vpx/vp9/encoder/vp9_encodeframe.c

2505 lines
86 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./vp9_rtcd.h"
#include "./vpx_config.h"
#include "vpx_ports/vpx_timer.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_encodeintra.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_tokenize.h"
#define DBG_PRNT_SEGMAP 0
static const TX_SIZE tx_mode_to_biggest_tx_size[TX_MODES] = {
TX_4X4, // ONLY_4X4
TX_8X8, // ONLY_8X8
TX_16X16, // ONLY_16X16
TX_32X32, // ONLY_32X32
TX_32X32, // TX_MODE_SELECT
};
// #define ENC_DEBUG
#ifdef ENC_DEBUG
int enc_debug = 0;
#endif
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
int mi_row, int mi_col, BLOCK_SIZE bsize);
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x);
/* activity_avg must be positive, or flat regions could get a zero weight
* (infinite lambda), which confounds analysis.
* This also avoids the need for divide by zero checks in
* vp9_activity_masking().
*/
#define ACTIVITY_AVG_MIN (64)
/* Motion vector component magnitude threshold for defining fast motion. */
#define FAST_MOTION_MV_THRESH (24)
/* This is used as a reference when computing the source variance for the
* purposes of activity masking.
* Eventually this should be replaced by custom no-reference routines,
* which will be faster.
*/
static const uint8_t VP9_VAR_OFFS[64] = {
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128
};
static unsigned int get_sby_perpixel_variance(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bs) {
unsigned int var, sse;
var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf,
x->plane[0].src.stride,
VP9_VAR_OFFS, 0, &sse);
return (var + (1 << (num_pels_log2_lookup[bs] - 1))) >>
num_pels_log2_lookup[bs];
}
// Original activity measure from Tim T's code.
static unsigned int tt_activity_measure(MACROBLOCK *x) {
unsigned int act;
unsigned int sse;
/* TODO: This could also be done over smaller areas (8x8), but that would
* require extensive changes elsewhere, as lambda is assumed to be fixed
* over an entire MB in most of the code.
* Another option is to compute four 8x8 variances, and pick a single
* lambda using a non-linear combination (e.g., the smallest, or second
* smallest, etc.).
*/
act = vp9_variance16x16(x->plane[0].src.buf, x->plane[0].src.stride,
VP9_VAR_OFFS, 0, &sse);
act <<= 4;
/* If the region is flat, lower the activity some more. */
if (act < 8 << 12)
act = act < 5 << 12 ? act : 5 << 12;
return act;
}
// Stub for alternative experimental activity measures.
static unsigned int alt_activity_measure(MACROBLOCK *x, int use_dc_pred) {
return vp9_encode_intra(x, use_dc_pred);
}
DECLARE_ALIGNED(16, static const uint8_t, vp9_64x64_zeros[64*64]) = {0};
// Measure the activity of the current macroblock
// What we measure here is TBD so abstracted to this function
#define ALT_ACT_MEASURE 1
static unsigned int mb_activity_measure(MACROBLOCK *x, int mb_row, int mb_col) {
unsigned int mb_activity;
if (ALT_ACT_MEASURE) {
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
// Or use and alternative.
mb_activity = alt_activity_measure(x, use_dc_pred);
} else {
// Original activity measure from Tim T's code.
mb_activity = tt_activity_measure(x);
}
if (mb_activity < ACTIVITY_AVG_MIN)
mb_activity = ACTIVITY_AVG_MIN;
return mb_activity;
}
// Calculate an "average" mb activity value for the frame
#define ACT_MEDIAN 0
static void calc_av_activity(VP9_COMP *cpi, int64_t activity_sum) {
#if ACT_MEDIAN
// Find median: Simple n^2 algorithm for experimentation
{
unsigned int median;
unsigned int i, j;
unsigned int *sortlist;
unsigned int tmp;
// Create a list to sort to
CHECK_MEM_ERROR(&cpi->common, sortlist, vpx_calloc(sizeof(unsigned int),
cpi->common.MBs));
// Copy map to sort list
vpx_memcpy(sortlist, cpi->mb_activity_map,
sizeof(unsigned int) * cpi->common.MBs);
// Ripple each value down to its correct position
for (i = 1; i < cpi->common.MBs; i ++) {
for (j = i; j > 0; j --) {
if (sortlist[j] < sortlist[j - 1]) {
// Swap values
tmp = sortlist[j - 1];
sortlist[j - 1] = sortlist[j];
sortlist[j] = tmp;
} else
break;
}
}
// Even number MBs so estimate median as mean of two either side.
median = (1 + sortlist[cpi->common.MBs >> 1] +
sortlist[(cpi->common.MBs >> 1) + 1]) >> 1;
cpi->activity_avg = median;
vpx_free(sortlist);
}
#else
// Simple mean for now
cpi->activity_avg = (unsigned int) (activity_sum / cpi->common.MBs);
#endif // ACT_MEDIAN
if (cpi->activity_avg < ACTIVITY_AVG_MIN)
cpi->activity_avg = ACTIVITY_AVG_MIN;
// Experimental code: return fixed value normalized for several clips
if (ALT_ACT_MEASURE)
cpi->activity_avg = 100000;
}
#define USE_ACT_INDEX 0
#define OUTPUT_NORM_ACT_STATS 0
#if USE_ACT_INDEX
// Calculate an activity index for each mb
static void calc_activity_index(VP9_COMP *cpi, MACROBLOCK *x) {
VP9_COMMON *const cm = &cpi->common;
int mb_row, mb_col;
int64_t act;
int64_t a;
int64_t b;
#if OUTPUT_NORM_ACT_STATS
FILE *f = fopen("norm_act.stt", "a");
fprintf(f, "\n%12d\n", cpi->activity_avg);
#endif
// Reset pointers to start of activity map
x->mb_activity_ptr = cpi->mb_activity_map;
// Calculate normalized mb activity number.
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
// Read activity from the map
act = *(x->mb_activity_ptr);
// Calculate a normalized activity number
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (b >= a)
*(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1;
else
*(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b);
#if OUTPUT_NORM_ACT_STATS
fprintf(f, " %6d", *(x->mb_activity_ptr));
#endif
// Increment activity map pointers
x->mb_activity_ptr++;
}
#if OUTPUT_NORM_ACT_STATS
fprintf(f, "\n");
#endif
}
#if OUTPUT_NORM_ACT_STATS
fclose(f);
#endif
}
#endif // USE_ACT_INDEX
// Loop through all MBs. Note activity of each, average activity and
// calculate a normalized activity for each
static void build_activity_map(VP9_COMP *cpi) {
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD *xd = &x->e_mbd;
VP9_COMMON * const cm = &cpi->common;
#if ALT_ACT_MEASURE
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
int recon_yoffset;
int recon_y_stride = new_yv12->y_stride;
#endif
int mb_row, mb_col;
unsigned int mb_activity;
int64_t activity_sum = 0;
x->mb_activity_ptr = cpi->mb_activity_map;
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
#if ALT_ACT_MEASURE
// reset above block coeffs
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
#endif
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
#if ALT_ACT_MEASURE
xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
xd->left_available = (mb_col != 0);
recon_yoffset += 16;
#endif
// measure activity
mb_activity = mb_activity_measure(x, mb_row, mb_col);
// Keep frame sum
activity_sum += mb_activity;
// Store MB level activity details.
*x->mb_activity_ptr = mb_activity;
// Increment activity map pointer
x->mb_activity_ptr++;
// adjust to the next column of source macroblocks
x->plane[0].src.buf += 16;
}
// adjust to the next row of mbs
x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
}
// Calculate an "average" MB activity
calc_av_activity(cpi, activity_sum);
#if USE_ACT_INDEX
// Calculate an activity index number of each mb
calc_activity_index(cpi, x);
#endif
}
// Macroblock activity masking
void vp9_activity_masking(VP9_COMP *cpi, MACROBLOCK *x) {
#if USE_ACT_INDEX
x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2);
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
x->errorperbit += (x->errorperbit == 0);
#else
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + (2 * cpi->activity_avg);
b = (2 * act) + cpi->activity_avg;
x->rdmult = (unsigned int) (((int64_t) x->rdmult * b + (a >> 1)) / a);
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
x->errorperbit += (x->errorperbit == 0);
#endif
// Activity based Zbin adjustment
adjust_act_zbin(cpi, x);
}
static void update_state(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
BLOCK_SIZE bsize, int output_enabled) {
int i, x_idx, y;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi = &ctx->mic;
MB_MODE_INFO * const mbmi = &xd->this_mi->mbmi;
MODE_INFO *mi_addr = xd->this_mi;
int mb_mode_index = ctx->best_mode_index;
const int mis = cm->mode_info_stride;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
assert(mi->mbmi.mode < MB_MODE_COUNT);
assert(mi->mbmi.ref_frame[0] < MAX_REF_FRAMES);
assert(mi->mbmi.ref_frame[1] < MAX_REF_FRAMES);
assert(mi->mbmi.sb_type == bsize);
*mi_addr = *mi;
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < mi_height; y++)
for (x_idx = 0; x_idx < mi_width; x_idx++)
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx
&& (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y)
xd->mi_8x8[x_idx + y * mis] = mi_addr;
// FIXME(rbultje) I'm pretty sure this should go to the end of this block
// (i.e. after the output_enabled)
if (bsize < BLOCK_32X32) {
if (bsize < BLOCK_16X16)
ctx->tx_rd_diff[ALLOW_16X16] = ctx->tx_rd_diff[ALLOW_8X8];
ctx->tx_rd_diff[ALLOW_32X32] = ctx->tx_rd_diff[ALLOW_16X16];
}
if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
*x->partition_info = ctx->partition_info;
mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
}
x->skip = ctx->skip;
vpx_memcpy(x->zcoeff_blk[mbmi->tx_size], ctx->zcoeff_blk,
sizeof(ctx->zcoeff_blk));
if (!output_enabled)
return;
if (!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
for (i = 0; i < TX_MODES; i++)
cpi->rd_tx_select_diff[i] += ctx->tx_rd_diff[i];
}
if (cm->frame_type == KEY_FRAME) {
// Restore the coding modes to that held in the coding context
// if (mb_mode == I4X4_PRED)
// for (i = 0; i < 16; i++)
// {
// xd->block[i].bmi.as_mode =
// xd->mode_info_context->bmi[i].as_mode;
// assert(xd->mode_info_context->bmi[i].as_mode < MB_MODE_COUNT);
// }
#if CONFIG_INTERNAL_STATS
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/,
THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/,
THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D117_PRED /*D117_PRED*/,
THR_D153_PRED /*D153_PRED*/,
THR_D207_PRED /*D207_PRED*/,
THR_D63_PRED /*D63_PRED*/,
THR_TM /*TM_PRED*/,
};
cpi->mode_chosen_counts[kf_mode_index[mi->mbmi.mode]]++;
#endif
} else {
// Note how often each mode chosen as best
cpi->mode_chosen_counts[mb_mode_index]++;
if (is_inter_block(mbmi)
&& (mbmi->sb_type < BLOCK_8X8 || mbmi->mode == NEWMV)) {
int_mv best_mv[2];
const MV_REFERENCE_FRAME rf1 = mbmi->ref_frame[0];
const MV_REFERENCE_FRAME rf2 = mbmi->ref_frame[1];
best_mv[0].as_int = ctx->best_ref_mv.as_int;
best_mv[1].as_int = ctx->second_best_ref_mv.as_int;
if (mbmi->mode == NEWMV) {
best_mv[0].as_int = mbmi->ref_mvs[rf1][0].as_int;
if (rf2 > 0)
best_mv[1].as_int = mbmi->ref_mvs[rf2][0].as_int;
}
mbmi->best_mv[0].as_int = best_mv[0].as_int;
mbmi->best_mv[1].as_int = best_mv[1].as_int;
vp9_update_mv_count(cpi, x, best_mv);
}
if (cm->mcomp_filter_type == SWITCHABLE && is_inter_mode(mbmi->mode)) {
const int ctx = vp9_get_pred_context_switchable_interp(xd);
++cm->counts.switchable_interp[ctx][mbmi->interp_filter];
}
cpi->rd_comp_pred_diff[SINGLE_PREDICTION_ONLY] += ctx->single_pred_diff;
cpi->rd_comp_pred_diff[COMP_PREDICTION_ONLY] += ctx->comp_pred_diff;
cpi->rd_comp_pred_diff[HYBRID_PREDICTION] += ctx->hybrid_pred_diff;
for (i = 0; i <= SWITCHABLE_FILTERS; i++)
cpi->rd_filter_diff[i] += ctx->best_filter_diff[i];
}
}
void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col) {
uint8_t *const buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer,
src->alpha_buffer};
const int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride,
src->alpha_stride};
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
NULL, x->e_mbd.plane[i].subsampling_x,
x->e_mbd.plane[i].subsampling_y);
}
static void set_offsets(VP9_COMP *cpi, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
const int dst_fb_idx = cm->new_fb_idx;
const int idx_str = xd->mode_info_stride * mi_row + mi_col;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
const int mb_row = mi_row >> 1;
const int mb_col = mi_col >> 1;
const int idx_map = mb_row * cm->mb_cols + mb_col;
const struct segmentation *const seg = &cm->seg;
set_skip_context(cm, xd, mi_row, mi_col);
set_partition_seg_context(cm, xd, mi_row, mi_col);
// Activity map pointer
x->mb_activity_ptr = &cpi->mb_activity_map[idx_map];
x->active_ptr = cpi->active_map + idx_map;
/* pointers to mode info contexts */
x->partition_info = x->pi + idx_str;
xd->mi_8x8 = cm->mi_grid_visible + idx_str;
xd->prev_mi_8x8 = cm->prev_mi_grid_visible + idx_str;
// Special case: if prev_mi is NULL, the previous mode info context
// cannot be used.
xd->last_mi = cm->prev_mi ? xd->prev_mi_8x8[0] : NULL;
xd->this_mi = xd->mi_8x8[0] = cm->mi + idx_str;
mbmi = &xd->this_mi->mbmi;
// Set up destination pointers
setup_dst_planes(xd, &cm->yv12_fb[dst_fb_idx], mi_row, mi_col);
// Set up limit values for MV components
// mv beyond the range do not produce new/different prediction block
x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
// Set up distance of MB to edge of frame in 1/8th pel units
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
set_mi_row_col(cm, xd, mi_row, mi_height, mi_col, mi_width);
/* set up source buffers */
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
/* R/D setup */
x->rddiv = cpi->RDDIV;
x->rdmult = cpi->RDMULT;
/* segment ID */
if (seg->enabled) {
uint8_t *map = seg->update_map ? cpi->segmentation_map
: cm->last_frame_seg_map;
mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
vp9_mb_init_quantizer(cpi, x);
if (seg->enabled && cpi->seg0_cnt > 0
&& !vp9_segfeature_active(seg, 0, SEG_LVL_REF_FRAME)
&& vp9_segfeature_active(seg, 1, SEG_LVL_REF_FRAME)) {
cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt;
} else {
const int y = mb_row & ~3;
const int x = mb_col & ~3;
const int p16 = ((mb_row & 1) << 1) + (mb_col & 1);
const int p32 = ((mb_row & 2) << 2) + ((mb_col & 2) << 1);
const int tile_progress = cm->cur_tile_mi_col_start * cm->mb_rows >> 1;
const int mb_cols = (cm->cur_tile_mi_col_end - cm->cur_tile_mi_col_start)
>> 1;
cpi->seg0_progress = ((y * mb_cols + x * 4 + p32 + p16 + tile_progress)
<< 16) / cm->MBs;
}
x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id];
} else {
mbmi->segment_id = 0;
x->encode_breakout = cpi->oxcf.encode_breakout;
}
}
static void pick_sb_modes(VP9_COMP *cpi, int mi_row, int mi_col,
int *totalrate, int64_t *totaldist,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
// Use the lower precision, but faster, 32x32 fdct for mode selection.
x->use_lp32x32fdct = 1;
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
if (xd->ab_index != 0) {
*totalrate = 0;
*totaldist = 0;
return;
}
}
set_offsets(cpi, mi_row, mi_col, bsize);
xd->this_mi->mbmi.sb_type = bsize;
// Set to zero to make sure we do not use the previous encoded frame stats
xd->this_mi->mbmi.skip_coeff = 0;
x->source_variance = get_sby_perpixel_variance(cpi, x, bsize);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM)
vp9_activity_masking(cpi, x);
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (cm->frame_type == KEY_FRAME) {
vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx,
best_rd);
} else {
if (bsize >= BLOCK_8X8)
vp9_rd_pick_inter_mode_sb(cpi, x, mi_row, mi_col, totalrate, totaldist,
bsize, ctx, best_rd);
else
vp9_rd_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, totalrate,
totaldist, bsize, ctx, best_rd);
}
}
static void update_stats(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi = xd->this_mi;
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (cm->frame_type != KEY_FRAME) {
const int seg_ref_active = vp9_segfeature_active(&cm->seg, mbmi->segment_id,
SEG_LVL_REF_FRAME);
if (!seg_ref_active)
cpi->intra_inter_count[vp9_get_pred_context_intra_inter(xd)]
[is_inter_block(mbmi)]++;
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (is_inter_block(mbmi) && !seg_ref_active) {
if (cm->comp_pred_mode == HYBRID_PREDICTION)
cpi->comp_inter_count[vp9_get_pred_context_comp_inter_inter(cm, xd)]
[has_second_ref(mbmi)]++;
if (has_second_ref(mbmi)) {
cpi->comp_ref_count[vp9_get_pred_context_comp_ref_p(cm, xd)]
[mbmi->ref_frame[0] == GOLDEN_FRAME]++;
} else {
cpi->single_ref_count[vp9_get_pred_context_single_ref_p1(xd)][0]
[mbmi->ref_frame[0] != LAST_FRAME]++;
if (mbmi->ref_frame[0] != LAST_FRAME)
cpi->single_ref_count[vp9_get_pred_context_single_ref_p2(xd)][1]
[mbmi->ref_frame[0] != GOLDEN_FRAME]++;
}
}
// Count of last ref frame 0,0 usage
if (mbmi->mode == ZEROMV && mbmi->ref_frame[0] == LAST_FRAME)
cpi->inter_zz_count++;
}
}
// TODO(jingning): the variables used here are little complicated. need further
// refactoring on organizing the temporary buffers, when recursive
// partition down to 4x4 block size is enabled.
static PICK_MODE_CONTEXT *get_block_context(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
switch (bsize) {
case BLOCK_64X64:
return &x->sb64_context;
case BLOCK_64X32:
return &x->sb64x32_context[xd->sb_index];
case BLOCK_32X64:
return &x->sb32x64_context[xd->sb_index];
case BLOCK_32X32:
return &x->sb32_context[xd->sb_index];
case BLOCK_32X16:
return &x->sb32x16_context[xd->sb_index][xd->mb_index];
case BLOCK_16X32:
return &x->sb16x32_context[xd->sb_index][xd->mb_index];
case BLOCK_16X16:
return &x->mb_context[xd->sb_index][xd->mb_index];
case BLOCK_16X8:
return &x->sb16x8_context[xd->sb_index][xd->mb_index][xd->b_index];
case BLOCK_8X16:
return &x->sb8x16_context[xd->sb_index][xd->mb_index][xd->b_index];
case BLOCK_8X8:
return &x->sb8x8_context[xd->sb_index][xd->mb_index][xd->b_index];
case BLOCK_8X4:
return &x->sb8x4_context[xd->sb_index][xd->mb_index][xd->b_index];
case BLOCK_4X8:
return &x->sb4x8_context[xd->sb_index][xd->mb_index][xd->b_index];
case BLOCK_4X4:
return &x->ab4x4_context[xd->sb_index][xd->mb_index][xd->b_index];
default:
assert(0);
return NULL ;
}
}
static BLOCK_SIZE *get_sb_partitioning(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
switch (bsize) {
case BLOCK_64X64:
return &x->sb64_partitioning;
case BLOCK_32X32:
return &x->sb_partitioning[xd->sb_index];
case BLOCK_16X16:
return &x->mb_partitioning[xd->sb_index][xd->mb_index];
case BLOCK_8X8:
return &x->b_partitioning[xd->sb_index][xd->mb_index][xd->b_index];
default:
assert(0);
return NULL ;
}
}
static void restore_context(VP9_COMP *cpi, int mi_row, int mi_col,
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int mi_width = num_8x8_blocks_wide_lookup[bsize];
int mi_height = num_8x8_blocks_high_lookup[bsize];
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(
cm->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
a + num_4x4_blocks_wide * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
vpx_memcpy(
cm->left_context[p]
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
l + num_4x4_blocks_high * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
vpx_memcpy(cm->above_seg_context + mi_col, sa,
sizeof(PARTITION_CONTEXT) * mi_width);
vpx_memcpy(cm->left_seg_context + (mi_row & MI_MASK), sl,
sizeof(PARTITION_CONTEXT) * mi_height);
}
static void save_context(VP9_COMP *cpi, int mi_row, int mi_col,
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
BLOCK_SIZE bsize) {
const VP9_COMMON *const cm = &cpi->common;
const MACROBLOCK *const x = &cpi->mb;
const MACROBLOCKD *const xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int mi_width = num_8x8_blocks_wide_lookup[bsize];
int mi_height = num_8x8_blocks_high_lookup[bsize];
// buffer the above/left context information of the block in search.
for (p = 0; p < MAX_MB_PLANE; ++p) {
vpx_memcpy(
a + num_4x4_blocks_wide * p,
cm->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
vpx_memcpy(
l + num_4x4_blocks_high * p,
cm->left_context[p]
+ ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
vpx_memcpy(sa, cm->above_seg_context + mi_col,
sizeof(PARTITION_CONTEXT) * mi_width);
vpx_memcpy(sl, cm->left_seg_context + (mi_row & MI_MASK),
sizeof(PARTITION_CONTEXT) * mi_height);
}
static void encode_b(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize, int sub_index) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD * const xd = &x->e_mbd;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
if (sub_index != -1)
*get_sb_index(xd, bsize) = sub_index;
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
if (xd->ab_index > 0)
return;
}
set_offsets(cpi, mi_row, mi_col, bsize);
update_state(cpi, get_block_context(x, bsize), bsize, output_enabled);
encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize);
if (output_enabled) {
update_stats(cpi);
(*tp)->token = EOSB_TOKEN;
(*tp)++;
}
}
static void encode_sb(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD * const xd = &x->e_mbd;
BLOCK_SIZE c1 = BLOCK_8X8;
const int bsl = b_width_log2(bsize), bs = (1 << bsl) / 4;
int pl = 0;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
int i;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
c1 = BLOCK_4X4;
if (bsize >= BLOCK_8X8) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
c1 = *(get_sb_partitioning(x, bsize));
}
partition = partition_lookup[bsl][c1];
switch (partition) {
case PARTITION_NONE:
if (output_enabled && bsize >= BLOCK_8X8)
cpi->partition_count[pl][PARTITION_NONE]++;
encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, -1);
break;
case PARTITION_VERT:
if (output_enabled)
cpi->partition_count[pl][PARTITION_VERT]++;
encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0);
encode_b(cpi, tp, mi_row, mi_col + bs, output_enabled, c1, 1);
break;
case PARTITION_HORZ:
if (output_enabled)
cpi->partition_count[pl][PARTITION_HORZ]++;
encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0);
encode_b(cpi, tp, mi_row + bs, mi_col, output_enabled, c1, 1);
break;
case PARTITION_SPLIT:
subsize = get_subsize(bsize, PARTITION_SPLIT);
if (output_enabled)
cpi->partition_count[pl][PARTITION_SPLIT]++;
for (i = 0; i < 4; i++) {
const int x_idx = i & 1, y_idx = i >> 1;
*get_sb_index(xd, subsize) = i;
encode_sb(cpi, tp, mi_row + y_idx * bs, mi_col + x_idx * bs,
output_enabled, subsize);
}
break;
default:
assert(0);
break;
}
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
update_partition_context(xd, c1, bsize);
}
}
// Check to see if the given partition size is allowed for a specified number
// of 8x8 block rows and columns remaining in the image.
// If not then return the largest allowed partition size
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
int rows_left, int cols_left,
int *bh, int *bw) {
if ((rows_left <= 0) || (cols_left <= 0)) {
return MIN(bsize, BLOCK_8X8);
} else {
for (; bsize > 0; --bsize) {
*bh = num_8x8_blocks_high_lookup[bsize];
*bw = num_8x8_blocks_wide_lookup[bsize];
if ((*bh <= rows_left) && (*bw <= cols_left)) {
break;
}
}
}
return bsize;
}
// This function attempts to set all mode info entries in a given SB64
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
static void set_partitioning(VP9_COMP *cpi, MODE_INFO **mi_8x8,
int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
BLOCK_SIZE bsize = cpi->sf.always_this_block_size;
const int mis = cm->mode_info_stride;
int row8x8_remaining = cm->cur_tile_mi_row_end - mi_row;
int col8x8_remaining = cm->cur_tile_mi_col_end - mi_col;
int block_row, block_col;
MODE_INFO * mi_upper_left = cm->mi + mi_row * mis + mi_col;
int bh = num_8x8_blocks_high_lookup[bsize];
int bw = num_8x8_blocks_wide_lookup[bsize];
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
// Apply the requested partition size to the SB64 if it is all "in image"
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
(row8x8_remaining >= MI_BLOCK_SIZE)) {
for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
int index = block_row * mis + block_col;
mi_8x8[index] = mi_upper_left + index;
mi_8x8[index]->mbmi.sb_type = bsize;
}
}
} else {
// Else this is a partial SB64.
for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
int index = block_row * mis + block_col;
// Find a partition size that fits
bsize = find_partition_size(cpi->sf.always_this_block_size,
(row8x8_remaining - block_row),
(col8x8_remaining - block_col), &bh, &bw);
mi_8x8[index] = mi_upper_left + index;
mi_8x8[index]->mbmi.sb_type = bsize;
}
}
}
}
static void copy_partitioning(VP9_COMP *cpi, MODE_INFO **mi_8x8,
MODE_INFO **prev_mi_8x8) {
VP9_COMMON *const cm = &cpi->common;
const int mis = cm->mode_info_stride;
int block_row, block_col;
for (block_row = 0; block_row < 8; ++block_row) {
for (block_col = 0; block_col < 8; ++block_col) {
MODE_INFO * prev_mi = prev_mi_8x8[block_row * mis + block_col];
BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0;
ptrdiff_t offset;
if (prev_mi) {
offset = prev_mi - cm->prev_mi;
mi_8x8[block_row * mis + block_col] = cm->mi + offset;
mi_8x8[block_row * mis + block_col]->mbmi.sb_type = sb_type;
}
}
}
}
static int sb_has_motion(VP9_COMP *cpi, MODE_INFO **prev_mi_8x8) {
VP9_COMMON *const cm = &cpi->common;
const int mis = cm->mode_info_stride;
int block_row, block_col;
if (cm->prev_mi) {
for (block_row = 0; block_row < 8; ++block_row) {
for (block_col = 0; block_col < 8; ++block_col) {
MODE_INFO * prev_mi = prev_mi_8x8[block_row * mis + block_col];
if (prev_mi) {
if (abs(prev_mi->mbmi.mv[0].as_mv.row) >= 8 ||
abs(prev_mi->mbmi.mv[0].as_mv.col) >= 8)
return 1;
}
}
}
}
return 0;
}
static void rd_use_partition(VP9_COMP *cpi, MODE_INFO **mi_8x8,
TOKENEXTRA **tp, int mi_row, int mi_col,
BLOCK_SIZE bsize, int *rate, int64_t *dist,
int do_recon) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
const int mis = cm->mode_info_stride;
int bsl = b_width_log2(bsize);
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int ms = num_4x4_blocks_wide / 2;
int mh = num_4x4_blocks_high / 2;
int bss = (1 << bsl) / 4;
int i, pl;
PARTITION_TYPE partition = PARTITION_NONE;
BLOCK_SIZE subsize;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
int last_part_rate = INT_MAX;
int64_t last_part_dist = INT_MAX;
int split_rate = INT_MAX;
int64_t split_dist = INT_MAX;
int none_rate = INT_MAX;
int64_t none_dist = INT_MAX;
int chosen_rate = INT_MAX;
int64_t chosen_dist = INT_MAX;
BLOCK_SIZE sub_subsize = BLOCK_4X4;
int splits_below = 0;
BLOCK_SIZE bs_type = mi_8x8[0]->mbmi.sb_type;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
partition = partition_lookup[bsl][bs_type];
subsize = get_subsize(bsize, partition);
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
if (xd->ab_index != 0) {
*rate = 0;
*dist = 0;
return;
}
} else {
*(get_sb_partitioning(x, bsize)) = subsize;
}
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
x->fast_ms = 0;
x->subblock_ref = 0;
if (cpi->sf.adjust_partitioning_from_last_frame) {
// Check if any of the sub blocks are further split.
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
splits_below = 1;
for (i = 0; i < 4; i++) {
int jj = i >> 1, ii = i & 0x01;
MODE_INFO * this_mi = mi_8x8[jj * bss * mis + ii * bss];
if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) {
splits_below = 0;
}
}
}
// If partition is not none try none unless each of the 4 splits are split
// even further..
if (partition != PARTITION_NONE && !splits_below &&
mi_row + (ms >> 1) < cm->mi_rows &&
mi_col + (ms >> 1) < cm->mi_cols) {
*(get_sb_partitioning(x, bsize)) = bsize;
pick_sb_modes(cpi, mi_row, mi_col, &none_rate, &none_dist, bsize,
get_block_context(x, bsize), INT64_MAX);
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
none_rate += x->partition_cost[pl][PARTITION_NONE];
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
mi_8x8[0]->mbmi.sb_type = bs_type;
*(get_sb_partitioning(x, bsize)) = subsize;
}
}
switch (partition) {
case PARTITION_NONE:
pick_sb_modes(cpi, mi_row, mi_col, &last_part_rate, &last_part_dist,
bsize, get_block_context(x, bsize), INT64_MAX);
break;
case PARTITION_HORZ:
*get_sb_index(xd, subsize) = 0;
pick_sb_modes(cpi, mi_row, mi_col, &last_part_rate, &last_part_dist,
subsize, get_block_context(x, subsize), INT64_MAX);
if (last_part_rate != INT_MAX &&
bsize >= BLOCK_8X8 && mi_row + (mh >> 1) < cm->mi_rows) {
int rt = 0;
int64_t dt = 0;
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
*get_sb_index(xd, subsize) = 1;
pick_sb_modes(cpi, mi_row + (ms >> 1), mi_col, &rt, &dt, subsize,
get_block_context(x, subsize), INT64_MAX);
if (rt == INT_MAX || dt == INT_MAX) {
last_part_rate = INT_MAX;
last_part_dist = INT_MAX;
break;
}
last_part_rate += rt;
last_part_dist += dt;
}
break;
case PARTITION_VERT:
*get_sb_index(xd, subsize) = 0;
pick_sb_modes(cpi, mi_row, mi_col, &last_part_rate, &last_part_dist,
subsize, get_block_context(x, subsize), INT64_MAX);
if (last_part_rate != INT_MAX &&
bsize >= BLOCK_8X8 && mi_col + (ms >> 1) < cm->mi_cols) {
int rt = 0;
int64_t dt = 0;
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
*get_sb_index(xd, subsize) = 1;
pick_sb_modes(cpi, mi_row, mi_col + (ms >> 1), &rt, &dt, subsize,
get_block_context(x, subsize), INT64_MAX);
if (rt == INT_MAX || dt == INT_MAX) {
last_part_rate = INT_MAX;
last_part_dist = INT_MAX;
break;
}
last_part_rate += rt;
last_part_dist += dt;
}
break;
case PARTITION_SPLIT:
// Split partition.
last_part_rate = 0;
last_part_dist = 0;
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * (ms >> 1);
int y_idx = (i >> 1) * (ms >> 1);
int jj = i >> 1, ii = i & 0x01;
int rt;
int64_t dt;
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
*get_sb_index(xd, subsize) = i;
rd_use_partition(cpi, mi_8x8 + jj * bss * mis + ii * bss, tp,
mi_row + y_idx, mi_col + x_idx, subsize, &rt, &dt,
i != 3);
if (rt == INT_MAX || dt == INT_MAX) {
last_part_rate = INT_MAX;
last_part_dist = INT_MAX;
break;
}
last_part_rate += rt;
last_part_dist += dt;
}
break;
default:
assert(0);
}
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
if (last_part_rate < INT_MAX)
last_part_rate += x->partition_cost[pl][partition];
if (cpi->sf.adjust_partitioning_from_last_frame
&& partition != PARTITION_SPLIT && bsize > BLOCK_8X8
&& (mi_row + ms < cm->mi_rows || mi_row + (ms >> 1) == cm->mi_rows)
&& (mi_col + ms < cm->mi_cols || mi_col + (ms >> 1) == cm->mi_cols)) {
BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
split_rate = 0;
split_dist = 0;
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
// Split partition.
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * (num_4x4_blocks_wide >> 2);
int y_idx = (i >> 1) * (num_4x4_blocks_wide >> 2);
int rt = 0;
int64_t dt = 0;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
if ((mi_row + y_idx >= cm->mi_rows)
|| (mi_col + x_idx >= cm->mi_cols))
continue;
*get_sb_index(xd, split_subsize) = i;
*get_sb_partitioning(x, bsize) = split_subsize;
*get_sb_partitioning(x, split_subsize) = split_subsize;
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx, &rt, &dt,
split_subsize, get_block_context(x, split_subsize),
INT64_MAX);
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
if (rt == INT_MAX || dt == INT_MAX) {
split_rate = INT_MAX;
split_dist = INT_MAX;
break;
}
if (i != 3)
encode_sb(cpi, tp, mi_row + y_idx, mi_col + x_idx, 0,
split_subsize);
split_rate += rt;
split_dist += dt;
set_partition_seg_context(cm, xd, mi_row + y_idx, mi_col + x_idx);
pl = partition_plane_context(xd, bsize);
split_rate += x->partition_cost[pl][PARTITION_NONE];
}
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
if (split_rate < INT_MAX) {
split_rate += x->partition_cost[pl][PARTITION_SPLIT];
chosen_rate = split_rate;
chosen_dist = split_dist;
}
}
// If last_part is better set the partitioning to that...
if (RDCOST(x->rdmult, x->rddiv, last_part_rate, last_part_dist)
< RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist)) {
mi_8x8[0]->mbmi.sb_type = bsize;
if (bsize >= BLOCK_8X8)
*(get_sb_partitioning(x, bsize)) = subsize;
chosen_rate = last_part_rate;
chosen_dist = last_part_dist;
}
// If none was better set the partitioning to that...
if (RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist)
> RDCOST(x->rdmult, x->rddiv, none_rate, none_dist)) {
if (bsize >= BLOCK_8X8)
*(get_sb_partitioning(x, bsize)) = bsize;
chosen_rate = none_rate;
chosen_dist = none_dist;
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
// We must have chosen a partitioning and encoding or we'll fail later on.
// No other opportunities for success.
if ( bsize == BLOCK_64X64)
assert(chosen_rate < INT_MAX && chosen_dist < INT_MAX);
if (do_recon)
encode_sb(cpi, tp, mi_row, mi_col, bsize == BLOCK_64X64, bsize);
*rate = chosen_rate;
*dist = chosen_dist;
}
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8,
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16
};
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, BLOCK_64X64,
BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64
};
// Look at all the mode_info entries for blocks that are part of this
// partition and find the min and max values for sb_type.
// At the moment this is designed to work on a 64x64 SB but could be
// adjusted to use a size parameter.
//
// The min and max are assumed to have been initialized prior to calling this
// function so repeat calls can accumulate a min and max of more than one sb64.
static void get_sb_partition_size_range(VP9_COMP *cpi, MODE_INFO ** mi_8x8,
BLOCK_SIZE * min_block_size,
BLOCK_SIZE * max_block_size ) {
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
int sb_width_in_blocks = MI_BLOCK_SIZE;
int sb_height_in_blocks = MI_BLOCK_SIZE;
int i, j;
int index = 0;
// Check the sb_type for each block that belongs to this region.
for (i = 0; i < sb_height_in_blocks; ++i) {
for (j = 0; j < sb_width_in_blocks; ++j) {
MODE_INFO * mi = mi_8x8[index+j];
BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0;
*min_block_size = MIN(*min_block_size, sb_type);
*max_block_size = MAX(*max_block_size, sb_type);
}
index += xd->mode_info_stride;
}
}
// Look at neighboring blocks and set a min and max partition size based on
// what they chose.
static void rd_auto_partition_range(VP9_COMP *cpi, int row, int col,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
MODE_INFO ** mi_8x8 = xd->mi_8x8;
MODE_INFO ** prev_mi_8x8 = xd->prev_mi_8x8;
const int left_in_image = xd->left_available && mi_8x8[-1];
const int above_in_image = xd->up_available &&
mi_8x8[-xd->mode_info_stride];
MODE_INFO ** above_sb64_mi_8x8;
MODE_INFO ** left_sb64_mi_8x8;
int row8x8_remaining = cm->cur_tile_mi_row_end - row;
int col8x8_remaining = cm->cur_tile_mi_col_end - col;
int bh, bw;
// Trap case where we do not have a prediction.
if (!left_in_image && !above_in_image &&
((cm->frame_type == KEY_FRAME) || !cm->prev_mi)) {
*min_block_size = BLOCK_4X4;
*max_block_size = BLOCK_64X64;
} else {
// Default "min to max" and "max to min"
*min_block_size = BLOCK_64X64;
*max_block_size = BLOCK_4X4;
// NOTE: each call to get_sb_partition_size_range() uses the previous
// passed in values for min and max as a starting point.
//
// Find the min and max partition used in previous frame at this location
if (cm->prev_mi && (cm->frame_type != KEY_FRAME)) {
get_sb_partition_size_range(cpi, prev_mi_8x8,
min_block_size, max_block_size);
}
// Find the min and max partition sizes used in the left SB64
if (left_in_image) {
left_sb64_mi_8x8 = &mi_8x8[-MI_BLOCK_SIZE];
get_sb_partition_size_range(cpi, left_sb64_mi_8x8,
min_block_size, max_block_size);
}
// Find the min and max partition sizes used in the above SB64.
if (above_in_image) {
above_sb64_mi_8x8 = &mi_8x8[-xd->mode_info_stride * MI_BLOCK_SIZE];
get_sb_partition_size_range(cpi, above_sb64_mi_8x8,
min_block_size, max_block_size);
}
}
// Give a bit of leaway either side of the observed min and max
*min_block_size = min_partition_size[*min_block_size];
*max_block_size = max_partition_size[*max_block_size];
// Check border cases where max and min from neighbours may not be legal.
*max_block_size = find_partition_size(*max_block_size,
row8x8_remaining, col8x8_remaining,
&bh, &bw);
*min_block_size = MIN(*min_block_size, *max_block_size);
}
static void compute_fast_motion_search_level(VP9_COMP *cpi, BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
// Only use 8x8 result for non HD videos.
// int use_8x8 = (MIN(cpi->common.width, cpi->common.height) < 720) ? 1 : 0;
int use_8x8 = 1;
if (cm->frame_type && !cpi->is_src_frame_alt_ref &&
((use_8x8 && bsize == BLOCK_16X16) ||
bsize == BLOCK_32X32 || bsize == BLOCK_64X64)) {
int ref0 = 0, ref1 = 0, ref2 = 0, ref3 = 0;
PICK_MODE_CONTEXT *block_context = NULL;
if (bsize == BLOCK_16X16) {
block_context = x->sb8x8_context[xd->sb_index][xd->mb_index];
} else if (bsize == BLOCK_32X32) {
block_context = x->mb_context[xd->sb_index];
} else if (bsize == BLOCK_64X64) {
block_context = x->sb32_context;
}
if (block_context) {
ref0 = block_context[0].mic.mbmi.ref_frame[0];
ref1 = block_context[1].mic.mbmi.ref_frame[0];
ref2 = block_context[2].mic.mbmi.ref_frame[0];
ref3 = block_context[3].mic.mbmi.ref_frame[0];
}
// Currently, only consider 4 inter reference frames.
if (ref0 && ref1 && ref2 && ref3) {
int d01, d23, d02, d13;
// Motion vectors for the four subblocks.
int16_t mvr0 = block_context[0].mic.mbmi.mv[0].as_mv.row;
int16_t mvc0 = block_context[0].mic.mbmi.mv[0].as_mv.col;
int16_t mvr1 = block_context[1].mic.mbmi.mv[0].as_mv.row;
int16_t mvc1 = block_context[1].mic.mbmi.mv[0].as_mv.col;
int16_t mvr2 = block_context[2].mic.mbmi.mv[0].as_mv.row;
int16_t mvc2 = block_context[2].mic.mbmi.mv[0].as_mv.col;
int16_t mvr3 = block_context[3].mic.mbmi.mv[0].as_mv.row;
int16_t mvc3 = block_context[3].mic.mbmi.mv[0].as_mv.col;
// Adjust sign if ref is alt_ref.
if (cm->ref_frame_sign_bias[ref0]) {
mvr0 *= -1;
mvc0 *= -1;
}
if (cm->ref_frame_sign_bias[ref1]) {
mvr1 *= -1;
mvc1 *= -1;
}
if (cm->ref_frame_sign_bias[ref2]) {
mvr2 *= -1;
mvc2 *= -1;
}
if (cm->ref_frame_sign_bias[ref3]) {
mvr3 *= -1;
mvc3 *= -1;
}
// Calculate mv distances.
d01 = MAX(abs(mvr0 - mvr1), abs(mvc0 - mvc1));
d23 = MAX(abs(mvr2 - mvr3), abs(mvc2 - mvc3));
d02 = MAX(abs(mvr0 - mvr2), abs(mvc0 - mvc2));
d13 = MAX(abs(mvr1 - mvr3), abs(mvc1 - mvc3));
if (d01 < FAST_MOTION_MV_THRESH && d23 < FAST_MOTION_MV_THRESH &&
d02 < FAST_MOTION_MV_THRESH && d13 < FAST_MOTION_MV_THRESH) {
// Set fast motion search level.
x->fast_ms = 1;
if (ref0 == ref1 && ref1 == ref2 && ref2 == ref3 &&
d01 < 2 && d23 < 2 && d02 < 2 && d13 < 2) {
// Set fast motion search level.
x->fast_ms = 2;
if (!d01 && !d23 && !d02 && !d13) {
x->fast_ms = 3;
x->subblock_ref = ref0;
}
}
}
}
}
}
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
vpx_memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
}
static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
vpx_memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
}
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
// unlikely to be selected depending on previous rate-distortion optimization
// results, for encoding speed-up.
static void rd_pick_partition(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row,
int mi_col, BLOCK_SIZE bsize, int *rate,
int64_t *dist, int do_recon, int64_t best_rd) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD * const xd = &x->e_mbd;
const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
TOKENEXTRA *tp_orig = *tp;
int i, pl;
BLOCK_SIZE subsize;
int this_rate, sum_rate = 0, best_rate = INT_MAX;
int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX;
int64_t sum_rd = 0;
int do_split = bsize >= BLOCK_8X8;
int do_rect = 1;
// Override skipping rectangular partition operations for edge blocks
const int force_horz_split = (mi_row + ms >= cm->mi_rows);
const int force_vert_split = (mi_col + ms >= cm->mi_cols);
int partition_none_allowed = !force_horz_split && !force_vert_split;
int partition_horz_allowed = !force_vert_split && bsize >= BLOCK_8X8;
int partition_vert_allowed = !force_horz_split && bsize >= BLOCK_8X8;
int partition_split_done = 0;
(void) *tp_orig;
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
if (xd->ab_index != 0) {
*rate = 0;
*dist = 0;
return;
}
}
assert(mi_height_log2(bsize) == mi_width_log2(bsize));
// Determine partition types in search according to the speed features.
// The threshold set here has to be of square block size.
if (cpi->sf.auto_min_max_partition_size) {
partition_none_allowed &= (bsize <= cpi->sf.max_partition_size &&
bsize >= cpi->sf.min_partition_size);
partition_horz_allowed &= ((bsize <= cpi->sf.max_partition_size &&
bsize > cpi->sf.min_partition_size) ||
force_horz_split);
partition_vert_allowed &= ((bsize <= cpi->sf.max_partition_size &&
bsize > cpi->sf.min_partition_size) ||
force_vert_split);
do_split &= bsize > cpi->sf.min_partition_size;
}
if (cpi->sf.use_square_partition_only) {
partition_horz_allowed &= force_horz_split;
partition_vert_allowed &= force_vert_split;
}
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
if (cpi->sf.disable_split_var_thresh && partition_none_allowed) {
unsigned int source_variancey;
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
source_variancey = get_sby_perpixel_variance(cpi, x, bsize);
if (source_variancey < cpi->sf.disable_split_var_thresh) {
do_split = 0;
if (source_variancey < cpi->sf.disable_split_var_thresh / 2)
do_rect = 0;
}
}
// PARTITION_NONE
if (partition_none_allowed) {
pick_sb_modes(cpi, mi_row, mi_col, &this_rate, &this_dist, bsize,
get_block_context(x, bsize), best_rd);
if (this_rate != INT_MAX) {
if (bsize >= BLOCK_8X8) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
this_rate += x->partition_cost[pl][PARTITION_NONE];
}
sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist);
if (sum_rd < best_rd) {
int64_t stop_thresh = 2048;
best_rate = this_rate;
best_dist = this_dist;
best_rd = sum_rd;
if (bsize >= BLOCK_8X8)
*(get_sb_partitioning(x, bsize)) = bsize;
// Adjust threshold according to partition size.
stop_thresh >>= 8 - (b_width_log2_lookup[bsize] +
b_height_log2_lookup[bsize]);
// If obtained distortion is very small, choose current partition
// and stop splitting.
if (this_dist < stop_thresh) {
do_split = 0;
do_rect = 0;
}
}
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
// store estimated motion vector
if (cpi->sf.adaptive_motion_search)
store_pred_mv(x, get_block_context(x, bsize));
// PARTITION_SPLIT
sum_rd = 0;
// TODO(jingning): use the motion vectors given by the above search as
// the starting point of motion search in the following partition type check.
if (do_split) {
subsize = get_subsize(bsize, PARTITION_SPLIT);
for (i = 0; i < 4 && sum_rd < best_rd; ++i) {
const int x_idx = (i & 1) * ms;
const int y_idx = (i >> 1) * ms;
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
continue;
*get_sb_index(xd, subsize) = i;
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, get_block_context(x, bsize));
rd_pick_partition(cpi, tp, mi_row + y_idx, mi_col + x_idx, subsize,
&this_rate, &this_dist, i != 3, best_rd - sum_rd);
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
sum_rate += this_rate;
sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
}
}
if (sum_rd < best_rd && i == 4) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
sum_rate += x->partition_cost[pl][PARTITION_SPLIT];
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd) {
best_rate = sum_rate;
best_dist = sum_dist;
best_rd = sum_rd;
*(get_sb_partitioning(x, bsize)) = subsize;
}
} else {
// skip rectangular partition test when larger block size
// gives better rd cost
if (cpi->sf.less_rectangular_check)
do_rect &= !partition_none_allowed;
}
partition_split_done = 1;
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
x->fast_ms = 0;
x->subblock_ref = 0;
if (partition_split_done &&
cpi->sf.using_small_partition_info) {
compute_fast_motion_search_level(cpi, bsize);
}
// PARTITION_HORZ
if (partition_horz_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_HORZ);
*get_sb_index(xd, subsize) = 0;
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, get_block_context(x, bsize));
pick_sb_modes(cpi, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
get_block_context(x, subsize), best_rd);
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd && mi_row + ms < cm->mi_rows) {
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
*get_sb_index(xd, subsize) = 1;
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, get_block_context(x, bsize));
pick_sb_modes(cpi, mi_row + ms, mi_col, &this_rate,
&this_dist, subsize, get_block_context(x, subsize),
best_rd - sum_rd);
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
sum_rate += this_rate;
sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
}
}
if (sum_rd < best_rd) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
sum_rate += x->partition_cost[pl][PARTITION_HORZ];
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd) {
best_rd = sum_rd;
best_rate = sum_rate;
best_dist = sum_dist;
*(get_sb_partitioning(x, bsize)) = subsize;
}
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
// PARTITION_VERT
if (partition_vert_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_VERT);
*get_sb_index(xd, subsize) = 0;
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, get_block_context(x, bsize));
pick_sb_modes(cpi, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
get_block_context(x, subsize), best_rd);
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd && mi_col + ms < cm->mi_cols) {
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
*get_sb_index(xd, subsize) = 1;
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, get_block_context(x, bsize));
pick_sb_modes(cpi, mi_row, mi_col + ms, &this_rate,
&this_dist, subsize, get_block_context(x, subsize),
best_rd - sum_rd);
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
sum_rate += this_rate;
sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
}
}
if (sum_rd < best_rd) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
sum_rate += x->partition_cost[pl][PARTITION_VERT];
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd) {
best_rate = sum_rate;
best_dist = sum_dist;
best_rd = sum_rd;
*(get_sb_partitioning(x, bsize)) = subsize;
}
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
*rate = best_rate;
*dist = best_dist;
if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon)
encode_sb(cpi, tp, mi_row, mi_col, bsize == BLOCK_64X64, bsize);
if (bsize == BLOCK_64X64) {
assert(tp_orig < *tp);
assert(best_rate < INT_MAX);
assert(best_dist < INT_MAX);
} else {
assert(tp_orig == *tp);
}
}
// Examines 64x64 block and chooses a best reference frame
static void rd_pick_reference_frame(VP9_COMP *cpi, int mi_row, int mi_col) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD * const xd = &x->e_mbd;
int bsl = b_width_log2(BLOCK_64X64), bs = 1 << bsl;
int ms = bs / 2;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
int pl;
int r;
int64_t d;
save_context(cpi, mi_row, mi_col, a, l, sa, sl, BLOCK_64X64);
// Default is non mask (all reference frames allowed.
cpi->ref_frame_mask = 0;
// Do RD search for 64x64.
if ((mi_row + (ms >> 1) < cm->mi_rows) &&
(mi_col + (ms >> 1) < cm->mi_cols)) {
cpi->set_ref_frame_mask = 1;
pick_sb_modes(cpi, mi_row, mi_col, &r, &d, BLOCK_64X64,
get_block_context(x, BLOCK_64X64), INT64_MAX);
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, BLOCK_64X64);
r += x->partition_cost[pl][PARTITION_NONE];
*(get_sb_partitioning(x, BLOCK_64X64)) = BLOCK_64X64;
cpi->set_ref_frame_mask = 0;
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, BLOCK_64X64);
}
static void encode_sb_row(VP9_COMP *cpi, int mi_row, TOKENEXTRA **tp,
int *totalrate) {
VP9_COMMON * const cm = &cpi->common;
int mi_col;
// Initialize the left context for the new SB row
vpx_memset(&cm->left_context, 0, sizeof(cm->left_context));
vpx_memset(cm->left_seg_context, 0, sizeof(cm->left_seg_context));
// Code each SB in the row
for (mi_col = cm->cur_tile_mi_col_start; mi_col < cm->cur_tile_mi_col_end;
mi_col += MI_BLOCK_SIZE) {
int dummy_rate;
int64_t dummy_dist;
vp9_zero(cpi->mb.pred_mv);
if (cpi->sf.reference_masking)
rd_pick_reference_frame(cpi, mi_row, mi_col);
if (cpi->sf.use_lastframe_partitioning ||
cpi->sf.use_one_partition_size_always ) {
const int idx_str = cm->mode_info_stride * mi_row + mi_col;
MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str;
MODE_INFO **prev_mi_8x8 = cm->prev_mi_grid_visible + idx_str;
cpi->mb.source_variance = UINT_MAX;
if (cpi->sf.use_one_partition_size_always) {
set_offsets(cpi, mi_row, mi_col, BLOCK_64X64);
set_partitioning(cpi, mi_8x8, mi_row, mi_col);
rd_use_partition(cpi, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1);
} else {
if ((cpi->common.current_video_frame
% cpi->sf.last_partitioning_redo_frequency) == 0
|| cm->prev_mi == 0
|| cpi->common.show_frame == 0
|| cpi->common.frame_type == KEY_FRAME
|| cpi->is_src_frame_alt_ref
|| ((cpi->sf.use_lastframe_partitioning ==
LAST_FRAME_PARTITION_LOW_MOTION) &&
sb_has_motion(cpi, prev_mi_8x8))) {
// If required set upper and lower partition size limits
if (cpi->sf.auto_min_max_partition_size) {
set_offsets(cpi, mi_row, mi_col, BLOCK_64X64);
rd_auto_partition_range(cpi, mi_row, mi_col,
&cpi->sf.min_partition_size,
&cpi->sf.max_partition_size);
}
rd_pick_partition(cpi, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1, INT64_MAX);
} else {
copy_partitioning(cpi, mi_8x8, prev_mi_8x8);
rd_use_partition(cpi, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1);
}
}
} else {
// If required set upper and lower partition size limits
if (cpi->sf.auto_min_max_partition_size) {
set_offsets(cpi, mi_row, mi_col, BLOCK_64X64);
rd_auto_partition_range(cpi, mi_row, mi_col,
&cpi->sf.min_partition_size,
&cpi->sf.max_partition_size);
}
rd_pick_partition(cpi, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1, INT64_MAX);
}
}
}
static void init_encode_frame_mb_context(VP9_COMP *cpi) {
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
x->act_zbin_adj = 0;
cpi->seg0_idx = 0;
xd->mode_info_stride = cm->mode_info_stride;
// reset intra mode contexts
if (cm->frame_type == KEY_FRAME)
vp9_init_mbmode_probs(cm);
// Copy data over into macro block data structures.
vp9_setup_src_planes(x, cpi->Source, 0, 0);
// TODO(jkoleszar): are these initializations required?
setup_pre_planes(xd, 0, &cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]],
0, 0, NULL);
setup_dst_planes(xd, &cm->yv12_fb[cm->new_fb_idx], 0, 0);
setup_block_dptrs(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
xd->this_mi->mbmi.mode = DC_PRED;
xd->this_mi->mbmi.uv_mode = DC_PRED;
vp9_zero(cpi->y_mode_count)
vp9_zero(cpi->y_uv_mode_count)
vp9_zero(cm->counts.inter_mode)
vp9_zero(cpi->partition_count);
vp9_zero(cpi->intra_inter_count);
vp9_zero(cpi->comp_inter_count);
vp9_zero(cpi->single_ref_count);
vp9_zero(cpi->comp_ref_count);
vp9_zero(cm->counts.tx);
vp9_zero(cm->counts.mbskip);
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
vpx_memset(cm->above_context[0], 0,
sizeof(ENTROPY_CONTEXT) * 2 * MAX_MB_PLANE * aligned_mi_cols);
vpx_memset(cm->above_seg_context, 0,
sizeof(PARTITION_CONTEXT) * aligned_mi_cols);
}
static void switch_lossless_mode(VP9_COMP *cpi, int lossless) {
if (lossless) {
// printf("Switching to lossless\n");
cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4;
cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4;
cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_iwalsh4x4_1_add;
cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_iwalsh4x4_add;
cpi->mb.optimize = 0;
cpi->common.lf.filter_level = 0;
cpi->zbin_mode_boost_enabled = 0;
cpi->common.tx_mode = ONLY_4X4;
} else {
// printf("Not lossless\n");
cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4;
cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4;
cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_idct4x4_1_add;
cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_idct4x4_add;
}
}
static void switch_tx_mode(VP9_COMP *cpi) {
if (cpi->sf.tx_size_search_method == USE_LARGESTALL &&
cpi->common.tx_mode >= ALLOW_32X32)
cpi->common.tx_mode = ALLOW_32X32;
}
static void encode_frame_internal(VP9_COMP *cpi) {
int mi_row;
MACROBLOCK * const x = &cpi->mb;
VP9_COMMON * const cm = &cpi->common;
MACROBLOCKD * const xd = &x->e_mbd;
int totalrate;
// fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n",
// cpi->common.current_video_frame, cpi->common.show_frame,
// cm->frame_type);
// debug output
#if DBG_PRNT_SEGMAP
{
FILE *statsfile;
statsfile = fopen("segmap2.stt", "a");
fprintf(statsfile, "\n");
fclose(statsfile);
}
#endif
totalrate = 0;
// Reset frame count of inter 0,0 motion vector usage.
cpi->inter_zz_count = 0;
vp9_zero(cm->counts.switchable_interp);
vp9_zero(cpi->tx_stepdown_count);
xd->mi_8x8 = cm->mi_grid_visible;
// required for vp9_frame_init_quantizer
xd->this_mi = xd->mi_8x8[0] = cm->mi;
xd->mic_stream_ptr = cm->mi;
xd->last_mi = cm->prev_mi;
vp9_zero(cpi->NMVcount);
vp9_zero(cpi->coef_counts);
vp9_zero(cm->counts.eob_branch);
cpi->mb.e_mbd.lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0
&& cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless);
vp9_frame_init_quantizer(cpi);
vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y_dc_delta_q);
vp9_initialize_me_consts(cpi, cm->base_qindex);
switch_tx_mode(cpi);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Initialize encode frame context.
init_encode_frame_mb_context(cpi);
// Build a frame level activity map
build_activity_map(cpi);
}
// Re-initialize encode frame context.
init_encode_frame_mb_context(cpi);
vp9_zero(cpi->rd_comp_pred_diff);
vp9_zero(cpi->rd_filter_diff);
vp9_zero(cpi->rd_tx_select_diff);
vp9_zero(cpi->rd_tx_select_threshes);
set_prev_mi(cm);
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
{
// Take tiles into account and give start/end MB
int tile_col, tile_row;
TOKENEXTRA *tp = cpi->tok;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
vp9_get_tile_row_offsets(cm, tile_row);
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
TOKENEXTRA *tp_old = tp;
// For each row of SBs in the frame
vp9_get_tile_col_offsets(cm, tile_col);
for (mi_row = cm->cur_tile_mi_row_start;
mi_row < cm->cur_tile_mi_row_end; mi_row += 8)
encode_sb_row(cpi, mi_row, &tp, &totalrate);
cpi->tok_count[tile_row][tile_col] = (unsigned int)(tp - tp_old);
assert(tp - cpi->tok <= get_token_alloc(cm->mb_rows, cm->mb_cols));
}
}
}
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
}
if (cpi->sf.skip_encode_sb) {
int j;
unsigned int intra_count = 0, inter_count = 0;
for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
intra_count += cpi->intra_inter_count[j][0];
inter_count += cpi->intra_inter_count[j][1];
}
cpi->sf.skip_encode_frame = ((intra_count << 2) < inter_count);
cpi->sf.skip_encode_frame &= (cm->frame_type != KEY_FRAME);
cpi->sf.skip_encode_frame &= cm->show_frame;
} else {
cpi->sf.skip_encode_frame = 0;
}
// 256 rate units to the bit,
// projected_frame_size in units of BYTES
cpi->projected_frame_size = totalrate >> 8;
#if 0
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
#endif
}
static int check_dual_ref_flags(VP9_COMP *cpi) {
const int ref_flags = cpi->ref_frame_flags;
if (vp9_segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
return 0;
} else {
return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG)
+ !!(ref_flags & VP9_ALT_FLAG)) >= 2;
}
}
static int get_skip_flag(MODE_INFO **mi_8x8, int mis, int ymbs, int xmbs) {
int x, y;
for (y = 0; y < ymbs; y++) {
for (x = 0; x < xmbs; x++) {
if (!mi_8x8[y * mis + x]->mbmi.skip_coeff)
return 0;
}
}
return 1;
}
static void set_txfm_flag(MODE_INFO **mi_8x8, int mis, int ymbs, int xmbs,
TX_SIZE tx_size) {
int x, y;
for (y = 0; y < ymbs; y++) {
for (x = 0; x < xmbs; x++)
mi_8x8[y * mis + x]->mbmi.tx_size = tx_size;
}
}
static void reset_skip_txfm_size_b(VP9_COMP *cpi, MODE_INFO **mi_8x8,
int mis, TX_SIZE max_tx_size, int bw, int bh,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
VP9_COMMON * const cm = &cpi->common;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) {
return;
} else {
MB_MODE_INFO * const mbmi = &mi_8x8[0]->mbmi;
if (mbmi->tx_size > max_tx_size) {
const int ymbs = MIN(bh, cm->mi_rows - mi_row);
const int xmbs = MIN(bw, cm->mi_cols - mi_col);
assert(vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) ||
get_skip_flag(mi_8x8, mis, ymbs, xmbs));
set_txfm_flag(mi_8x8, mis, ymbs, xmbs, max_tx_size);
}
}
}
static void reset_skip_txfm_size_sb(VP9_COMP *cpi, MODE_INFO **mi_8x8,
TX_SIZE max_tx_size, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
VP9_COMMON * const cm = &cpi->common;
const int mis = cm->mode_info_stride;
int bw, bh;
const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
bw = num_8x8_blocks_wide_lookup[mi_8x8[0]->mbmi.sb_type];
bh = num_8x8_blocks_high_lookup[mi_8x8[0]->mbmi.sb_type];
if (bw == bs && bh == bs) {
reset_skip_txfm_size_b(cpi, mi_8x8, mis, max_tx_size, bs, bs, mi_row,
mi_col, bsize);
} else if (bw == bs && bh < bs) {
reset_skip_txfm_size_b(cpi, mi_8x8, mis, max_tx_size, bs, hbs, mi_row,
mi_col, bsize);
reset_skip_txfm_size_b(cpi, mi_8x8 + hbs * mis, mis, max_tx_size, bs, hbs,
mi_row + hbs, mi_col, bsize);
} else if (bw < bs && bh == bs) {
reset_skip_txfm_size_b(cpi, mi_8x8, mis, max_tx_size, hbs, bs, mi_row,
mi_col, bsize);
reset_skip_txfm_size_b(cpi, mi_8x8 + hbs, mis, max_tx_size, hbs, bs, mi_row,
mi_col + hbs, bsize);
} else {
const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
int n;
assert(bw < bs && bh < bs);
for (n = 0; n < 4; n++) {
const int mi_dc = hbs * (n & 1);
const int mi_dr = hbs * (n >> 1);
reset_skip_txfm_size_sb(cpi, &mi_8x8[mi_dr * mis + mi_dc], max_tx_size,
mi_row + mi_dr, mi_col + mi_dc, subsize);
}
}
}
static void reset_skip_txfm_size(VP9_COMP *cpi, TX_SIZE txfm_max) {
VP9_COMMON * const cm = &cpi->common;
int mi_row, mi_col;
const int mis = cm->mode_info_stride;
// MODE_INFO *mi, *mi_ptr = cm->mi;
MODE_INFO **mi_8x8, **mi_ptr = cm->mi_grid_visible;
for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 8, mi_ptr += 8 * mis) {
mi_8x8 = mi_ptr;
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += 8, mi_8x8 += 8) {
reset_skip_txfm_size_sb(cpi, mi_8x8, txfm_max, mi_row, mi_col,
BLOCK_64X64);
}
}
}
static int get_frame_type(VP9_COMP *cpi) {
int frame_type;
if (cpi->common.frame_type == KEY_FRAME)
frame_type = 0;
else if (cpi->is_src_frame_alt_ref && cpi->refresh_golden_frame)
frame_type = 3;
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
frame_type = 1;
else
frame_type = 2;
return frame_type;
}
static void select_tx_mode(VP9_COMP *cpi) {
if (cpi->oxcf.lossless) {
cpi->common.tx_mode = ONLY_4X4;
} else if (cpi->common.current_video_frame == 0) {
cpi->common.tx_mode = TX_MODE_SELECT;
} else {
if (cpi->sf.tx_size_search_method == USE_LARGESTALL) {
cpi->common.tx_mode = ALLOW_32X32;
} else if (cpi->sf.tx_size_search_method == USE_FULL_RD) {
int frame_type = get_frame_type(cpi);
cpi->common.tx_mode =
cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32]
> cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ?
ALLOW_32X32 : TX_MODE_SELECT;
} else {
unsigned int total = 0;
int i;
for (i = 0; i < TX_SIZES; ++i)
total += cpi->tx_stepdown_count[i];
if (total) {
double fraction = (double)cpi->tx_stepdown_count[0] / total;
cpi->common.tx_mode = fraction > 0.90 ? ALLOW_32X32 : TX_MODE_SELECT;
// printf("fraction = %f\n", fraction);
} // else keep unchanged
}
}
}
void vp9_encode_frame(VP9_COMP *cpi) {
VP9_COMMON * const cm = &cpi->common;
// In the longer term the encoder should be generalized to match the
// decoder such that we allow compound where one of the 3 buffers has a
// different sign bias and that buffer is then the fixed ref. However, this
// requires further work in the rd loop. For now the only supported encoder
// side behavior is where the ALT ref buffer has opposite sign bias to
// the other two.
if ((cm->ref_frame_sign_bias[ALTREF_FRAME]
== cm->ref_frame_sign_bias[GOLDEN_FRAME])
|| (cm->ref_frame_sign_bias[ALTREF_FRAME]
== cm->ref_frame_sign_bias[LAST_FRAME])) {
cm->allow_comp_inter_inter = 0;
} else {
cm->allow_comp_inter_inter = 1;
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = GOLDEN_FRAME;
}
if (cpi->sf.RD) {
int i, pred_type;
INTERPOLATIONFILTERTYPE filter_type;
/*
* This code does a single RD pass over the whole frame assuming
* either compound, single or hybrid prediction as per whatever has
* worked best for that type of frame in the past.
* It also predicts whether another coding mode would have worked
* better that this coding mode. If that is the case, it remembers
* that for subsequent frames.
* It does the same analysis for transform size selection also.
*/
int frame_type = get_frame_type(cpi);
/* prediction (compound, single or hybrid) mode selection */
if (frame_type == 3 || !cm->allow_comp_inter_inter)
pred_type = SINGLE_PREDICTION_ONLY;
else if (cpi->rd_prediction_type_threshes[frame_type][1]
> cpi->rd_prediction_type_threshes[frame_type][0]
&& cpi->rd_prediction_type_threshes[frame_type][1]
> cpi->rd_prediction_type_threshes[frame_type][2]
&& check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
pred_type = COMP_PREDICTION_ONLY;
else if (cpi->rd_prediction_type_threshes[frame_type][0]
> cpi->rd_prediction_type_threshes[frame_type][2])
pred_type = SINGLE_PREDICTION_ONLY;
else
pred_type = HYBRID_PREDICTION;
/* filter type selection */
// FIXME(rbultje) for some odd reason, we often select smooth_filter
// as default filter for ARF overlay frames. This is a REALLY BAD
// IDEA so we explicitly disable it here.
if (frame_type != 3 &&
cpi->rd_filter_threshes[frame_type][1] >
cpi->rd_filter_threshes[frame_type][0] &&
cpi->rd_filter_threshes[frame_type][1] >
cpi->rd_filter_threshes[frame_type][2] &&
cpi->rd_filter_threshes[frame_type][1] >
cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) {
filter_type = EIGHTTAP_SMOOTH;
} else if (cpi->rd_filter_threshes[frame_type][2] >
cpi->rd_filter_threshes[frame_type][0] &&
cpi->rd_filter_threshes[frame_type][2] >
cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) {
filter_type = EIGHTTAP_SHARP;
} else if (cpi->rd_filter_threshes[frame_type][0] >
cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) {
filter_type = EIGHTTAP;
} else {
filter_type = SWITCHABLE;
}
cpi->mb.e_mbd.lossless = 0;
if (cpi->oxcf.lossless) {
cpi->mb.e_mbd.lossless = 1;
}
/* transform size selection (4x4, 8x8, 16x16 or select-per-mb) */
select_tx_mode(cpi);
cpi->common.comp_pred_mode = pred_type;
cpi->common.mcomp_filter_type = filter_type;
encode_frame_internal(cpi);
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
const int diff = (int) (cpi->rd_comp_pred_diff[i] / cpi->common.MBs);
cpi->rd_prediction_type_threshes[frame_type][i] += diff;
cpi->rd_prediction_type_threshes[frame_type][i] >>= 1;
}
for (i = 0; i <= SWITCHABLE_FILTERS; i++) {
const int64_t diff = cpi->rd_filter_diff[i] / cpi->common.MBs;
cpi->rd_filter_threshes[frame_type][i] =
(cpi->rd_filter_threshes[frame_type][i] + diff) / 2;
}
for (i = 0; i < TX_MODES; ++i) {
int64_t pd = cpi->rd_tx_select_diff[i];
int diff;
if (i == TX_MODE_SELECT)
pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv,
2048 * (TX_SIZES - 1), 0);
diff = (int) (pd / cpi->common.MBs);
cpi->rd_tx_select_threshes[frame_type][i] += diff;
cpi->rd_tx_select_threshes[frame_type][i] /= 2;
}
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
int single_count_zero = 0;
int comp_count_zero = 0;
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
single_count_zero += cpi->comp_inter_count[i][0];
comp_count_zero += cpi->comp_inter_count[i][1];
}
if (comp_count_zero == 0) {
cpi->common.comp_pred_mode = SINGLE_PREDICTION_ONLY;
vp9_zero(cpi->comp_inter_count);
} else if (single_count_zero == 0) {
cpi->common.comp_pred_mode = COMP_PREDICTION_ONLY;
vp9_zero(cpi->comp_inter_count);
}
}
if (cpi->common.tx_mode == TX_MODE_SELECT) {
int count4x4 = 0;
int count8x8_lp = 0, count8x8_8x8p = 0;
int count16x16_16x16p = 0, count16x16_lp = 0;
int count32x32 = 0;
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
count4x4 += cm->counts.tx.p32x32[i][TX_4X4];
count4x4 += cm->counts.tx.p16x16[i][TX_4X4];
count4x4 += cm->counts.tx.p8x8[i][TX_4X4];
count8x8_lp += cm->counts.tx.p32x32[i][TX_8X8];
count8x8_lp += cm->counts.tx.p16x16[i][TX_8X8];
count8x8_8x8p += cm->counts.tx.p8x8[i][TX_8X8];
count16x16_16x16p += cm->counts.tx.p16x16[i][TX_16X16];
count16x16_lp += cm->counts.tx.p32x32[i][TX_16X16];
count32x32 += cm->counts.tx.p32x32[i][TX_32X32];
}
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0
&& count32x32 == 0) {
cpi->common.tx_mode = ALLOW_8X8;
reset_skip_txfm_size(cpi, TX_8X8);
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0
&& count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
cpi->common.tx_mode = ONLY_4X4;
reset_skip_txfm_size(cpi, TX_4X4);
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
cpi->common.tx_mode = ALLOW_32X32;
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
cpi->common.tx_mode = ALLOW_16X16;
reset_skip_txfm_size(cpi, TX_16X16);
}
}
} else {
encode_frame_internal(cpi);
}
}
static void sum_intra_stats(VP9_COMP *cpi, const MODE_INFO *mi) {
const MB_PREDICTION_MODE y_mode = mi->mbmi.mode;
const MB_PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
++cpi->y_uv_mode_count[y_mode][uv_mode];
if (bsize < BLOCK_8X8) {
int idx, idy;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
for (idy = 0; idy < 2; idy += num_4x4_blocks_high)
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide)
++cpi->y_mode_count[0][mi->bmi[idy * 2 + idx].as_mode];
} else {
++cpi->y_mode_count[size_group_lookup[bsize]][y_mode];
}
}
// Experimental stub function to create a per MB zbin adjustment based on
// some previously calculated measure of MB activity.
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) {
#if USE_ACT_INDEX
x->act_zbin_adj = *(x->mb_activity_ptr);
#else
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (act > cpi->activity_avg)
x->act_zbin_adj = (int) (((int64_t) b + (a >> 1)) / a) - 1;
else
x->act_zbin_adj = 1 - (int) (((int64_t) a + (b >> 1)) / b);
#endif
}
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD * const xd = &x->e_mbd;
MODE_INFO **mi_8x8 = xd->mi_8x8;
MODE_INFO *mi = mi_8x8[0];
MB_MODE_INFO *mbmi = &mi->mbmi;
unsigned int segment_id = mbmi->segment_id;
const int mis = cm->mode_info_stride;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
xd->q_index < QIDX_SKIP_THRESH);
if (x->skip_encode)
return;
if (cm->frame_type == KEY_FRAME) {
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
adjust_act_zbin(cpi, x);
vp9_update_zbin_extra(cpi, x);
}
} else {
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Adjust the zbin based on this MB rate.
adjust_act_zbin(cpi, x);
}
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
cpi->zbin_mode_boost = 0;
if (cpi->zbin_mode_boost_enabled) {
if (is_inter_block(mbmi)) {
if (mbmi->mode == ZEROMV) {
if (mbmi->ref_frame[0] != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
} else if (mbmi->sb_type < BLOCK_8X8) {
cpi->zbin_mode_boost = SPLIT_MV_ZBIN_BOOST;
} else {
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
} else {
cpi->zbin_mode_boost = INTRA_ZBIN_BOOST;
}
}
vp9_update_zbin_extra(cpi, x);
}
if (!is_inter_block(mbmi)) {
vp9_encode_intra_block_y(x, MAX(bsize, BLOCK_8X8));
vp9_encode_intra_block_uv(x, MAX(bsize, BLOCK_8X8));
if (output_enabled)
sum_intra_stats(cpi, mi);
} else {
int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, mbmi->ref_frame[0])];
YV12_BUFFER_CONFIG *ref_fb = &cm->yv12_fb[idx];
YV12_BUFFER_CONFIG *second_ref_fb = NULL;
if (has_second_ref(mbmi)) {
idx = cm->ref_frame_map[get_ref_frame_idx(cpi, mbmi->ref_frame[1])];
second_ref_fb = &cm->yv12_fb[idx];
}
assert(cm->frame_type != KEY_FRAME);
setup_pre_planes(xd, 0, ref_fb, mi_row, mi_col,
&xd->scale_factor[0]);
setup_pre_planes(xd, 1, second_ref_fb, mi_row, mi_col,
&xd->scale_factor[1]);
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
}
if (!is_inter_block(mbmi)) {
vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
} else if (!x->skip) {
vp9_encode_sb(x, MAX(bsize, BLOCK_8X8));
vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
} else {
int mb_skip_context = xd->left_available ? mi_8x8[-1]->mbmi.skip_coeff : 0;
mb_skip_context += mi_8x8[-mis] ? mi_8x8[-mis]->mbmi.skip_coeff : 0;
mbmi->skip_coeff = 1;
if (output_enabled)
cm->counts.mbskip[mb_skip_context][1]++;
reset_skip_context(xd, MAX(bsize, BLOCK_8X8));
}
if (output_enabled) {
if (cm->tx_mode == TX_MODE_SELECT &&
mbmi->sb_type >= BLOCK_8X8 &&
!(is_inter_block(mbmi) &&
(mbmi->skip_coeff ||
vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)))) {
const uint8_t context = vp9_get_pred_context_tx_size(xd);
update_tx_counts(bsize, context, mbmi->tx_size, &cm->counts.tx);
} else {
int x, y;
TX_SIZE sz = tx_mode_to_biggest_tx_size[cm->tx_mode];
assert(sizeof(tx_mode_to_biggest_tx_size) /
sizeof(tx_mode_to_biggest_tx_size[0]) == TX_MODES);
// The new intra coding scheme requires no change of transform size
if (is_inter_block(&mi->mbmi)) {
if (sz == TX_32X32 && bsize < BLOCK_32X32)
sz = TX_16X16;
if (sz == TX_16X16 && bsize < BLOCK_16X16)
sz = TX_8X8;
if (sz == TX_8X8 && bsize < BLOCK_8X8)
sz = TX_4X4;
} else if (bsize >= BLOCK_8X8) {
sz = mbmi->tx_size;
} else {
sz = TX_4X4;
}
for (y = 0; y < mi_height; y++)
for (x = 0; x < mi_width; x++)
if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
mi_8x8[mis * y + x]->mbmi.tx_size = sz;
}
}
}