e924057d80
Fixes an inadvertant change made in a previous patch while doing some experiments. Change-Id: I9961f2157c803676491a3d6daf056ff8a37367b3
842 lines
31 KiB
C
842 lines
31 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include "vp9/common/vp9_alloccommon.h"
|
|
#include "vp9/common/vp9_common.h"
|
|
#include "vp9/encoder/vp9_ratectrl.h"
|
|
#include "vp9/common/vp9_entropymode.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vp9/common/vp9_systemdependent.h"
|
|
#include "vp9/encoder/vp9_encodemv.h"
|
|
#include "vp9/common/vp9_quant_common.h"
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
|
|
#define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
|
|
|
|
#define MIN_BPB_FACTOR 0.005
|
|
#define MAX_BPB_FACTOR 50
|
|
|
|
// Bits Per MB at different Q (Multiplied by 512)
|
|
#define BPER_MB_NORMBITS 9
|
|
|
|
static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] =
|
|
{ 1, 2, 3, 4, 5 };
|
|
|
|
// Tables relating active max Q to active min Q
|
|
static int kf_low_motion_minq[QINDEX_RANGE];
|
|
static int kf_high_motion_minq[QINDEX_RANGE];
|
|
static int gf_low_motion_minq[QINDEX_RANGE];
|
|
static int gf_high_motion_minq[QINDEX_RANGE];
|
|
static int inter_minq[QINDEX_RANGE];
|
|
static int afq_low_motion_minq[QINDEX_RANGE];
|
|
static int afq_high_motion_minq[QINDEX_RANGE];
|
|
|
|
// Functions to compute the active minq lookup table entries based on a
|
|
// formulaic approach to facilitate easier adjustment of the Q tables.
|
|
// The formulae were derived from computing a 3rd order polynomial best
|
|
// fit to the original data (after plotting real maxq vs minq (not q index))
|
|
static int calculate_minq_index(double maxq,
|
|
double x3, double x2, double x1, double c) {
|
|
int i;
|
|
const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq + c,
|
|
maxq);
|
|
|
|
// Special case handling to deal with the step from q2.0
|
|
// down to lossless mode represented by q 1.0.
|
|
if (minqtarget <= 2.0)
|
|
return 0;
|
|
|
|
for (i = 0; i < QINDEX_RANGE; i++) {
|
|
if (minqtarget <= vp9_convert_qindex_to_q(i))
|
|
return i;
|
|
}
|
|
|
|
return QINDEX_RANGE - 1;
|
|
}
|
|
|
|
void vp9_rc_init_minq_luts(void) {
|
|
int i;
|
|
|
|
for (i = 0; i < QINDEX_RANGE; i++) {
|
|
const double maxq = vp9_convert_qindex_to_q(i);
|
|
|
|
|
|
kf_low_motion_minq[i] = calculate_minq_index(maxq,
|
|
0.000001,
|
|
-0.0004,
|
|
0.15,
|
|
0.0);
|
|
kf_high_motion_minq[i] = calculate_minq_index(maxq,
|
|
0.000002,
|
|
-0.0012,
|
|
0.5,
|
|
0.0);
|
|
|
|
gf_low_motion_minq[i] = calculate_minq_index(maxq,
|
|
0.0000015,
|
|
-0.0009,
|
|
0.32,
|
|
0.0);
|
|
gf_high_motion_minq[i] = calculate_minq_index(maxq,
|
|
0.0000021,
|
|
-0.00125,
|
|
0.50,
|
|
0.0);
|
|
inter_minq[i] = calculate_minq_index(maxq,
|
|
0.00000271,
|
|
-0.00113,
|
|
0.75,
|
|
0.0);
|
|
afq_low_motion_minq[i] = calculate_minq_index(maxq,
|
|
0.0000015,
|
|
-0.0009,
|
|
0.33,
|
|
0.0);
|
|
afq_high_motion_minq[i] = calculate_minq_index(maxq,
|
|
0.0000021,
|
|
-0.00125,
|
|
0.55,
|
|
0.0);
|
|
}
|
|
}
|
|
|
|
// These functions use formulaic calculations to make playing with the
|
|
// quantizer tables easier. If necessary they can be replaced by lookup
|
|
// tables if and when things settle down in the experimental bitstream
|
|
double vp9_convert_qindex_to_q(int qindex) {
|
|
// Convert the index to a real Q value (scaled down to match old Q values)
|
|
return vp9_ac_quant(qindex, 0) / 4.0;
|
|
}
|
|
|
|
int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
|
|
double correction_factor) {
|
|
const double q = vp9_convert_qindex_to_q(qindex);
|
|
int enumerator = frame_type == KEY_FRAME ? 3300000 : 2250000;
|
|
|
|
// q based adjustment to baseline enumerator
|
|
enumerator += (int)(enumerator * q) >> 12;
|
|
return (int)(0.5 + (enumerator * correction_factor / q));
|
|
}
|
|
|
|
void vp9_save_coding_context(VP9_COMP *cpi) {
|
|
CODING_CONTEXT *const cc = &cpi->coding_context;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
// Stores a snapshot of key state variables which can subsequently be
|
|
// restored with a call to vp9_restore_coding_context. These functions are
|
|
// intended for use in a re-code loop in vp9_compress_frame where the
|
|
// quantizer value is adjusted between loop iterations.
|
|
vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost);
|
|
vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts);
|
|
vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp);
|
|
|
|
vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs);
|
|
|
|
vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy,
|
|
cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols));
|
|
|
|
vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas);
|
|
vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas);
|
|
|
|
cc->fc = cm->fc;
|
|
}
|
|
|
|
void vp9_restore_coding_context(VP9_COMP *cpi) {
|
|
CODING_CONTEXT *const cc = &cpi->coding_context;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
// Restore key state variables to the snapshot state stored in the
|
|
// previous call to vp9_save_coding_context.
|
|
vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost);
|
|
vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts);
|
|
vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp);
|
|
|
|
vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs);
|
|
|
|
vpx_memcpy(cm->last_frame_seg_map,
|
|
cpi->coding_context.last_frame_seg_map_copy,
|
|
(cm->mi_rows * cm->mi_cols));
|
|
|
|
vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas);
|
|
vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas);
|
|
|
|
cm->fc = cc->fc;
|
|
}
|
|
|
|
void vp9_setup_key_frame(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
vp9_setup_past_independence(cm);
|
|
|
|
// interval before next GF
|
|
cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
|
|
/* All buffers are implicitly updated on key frames. */
|
|
cpi->refresh_golden_frame = 1;
|
|
cpi->refresh_alt_ref_frame = 1;
|
|
}
|
|
|
|
void vp9_setup_inter_frame(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
if (cm->error_resilient_mode || cm->intra_only)
|
|
vp9_setup_past_independence(cm);
|
|
|
|
assert(cm->frame_context_idx < NUM_FRAME_CONTEXTS);
|
|
cm->fc = cm->frame_contexts[cm->frame_context_idx];
|
|
}
|
|
|
|
static int estimate_bits_at_q(int frame_kind, int q, int mbs,
|
|
double correction_factor) {
|
|
const int bpm = (int)(vp9_rc_bits_per_mb(frame_kind, q, correction_factor));
|
|
|
|
// Attempt to retain reasonable accuracy without overflow. The cutoff is
|
|
// chosen such that the maximum product of Bpm and MBs fits 31 bits. The
|
|
// largest Bpm takes 20 bits.
|
|
return (mbs > (1 << 11)) ? (bpm >> BPER_MB_NORMBITS) * mbs
|
|
: (bpm * mbs) >> BPER_MB_NORMBITS;
|
|
}
|
|
|
|
|
|
static void calc_iframe_target_size(VP9_COMP *cpi) {
|
|
// boost defaults to half second
|
|
int target;
|
|
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
// New Two pass RC
|
|
target = cpi->rc.per_frame_bandwidth;
|
|
|
|
if (cpi->oxcf.rc_max_intra_bitrate_pct) {
|
|
int max_rate = cpi->rc.per_frame_bandwidth
|
|
* cpi->oxcf.rc_max_intra_bitrate_pct / 100;
|
|
|
|
if (target > max_rate)
|
|
target = max_rate;
|
|
}
|
|
cpi->rc.this_frame_target = target;
|
|
}
|
|
|
|
// Do the best we can to define the parameters for the next GF based
|
|
// on what information we have available.
|
|
//
|
|
// In this experimental code only two pass is supported
|
|
// so we just use the interval determined in the two pass code.
|
|
static void calc_gf_params(VP9_COMP *cpi) {
|
|
// Set the gf interval
|
|
cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
|
|
}
|
|
|
|
|
|
static void calc_pframe_target_size(VP9_COMP *cpi) {
|
|
const int min_frame_target = MAX(cpi->rc.min_frame_bandwidth,
|
|
cpi->rc.av_per_frame_bandwidth >> 5);
|
|
if (cpi->refresh_alt_ref_frame) {
|
|
// Special alt reference frame case
|
|
// Per frame bit target for the alt ref frame
|
|
cpi->rc.per_frame_bandwidth = cpi->twopass.gf_bits;
|
|
cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
|
|
} else {
|
|
// Normal frames (gf,and inter)
|
|
cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
|
|
}
|
|
|
|
// Check that the total sum of adjustments is not above the maximum allowed.
|
|
// That is, having allowed for the KF and GF penalties, we have not pushed
|
|
// the current inter-frame target too low. If the adjustment we apply here is
|
|
// not capable of recovering all the extra bits we have spent in the KF or GF,
|
|
// then the remainder will have to be recovered over a longer time span via
|
|
// other buffer / rate control mechanisms.
|
|
if (cpi->rc.this_frame_target < min_frame_target)
|
|
cpi->rc.this_frame_target = min_frame_target;
|
|
|
|
// Adjust target frame size for Golden Frames:
|
|
if (cpi->rc.frames_till_gf_update_due == 0) {
|
|
cpi->refresh_golden_frame = 1;
|
|
calc_gf_params(cpi);
|
|
// If we are using alternate ref instead of gf then do not apply the boost
|
|
// It will instead be applied to the altref update
|
|
// Jims modified boost
|
|
if (!cpi->source_alt_ref_active) {
|
|
// The spend on the GF is defined in the two pass code
|
|
// for two pass encodes
|
|
cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
|
|
} else {
|
|
// If there is an active ARF at this location use the minimum
|
|
// bits on this frame even if it is a constructed arf.
|
|
// The active maximum quantizer insures that an appropriate
|
|
// number of bits will be spent if needed for constructed ARFs.
|
|
cpi->rc.this_frame_target = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
|
|
const int q = cpi->common.base_qindex;
|
|
int correction_factor = 100;
|
|
double rate_correction_factor;
|
|
double adjustment_limit;
|
|
|
|
int projected_size_based_on_q = 0;
|
|
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME) {
|
|
rate_correction_factor = cpi->rc.key_frame_rate_correction_factor;
|
|
} else {
|
|
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
|
|
rate_correction_factor = cpi->rc.gf_rate_correction_factor;
|
|
else
|
|
rate_correction_factor = cpi->rc.rate_correction_factor;
|
|
}
|
|
|
|
// Work out how big we would have expected the frame to be at this Q given
|
|
// the current correction factor.
|
|
// Stay in double to avoid int overflow when values are large
|
|
projected_size_based_on_q = estimate_bits_at_q(cpi->common.frame_type, q,
|
|
cpi->common.MBs,
|
|
rate_correction_factor);
|
|
|
|
// Work out a size correction factor.
|
|
if (projected_size_based_on_q > 0)
|
|
correction_factor =
|
|
(100 * cpi->rc.projected_frame_size) / projected_size_based_on_q;
|
|
|
|
// More heavily damped adjustment used if we have been oscillating either side
|
|
// of target.
|
|
switch (damp_var) {
|
|
case 0:
|
|
adjustment_limit = 0.75;
|
|
break;
|
|
case 1:
|
|
adjustment_limit = 0.375;
|
|
break;
|
|
case 2:
|
|
default:
|
|
adjustment_limit = 0.25;
|
|
break;
|
|
}
|
|
|
|
// if ( (correction_factor > 102) && (Q < cpi->rc.active_worst_quality) )
|
|
if (correction_factor > 102) {
|
|
// We are not already at the worst allowable quality
|
|
correction_factor =
|
|
(int)(100 + ((correction_factor - 100) * adjustment_limit));
|
|
rate_correction_factor =
|
|
((rate_correction_factor * correction_factor) / 100);
|
|
|
|
// Keep rate_correction_factor within limits
|
|
if (rate_correction_factor > MAX_BPB_FACTOR)
|
|
rate_correction_factor = MAX_BPB_FACTOR;
|
|
} else if (correction_factor < 99) {
|
|
// We are not already at the best allowable quality
|
|
correction_factor =
|
|
(int)(100 - ((100 - correction_factor) * adjustment_limit));
|
|
rate_correction_factor =
|
|
((rate_correction_factor * correction_factor) / 100);
|
|
|
|
// Keep rate_correction_factor within limits
|
|
if (rate_correction_factor < MIN_BPB_FACTOR)
|
|
rate_correction_factor = MIN_BPB_FACTOR;
|
|
}
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME) {
|
|
cpi->rc.key_frame_rate_correction_factor = rate_correction_factor;
|
|
} else {
|
|
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
|
|
cpi->rc.gf_rate_correction_factor = rate_correction_factor;
|
|
else
|
|
cpi->rc.rate_correction_factor = rate_correction_factor;
|
|
}
|
|
}
|
|
|
|
|
|
int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame) {
|
|
int q = cpi->rc.active_worst_quality;
|
|
|
|
int i;
|
|
int last_error = INT_MAX;
|
|
int target_bits_per_mb;
|
|
int bits_per_mb_at_this_q;
|
|
double correction_factor;
|
|
|
|
// Select the appropriate correction factor based upon type of frame.
|
|
if (cpi->common.frame_type == KEY_FRAME) {
|
|
correction_factor = cpi->rc.key_frame_rate_correction_factor;
|
|
} else {
|
|
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
|
|
correction_factor = cpi->rc.gf_rate_correction_factor;
|
|
else
|
|
correction_factor = cpi->rc.rate_correction_factor;
|
|
}
|
|
|
|
// Calculate required scaling factor based on target frame size and size of
|
|
// frame produced using previous Q.
|
|
if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS))
|
|
target_bits_per_mb =
|
|
(target_bits_per_frame / cpi->common.MBs)
|
|
<< BPER_MB_NORMBITS; // Case where we would overflow int
|
|
else
|
|
target_bits_per_mb =
|
|
(target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;
|
|
|
|
i = cpi->rc.active_best_quality;
|
|
|
|
do {
|
|
bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cpi->common.frame_type, i,
|
|
correction_factor);
|
|
|
|
if (bits_per_mb_at_this_q <= target_bits_per_mb) {
|
|
if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
|
|
q = i;
|
|
else
|
|
q = i - 1;
|
|
|
|
break;
|
|
} else {
|
|
last_error = bits_per_mb_at_this_q - target_bits_per_mb;
|
|
}
|
|
} while (++i <= cpi->rc.active_worst_quality);
|
|
|
|
return q;
|
|
}
|
|
|
|
static int get_active_quality(int q,
|
|
int gfu_boost,
|
|
int low,
|
|
int high,
|
|
int *low_motion_minq,
|
|
int *high_motion_minq) {
|
|
int active_best_quality;
|
|
if (gfu_boost > high) {
|
|
active_best_quality = low_motion_minq[q];
|
|
} else if (gfu_boost < low) {
|
|
active_best_quality = high_motion_minq[q];
|
|
} else {
|
|
const int gap = high - low;
|
|
const int offset = high - gfu_boost;
|
|
const int qdiff = high_motion_minq[q] - low_motion_minq[q];
|
|
const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
|
|
active_best_quality = low_motion_minq[q] + adjustment;
|
|
}
|
|
return active_best_quality;
|
|
}
|
|
|
|
int vp9_rc_pick_q_and_adjust_q_bounds(VP9_COMP *cpi,
|
|
int *bottom_index,
|
|
int *top_index) {
|
|
// Set an active best quality and if necessary active worst quality
|
|
int q = cpi->rc.active_worst_quality;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
|
|
if (frame_is_intra_only(cm)) {
|
|
#if !CONFIG_MULTIPLE_ARF
|
|
// Handle the special case for key frames forced when we have75 reached
|
|
// the maximum key frame interval. Here force the Q to a range
|
|
// based on the ambient Q to reduce the risk of popping.
|
|
if (cpi->this_key_frame_forced) {
|
|
int delta_qindex;
|
|
int qindex = cpi->rc.last_boosted_qindex;
|
|
double last_boosted_q = vp9_convert_qindex_to_q(qindex);
|
|
|
|
delta_qindex = vp9_compute_qdelta(cpi, last_boosted_q,
|
|
(last_boosted_q * 0.75));
|
|
|
|
cpi->rc.active_best_quality = MAX(qindex + delta_qindex,
|
|
cpi->rc.best_quality);
|
|
} else if (cpi->pass == 0 && cpi->common.current_video_frame == 0) {
|
|
// If this is the first (key) frame in 1-pass, active best/worst is
|
|
// the user best/worst-allowed, and leave the top_index to active_worst.
|
|
cpi->rc.active_best_quality = cpi->oxcf.best_allowed_q;
|
|
cpi->rc.active_worst_quality = cpi->oxcf.worst_allowed_q;
|
|
} else {
|
|
int high = 5000;
|
|
int low = 400;
|
|
double q_adj_factor = 1.0;
|
|
double q_val;
|
|
|
|
// Baseline value derived from cpi->active_worst_quality and kf boost
|
|
cpi->rc.active_best_quality = get_active_quality(q, cpi->rc.kf_boost,
|
|
low, high,
|
|
kf_low_motion_minq,
|
|
kf_high_motion_minq);
|
|
|
|
// Allow somewhat lower kf minq with small image formats.
|
|
if ((cm->width * cm->height) <= (352 * 288)) {
|
|
q_adj_factor -= 0.25;
|
|
}
|
|
|
|
// Make a further adjustment based on the kf zero motion measure.
|
|
q_adj_factor += 0.05 - (0.001 * (double)cpi->kf_zeromotion_pct);
|
|
|
|
// Convert the adjustment factor to a qindex delta
|
|
// on active_best_quality.
|
|
q_val = vp9_convert_qindex_to_q(cpi->rc.active_best_quality);
|
|
cpi->rc.active_best_quality +=
|
|
vp9_compute_qdelta(cpi, q_val, (q_val * q_adj_factor));
|
|
}
|
|
#else
|
|
double current_q;
|
|
// Force the KF quantizer to be 30% of the active_worst_quality.
|
|
current_q = vp9_convert_qindex_to_q(cpi->rc.active_worst_quality);
|
|
cpi->rc.active_best_quality = cpi->rc.active_worst_quality
|
|
+ vp9_compute_qdelta(cpi, current_q, current_q * 0.3);
|
|
#endif
|
|
} else if (!cpi->is_src_frame_alt_ref &&
|
|
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
|
|
int high = 2000;
|
|
int low = 400;
|
|
|
|
// Use the lower of cpi->rc.active_worst_quality and recent
|
|
// average Q as basis for GF/ARF best Q limit unless last frame was
|
|
// a key frame.
|
|
if (cpi->frames_since_key > 1 &&
|
|
cpi->rc.avg_frame_qindex < cpi->rc.active_worst_quality) {
|
|
q = cpi->rc.avg_frame_qindex;
|
|
}
|
|
// For constrained quality dont allow Q less than the cq level
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
|
|
if (q < cpi->cq_target_quality)
|
|
q = cpi->cq_target_quality;
|
|
if (cpi->frames_since_key > 1) {
|
|
cpi->rc.active_best_quality = get_active_quality(q, cpi->rc.gfu_boost,
|
|
low, high,
|
|
afq_low_motion_minq,
|
|
afq_high_motion_minq);
|
|
} else {
|
|
cpi->rc.active_best_quality = get_active_quality(q, cpi->rc.gfu_boost,
|
|
low, high,
|
|
gf_low_motion_minq,
|
|
gf_high_motion_minq);
|
|
}
|
|
// Constrained quality use slightly lower active best.
|
|
cpi->rc.active_best_quality = cpi->rc.active_best_quality * 15 / 16;
|
|
|
|
} else if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
|
|
if (!cpi->refresh_alt_ref_frame) {
|
|
cpi->rc.active_best_quality = cpi->cq_target_quality;
|
|
} else {
|
|
if (cpi->frames_since_key > 1) {
|
|
cpi->rc.active_best_quality = get_active_quality(
|
|
q, cpi->rc.gfu_boost, low, high,
|
|
afq_low_motion_minq, afq_high_motion_minq);
|
|
} else {
|
|
cpi->rc.active_best_quality = get_active_quality(
|
|
q, cpi->rc.gfu_boost, low, high,
|
|
gf_low_motion_minq, gf_high_motion_minq);
|
|
}
|
|
}
|
|
} else {
|
|
cpi->rc.active_best_quality = get_active_quality(
|
|
q, cpi->rc.gfu_boost, low, high,
|
|
gf_low_motion_minq, gf_high_motion_minq);
|
|
}
|
|
} else {
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
|
|
cpi->rc.active_best_quality = cpi->cq_target_quality;
|
|
} else {
|
|
cpi->rc.active_best_quality = inter_minq[q];
|
|
// 1-pass: for now, use the average Q for the active_best, if its lower
|
|
// than active_worst.
|
|
if (cpi->pass == 0 && (cpi->rc.avg_frame_qindex < q))
|
|
cpi->rc.active_best_quality = inter_minq[cpi->rc.avg_frame_qindex];
|
|
|
|
// For the constrained quality mode we don't want
|
|
// q to fall below the cq level.
|
|
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(cpi->rc.active_best_quality < cpi->cq_target_quality)) {
|
|
// If we are strongly undershooting the target rate in the last
|
|
// frames then use the user passed in cq value not the auto
|
|
// cq value.
|
|
if (cpi->rc.rolling_actual_bits < cpi->rc.min_frame_bandwidth)
|
|
cpi->rc.active_best_quality = cpi->oxcf.cq_level;
|
|
else
|
|
cpi->rc.active_best_quality = cpi->cq_target_quality;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Clip the active best and worst quality values to limits
|
|
if (cpi->rc.active_worst_quality > cpi->rc.worst_quality)
|
|
cpi->rc.active_worst_quality = cpi->rc.worst_quality;
|
|
|
|
if (cpi->rc.active_best_quality < cpi->rc.best_quality)
|
|
cpi->rc.active_best_quality = cpi->rc.best_quality;
|
|
|
|
if (cpi->rc.active_best_quality > cpi->rc.worst_quality)
|
|
cpi->rc.active_best_quality = cpi->rc.worst_quality;
|
|
|
|
if (cpi->rc.active_worst_quality < cpi->rc.active_best_quality)
|
|
cpi->rc.active_worst_quality = cpi->rc.active_best_quality;
|
|
|
|
*top_index = cpi->rc.active_worst_quality;
|
|
*bottom_index = cpi->rc.active_best_quality;
|
|
|
|
#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
|
|
// Limit Q range for the adaptive loop.
|
|
if (cm->frame_type == KEY_FRAME && !cpi->this_key_frame_forced) {
|
|
if (!(cpi->pass == 0 && cpi->common.current_video_frame == 0)) {
|
|
*top_index =
|
|
(cpi->rc.active_worst_quality + cpi->rc.active_best_quality * 3) / 4;
|
|
}
|
|
} else if (!cpi->is_src_frame_alt_ref &&
|
|
(cpi->oxcf.end_usage != USAGE_STREAM_FROM_SERVER) &&
|
|
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
|
|
*top_index =
|
|
(cpi->rc.active_worst_quality + cpi->rc.active_best_quality) / 2;
|
|
}
|
|
#endif
|
|
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
|
|
q = cpi->rc.active_best_quality;
|
|
// Special case code to try and match quality with forced key frames
|
|
} else if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
|
|
q = cpi->rc.last_boosted_qindex;
|
|
} else {
|
|
// Determine initial Q to try.
|
|
if (cpi->pass == 0) {
|
|
// 1-pass: for now, use per-frame-bw for target size of frame, scaled
|
|
// by |x| for key frame.
|
|
int scale = (cm->frame_type == KEY_FRAME) ? 5 : 1;
|
|
q = vp9_rc_regulate_q(cpi, scale * cpi->rc.av_per_frame_bandwidth);
|
|
} else {
|
|
q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target);
|
|
}
|
|
if (q > *top_index)
|
|
q = *top_index;
|
|
}
|
|
return q;
|
|
}
|
|
|
|
|
|
static int estimate_keyframe_frequency(VP9_COMP *cpi) {
|
|
int i;
|
|
|
|
// Average key frame frequency
|
|
int av_key_frame_frequency = 0;
|
|
|
|
/* First key frame at start of sequence is a special case. We have no
|
|
* frequency data.
|
|
*/
|
|
if (cpi->rc.key_frame_count == 1) {
|
|
/* Assume a default of 1 kf every 2 seconds, or the max kf interval,
|
|
* whichever is smaller.
|
|
*/
|
|
int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1;
|
|
av_key_frame_frequency = (int)cpi->output_framerate * 2;
|
|
|
|
if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq)
|
|
av_key_frame_frequency = cpi->oxcf.key_freq;
|
|
|
|
cpi->rc.prior_key_frame_distance[KEY_FRAME_CONTEXT - 1]
|
|
= av_key_frame_frequency;
|
|
} else {
|
|
unsigned int total_weight = 0;
|
|
int last_kf_interval =
|
|
(cpi->frames_since_key > 0) ? cpi->frames_since_key : 1;
|
|
|
|
/* reset keyframe context and calculate weighted average of last
|
|
* KEY_FRAME_CONTEXT keyframes
|
|
*/
|
|
for (i = 0; i < KEY_FRAME_CONTEXT; i++) {
|
|
if (i < KEY_FRAME_CONTEXT - 1)
|
|
cpi->rc.prior_key_frame_distance[i]
|
|
= cpi->rc.prior_key_frame_distance[i + 1];
|
|
else
|
|
cpi->rc.prior_key_frame_distance[i] = last_kf_interval;
|
|
|
|
av_key_frame_frequency += prior_key_frame_weight[i]
|
|
* cpi->rc.prior_key_frame_distance[i];
|
|
total_weight += prior_key_frame_weight[i];
|
|
}
|
|
|
|
av_key_frame_frequency /= total_weight;
|
|
}
|
|
return av_key_frame_frequency;
|
|
}
|
|
|
|
|
|
static void adjust_key_frame_context(VP9_COMP *cpi) {
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp9_clear_system_state();
|
|
|
|
cpi->frames_since_key = 0;
|
|
cpi->rc.key_frame_count++;
|
|
}
|
|
|
|
|
|
static void compute_frame_size_bounds(const VP9_COMP *cpi,
|
|
int this_frame_target,
|
|
int *frame_under_shoot_limit,
|
|
int *frame_over_shoot_limit) {
|
|
// Set-up bounds on acceptable frame size:
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
|
|
*frame_under_shoot_limit = 0;
|
|
*frame_over_shoot_limit = INT_MAX;
|
|
} else {
|
|
if (cpi->common.frame_type == KEY_FRAME) {
|
|
*frame_over_shoot_limit = this_frame_target * 9 / 8;
|
|
*frame_under_shoot_limit = this_frame_target * 7 / 8;
|
|
} else {
|
|
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) {
|
|
*frame_over_shoot_limit = this_frame_target * 9 / 8;
|
|
*frame_under_shoot_limit = this_frame_target * 7 / 8;
|
|
} else {
|
|
// Stron overshoot limit for constrained quality
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
|
|
*frame_over_shoot_limit = this_frame_target * 11 / 8;
|
|
*frame_under_shoot_limit = this_frame_target * 2 / 8;
|
|
} else {
|
|
*frame_over_shoot_limit = this_frame_target * 11 / 8;
|
|
*frame_under_shoot_limit = this_frame_target * 5 / 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
// For very small rate targets where the fractional adjustment
|
|
// (eg * 7/8) may be tiny make sure there is at least a minimum
|
|
// range.
|
|
*frame_over_shoot_limit += 200;
|
|
*frame_under_shoot_limit -= 200;
|
|
if (*frame_under_shoot_limit < 0)
|
|
*frame_under_shoot_limit = 0;
|
|
}
|
|
}
|
|
|
|
// return of 0 means drop frame
|
|
int vp9_rc_pick_frame_size_and_bounds(VP9_COMP *cpi,
|
|
int *frame_under_shoot_limit,
|
|
int *frame_over_shoot_limit) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
calc_iframe_target_size(cpi);
|
|
else
|
|
calc_pframe_target_size(cpi);
|
|
|
|
// Target rate per SB64 (including partial SB64s.
|
|
cpi->rc.sb64_target_rate = ((int64_t)cpi->rc.this_frame_target * 64 * 64) /
|
|
(cpi->common.width * cpi->common.height);
|
|
compute_frame_size_bounds(cpi, cpi->rc.this_frame_target,
|
|
frame_under_shoot_limit, frame_over_shoot_limit);
|
|
|
|
return 1;
|
|
}
|
|
|
|
void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used, int q) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
// Update rate control heuristics
|
|
cpi->rc.projected_frame_size = (bytes_used << 3);
|
|
|
|
// Post encode loop adjustment of Q prediction.
|
|
vp9_rc_update_rate_correction_factors(
|
|
cpi, (cpi->sf.recode_loop ||
|
|
cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) ? 2 : 0);
|
|
|
|
cpi->rc.last_q[cm->frame_type] = cm->base_qindex;
|
|
|
|
// Keep record of last boosted (KF/KF/ARF) Q value.
|
|
// If the current frame is coded at a lower Q then we also update it.
|
|
// If all mbs in this group are skipped only update if the Q value is
|
|
// better than that already stored.
|
|
// This is used to help set quality in forced key frames to reduce popping
|
|
if ((cm->base_qindex < cpi->rc.last_boosted_qindex) ||
|
|
((cpi->static_mb_pct < 100) &&
|
|
((cm->frame_type == KEY_FRAME) || cpi->refresh_alt_ref_frame ||
|
|
(cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) {
|
|
cpi->rc.last_boosted_qindex = cm->base_qindex;
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
adjust_key_frame_context(cpi);
|
|
}
|
|
|
|
// Keep a record of ambient average Q.
|
|
if (cm->frame_type != KEY_FRAME)
|
|
cpi->rc.avg_frame_qindex = (2 + 3 * cpi->rc.avg_frame_qindex +
|
|
cm->base_qindex) >> 2;
|
|
|
|
// Keep a record from which we can calculate the average Q excluding GF
|
|
// updates and key frames.
|
|
if (cm->frame_type != KEY_FRAME &&
|
|
!cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) {
|
|
cpi->rc.ni_frames++;
|
|
cpi->rc.tot_q += vp9_convert_qindex_to_q(q);
|
|
cpi->rc.avg_q = cpi->rc.tot_q / (double)cpi->rc.ni_frames;
|
|
|
|
// Calculate the average Q for normal inter frames (not key or GFU frames).
|
|
cpi->rc.ni_tot_qi += q;
|
|
cpi->rc.ni_av_qi = cpi->rc.ni_tot_qi / cpi->rc.ni_frames;
|
|
}
|
|
|
|
// Update the buffer level variable.
|
|
// Non-viewable frames are a special case and are treated as pure overhead.
|
|
if (!cm->show_frame)
|
|
cpi->rc.bits_off_target -= cpi->rc.projected_frame_size;
|
|
else
|
|
cpi->rc.bits_off_target += cpi->rc.av_per_frame_bandwidth -
|
|
cpi->rc.projected_frame_size;
|
|
|
|
// Clip the buffer level at the maximum buffer size
|
|
if (cpi->rc.bits_off_target > cpi->oxcf.maximum_buffer_size)
|
|
cpi->rc.bits_off_target = cpi->oxcf.maximum_buffer_size;
|
|
|
|
// Rolling monitors of whether we are over or underspending used to help
|
|
// regulate min and Max Q in two pass.
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
cpi->rc.rolling_target_bits =
|
|
((cpi->rc.rolling_target_bits * 3) +
|
|
cpi->rc.this_frame_target + 2) / 4;
|
|
cpi->rc.rolling_actual_bits =
|
|
((cpi->rc.rolling_actual_bits * 3) +
|
|
cpi->rc.projected_frame_size + 2) / 4;
|
|
cpi->rc.long_rolling_target_bits =
|
|
((cpi->rc.long_rolling_target_bits * 31) +
|
|
cpi->rc.this_frame_target + 16) / 32;
|
|
cpi->rc.long_rolling_actual_bits =
|
|
((cpi->rc.long_rolling_actual_bits * 31) +
|
|
cpi->rc.projected_frame_size + 16) / 32;
|
|
}
|
|
|
|
// Actual bits spent
|
|
cpi->rc.total_actual_bits += cpi->rc.projected_frame_size;
|
|
|
|
// Debug stats
|
|
cpi->rc.total_target_vs_actual += (cpi->rc.this_frame_target -
|
|
cpi->rc.projected_frame_size);
|
|
|
|
cpi->rc.buffer_level = cpi->rc.bits_off_target;
|
|
|
|
#ifndef DISABLE_RC_LONG_TERM_MEM
|
|
// Update bits left to the kf and gf groups to account for overshoot or
|
|
// undershoot on these frames
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
cpi->twopass.kf_group_bits += cpi->rc.this_frame_target -
|
|
cpi->rc.projected_frame_size;
|
|
|
|
cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
|
|
} else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
|
|
cpi->twopass.gf_group_bits += cpi->rc.this_frame_target -
|
|
cpi->rc.projected_frame_size;
|
|
|
|
cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
|
|
}
|
|
#endif
|
|
}
|