc, (xd->segmentation_enabled) ? 1 : 0);
// Indicate which features are enabled
if (xd->segmentation_enabled) {
// Indicate whether or not the segmentation map is being updated.
vp9_write_bit(&header_bc, (xd->update_mb_segmentation_map) ? 1 : 0);
// If it is, then indicate the method that will be used.
if (xd->update_mb_segmentation_map) {
// Select the coding strategy (temporal or spatial)
vp9_choose_segmap_coding_method(cpi);
// Send the tree probabilities used to decode unpredicted
// macro-block segments
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) {
int data = xd->mb_segment_tree_probs[i];
if (data != 255) {
vp9_write_bit(&header_bc, 1);
vp9_write_literal(&header_bc, data, 8);
} else {
vp9_write_bit(&header_bc, 0);
}
}
// Write out the chosen coding method.
vp9_write_bit(&header_bc, (pc->temporal_update) ? 1 : 0);
if (pc->temporal_update) {
for (i = 0; i < PREDICTION_PROBS; i++) {
int data = pc->segment_pred_probs[i];
if (data != 255) {
vp9_write_bit(&header_bc, 1);
vp9_write_literal(&header_bc, data, 8);
} else {
vp9_write_bit(&header_bc, 0);
}
}
}
}
vp9_write_bit(&header_bc, (xd->update_mb_segmentation_data) ? 1 : 0);
// segment_reference_frames(cpi);
if (xd->update_mb_segmentation_data) {
signed char Data;
vp9_write_bit(&header_bc, (xd->mb_segment_abs_delta) ? 1 : 0);
// For each segments id...
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
// For each segmentation codable feature...
for (j = 0; j < SEG_LVL_MAX; j++) {
Data = vp9_get_segdata(xd, i, j);
// If the feature is enabled...
if (vp9_segfeature_active(xd, i, j)) {
vp9_write_bit(&header_bc, 1);
// Is the segment data signed..
if (vp9_is_segfeature_signed(j)) {
// Encode the relevant feature data
if (Data < 0) {
Data = - Data;
vp9_encode_unsigned_max(&header_bc, Data,
vp9_seg_feature_data_max(j));
vp9_write_bit(&header_bc, 1);
} else {
vp9_encode_unsigned_max(&header_bc, Data,
vp9_seg_feature_data_max(j));
vp9_write_bit(&header_bc, 0);
}
}
// Unsigned data element so no sign bit needed
else
vp9_encode_unsigned_max(&header_bc, Data,
vp9_seg_feature_data_max(j));
} else
vp9_write_bit(&header_bc, 0);
}
}
}
}
// Encode the common prediction model status flag probability updates for
// the reference frame
update_refpred_stats(cpi);
if (pc->frame_type != KEY_FRAME) {
for (i = 0; i < PREDICTION_PROBS; i++) {
if (cpi->ref_pred_probs_update[i]) {
vp9_write_bit(&header_bc, 1);
vp9_write_literal(&header_bc, pc->ref_pred_probs[i], 8);
} else {
vp9_write_bit(&header_bc, 0);
}
}
}
#if CONFIG_SUPERBLOCKS
{
/* sb mode probability */
const int sb_max = (((pc->mb_rows + 1) >> 1) * ((pc->mb_cols + 1) >> 1));
pc->sb_coded = get_prob(sb_max - cpi->sb_count, sb_max);
vp9_write_literal(&header_bc, pc->sb_coded, 8);
}
#endif
{
if (pc->txfm_mode == TX_MODE_SELECT) {
pc->prob_tx[0] = get_prob(cpi->txfm_count_32x32p[TX_4X4] +
cpi->txfm_count_16x16p[TX_4X4] +
cpi->txfm_count_8x8p[TX_4X4],
cpi->txfm_count_32x32p[TX_4X4] +
cpi->txfm_count_32x32p[TX_8X8] +
cpi->txfm_count_32x32p[TX_16X16] +
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
cpi->txfm_count_32x32p[TX_32X32] +
#endif
cpi->txfm_count_16x16p[TX_4X4] +
cpi->txfm_count_16x16p[TX_8X8] +
cpi->txfm_count_16x16p[TX_16X16] +
cpi->txfm_count_8x8p[TX_4X4] +
cpi->txfm_count_8x8p[TX_8X8]);
pc->prob_tx[1] = get_prob(cpi->txfm_count_32x32p[TX_8X8] +
cpi->txfm_count_16x16p[TX_8X8],
cpi->txfm_count_32x32p[TX_8X8] +
cpi->txfm_count_32x32p[TX_16X16] +
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
cpi->txfm_count_32x32p[TX_32X32] +
#endif
cpi->txfm_count_16x16p[TX_8X8] +
cpi->txfm_count_16x16p[TX_16X16]);
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
pc->prob_tx[2] = get_prob(cpi->txfm_count_32x32p[TX_16X16],
cpi->txfm_count_32x32p[TX_16X16] +
cpi->txfm_count_32x32p[TX_32X32]);
#endif
} else {
pc->prob_tx[0] = 128;
pc->prob_tx[1] = 128;
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
pc->prob_tx[2] = 128;
#endif
}
vp9_write_literal(&header_bc, pc->txfm_mode <= 3 ? pc->txfm_mode : 3, 2);
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
if (pc->txfm_mode > ALLOW_16X16) {
vp9_write_bit(&header_bc, pc->txfm_mode == TX_MODE_SELECT);
}
#endif
if (pc->txfm_mode == TX_MODE_SELECT) {
vp9_write_literal(&header_bc, pc->prob_tx[0], 8);
vp9_write_literal(&header_bc, pc->prob_tx[1], 8);
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
vp9_write_literal(&header_bc, pc->prob_tx[2], 8);
#endif
}
}
// Encode the loop filter level and type
vp9_write_bit(&header_bc, pc->filter_type);
vp9_write_literal(&header_bc, pc->filter_level, 6);
vp9_write_literal(&header_bc, pc->sharpness_level, 3);
// Write out loop filter deltas applied at the MB level based on mode or ref frame (if they are enabled).
vp9_write_bit(&header_bc, (xd->mode_ref_lf_delta_enabled) ? 1 : 0);
if (xd->mode_ref_lf_delta_enabled) {
// Do the deltas need to be updated
int send_update = xd->mode_ref_lf_delta_update;
vp9_write_bit(&header_bc, send_update);
if (send_update) {
int Data;
// Send update
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
Data = xd->ref_lf_deltas[i];
// Frame level data
if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i]) {
xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i];
vp9_write_bit(&header_bc, 1);
if (Data > 0) {
vp9_write_literal(&header_bc, (Data & 0x3F), 6);
vp9_write_bit(&header_bc, 0); // sign
} else {
Data = -Data;
vp9_write_literal(&header_bc, (Data & 0x3F), 6);
vp9_write_bit(&header_bc, 1); // sign
}
} else {
vp9_write_bit(&header_bc, 0);
}
}
// Send update
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
Data = xd->mode_lf_deltas[i];
if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i]) {
xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i];
vp9_write_bit(&header_bc, 1);
if (Data > 0) {
vp9_write_literal(&header_bc, (Data & 0x3F), 6);
vp9_write_bit(&header_bc, 0); // sign
} else {
Data = -Data;
vp9_write_literal(&header_bc, (Data & 0x3F), 6);
vp9_write_bit(&header_bc, 1); // sign
}
} else {
vp9_write_bit(&header_bc, 0);
}
}
}
}
// signal here is multi token partition is enabled
// vp9_write_literal(&header_bc, pc->multi_token_partition, 2);
vp9_write_literal(&header_bc, 0, 2);
// Frame Q baseline quantizer index
vp9_write_literal(&header_bc, pc->base_qindex, QINDEX_BITS);
// Transmit Dc, Second order and Uv quantizer delta information
put_delta_q(&header_bc, pc->y1dc_delta_q);
put_delta_q(&header_bc, pc->y2dc_delta_q);
put_delta_q(&header_bc, pc->y2ac_delta_q);
put_delta_q(&header_bc, pc->uvdc_delta_q);
put_delta_q(&header_bc, pc->uvac_delta_q);
// When there is a key frame all reference buffers are updated using the new key frame
if (pc->frame_type != KEY_FRAME) {
// Should the GF or ARF be updated using the transmitted frame or buffer
vp9_write_bit(&header_bc, pc->refresh_golden_frame);
vp9_write_bit(&header_bc, pc->refresh_alt_ref_frame);
// For inter frames the current default behavior is that when
// cm->refresh_golden_frame is set we copy the old GF over to
// the ARF buffer. This is purely an encoder decision at present.
if (pc->refresh_golden_frame)
pc->copy_buffer_to_arf = 2;
// If not being updated from current frame should either GF or ARF be updated from another buffer
if (!pc->refresh_golden_frame)
vp9_write_literal(&header_bc, pc->copy_buffer_to_gf, 2);
if (!pc->refresh_alt_ref_frame)
vp9_write_literal(&header_bc, pc->copy_buffer_to_arf, 2);
// Indicate reference frame sign bias for Golden and ARF frames (always 0 for last frame buffer)
vp9_write_bit(&header_bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]);
vp9_write_bit(&header_bc, pc->ref_frame_sign_bias[ALTREF_FRAME]);
// Signal whether to allow high MV precision
vp9_write_bit(&header_bc, (xd->allow_high_precision_mv) ? 1 : 0);
if (pc->mcomp_filter_type == SWITCHABLE) {
/* Check to see if only one of the filters is actually used */
int count[VP9_SWITCHABLE_FILTERS];
int i, j, c = 0;
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
count[i] = 0;
for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) {
count[i] += cpi->switchable_interp_count[j][i];
}
c += (count[i] > 0);
}
if (c == 1) {
/* Only one filter is used. So set the filter at frame level */
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
if (count[i]) {
pc->mcomp_filter_type = vp9_switchable_interp[i];
break;
}
}
}
}
// Signal the type of subpel filter to use
vp9_write_bit(&header_bc, (pc->mcomp_filter_type == SWITCHABLE));
if (pc->mcomp_filter_type != SWITCHABLE)
vp9_write_literal(&header_bc, (pc->mcomp_filter_type), 2);
#if CONFIG_COMP_INTERINTRA_PRED
// printf("Counts: %d %d\n", cpi->interintra_count[0],
// cpi->interintra_count[1]);
if (!cpi->dummy_packing && pc->use_interintra)
pc->use_interintra = (cpi->interintra_count[1] > 0);
vp9_write_bit(&header_bc, pc->use_interintra);
if (!pc->use_interintra)
vp9_zero(cpi->interintra_count);
#endif
}
vp9_write_bit(&header_bc, pc->refresh_entropy_probs);
if (pc->frame_type != KEY_FRAME)
vp9_write_bit(&header_bc, pc->refresh_last_frame);
#ifdef ENTROPY_STATS
if (pc->frame_type == INTER_FRAME)
active_section = 0;
else
active_section = 7;
#endif
// If appropriate update the inter mode probability context and code the
// changes in the bitstream.
if ((pc->frame_type != KEY_FRAME)) {
int i, j;
int new_context[INTER_MODE_CONTEXTS][4];
update_mode_probs(pc, new_context);
for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
for (j = 0; j < 4; j++) {
if (new_context[i][j] != pc->fc.vp9_mode_contexts[i][j]) {
vp9_write(&header_bc, 1, 252);
vp9_write_literal(&header_bc, new_context[i][j], 8);
// Only update the persistent copy if this is the "real pack"
if (!cpi->dummy_packing) {
pc->fc.vp9_mode_contexts[i][j] = new_context[i][j];
}
} else {
vp9_write(&header_bc, 0, 252);
}
}
}
}
vp9_clear_system_state(); // __asm emms;
vp9_copy(cpi->common.fc.pre_coef_probs_4x4,
cpi->common.fc.coef_probs_4x4);
vp9_copy(cpi->common.fc.pre_hybrid_coef_probs_4x4,
cpi->common.fc.hybrid_coef_probs_4x4);
vp9_copy(cpi->common.fc.pre_coef_probs_8x8,
cpi->common.fc.coef_probs_8x8);
vp9_copy(cpi->common.fc.pre_hybrid_coef_probs_8x8,
cpi->common.fc.hybrid_coef_probs_8x8);
vp9_copy(cpi->common.fc.pre_coef_probs_16x16,
cpi->common.fc.coef_probs_16x16);
vp9_copy(cpi->common.fc.pre_hybrid_coef_probs_16x16,
cpi->common.fc.hybrid_coef_probs_16x16);
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
vp9_copy(cpi->common.fc.pre_coef_probs_32x32,
cpi->common.fc.coef_probs_32x32);
#endif
#if CONFIG_SUPERBLOCKS
vp9_copy(cpi->common.fc.pre_sb_ymode_prob, cpi->common.fc.sb_ymode_prob);
#endif
vp9_copy(cpi->common.fc.pre_ymode_prob, cpi->common.fc.ymode_prob);
vp9_copy(cpi->common.fc.pre_uv_mode_prob, cpi->common.fc.uv_mode_prob);
vp9_copy(cpi->common.fc.pre_bmode_prob, cpi->common.fc.bmode_prob);
vp9_copy(cpi->common.fc.pre_sub_mv_ref_prob, cpi->common.fc.sub_mv_ref_prob);
vp9_copy(cpi->common.fc.pre_mbsplit_prob, cpi->common.fc.mbsplit_prob);
vp9_copy(cpi->common.fc.pre_i8x8_mode_prob, cpi->common.fc.i8x8_mode_prob);
cpi->common.fc.pre_nmvc = cpi->common.fc.nmvc;
#if CONFIG_COMP_INTERINTRA_PRED
cpi->common.fc.pre_interintra_prob = cpi->common.fc.interintra_prob;
#endif
vp9_zero(cpi->sub_mv_ref_count);
vp9_zero(cpi->mbsplit_count);
vp9_zero(cpi->common.fc.mv_ref_ct)
update_coef_probs(cpi, &header_bc);
#ifdef ENTROPY_STATS
active_section = 2;
#endif
// Write out the mb_no_coeff_skip flag
vp9_write_bit(&header_bc, pc->mb_no_coeff_skip);
if (pc->mb_no_coeff_skip) {
int k;
vp9_update_skip_probs(cpi);
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
vp9_write_literal(&header_bc, pc->mbskip_pred_probs[k], 8);
}
if (pc->frame_type == KEY_FRAME) {
if (!pc->kf_ymode_probs_update) {
vp9_write_literal(&header_bc, pc->kf_ymode_probs_index, 3);
}
} else {
// Update the probabilities used to encode reference frame data
update_ref_probs(cpi);
#ifdef ENTROPY_STATS
active_section = 1;
#endif
#if CONFIG_PRED_FILTER
// Write the prediction filter mode used for this frame
vp9_write_literal(&header_bc, pc->pred_filter_mode, 2);
// Write prediction filter on/off probability if signaling at MB level
if (pc->pred_filter_mode == 2)
vp9_write_literal(&header_bc, pc->prob_pred_filter_off, 8);
#endif
if (pc->mcomp_filter_type == SWITCHABLE)
update_switchable_interp_probs(cpi, &header_bc);
#if CONFIG_COMP_INTERINTRA_PRED
if (pc->use_interintra) {
vp9_cond_prob_update(&header_bc,
&pc->fc.interintra_prob,
VP9_UPD_INTERINTRA_PROB,
cpi->interintra_count);
}
#endif
vp9_write_literal(&header_bc, pc->prob_intra_coded, 8);
vp9_write_literal(&header_bc, pc->prob_last_coded, 8);
vp9_write_literal(&header_bc, pc->prob_gf_coded, 8);
{
const int comp_pred_mode = cpi->common.comp_pred_mode;
const int use_compound_pred = (comp_pred_mode != SINGLE_PREDICTION_ONLY);
const int use_hybrid_pred = (comp_pred_mode == HYBRID_PREDICTION);
vp9_write(&header_bc, use_compound_pred, 128);
if (use_compound_pred) {
vp9_write(&header_bc, use_hybrid_pred, 128);
if (use_hybrid_pred) {
for (i = 0; i < COMP_PRED_CONTEXTS; i++) {
pc->prob_comppred[i] = get_binary_prob(cpi->single_pred_count[i],
cpi->comp_pred_count[i]);
vp9_write_literal(&header_bc, pc->prob_comppred[i], 8);
}
}
}
}
update_mbintra_mode_probs(cpi, &header_bc);
vp9_write_nmv_probs(cpi, xd->allow_high_precision_mv, &header_bc);
}
vp9_stop_encode(&header_bc);
oh.first_partition_length_in_bytes = header_bc.pos;
/* update frame tag */
{
int v = (oh.first_partition_length_in_bytes << 5) |
(oh.show_frame << 4) |
(oh.version << 1) |
oh.type;
dest[0] = v;
dest[1] = v >> 8;
dest[2] = v >> 16;
}
*size = VP9_HEADER_SIZE + extra_bytes_packed + header_bc.pos;
vp9_start_encode(&residual_bc, cx_data + header_bc.pos);
if (pc->frame_type == KEY_FRAME) {
decide_kf_ymode_entropy(cpi);
write_kfmodes(cpi, &residual_bc);
} else {
/* This is not required if the counts in cpi are consistent with the
* final packing pass */
// if (!cpi->dummy_packing) vp9_zero(cpi->NMVcount);
pack_inter_mode_mvs(cpi, &residual_bc);
vp9_update_mode_context(&cpi->common);
}
vp9_stop_encode(&residual_bc);
*size += residual_bc.pos;
}
#ifdef ENTROPY_STATS
static void print_tree_update_for_type(FILE *f,
vp9_coeff_stats *tree_update_hist,
int block_types, const char *header) {
int i, j, k, l;
fprintf(f, "const vp9_coeff_prob %s = {\n", header);
for (i = 0; i < block_types; i++) {
fprintf(f, " { \n");
for (j = 0; j < COEF_BANDS; j++) {
fprintf(f, " {\n");
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
fprintf(f, " {");
for (l = 0; l < ENTROPY_NODES; l++) {
fprintf(f, "%3d, ",
get_binary_prob(tree_update_hist[i][j][k][l][0],
tree_update_hist[i][j][k][l][1]));
}
fprintf(f, "},\n");
}
fprintf(f, " },\n");
}
fprintf(f, " },\n");
}
fprintf(f, "};\n");
}
void print_tree_update_probs() {
FILE *f = fopen("coefupdprob.h", "w");
fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
print_tree_update_for_type(f, tree_update_hist_4x4, BLOCK_TYPES_4X4,
"vp9_coef_update_probs_4x4[BLOCK_TYPES_4X4]");
print_tree_update_for_type(f, hybrid_tree_update_hist_4x4, BLOCK_TYPES_4X4,
"vp9_coef_update_probs_4x4[BLOCK_TYPES_4X4]");
print_tree_update_for_type(f, tree_update_hist_8x8, BLOCK_TYPES_8X8,
"vp9_coef_update_probs_8x8[BLOCK_TYPES_8X8]");
print_tree_update_for_type(f, hybrid_tree_update_hist_8x8, BLOCK_TYPES_8X8,
"vp9_coef_update_probs_8x8[BLOCK_TYPES_8X8]");
print_tree_update_for_type(f, tree_update_hist_16x16, BLOCK_TYPES_16X16,
"vp9_coef_update_probs_16x16[BLOCK_TYPES_16X16]");
print_tree_update_for_type(f, hybrid_tree_update_hist_16x16,
BLOCK_TYPES_16X16,
"vp9_coef_update_probs_16x16[BLOCK_TYPES_16X16]");
#if CONFIG_TX32X32
print_tree_update_for_type(f, tree_update_hist_32x32, BLOCK_TYPES_32X32,
"vp9_coef_update_probs_32x32[BLOCK_TYPES_32X32]");
#endif
fclose(f);
f = fopen("treeupdate.bin", "wb");
fwrite(tree_update_hist_4x4, sizeof(tree_update_hist_4x4), 1, f);
fwrite(tree_update_hist_8x8, sizeof(tree_update_hist_8x8), 1, f);
fwrite(tree_update_hist_16x16, sizeof(tree_update_hist_16x16), 1, f);
fclose(f);
}
#endif