vpx/vp9/common/vp9_blockd.h
John Koleszar ff3f93639c Use BLOCK_SIZE_TYPE in foreach_ walker
Change-Id: I655305c9e22bdd9abc893d3c40d4bc6616aa1d35
2013-04-17 15:08:37 -07:00

875 lines
26 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP9_COMMON_VP9_BLOCKD_H_
#define VP9_COMMON_VP9_BLOCKD_H_
#include "./vpx_config.h"
#include "vpx_scale/yv12config.h"
#include "vp9/common/vp9_convolve.h"
#include "vp9/common/vp9_mv.h"
#include "vp9/common/vp9_treecoder.h"
#include "vpx_ports/mem.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_enums.h"
// #define MODE_STATS
#define MB_FEATURE_TREE_PROBS 3
#define PREDICTION_PROBS 3
#define MBSKIP_CONTEXTS 3
#define MAX_MB_SEGMENTS 4
#define MAX_REF_LF_DELTAS 4
#define MAX_MODE_LF_DELTAS 4
/* Segment Feature Masks */
#define SEGMENT_DELTADATA 0
#define SEGMENT_ABSDATA 1
#define MAX_MV_REFS 9
#define MAX_MV_REF_CANDIDATES 4
typedef enum {
PLANE_TYPE_Y_WITH_DC,
PLANE_TYPE_UV,
} PLANE_TYPE;
typedef char ENTROPY_CONTEXT;
typedef struct {
ENTROPY_CONTEXT y1[4];
ENTROPY_CONTEXT u[2];
ENTROPY_CONTEXT v[2];
} ENTROPY_CONTEXT_PLANES;
#define VP9_COMBINEENTROPYCONTEXTS(Dest, A, B) \
Dest = ((A)!=0) + ((B)!=0);
typedef enum {
KEY_FRAME = 0,
INTER_FRAME = 1
} FRAME_TYPE;
typedef enum {
#if CONFIG_ENABLE_6TAP
SIXTAP,
#endif
EIGHTTAP_SMOOTH,
EIGHTTAP,
EIGHTTAP_SHARP,
BILINEAR,
SWITCHABLE /* should be the last one */
} INTERPOLATIONFILTERTYPE;
typedef enum {
DC_PRED, /* average of above and left pixels */
V_PRED, /* vertical prediction */
H_PRED, /* horizontal prediction */
D45_PRED, /* Directional 45 deg prediction [anti-clockwise from 0 deg hor] */
D135_PRED, /* Directional 135 deg prediction [anti-clockwise from 0 deg hor] */
D117_PRED, /* Directional 112 deg prediction [anti-clockwise from 0 deg hor] */
D153_PRED, /* Directional 157 deg prediction [anti-clockwise from 0 deg hor] */
D27_PRED, /* Directional 22 deg prediction [anti-clockwise from 0 deg hor] */
D63_PRED, /* Directional 67 deg prediction [anti-clockwise from 0 deg hor] */
TM_PRED, /* Truemotion prediction */
I8X8_PRED, /* 8x8 based prediction, each 8x8 has its own mode */
I4X4_PRED, /* 4x4 based prediction, each 4x4 has its own mode */
NEARESTMV,
NEARMV,
ZEROMV,
NEWMV,
SPLITMV,
MB_MODE_COUNT
} MB_PREDICTION_MODE;
// Segment level features.
typedef enum {
SEG_LVL_ALT_Q = 0, // Use alternate Quantizer ....
SEG_LVL_ALT_LF = 1, // Use alternate loop filter value...
SEG_LVL_REF_FRAME = 2, // Optional Segment reference frame
SEG_LVL_SKIP = 3, // Optional Segment (0,0) + skip mode
SEG_LVL_MAX = 4 // Number of MB level features supported
} SEG_LVL_FEATURES;
// Segment level features.
typedef enum {
TX_4X4 = 0, // 4x4 dct transform
TX_8X8 = 1, // 8x8 dct transform
TX_16X16 = 2, // 16x16 dct transform
TX_SIZE_MAX_MB = 3, // Number of different transforms available
TX_32X32 = TX_SIZE_MAX_MB, // 32x32 dct transform
TX_SIZE_MAX_SB, // Number of transforms available to SBs
} TX_SIZE;
typedef enum {
DCT_DCT = 0, // DCT in both horizontal and vertical
ADST_DCT = 1, // ADST in vertical, DCT in horizontal
DCT_ADST = 2, // DCT in vertical, ADST in horizontal
ADST_ADST = 3 // ADST in both directions
} TX_TYPE;
#define VP9_YMODES (I4X4_PRED + 1)
#define VP9_UV_MODES (TM_PRED + 1)
#define VP9_I8X8_MODES (TM_PRED + 1)
#define VP9_I32X32_MODES (TM_PRED + 1)
#define VP9_MVREFS (1 + SPLITMV - NEARESTMV)
#define WHT_UPSCALE_FACTOR 2
typedef enum {
B_DC_PRED, /* average of above and left pixels */
B_V_PRED, /* vertical prediction */
B_H_PRED, /* horizontal prediction */
B_D45_PRED,
B_D135_PRED,
B_D117_PRED,
B_D153_PRED,
B_D27_PRED,
B_D63_PRED,
B_TM_PRED,
#if CONFIG_NEWBINTRAMODES
B_CONTEXT_PRED,
#endif
LEFT4X4,
ABOVE4X4,
ZERO4X4,
NEW4X4,
B_MODE_COUNT
} B_PREDICTION_MODE;
#define VP9_BINTRAMODES (LEFT4X4)
#define VP9_SUBMVREFS (1 + NEW4X4 - LEFT4X4)
#if CONFIG_NEWBINTRAMODES
/* The number of I4X4_PRED intra modes that are replaced by B_CONTEXT_PRED */
#define CONTEXT_PRED_REPLACEMENTS 0
#define VP9_KF_BINTRAMODES (VP9_BINTRAMODES - 1)
#define VP9_NKF_BINTRAMODES (VP9_BINTRAMODES - CONTEXT_PRED_REPLACEMENTS)
#else
#define VP9_KF_BINTRAMODES (VP9_BINTRAMODES) /* 10 */
#define VP9_NKF_BINTRAMODES (VP9_BINTRAMODES) /* 10 */
#endif
typedef enum {
PARTITIONING_16X8 = 0,
PARTITIONING_8X16,
PARTITIONING_8X8,
PARTITIONING_4X4,
NB_PARTITIONINGS,
} SPLITMV_PARTITIONING_TYPE;
/* For keyframes, intra block modes are predicted by the (already decoded)
modes for the Y blocks to the left and above us; for interframes, there
is a single probability table. */
union b_mode_info {
struct {
B_PREDICTION_MODE first;
#if CONFIG_NEWBINTRAMODES
B_PREDICTION_MODE context;
#endif
} as_mode;
int_mv as_mv[2]; // first, second inter predictor motion vectors
};
typedef enum {
NONE = -1,
INTRA_FRAME = 0,
LAST_FRAME = 1,
GOLDEN_FRAME = 2,
ALTREF_FRAME = 3,
MAX_REF_FRAMES = 4
} MV_REFERENCE_FRAME;
static INLINE int mb_width_log2(BLOCK_SIZE_TYPE sb_type) {
switch (sb_type) {
#if CONFIG_SBSEGMENT
case BLOCK_SIZE_SB16X32:
#endif
case BLOCK_SIZE_MB16X16: return 0;
#if CONFIG_SBSEGMENT
case BLOCK_SIZE_SB32X16:
case BLOCK_SIZE_SB32X64:
#endif
case BLOCK_SIZE_SB32X32: return 1;
#if CONFIG_SBSEGMENT
case BLOCK_SIZE_SB64X32:
#endif
case BLOCK_SIZE_SB64X64: return 2;
default: assert(0);
}
}
static INLINE int mb_height_log2(BLOCK_SIZE_TYPE sb_type) {
switch (sb_type) {
#if CONFIG_SBSEGMENT
case BLOCK_SIZE_SB32X16:
#endif
case BLOCK_SIZE_MB16X16: return 0;
#if CONFIG_SBSEGMENT
case BLOCK_SIZE_SB16X32:
case BLOCK_SIZE_SB64X32:
#endif
case BLOCK_SIZE_SB32X32: return 1;
#if CONFIG_SBSEGMENT
case BLOCK_SIZE_SB32X64:
#endif
case BLOCK_SIZE_SB64X64: return 2;
default: assert(0);
}
}
// parse block dimension in the unit of 4x4 blocks
static INLINE int b_width_log2(BLOCK_SIZE_TYPE sb_type) {
return mb_width_log2(sb_type) + 2;
}
static INLINE int b_height_log2(BLOCK_SIZE_TYPE sb_type) {
return mb_height_log2(sb_type) + 2;
}
static INLINE int partition_plane(BLOCK_SIZE_TYPE sb_type) {
assert(mb_width_log2(sb_type) == mb_height_log2(sb_type));
return (mb_width_log2(sb_type) - 1);
}
typedef struct {
MB_PREDICTION_MODE mode, uv_mode;
#if CONFIG_COMP_INTERINTRA_PRED
MB_PREDICTION_MODE interintra_mode, interintra_uv_mode;
#endif
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
TX_SIZE txfm_size;
int_mv mv[2]; // for each reference frame used
int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES];
int_mv best_mv, best_second_mv;
#if CONFIG_NEW_MVREF
int best_index, best_second_index;
#endif
int mb_mode_context[MAX_REF_FRAMES];
SPLITMV_PARTITIONING_TYPE partitioning;
unsigned char mb_skip_coeff; /* does this mb has coefficients at all, 1=no coefficients, 0=need decode tokens */
unsigned char need_to_clamp_mvs;
unsigned char need_to_clamp_secondmv;
unsigned char segment_id; /* Which set of segmentation parameters should be used for this MB */
// Flags used for prediction status of various bistream signals
unsigned char seg_id_predicted;
unsigned char ref_predicted;
// Indicates if the mb is part of the image (1) vs border (0)
// This can be useful in determining whether the MB provides
// a valid predictor
unsigned char mb_in_image;
INTERPOLATIONFILTERTYPE interp_filter;
BLOCK_SIZE_TYPE sb_type;
#if CONFIG_CODE_NONZEROCOUNT
uint16_t nzcs[256+64*2];
#endif
} MB_MODE_INFO;
typedef struct {
MB_MODE_INFO mbmi;
union b_mode_info bmi[16];
} MODE_INFO;
typedef struct blockd {
uint8_t *predictor;
int16_t *diff;
int16_t *dequant;
/* 16 Y blocks, 4 U blocks, 4 V blocks each with 16 entries */
uint8_t **base_pre;
uint8_t **base_second_pre;
int pre;
int pre_stride;
uint8_t **base_dst;
int dst;
int dst_stride;
union b_mode_info bmi;
} BLOCKD;
struct scale_factors {
int x_num;
int x_den;
int x_offset_q4;
int x_step_q4;
int y_num;
int y_den;
int y_offset_q4;
int y_step_q4;
int (*scale_value_x)(int val, const struct scale_factors *scale);
int (*scale_value_y)(int val, const struct scale_factors *scale);
void (*set_scaled_offsets)(struct scale_factors *scale, int row, int col);
int_mv32 (*scale_motion_vector_q3_to_q4)(const int_mv *src_mv,
const struct scale_factors *scale);
int32_t (*scale_motion_vector_component_q4)(int mv_q4,
int num,
int den,
int offset_q4);
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
convolve_fn_t predict[2][2][8]; // horiz, vert, weight (0 - 7)
#else
convolve_fn_t predict[2][2][2]; // horiz, vert, avg
#endif
};
enum { MAX_MB_PLANE = 3 };
struct mb_plane {
DECLARE_ALIGNED(16, int16_t, qcoeff[64 * 64]);
DECLARE_ALIGNED(16, int16_t, dqcoeff[64 * 64]);
DECLARE_ALIGNED(16, uint16_t, eobs[256]);
PLANE_TYPE plane_type;
int subsampling_x;
int subsampling_y;
};
#define BLOCK_OFFSET(x, i, n) ((x) + (i) * (n))
#define MB_SUBBLOCK_FIELD(x, field, i) (\
((i) < 16) ? BLOCK_OFFSET((x)->plane[0].field, (i), 16) : \
((i) < 20) ? BLOCK_OFFSET((x)->plane[1].field, ((i) - 16), 16) : \
BLOCK_OFFSET((x)->plane[2].field, ((i) - 20), 16))
typedef struct macroblockd {
DECLARE_ALIGNED(16, int16_t, diff[64*64+32*32*2]); /* from idct diff */
DECLARE_ALIGNED(16, uint8_t, predictor[384]); // unused for superblocks
#if CONFIG_CODE_NONZEROCOUNT
DECLARE_ALIGNED(16, uint16_t, nzcs[256+64*2]);
#endif
struct mb_plane plane[MAX_MB_PLANE];
/* 16 Y blocks, 4 U, 4 V, each with 16 entries. */
BLOCKD block[24];
YV12_BUFFER_CONFIG pre; /* Filtered copy of previous frame reconstruction */
YV12_BUFFER_CONFIG second_pre;
YV12_BUFFER_CONFIG dst;
struct scale_factors scale_factor[2];
struct scale_factors scale_factor_uv[2];
MODE_INFO *prev_mode_info_context;
MODE_INFO *mode_info_context;
int mode_info_stride;
FRAME_TYPE frame_type;
int up_available;
int left_available;
int right_available;
/* Y,U,V */
ENTROPY_CONTEXT_PLANES *above_context;
ENTROPY_CONTEXT_PLANES *left_context;
/* 0 indicates segmentation at MB level is not enabled. Otherwise the individual bits indicate which features are active. */
unsigned char segmentation_enabled;
/* 0 (do not update) 1 (update) the macroblock segmentation map. */
unsigned char update_mb_segmentation_map;
/* 0 (do not update) 1 (update) the macroblock segmentation feature data. */
unsigned char update_mb_segmentation_data;
/* 0 (do not update) 1 (update) the macroblock segmentation feature data. */
unsigned char mb_segment_abs_delta;
/* Per frame flags that define which MB level features (such as quantizer or loop filter level) */
/* are enabled and when enabled the proabilities used to decode the per MB flags in MB_MODE_INFO */
// Probability Tree used to code Segment number
vp9_prob mb_segment_tree_probs[MB_FEATURE_TREE_PROBS];
vp9_prob mb_segment_mispred_tree_probs[MAX_MB_SEGMENTS];
#if CONFIG_NEW_MVREF
vp9_prob mb_mv_ref_probs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES-1];
#endif
// Segment features
signed char segment_feature_data[MAX_MB_SEGMENTS][SEG_LVL_MAX];
unsigned int segment_feature_mask[MAX_MB_SEGMENTS];
/* mode_based Loop filter adjustment */
unsigned char mode_ref_lf_delta_enabled;
unsigned char mode_ref_lf_delta_update;
/* Delta values have the range +/- MAX_LOOP_FILTER */
/* 0 = Intra, Last, GF, ARF */
signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS];
/* 0 = Intra, Last, GF, ARF */
signed char ref_lf_deltas[MAX_REF_LF_DELTAS];
/* 0 = I4X4_PRED, ZERO_MV, MV, SPLIT */
signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS];
/* 0 = I4X4_PRED, ZERO_MV, MV, SPLIT */
signed char mode_lf_deltas[MAX_MODE_LF_DELTAS];
/* Distance of MB away from frame edges */
int mb_to_left_edge;
int mb_to_right_edge;
int mb_to_top_edge;
int mb_to_bottom_edge;
unsigned int frames_since_golden;
unsigned int frames_till_alt_ref_frame;
int lossless;
/* Inverse transform function pointers. */
void (*inv_txm4x4_1)(int16_t *input, int16_t *output, int pitch);
void (*inv_txm4x4)(int16_t *input, int16_t *output, int pitch);
void (*itxm_add)(int16_t *input, const int16_t *dq, uint8_t *dest,
int stride, int eob);
void (*itxm_add_y_block)(int16_t *q, const int16_t *dq,
uint8_t *dst, int stride, struct macroblockd *xd);
void (*itxm_add_uv_block)(int16_t *q, const int16_t *dq,
uint8_t *dst, int stride, uint16_t *eobs);
struct subpix_fn_table subpix;
int allow_high_precision_mv;
int corrupted;
int sb_index;
int mb_index; // Index of the MB in the SB (0..3)
int q_index;
} MACROBLOCKD;
#define ACTIVE_HT 110 // quantization stepsize threshold
#define ACTIVE_HT8 300
#define ACTIVE_HT16 300
// convert MB_PREDICTION_MODE to B_PREDICTION_MODE
static B_PREDICTION_MODE pred_mode_conv(MB_PREDICTION_MODE mode) {
switch (mode) {
case DC_PRED: return B_DC_PRED;
case V_PRED: return B_V_PRED;
case H_PRED: return B_H_PRED;
case TM_PRED: return B_TM_PRED;
case D45_PRED: return B_D45_PRED;
case D135_PRED: return B_D135_PRED;
case D117_PRED: return B_D117_PRED;
case D153_PRED: return B_D153_PRED;
case D27_PRED: return B_D27_PRED;
case D63_PRED: return B_D63_PRED;
default:
assert(0);
return B_MODE_COUNT; // Dummy value
}
}
// transform mapping
static TX_TYPE txfm_map(B_PREDICTION_MODE bmode) {
switch (bmode) {
case B_TM_PRED :
case B_D135_PRED :
return ADST_ADST;
case B_V_PRED :
case B_D117_PRED :
return ADST_DCT;
case B_H_PRED :
case B_D153_PRED :
case B_D27_PRED :
return DCT_ADST;
#if CONFIG_NEWBINTRAMODES
case B_CONTEXT_PRED:
assert(0);
break;
#endif
default:
return DCT_DCT;
}
}
extern const uint8_t vp9_block2left[TX_SIZE_MAX_MB][24];
extern const uint8_t vp9_block2above[TX_SIZE_MAX_MB][24];
extern const uint8_t vp9_block2left_sb[TX_SIZE_MAX_SB][96];
extern const uint8_t vp9_block2above_sb[TX_SIZE_MAX_SB][96];
extern const uint8_t vp9_block2left_sb64[TX_SIZE_MAX_SB][384];
extern const uint8_t vp9_block2above_sb64[TX_SIZE_MAX_SB][384];
#if CONFIG_SBSEGMENT
extern const uint8_t vp9_block2left_sb16x32[TX_SIZE_MAX_MB][48];
extern const uint8_t vp9_block2above_sb16x32[TX_SIZE_MAX_MB][48];
extern const uint8_t vp9_block2left_sb32x16[TX_SIZE_MAX_MB][48];
extern const uint8_t vp9_block2above_sb32x16[TX_SIZE_MAX_MB][48];
extern const uint8_t vp9_block2left_sb32x64[TX_SIZE_MAX_SB][192];
extern const uint8_t vp9_block2above_sb32x64[TX_SIZE_MAX_SB][192];
extern const uint8_t vp9_block2left_sb64x32[TX_SIZE_MAX_SB][192];
extern const uint8_t vp9_block2above_sb64x32[TX_SIZE_MAX_SB][192];
#endif
#define USE_ADST_FOR_I16X16_8X8 1
#define USE_ADST_FOR_I16X16_4X4 1
#define USE_ADST_FOR_I8X8_4X4 1
#define USE_ADST_PERIPHERY_ONLY 1
#define USE_ADST_FOR_SB 1
#define USE_ADST_FOR_REMOTE_EDGE 0
static TX_TYPE get_tx_type_4x4(const MACROBLOCKD *xd, int ib) {
// TODO(debargha): explore different patterns for ADST usage when blocksize
// is smaller than the prediction size
TX_TYPE tx_type = DCT_DCT;
const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
const int wb = mb_width_log2(sb_type), hb = mb_height_log2(sb_type);
#if !USE_ADST_FOR_SB
if (sb_type > BLOCK_SIZE_MB16X16)
return tx_type;
#endif
if (ib >= (16 << (wb + hb))) // no chroma adst
return tx_type;
if (xd->lossless)
return DCT_DCT;
if (xd->mode_info_context->mbmi.mode == I4X4_PRED &&
xd->q_index < ACTIVE_HT) {
const BLOCKD *b = &xd->block[ib];
tx_type = txfm_map(
#if CONFIG_NEWBINTRAMODES
b->bmi.as_mode.first == B_CONTEXT_PRED ? b->bmi.as_mode.context :
#endif
b->bmi.as_mode.first);
} else if (xd->mode_info_context->mbmi.mode == I8X8_PRED &&
xd->q_index < ACTIVE_HT) {
const BLOCKD *b = &xd->block[ib];
const int ic = (ib & 10);
#if USE_ADST_FOR_I8X8_4X4
#if USE_ADST_PERIPHERY_ONLY
// Use ADST for periphery blocks only
const int inner = ib & 5;
b += ic - ib;
tx_type = txfm_map(pred_mode_conv(
(MB_PREDICTION_MODE)b->bmi.as_mode.first));
#if USE_ADST_FOR_REMOTE_EDGE
if (inner == 5)
tx_type = DCT_DCT;
#else
if (inner == 1) {
if (tx_type == ADST_ADST) tx_type = ADST_DCT;
else if (tx_type == DCT_ADST) tx_type = DCT_DCT;
} else if (inner == 4) {
if (tx_type == ADST_ADST) tx_type = DCT_ADST;
else if (tx_type == ADST_DCT) tx_type = DCT_DCT;
} else if (inner == 5) {
tx_type = DCT_DCT;
}
#endif
#else
// Use ADST
b += ic - ib;
tx_type = txfm_map(pred_mode_conv(
(MB_PREDICTION_MODE)b->bmi.as_mode.first));
#endif
#else
// Use 2D DCT
tx_type = DCT_DCT;
#endif
} else if (xd->mode_info_context->mbmi.mode < I8X8_PRED &&
xd->q_index < ACTIVE_HT) {
#if USE_ADST_FOR_I16X16_4X4
#if USE_ADST_PERIPHERY_ONLY
const int hmax = 4 << wb;
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
#if USE_ADST_FOR_REMOTE_EDGE
if ((ib & (hmax - 1)) != 0 && ib >= hmax)
tx_type = DCT_DCT;
#else
if (ib >= 1 && ib < hmax) {
if (tx_type == ADST_ADST) tx_type = ADST_DCT;
else if (tx_type == DCT_ADST) tx_type = DCT_DCT;
} else if (ib >= 1 && (ib & (hmax - 1)) == 0) {
if (tx_type == ADST_ADST) tx_type = DCT_ADST;
else if (tx_type == ADST_DCT) tx_type = DCT_DCT;
} else if (ib != 0) {
tx_type = DCT_DCT;
}
#endif
#else
// Use ADST
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
#endif
#else
// Use 2D DCT
tx_type = DCT_DCT;
#endif
}
return tx_type;
}
static TX_TYPE get_tx_type_8x8(const MACROBLOCKD *xd, int ib) {
// TODO(debargha): explore different patterns for ADST usage when blocksize
// is smaller than the prediction size
TX_TYPE tx_type = DCT_DCT;
const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
const int wb = mb_width_log2(sb_type), hb = mb_height_log2(sb_type);
#if !USE_ADST_FOR_SB
if (sb_type > BLOCK_SIZE_MB16X16)
return tx_type;
#endif
if (ib >= (16 << (wb + hb))) // no chroma adst
return tx_type;
if (xd->mode_info_context->mbmi.mode == I8X8_PRED &&
xd->q_index < ACTIVE_HT8) {
const BLOCKD *b = &xd->block[ib];
// TODO(rbultje): MB_PREDICTION_MODE / B_PREDICTION_MODE should be merged
// or the relationship otherwise modified to address this type conversion.
tx_type = txfm_map(pred_mode_conv(
(MB_PREDICTION_MODE)b->bmi.as_mode.first));
} else if (xd->mode_info_context->mbmi.mode < I8X8_PRED &&
xd->q_index < ACTIVE_HT8) {
#if USE_ADST_FOR_I16X16_8X8
#if USE_ADST_PERIPHERY_ONLY
const int hmax = 4 << wb;
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
#if USE_ADST_FOR_REMOTE_EDGE
if ((ib & (hmax - 1)) != 0 && ib >= hmax)
tx_type = DCT_DCT;
#else
if (ib >= 1 && ib < hmax) {
if (tx_type == ADST_ADST) tx_type = ADST_DCT;
else if (tx_type == DCT_ADST) tx_type = DCT_DCT;
} else if (ib >= 1 && (ib & (hmax - 1)) == 0) {
if (tx_type == ADST_ADST) tx_type = DCT_ADST;
else if (tx_type == ADST_DCT) tx_type = DCT_DCT;
} else if (ib != 0) {
tx_type = DCT_DCT;
}
#endif
#else
// Use ADST
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
#endif
#else
// Use 2D DCT
tx_type = DCT_DCT;
#endif
}
return tx_type;
}
static TX_TYPE get_tx_type_16x16(const MACROBLOCKD *xd, int ib) {
TX_TYPE tx_type = DCT_DCT;
const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
const int wb = mb_width_log2(sb_type), hb = mb_height_log2(sb_type);
#if !USE_ADST_FOR_SB
if (sb_type > BLOCK_SIZE_MB16X16)
return tx_type;
#endif
if (ib >= (16 << (wb + hb)))
return tx_type;
if (xd->mode_info_context->mbmi.mode < I8X8_PRED &&
xd->q_index < ACTIVE_HT16) {
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
#if USE_ADST_PERIPHERY_ONLY
if (sb_type > BLOCK_SIZE_MB16X16) {
const int hmax = 4 << wb;
#if USE_ADST_FOR_REMOTE_EDGE
if ((ib & (hmax - 1)) != 0 && ib >= hmax)
tx_type = DCT_DCT;
#else
if (ib >= 1 && ib < hmax) {
if (tx_type == ADST_ADST) tx_type = ADST_DCT;
else if (tx_type == DCT_ADST) tx_type = DCT_DCT;
} else if (ib >= 1 && (ib & (hmax - 1)) == 0) {
if (tx_type == ADST_ADST) tx_type = DCT_ADST;
else if (tx_type == ADST_DCT) tx_type = DCT_DCT;
} else if (ib != 0) {
tx_type = DCT_DCT;
}
#endif
}
#endif
}
return tx_type;
}
void vp9_build_block_doffsets(MACROBLOCKD *xd);
void vp9_setup_block_dptrs(MACROBLOCKD *xd);
static void update_blockd_bmi(MACROBLOCKD *xd) {
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
if (mode == SPLITMV || mode == I8X8_PRED || mode == I4X4_PRED) {
int i;
for (i = 0; i < 16; i++)
xd->block[i].bmi = xd->mode_info_context->bmi[i];
}
}
static TX_SIZE get_uv_tx_size(const MACROBLOCKD *xd) {
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
const TX_SIZE size = mbmi->txfm_size;
const MB_PREDICTION_MODE mode = mbmi->mode;
switch (mbmi->sb_type) {
case BLOCK_SIZE_SB64X64:
return size;
#if CONFIG_SBSEGMENT
case BLOCK_SIZE_SB64X32:
case BLOCK_SIZE_SB32X64:
#endif
case BLOCK_SIZE_SB32X32:
if (size == TX_32X32)
return TX_16X16;
else
return size;
default:
if (size == TX_16X16)
return TX_8X8;
else if (size == TX_8X8 && (mode == I8X8_PRED || mode == SPLITMV))
return TX_4X4;
else
return size;
}
return size;
}
#if CONFIG_CODE_NONZEROCOUNT
static int get_nzc_used(TX_SIZE tx_size) {
return (tx_size >= TX_16X16);
}
#endif
struct plane_block_idx {
int plane;
int block;
};
// TODO(jkoleszar): returning a struct so it can be used in a const context,
// expect to refactor this further later.
static INLINE struct plane_block_idx plane_block_idx(int y_blocks,
int b_idx) {
const int v_offset = y_blocks * 5 / 4;
struct plane_block_idx res;
if (b_idx < y_blocks) {
res.plane = 0;
res.block = b_idx;
} else if (b_idx < v_offset) {
res.plane = 1;
res.block = b_idx - y_blocks;
} else {
assert(b_idx < y_blocks * 3 / 2);
res.plane = 2;
res.block = b_idx - v_offset;
}
return res;
}
/* TODO(jkoleszar): Probably best to remove instances that require this,
* as the data likely becomes per-plane and stored in the per-plane structures.
* This is a stub to work with the existing code.
*/
static INLINE int old_block_idx_4x4(MACROBLOCKD* const xd, int block_size_b,
int plane, int i) {
const int luma_blocks = 1 << block_size_b;
assert(xd->plane[0].subsampling_x == 0);
assert(xd->plane[0].subsampling_y == 0);
assert(xd->plane[1].subsampling_x == 1);
assert(xd->plane[1].subsampling_y == 1);
assert(xd->plane[2].subsampling_x == 1);
assert(xd->plane[2].subsampling_y == 1);
return plane == 0 ? i :
plane == 1 ? luma_blocks + i :
luma_blocks * 5 / 4 + i;
}
typedef void (*foreach_transformed_block_visitor)(int plane, int block,
BLOCK_SIZE_TYPE bsize,
int ss_txfrm_size,
void *arg);
static INLINE void foreach_transformed_block_in_plane(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane,
int is_split, foreach_transformed_block_visitor visit, void *arg) {
const int bw = b_width_log2(bsize), bh = b_height_log2(bsize);
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
const TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size;
const int block_size_b = bw + bh;
const int txfrm_size_b = tx_size * 2;
// subsampled size of the block
const int ss_sum = xd->plane[plane].subsampling_x +
xd->plane[plane].subsampling_y;
const int ss_block_size = block_size_b - ss_sum;
// size of the transform to use. scale the transform down if it's larger
// than the size of the subsampled data, or forced externally by the mb mode.
const int ss_max = MAX(xd->plane[plane].subsampling_x,
xd->plane[plane].subsampling_y);
const int ss_txfrm_size = txfrm_size_b > ss_block_size || is_split
? txfrm_size_b - ss_max * 2
: txfrm_size_b;
const int step = 1 << ss_txfrm_size;
int i;
assert(txfrm_size_b <= block_size_b);
assert(ss_txfrm_size <= ss_block_size);
for (i = 0; i < (1 << ss_block_size); i += step) {
visit(plane, i, bsize, ss_txfrm_size, arg);
}
}
static INLINE void foreach_transformed_block(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
foreach_transformed_block_visitor visit, void *arg) {
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
const int is_split =
xd->mode_info_context->mbmi.txfm_size == TX_8X8 &&
(mode == I8X8_PRED || mode == SPLITMV);
int plane;
for (plane = 0; plane < MAX_MB_PLANE; plane++) {
const int is_split_chroma = is_split &&
xd->plane[plane].plane_type == PLANE_TYPE_UV;
foreach_transformed_block_in_plane(xd, bsize, plane, is_split_chroma,
visit, arg);
}
}
static INLINE void foreach_transformed_block_uv(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
foreach_transformed_block_visitor visit, void *arg) {
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
const int is_split =
xd->mode_info_context->mbmi.txfm_size == TX_8X8 &&
(mode == I8X8_PRED || mode == SPLITMV);
int plane;
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
foreach_transformed_block_in_plane(xd, bsize, plane, is_split,
visit, arg);
}
}
#endif // VP9_COMMON_VP9_BLOCKD_H_