Files
vpx/vp10/encoder/encoder.c
Zoe Liu e89ca180c2 Make the bi-predictive frame group interval adjustable
This is for the bidir-pred experiment. Previously the length of the
bi-predictive frame group interval is fixed at 2, i.e. one
bi-predictive frame may be inserted every other frame. This patch
makes the length adjustable, i.e. any positive number may be
specified, but the use of the backward ref will be turned off if the
bi-predictive frame group interval is larger than the golden frame
group.

Further, an additional rate factor level has been added:
INTER_LOW
, which applies to LAST_BIPRED_UPDATE frames that are not used as
references.

Change-Id: I5514d34a64dd486bbb5756c2d0612946f598a789
2016-05-28 16:46:45 -07:00

5917 lines
209 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdio.h>
#include <limits.h>
#include "./vpx_config.h"
#include "vp10/common/alloccommon.h"
#include "vp10/common/filter.h"
#include "vp10/common/idct.h"
#if CONFIG_VP9_POSTPROC
#include "vp10/common/postproc.h"
#endif
#include "vp10/common/reconinter.h"
#include "vp10/common/reconintra.h"
#include "vp10/common/tile_common.h"
#include "vp10/encoder/aq_complexity.h"
#include "vp10/encoder/aq_cyclicrefresh.h"
#include "vp10/encoder/aq_variance.h"
#include "vp10/encoder/bitstream.h"
#if CONFIG_ANS
#include "vp10/encoder/buf_ans.h"
#endif
#include "vp10/encoder/context_tree.h"
#include "vp10/encoder/encodeframe.h"
#include "vp10/encoder/encodemv.h"
#include "vp10/encoder/encoder.h"
#include "vp10/encoder/ethread.h"
#include "vp10/encoder/firstpass.h"
#include "vp10/encoder/mbgraph.h"
#include "vp10/encoder/picklpf.h"
#if CONFIG_LOOP_RESTORATION
#include "vp10/encoder/pickrst.h"
#endif // CONFIG_LOOP_RESTORATION
#include "vp10/encoder/ratectrl.h"
#include "vp10/encoder/rd.h"
#include "vp10/encoder/resize.h"
#include "vp10/encoder/segmentation.h"
#include "vp10/encoder/skin_detection.h"
#include "vp10/encoder/speed_features.h"
#include "vp10/encoder/temporal_filter.h"
#include "./vp10_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "./vpx_scale_rtcd.h"
#include "vpx_dsp/psnr.h"
#if CONFIG_INTERNAL_STATS
#include "vpx_dsp/ssim.h"
#endif
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_dsp/vpx_filter.h"
#include "vpx_ports/mem.h"
#include "vpx_ports/system_state.h"
#include "vpx_ports/vpx_timer.h"
#include "vpx_scale/vpx_scale.h"
#define AM_SEGMENT_ID_INACTIVE 7
#define AM_SEGMENT_ID_ACTIVE 0
#define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */
#define ALTREF_HIGH_PRECISION_MV 1 // Whether to use high precision mv
// for altref computation.
#define HIGH_PRECISION_MV_QTHRESH 200 // Q threshold for high precision
// mv. Choose a very high value for
// now so that HIGH_PRECISION is always
// chosen.
// #define OUTPUT_YUV_REC
#ifdef OUTPUT_YUV_DENOISED
FILE *yuv_denoised_file = NULL;
#endif
#ifdef OUTPUT_YUV_SKINMAP
FILE *yuv_skinmap_file = NULL;
#endif
#ifdef OUTPUT_YUV_REC
FILE *yuv_rec_file;
#endif
#if 0
FILE *framepsnr;
FILE *kf_list;
FILE *keyfile;
#endif
static INLINE void Scale2Ratio(VPX_SCALING mode, int *hr, int *hs) {
switch (mode) {
case NORMAL:
*hr = 1;
*hs = 1;
break;
case FOURFIVE:
*hr = 4;
*hs = 5;
break;
case THREEFIVE:
*hr = 3;
*hs = 5;
break;
case ONETWO:
*hr = 1;
*hs = 2;
break;
default:
*hr = 1;
*hs = 1;
assert(0);
break;
}
}
// Mark all inactive blocks as active. Other segmentation features may be set
// so memset cannot be used, instead only inactive blocks should be reset.
static void suppress_active_map(VP10_COMP *cpi) {
unsigned char *const seg_map = cpi->segmentation_map;
int i;
if (cpi->active_map.enabled || cpi->active_map.update)
for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
if (seg_map[i] == AM_SEGMENT_ID_INACTIVE)
seg_map[i] = AM_SEGMENT_ID_ACTIVE;
}
static void apply_active_map(VP10_COMP *cpi) {
struct segmentation *const seg = &cpi->common.seg;
unsigned char *const seg_map = cpi->segmentation_map;
const unsigned char *const active_map = cpi->active_map.map;
int i;
assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE);
if (frame_is_intra_only(&cpi->common)) {
cpi->active_map.enabled = 0;
cpi->active_map.update = 1;
}
if (cpi->active_map.update) {
if (cpi->active_map.enabled) {
for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i)
if (seg_map[i] == AM_SEGMENT_ID_ACTIVE) seg_map[i] = active_map[i];
vp10_enable_segmentation(seg);
vp10_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
vp10_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF);
// Setting the data to -MAX_LOOP_FILTER will result in the computed loop
// filter level being zero regardless of the value of seg->abs_delta.
vp10_set_segdata(seg, AM_SEGMENT_ID_INACTIVE,
SEG_LVL_ALT_LF, -MAX_LOOP_FILTER);
} else {
vp10_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP);
vp10_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF);
if (seg->enabled) {
seg->update_data = 1;
seg->update_map = 1;
}
}
cpi->active_map.update = 0;
}
}
int vp10_set_active_map(VP10_COMP* cpi,
unsigned char* new_map_16x16,
int rows,
int cols) {
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
unsigned char *const active_map_8x8 = cpi->active_map.map;
const int mi_rows = cpi->common.mi_rows;
const int mi_cols = cpi->common.mi_cols;
cpi->active_map.update = 1;
if (new_map_16x16) {
int r, c;
for (r = 0; r < mi_rows; ++r) {
for (c = 0; c < mi_cols; ++c) {
active_map_8x8[r * mi_cols + c] =
new_map_16x16[(r >> 1) * cols + (c >> 1)]
? AM_SEGMENT_ID_ACTIVE
: AM_SEGMENT_ID_INACTIVE;
}
}
cpi->active_map.enabled = 1;
} else {
cpi->active_map.enabled = 0;
}
return 0;
} else {
return -1;
}
}
int vp10_get_active_map(VP10_COMP* cpi,
unsigned char* new_map_16x16,
int rows,
int cols) {
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols &&
new_map_16x16) {
unsigned char* const seg_map_8x8 = cpi->segmentation_map;
const int mi_rows = cpi->common.mi_rows;
const int mi_cols = cpi->common.mi_cols;
memset(new_map_16x16, !cpi->active_map.enabled, rows * cols);
if (cpi->active_map.enabled) {
int r, c;
for (r = 0; r < mi_rows; ++r) {
for (c = 0; c < mi_cols; ++c) {
// Cyclic refresh segments are considered active despite not having
// AM_SEGMENT_ID_ACTIVE
new_map_16x16[(r >> 1) * cols + (c >> 1)] |=
seg_map_8x8[r * mi_cols + c] != AM_SEGMENT_ID_INACTIVE;
}
}
}
return 0;
} else {
return -1;
}
}
void vp10_set_high_precision_mv(VP10_COMP *cpi, int allow_high_precision_mv) {
MACROBLOCK *const mb = &cpi->td.mb;
cpi->common.allow_high_precision_mv = allow_high_precision_mv;
#if CONFIG_REF_MV
if (cpi->common.allow_high_precision_mv) {
int i;
for (i = 0; i < NMV_CONTEXTS; ++i) {
mb->mv_cost_stack[i] = mb->nmvcost_hp[i];
mb->mvsadcost = mb->nmvsadcost_hp;
}
} else {
int i;
for (i = 0; i < NMV_CONTEXTS; ++i) {
mb->mv_cost_stack[i] = mb->nmvcost[i];
mb->mvsadcost = mb->nmvsadcost;
}
}
#else
if (cpi->common.allow_high_precision_mv) {
mb->mvcost = mb->nmvcost_hp;
mb->mvsadcost = mb->nmvcost_hp;
} else {
mb->mvcost = mb->nmvcost;
mb->mvsadcost = mb->nmvcost;
}
#endif
}
static BLOCK_SIZE select_sb_size(const VP10_COMP *const cpi) {
#if CONFIG_EXT_PARTITION
if (cpi->oxcf.superblock_size == VPX_SUPERBLOCK_SIZE_64X64)
return BLOCK_64X64;
if (cpi->oxcf.superblock_size == VPX_SUPERBLOCK_SIZE_128X128)
return BLOCK_128X128;
assert(cpi->oxcf.superblock_size == VPX_SUPERBLOCK_SIZE_DYNAMIC);
assert(IMPLIES(cpi->common.tile_cols > 1,
cpi->common.tile_width % MAX_MIB_SIZE == 0));
assert(IMPLIES(cpi->common.tile_rows > 1,
cpi->common.tile_height % MAX_MIB_SIZE == 0));
// TODO(any): Possibly could improve this with a heuristic.
return BLOCK_128X128;
#else
(void)cpi;
return BLOCK_64X64;
#endif // CONFIG_EXT_PARTITION
}
static void setup_frame(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
// Set up entropy context depending on frame type. The decoder mandates
// the use of the default context, index 0, for keyframes and inter
// frames where the error_resilient_mode or intra_only flag is set. For
// other inter-frames the encoder currently uses only two contexts;
// context 1 for ALTREF frames and context 0 for the others.
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
vp10_setup_past_independence(cm);
} else {
cm->frame_context_idx = cpi->refresh_alt_ref_frame;
}
if (cm->frame_type == KEY_FRAME) {
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 1;
vp10_zero(cpi->interp_filter_selected);
} else {
*cm->fc = cm->frame_contexts[cm->frame_context_idx];
vp10_zero(cpi->interp_filter_selected[0]);
}
set_sb_size(cm, select_sb_size(cpi));
}
static void vp10_enc_setup_mi(VP10_COMMON *cm) {
int i;
cm->mi = cm->mip + cm->mi_stride + 1;
memset(cm->mip, 0, cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mip));
cm->prev_mi = cm->prev_mip + cm->mi_stride + 1;
// Clear top border row
memset(cm->prev_mip, 0, sizeof(*cm->prev_mip) * cm->mi_stride);
// Clear left border column
for (i = 1; i < cm->mi_rows + 1; ++i)
memset(&cm->prev_mip[i * cm->mi_stride], 0, sizeof(*cm->prev_mip));
cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1;
cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1;
memset(cm->mi_grid_base, 0,
cm->mi_stride * (cm->mi_rows + 1) * sizeof(*cm->mi_grid_base));
}
static int vp10_enc_alloc_mi(VP10_COMMON *cm, int mi_size) {
cm->mip = vpx_calloc(mi_size, sizeof(*cm->mip));
if (!cm->mip)
return 1;
cm->prev_mip = vpx_calloc(mi_size, sizeof(*cm->prev_mip));
if (!cm->prev_mip)
return 1;
cm->mi_alloc_size = mi_size;
cm->mi_grid_base = (MODE_INFO **)vpx_calloc(mi_size, sizeof(MODE_INFO*));
if (!cm->mi_grid_base)
return 1;
cm->prev_mi_grid_base = (MODE_INFO **)vpx_calloc(mi_size, sizeof(MODE_INFO*));
if (!cm->prev_mi_grid_base)
return 1;
return 0;
}
static void vp10_enc_free_mi(VP10_COMMON *cm) {
vpx_free(cm->mip);
cm->mip = NULL;
vpx_free(cm->prev_mip);
cm->prev_mip = NULL;
vpx_free(cm->mi_grid_base);
cm->mi_grid_base = NULL;
vpx_free(cm->prev_mi_grid_base);
cm->prev_mi_grid_base = NULL;
}
static void vp10_swap_mi_and_prev_mi(VP10_COMMON *cm) {
// Current mip will be the prev_mip for the next frame.
MODE_INFO **temp_base = cm->prev_mi_grid_base;
MODE_INFO *temp = cm->prev_mip;
cm->prev_mip = cm->mip;
cm->mip = temp;
// Update the upper left visible macroblock ptrs.
cm->mi = cm->mip + cm->mi_stride + 1;
cm->prev_mi = cm->prev_mip + cm->mi_stride + 1;
cm->prev_mi_grid_base = cm->mi_grid_base;
cm->mi_grid_base = temp_base;
cm->mi_grid_visible = cm->mi_grid_base + cm->mi_stride + 1;
cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mi_stride + 1;
}
void vp10_initialize_enc(void) {
static volatile int init_done = 0;
if (!init_done) {
vp10_rtcd();
vpx_dsp_rtcd();
vpx_scale_rtcd();
vp10_init_intra_predictors();
vp10_init_me_luts();
vp10_rc_init_minq_luts();
vp10_entropy_mv_init();
vp10_temporal_filter_init();
vp10_encode_token_init();
#if CONFIG_EXT_INTER
vp10_init_wedge_masks();
#endif
init_done = 1;
}
}
static void dealloc_compressor_data(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
int i;
vpx_free(cpi->mbmi_ext_base);
cpi->mbmi_ext_base = NULL;
vpx_free(cpi->tile_data);
cpi->tile_data = NULL;
// Delete sementation map
vpx_free(cpi->segmentation_map);
cpi->segmentation_map = NULL;
vpx_free(cpi->coding_context.last_frame_seg_map_copy);
cpi->coding_context.last_frame_seg_map_copy = NULL;
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) {
vpx_free(cpi->nmv_costs[i][0]);
vpx_free(cpi->nmv_costs[i][1]);
vpx_free(cpi->nmv_costs_hp[i][0]);
vpx_free(cpi->nmv_costs_hp[i][1]);
cpi->nmv_costs[i][0] = NULL;
cpi->nmv_costs[i][1] = NULL;
cpi->nmv_costs_hp[i][0] = NULL;
cpi->nmv_costs_hp[i][1] = NULL;
}
#endif
vpx_free(cpi->nmvcosts[0]);
vpx_free(cpi->nmvcosts[1]);
cpi->nmvcosts[0] = NULL;
cpi->nmvcosts[1] = NULL;
vpx_free(cpi->nmvcosts_hp[0]);
vpx_free(cpi->nmvcosts_hp[1]);
cpi->nmvcosts_hp[0] = NULL;
cpi->nmvcosts_hp[1] = NULL;
vpx_free(cpi->nmvsadcosts[0]);
vpx_free(cpi->nmvsadcosts[1]);
cpi->nmvsadcosts[0] = NULL;
cpi->nmvsadcosts[1] = NULL;
vpx_free(cpi->nmvsadcosts_hp[0]);
vpx_free(cpi->nmvsadcosts_hp[1]);
cpi->nmvsadcosts_hp[0] = NULL;
cpi->nmvsadcosts_hp[1] = NULL;
vp10_cyclic_refresh_free(cpi->cyclic_refresh);
cpi->cyclic_refresh = NULL;
vpx_free(cpi->active_map.map);
cpi->active_map.map = NULL;
// Free up-sampled reference buffers.
for (i = 0; i < MAX_REF_FRAMES; i++)
vpx_free_frame_buffer(&cpi->upsampled_ref_bufs[i].buf);
vp10_free_ref_frame_buffers(cm->buffer_pool);
#if CONFIG_VP9_POSTPROC
vp10_free_postproc_buffers(cm);
#endif // CONFIG_VP9_POSTPROC
#if CONFIG_LOOP_RESTORATION
vp10_free_restoration_buffers(cm);
#endif // CONFIG_LOOP_RESTORATION
vp10_free_context_buffers(cm);
vpx_free_frame_buffer(&cpi->last_frame_uf);
#if CONFIG_LOOP_RESTORATION
vpx_free_frame_buffer(&cpi->last_frame_db);
#endif // CONFIG_LOOP_RESTORATION
vpx_free_frame_buffer(&cpi->scaled_source);
vpx_free_frame_buffer(&cpi->scaled_last_source);
vpx_free_frame_buffer(&cpi->alt_ref_buffer);
vp10_lookahead_destroy(cpi->lookahead);
vpx_free(cpi->tile_tok[0][0]);
cpi->tile_tok[0][0] = 0;
vp10_free_pc_tree(&cpi->td);
if (cpi->sf.partition_search_type == VAR_BASED_PARTITION)
vp10_free_var_tree(&cpi->td);
if (cpi->common.allow_screen_content_tools)
vpx_free(cpi->td.mb.palette_buffer);
if (cpi->source_diff_var != NULL) {
vpx_free(cpi->source_diff_var);
cpi->source_diff_var = NULL;
}
#if CONFIG_ANS
vp10_buf_ans_free(&cpi->buf_ans);
#endif // CONFIG_ANS
}
static void save_coding_context(VP10_COMP *cpi) {
CODING_CONTEXT *const cc = &cpi->coding_context;
VP10_COMMON *cm = &cpi->common;
#if CONFIG_REF_MV
int i;
#endif
// Stores a snapshot of key state variables which can subsequently be
// restored with a call to vp10_restore_coding_context. These functions are
// intended for use in a re-code loop in vp10_compress_frame where the
// quantizer value is adjusted between loop iterations.
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) {
vp10_copy(cc->nmv_vec_cost[i], cpi->td.mb.nmv_vec_cost[i]);
memcpy(cc->nmv_costs[i][0], cpi->nmv_costs[i][0],
MV_VALS * sizeof(*cpi->nmv_costs[i][0]));
memcpy(cc->nmv_costs[i][1], cpi->nmv_costs[i][1],
MV_VALS * sizeof(*cpi->nmv_costs[i][1]));
memcpy(cc->nmv_costs_hp[i][0], cpi->nmv_costs_hp[i][0],
MV_VALS * sizeof(*cpi->nmv_costs_hp[i][0]));
memcpy(cc->nmv_costs_hp[i][1], cpi->nmv_costs_hp[i][1],
MV_VALS * sizeof(*cpi->nmv_costs_hp[i][1]));
}
#else
vp10_copy(cc->nmvjointcost, cpi->td.mb.nmvjointcost);
#endif
memcpy(cc->nmvcosts[0], cpi->nmvcosts[0],
MV_VALS * sizeof(*cpi->nmvcosts[0]));
memcpy(cc->nmvcosts[1], cpi->nmvcosts[1],
MV_VALS * sizeof(*cpi->nmvcosts[1]));
memcpy(cc->nmvcosts_hp[0], cpi->nmvcosts_hp[0],
MV_VALS * sizeof(*cpi->nmvcosts_hp[0]));
memcpy(cc->nmvcosts_hp[1], cpi->nmvcosts_hp[1],
MV_VALS * sizeof(*cpi->nmvcosts_hp[1]));
memcpy(cpi->coding_context.last_frame_seg_map_copy,
cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols));
vp10_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas);
vp10_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas);
cc->fc = *cm->fc;
}
static void restore_coding_context(VP10_COMP *cpi) {
CODING_CONTEXT *const cc = &cpi->coding_context;
VP10_COMMON *cm = &cpi->common;
#if CONFIG_REF_MV
int i;
#endif
// Restore key state variables to the snapshot state stored in the
// previous call to vp10_save_coding_context.
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) {
vp10_copy(cpi->td.mb.nmv_vec_cost[i], cc->nmv_vec_cost[i]);
memcpy(cpi->nmv_costs[i][0], cc->nmv_costs[i][0],
MV_VALS * sizeof(*cc->nmv_costs[i][0]));
memcpy(cpi->nmv_costs[i][1], cc->nmv_costs[i][1],
MV_VALS * sizeof(*cc->nmv_costs[i][1]));
memcpy(cpi->nmv_costs_hp[i][0], cc->nmv_costs_hp[i][0],
MV_VALS * sizeof(*cc->nmv_costs_hp[i][0]));
memcpy(cpi->nmv_costs_hp[i][1], cc->nmv_costs_hp[i][1],
MV_VALS * sizeof(*cc->nmv_costs_hp[i][1]));
}
#else
vp10_copy(cpi->td.mb.nmvjointcost, cc->nmvjointcost);
#endif
memcpy(cpi->nmvcosts[0], cc->nmvcosts[0], MV_VALS * sizeof(*cc->nmvcosts[0]));
memcpy(cpi->nmvcosts[1], cc->nmvcosts[1], MV_VALS * sizeof(*cc->nmvcosts[1]));
memcpy(cpi->nmvcosts_hp[0], cc->nmvcosts_hp[0],
MV_VALS * sizeof(*cc->nmvcosts_hp[0]));
memcpy(cpi->nmvcosts_hp[1], cc->nmvcosts_hp[1],
MV_VALS * sizeof(*cc->nmvcosts_hp[1]));
memcpy(cm->last_frame_seg_map,
cpi->coding_context.last_frame_seg_map_copy,
(cm->mi_rows * cm->mi_cols));
vp10_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas);
vp10_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas);
*cm->fc = cc->fc;
}
static void configure_static_seg_features(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
struct segmentation *const seg = &cm->seg;
int high_q = (int)(rc->avg_q > 48.0);
int qi_delta;
// Disable and clear down for KF
if (cm->frame_type == KEY_FRAME) {
// Clear down the global segmentation map
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation
vp10_disable_segmentation(seg);
// Clear down the segment features.
vp10_clearall_segfeatures(seg);
} else if (cpi->refresh_alt_ref_frame) {
// If this is an alt ref frame
// Clear down the global segmentation map
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation and individual segment features by default
vp10_disable_segmentation(seg);
vp10_clearall_segfeatures(seg);
// Scan frames from current to arf frame.
// This function re-enables segmentation if appropriate.
vp10_update_mbgraph_stats(cpi);
// If segmentation was enabled set those features needed for the
// arf itself.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
qi_delta = vp10_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875,
cm->bit_depth);
vp10_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2);
vp10_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
vp10_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
vp10_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
// Where relevant assume segment data is delta data
seg->abs_delta = SEGMENT_DELTADATA;
}
} else if (seg->enabled) {
// All other frames if segmentation has been enabled
// First normal frame in a valid gf or alt ref group
if (rc->frames_since_golden == 0) {
// Set up segment features for normal frames in an arf group
if (rc->source_alt_ref_active) {
seg->update_map = 0;
seg->update_data = 1;
seg->abs_delta = SEGMENT_DELTADATA;
qi_delta = vp10_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125,
cm->bit_depth);
vp10_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2);
vp10_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
vp10_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
vp10_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
// Segment coding disabled for compred testing
if (high_q || (cpi->static_mb_pct == 100)) {
vp10_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
vp10_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
vp10_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
} else {
// Disable segmentation and clear down features if alt ref
// is not active for this group
vp10_disable_segmentation(seg);
memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
vp10_clearall_segfeatures(seg);
}
} else if (rc->is_src_frame_alt_ref) {
// Special case where we are coding over the top of a previous
// alt ref frame.
// Segment coding disabled for compred testing
// Enable ref frame features for segment 0 as well
vp10_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
vp10_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
// All mbs should use ALTREF_FRAME
vp10_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
vp10_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
vp10_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
vp10_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
// Skip all MBs if high Q (0,0 mv and skip coeffs)
if (high_q) {
vp10_enable_segfeature(seg, 0, SEG_LVL_SKIP);
vp10_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
// Enable data update
seg->update_data = 1;
} else {
// All other frames.
// No updates.. leave things as they are.
seg->update_map = 0;
seg->update_data = 0;
}
}
}
static void update_reference_segmentation_map(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible;
uint8_t *cache_ptr = cm->last_frame_seg_map;
int row, col;
for (row = 0; row < cm->mi_rows; row++) {
MODE_INFO **mi_8x8 = mi_8x8_ptr;
uint8_t *cache = cache_ptr;
for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++)
cache[0] = mi_8x8[0]->mbmi.segment_id;
mi_8x8_ptr += cm->mi_stride;
cache_ptr += cm->mi_cols;
}
}
static void alloc_raw_frame_buffers(VP10_COMP *cpi) {
VP10_COMMON *cm = &cpi->common;
const VP10EncoderConfig *oxcf = &cpi->oxcf;
if (!cpi->lookahead)
cpi->lookahead = vp10_lookahead_init(oxcf->width, oxcf->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
oxcf->lag_in_frames);
if (!cpi->lookahead)
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
// TODO(agrange) Check if ARF is enabled and skip allocation if not.
if (vpx_realloc_frame_buffer(&cpi->alt_ref_buffer,
oxcf->width, oxcf->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
}
static void alloc_util_frame_buffers(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
if (vpx_realloc_frame_buffer(&cpi->last_frame_uf,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
#if CONFIG_LOOP_RESTORATION
if (vpx_realloc_frame_buffer(&cpi->last_frame_db,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame deblocked buffer");
#endif // CONFIG_LOOP_RESTORATION
if (vpx_realloc_frame_buffer(&cpi->scaled_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
if (vpx_realloc_frame_buffer(&cpi->scaled_last_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled last source buffer");
}
static int alloc_context_buffers_ext(VP10_COMP *cpi) {
VP10_COMMON *cm = &cpi->common;
int mi_size = cm->mi_cols * cm->mi_rows;
cpi->mbmi_ext_base = vpx_calloc(mi_size, sizeof(*cpi->mbmi_ext_base));
if (!cpi->mbmi_ext_base)
return 1;
return 0;
}
void vp10_alloc_compressor_data(VP10_COMP *cpi) {
VP10_COMMON *cm = &cpi->common;
vp10_alloc_context_buffers(cm, cm->width, cm->height);
alloc_context_buffers_ext(cpi);
vpx_free(cpi->tile_tok[0][0]);
{
unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
CHECK_MEM_ERROR(cm, cpi->tile_tok[0][0],
vpx_calloc(tokens, sizeof(*cpi->tile_tok[0][0])));
#if CONFIG_ANS
vp10_buf_ans_alloc(&cpi->buf_ans, cm, tokens);
#endif // CONFIG_ANS
}
vp10_setup_pc_tree(&cpi->common, &cpi->td);
}
void vp10_new_framerate(VP10_COMP *cpi, double framerate) {
cpi->framerate = framerate < 0.1 ? 30 : framerate;
vp10_rc_update_framerate(cpi);
}
static void set_tile_info(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
#if CONFIG_EXT_TILE
#if CONFIG_EXT_PARTITION
if (cpi->oxcf.superblock_size != VPX_SUPERBLOCK_SIZE_64X64) {
cm->tile_width = clamp(cpi->oxcf.tile_columns, 1, 32);
cm->tile_height = clamp(cpi->oxcf.tile_rows, 1, 32);
cm->tile_width <<= MAX_MIB_SIZE_LOG2;
cm->tile_height <<= MAX_MIB_SIZE_LOG2;
} else {
cm->tile_width = clamp(cpi->oxcf.tile_columns, 1, 64);
cm->tile_height = clamp(cpi->oxcf.tile_rows, 1, 64);
cm->tile_width <<= MAX_MIB_SIZE_LOG2 - 1;
cm->tile_height <<= MAX_MIB_SIZE_LOG2 - 1;
}
#else
cm->tile_width = clamp(cpi->oxcf.tile_columns, 1, 64);
cm->tile_height = clamp(cpi->oxcf.tile_rows, 1, 64);
cm->tile_width <<= MAX_MIB_SIZE_LOG2;
cm->tile_height <<= MAX_MIB_SIZE_LOG2;
#endif // CONFIG_EXT_PARTITION
cm->tile_width = VPXMIN(cm->tile_width, cm->mi_cols);
cm->tile_height = VPXMIN(cm->tile_height, cm->mi_rows);
assert(cm->tile_width >> MAX_MIB_SIZE <= 32);
assert(cm->tile_height >> MAX_MIB_SIZE <= 32);
// Get the number of tiles
cm->tile_cols = 1;
while (cm->tile_cols * cm->tile_width < cm->mi_cols)
++cm->tile_cols;
cm->tile_rows = 1;
while (cm->tile_rows * cm->tile_height < cm->mi_rows)
++cm->tile_rows;
#else
int min_log2_tile_cols, max_log2_tile_cols;
vp10_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns,
min_log2_tile_cols, max_log2_tile_cols);
cm->log2_tile_rows = cpi->oxcf.tile_rows;
cm->tile_cols = 1 << cm->log2_tile_cols;
cm->tile_rows = 1 << cm->log2_tile_rows;
cm->tile_width = ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);
cm->tile_width >>= cm->log2_tile_cols;
cm->tile_height = ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2);
cm->tile_height >>= cm->log2_tile_rows;
// round to integer multiples of max superblock size
cm->tile_width = ALIGN_POWER_OF_TWO(cm->tile_width, MAX_MIB_SIZE_LOG2);
cm->tile_height = ALIGN_POWER_OF_TWO(cm->tile_height, MAX_MIB_SIZE_LOG2);
#endif // CONFIG_EXT_TILE
}
static void update_frame_size(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
vp10_set_mb_mi(cm, cm->width, cm->height);
vp10_init_context_buffers(cm);
vp10_init_macroblockd(cm, xd, NULL);
memset(cpi->mbmi_ext_base, 0,
cm->mi_rows * cm->mi_cols * sizeof(*cpi->mbmi_ext_base));
set_tile_info(cpi);
}
static void init_buffer_indices(VP10_COMP *cpi) {
#if CONFIG_EXT_REFS
int fb_idx;
for (fb_idx = 0; fb_idx < LAST_REF_FRAMES; ++fb_idx)
cpi->lst_fb_idxes[fb_idx] = fb_idx;
cpi->gld_fb_idx = LAST_REF_FRAMES;
cpi->alt_fb_idx = cpi->gld_fb_idx + 1;
#else // CONFIG_EXT_REFS
cpi->lst_fb_idx = 0;
cpi->gld_fb_idx = 1;
#if CONFIG_BIDIR_PRED
cpi->bwd_fb_idx = 2;
cpi->alt_fb_idx = 3;
#else // CONFIG_BIDIR_PRED
cpi->alt_fb_idx = 2;
#endif // CONFIG_BIDIR_PRED
#endif // CONFIG_EXT_REFS
}
static void init_config(struct VP10_COMP *cpi, VP10EncoderConfig *oxcf) {
VP10_COMMON *const cm = &cpi->common;
cpi->oxcf = *oxcf;
cpi->framerate = oxcf->init_framerate;
cm->profile = oxcf->profile;
cm->bit_depth = oxcf->bit_depth;
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth = oxcf->use_highbitdepth;
#endif
cm->color_space = oxcf->color_space;
cm->color_range = oxcf->color_range;
cm->width = oxcf->width;
cm->height = oxcf->height;
vp10_alloc_compressor_data(cpi);
// Single thread case: use counts in common.
cpi->td.counts = &cm->counts;
// change includes all joint functionality
vp10_change_config(cpi, oxcf);
cpi->static_mb_pct = 0;
cpi->ref_frame_flags = 0;
init_buffer_indices(cpi);
}
static void set_rc_buffer_sizes(RATE_CONTROL *rc,
const VP10EncoderConfig *oxcf) {
const int64_t bandwidth = oxcf->target_bandwidth;
const int64_t starting = oxcf->starting_buffer_level_ms;
const int64_t optimal = oxcf->optimal_buffer_level_ms;
const int64_t maximum = oxcf->maximum_buffer_size_ms;
rc->starting_buffer_level = starting * bandwidth / 1000;
rc->optimal_buffer_level = (optimal == 0) ? bandwidth / 8
: optimal * bandwidth / 1000;
rc->maximum_buffer_size = (maximum == 0) ? bandwidth / 8
: maximum * bandwidth / 1000;
}
#if CONFIG_VP9_HIGHBITDEPTH
#define HIGHBD_BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF) \
cpi->fn_ptr[BT].sdf = SDF; \
cpi->fn_ptr[BT].sdaf = SDAF; \
cpi->fn_ptr[BT].vf = VF; \
cpi->fn_ptr[BT].svf = SVF; \
cpi->fn_ptr[BT].svaf = SVAF; \
cpi->fn_ptr[BT].sdx3f = SDX3F; \
cpi->fn_ptr[BT].sdx8f = SDX8F; \
cpi->fn_ptr[BT].sdx4df = SDX4DF;
#define MAKE_BFP_SAD_WRAPPER(fnname) \
static unsigned int fnname##_bits8(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride); \
} \
static unsigned int fnname##_bits10(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 2; \
} \
static unsigned int fnname##_bits12(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 4; \
}
#define MAKE_BFP_SADAVG_WRAPPER(fnname) static unsigned int \
fnname##_bits8(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
const uint8_t *second_pred) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred); \
} \
static unsigned int fnname##_bits10(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
const uint8_t *second_pred) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, \
second_pred) >> 2; \
} \
static unsigned int fnname##_bits12(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
const uint8_t *second_pred) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, \
second_pred) >> 4; \
}
#define MAKE_BFP_SAD3_WRAPPER(fnname) \
static void fnname##_bits8(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
unsigned int *sad_array) { \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
} \
static void fnname##_bits10(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 3; i++) \
sad_array[i] >>= 2; \
} \
static void fnname##_bits12(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 3; i++) \
sad_array[i] >>= 4; \
}
#define MAKE_BFP_SAD8_WRAPPER(fnname) \
static void fnname##_bits8(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
unsigned int *sad_array) { \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
} \
static void fnname##_bits10(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 8; i++) \
sad_array[i] >>= 2; \
} \
static void fnname##_bits12(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 8; i++) \
sad_array[i] >>= 4; \
}
#define MAKE_BFP_SAD4D_WRAPPER(fnname) \
static void fnname##_bits8(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t* const ref_ptr[], \
int ref_stride, \
unsigned int *sad_array) { \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
} \
static void fnname##_bits10(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t* const ref_ptr[], \
int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 4; i++) \
sad_array[i] >>= 2; \
} \
static void fnname##_bits12(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t* const ref_ptr[], \
int ref_stride, \
unsigned int *sad_array) { \
int i; \
fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \
for (i = 0; i < 4; i++) \
sad_array[i] >>= 4; \
}
#if CONFIG_EXT_PARTITION
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad128x128)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad128x128_avg)
MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad128x128x3)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad128x128x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad128x128x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad128x64)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad128x64_avg)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad128x64x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad64x128)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad64x128_avg)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad64x128x4d)
#endif // CONFIG_EXT_PARTITION
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x16)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x16_avg)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x16x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x32)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x32_avg)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x32x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad64x32)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad64x32_avg)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad64x32x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x64)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x64_avg)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x64x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad32x32)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad32x32_avg)
MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad32x32x3)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad32x32x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad32x32x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad64x64)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad64x64_avg)
MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad64x64x3)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad64x64x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad64x64x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x16)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x16_avg)
MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad16x16x3)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad16x16x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x16x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad16x8)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad16x8_avg)
MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad16x8x3)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad16x8x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad16x8x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x16)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x16_avg)
MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad8x16x3)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad8x16x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x16x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x8)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x8_avg)
MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad8x8x3)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad8x8x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x8x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad8x4)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad8x4_avg)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad8x4x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad8x4x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad4x8)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad4x8_avg)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad4x8x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad4x8x4d)
MAKE_BFP_SAD_WRAPPER(vpx_highbd_sad4x4)
MAKE_BFP_SADAVG_WRAPPER(vpx_highbd_sad4x4_avg)
MAKE_BFP_SAD3_WRAPPER(vpx_highbd_sad4x4x3)
MAKE_BFP_SAD8_WRAPPER(vpx_highbd_sad4x4x8)
MAKE_BFP_SAD4D_WRAPPER(vpx_highbd_sad4x4x4d)
#if CONFIG_EXT_INTER
#define HIGHBD_MBFP(BT, MSDF, MVF, MSVF) \
cpi->fn_ptr[BT].msdf = MSDF; \
cpi->fn_ptr[BT].mvf = MVF; \
cpi->fn_ptr[BT].msvf = MSVF;
#define MAKE_MBFP_SAD_WRAPPER(fnname) \
static unsigned int fnname##_bits8(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
const uint8_t *m, \
int m_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, \
m, m_stride); \
} \
static unsigned int fnname##_bits10(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
const uint8_t *m, \
int m_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, \
m, m_stride) >> 2; \
} \
static unsigned int fnname##_bits12(const uint8_t *src_ptr, \
int source_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
const uint8_t *m, \
int m_stride) { \
return fnname(src_ptr, source_stride, ref_ptr, ref_stride, \
m, m_stride) >> 4; \
}
#if CONFIG_EXT_PARTITION
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad128x128)
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad128x64)
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad64x128)
#endif // CONFIG_EXT_PARTITION
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad64x64)
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad64x32)
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad32x64)
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad32x32)
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad32x16)
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad16x32)
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad16x16)
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad16x8)
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad8x16)
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad8x8)
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad8x4)
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad4x8)
MAKE_MBFP_SAD_WRAPPER(vpx_highbd_masked_sad4x4)
#endif // CONFIG_EXT_INTER
#if CONFIG_OBMC
#define HIGHBD_OBFP(BT, OSDF, OVF, OSVF) \
cpi->fn_ptr[BT].osdf = OSDF; \
cpi->fn_ptr[BT].ovf = OVF; \
cpi->fn_ptr[BT].osvf = OSVF;
#define MAKE_OBFP_SAD_WRAPPER(fnname) \
static unsigned int fnname##_bits8(const uint8_t *ref, int ref_stride, \
const int *wsrc, int wsrc_stride, \
const int *msk, int msk_stride) { \
return fnname(ref, ref_stride, wsrc, wsrc_stride, msk, msk_stride); \
} \
static unsigned int fnname##_bits10(const uint8_t *ref, int ref_stride, \
const int *wsrc, int wsrc_stride, \
const int *msk, int msk_stride) { \
return fnname(ref, ref_stride, wsrc, wsrc_stride, msk, msk_stride) >> 2; \
} \
static unsigned int fnname##_bits12(const uint8_t *ref, int ref_stride, \
const int *wsrc, int wsrc_stride, \
const int *msk, int msk_stride) { \
return fnname(ref, ref_stride, wsrc, wsrc_stride, msk, msk_stride) >> 4; \
}
#if CONFIG_EXT_PARTITION
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad128x128)
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad128x64)
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad64x128)
#endif // CONFIG_EXT_PARTITION
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad64x64)
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad64x32)
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad32x64)
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad32x32)
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad32x16)
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad16x32)
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad16x16)
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad16x8)
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad8x16)
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad8x8)
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad8x4)
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad4x8)
MAKE_OBFP_SAD_WRAPPER(vpx_highbd_obmc_sad4x4)
#endif // CONFIG_OBMC
static void highbd_set_var_fns(VP10_COMP *const cpi) {
VP10_COMMON *const cm = &cpi->common;
if (cm->use_highbitdepth) {
switch (cm->bit_depth) {
case VPX_BITS_8:
HIGHBD_BFP(BLOCK_32X16,
vpx_highbd_sad32x16_bits8,
vpx_highbd_sad32x16_avg_bits8,
vpx_highbd_8_variance32x16,
vpx_highbd_8_sub_pixel_variance32x16,
vpx_highbd_8_sub_pixel_avg_variance32x16,
NULL,
NULL,
vpx_highbd_sad32x16x4d_bits8)
HIGHBD_BFP(BLOCK_16X32,
vpx_highbd_sad16x32_bits8,
vpx_highbd_sad16x32_avg_bits8,
vpx_highbd_8_variance16x32,
vpx_highbd_8_sub_pixel_variance16x32,
vpx_highbd_8_sub_pixel_avg_variance16x32,
NULL,
NULL,
vpx_highbd_sad16x32x4d_bits8)
HIGHBD_BFP(BLOCK_64X32,
vpx_highbd_sad64x32_bits8,
vpx_highbd_sad64x32_avg_bits8,
vpx_highbd_8_variance64x32,
vpx_highbd_8_sub_pixel_variance64x32,
vpx_highbd_8_sub_pixel_avg_variance64x32,
NULL,
NULL,
vpx_highbd_sad64x32x4d_bits8)
HIGHBD_BFP(BLOCK_32X64,
vpx_highbd_sad32x64_bits8,
vpx_highbd_sad32x64_avg_bits8,
vpx_highbd_8_variance32x64,
vpx_highbd_8_sub_pixel_variance32x64,
vpx_highbd_8_sub_pixel_avg_variance32x64,
NULL,
NULL,
vpx_highbd_sad32x64x4d_bits8)
HIGHBD_BFP(BLOCK_32X32,
vpx_highbd_sad32x32_bits8,
vpx_highbd_sad32x32_avg_bits8,
vpx_highbd_8_variance32x32,
vpx_highbd_8_sub_pixel_variance32x32,
vpx_highbd_8_sub_pixel_avg_variance32x32,
vpx_highbd_sad32x32x3_bits8,
vpx_highbd_sad32x32x8_bits8,
vpx_highbd_sad32x32x4d_bits8)
HIGHBD_BFP(BLOCK_64X64,
vpx_highbd_sad64x64_bits8,
vpx_highbd_sad64x64_avg_bits8,
vpx_highbd_8_variance64x64,
vpx_highbd_8_sub_pixel_variance64x64,
vpx_highbd_8_sub_pixel_avg_variance64x64,
vpx_highbd_sad64x64x3_bits8,
vpx_highbd_sad64x64x8_bits8,
vpx_highbd_sad64x64x4d_bits8)
HIGHBD_BFP(BLOCK_16X16,
vpx_highbd_sad16x16_bits8,
vpx_highbd_sad16x16_avg_bits8,
vpx_highbd_8_variance16x16,
vpx_highbd_8_sub_pixel_variance16x16,
vpx_highbd_8_sub_pixel_avg_variance16x16,
vpx_highbd_sad16x16x3_bits8,
vpx_highbd_sad16x16x8_bits8,
vpx_highbd_sad16x16x4d_bits8)
HIGHBD_BFP(BLOCK_16X8,
vpx_highbd_sad16x8_bits8,
vpx_highbd_sad16x8_avg_bits8,
vpx_highbd_8_variance16x8,
vpx_highbd_8_sub_pixel_variance16x8,
vpx_highbd_8_sub_pixel_avg_variance16x8,
vpx_highbd_sad16x8x3_bits8,
vpx_highbd_sad16x8x8_bits8,
vpx_highbd_sad16x8x4d_bits8)
HIGHBD_BFP(BLOCK_8X16,
vpx_highbd_sad8x16_bits8,
vpx_highbd_sad8x16_avg_bits8,
vpx_highbd_8_variance8x16,
vpx_highbd_8_sub_pixel_variance8x16,
vpx_highbd_8_sub_pixel_avg_variance8x16,
vpx_highbd_sad8x16x3_bits8,
vpx_highbd_sad8x16x8_bits8,
vpx_highbd_sad8x16x4d_bits8)
HIGHBD_BFP(BLOCK_8X8,
vpx_highbd_sad8x8_bits8,
vpx_highbd_sad8x8_avg_bits8,
vpx_highbd_8_variance8x8,
vpx_highbd_8_sub_pixel_variance8x8,
vpx_highbd_8_sub_pixel_avg_variance8x8,
vpx_highbd_sad8x8x3_bits8,
vpx_highbd_sad8x8x8_bits8,
vpx_highbd_sad8x8x4d_bits8)
HIGHBD_BFP(BLOCK_8X4,
vpx_highbd_sad8x4_bits8,
vpx_highbd_sad8x4_avg_bits8,
vpx_highbd_8_variance8x4,
vpx_highbd_8_sub_pixel_variance8x4,
vpx_highbd_8_sub_pixel_avg_variance8x4,
NULL,
vpx_highbd_sad8x4x8_bits8,
vpx_highbd_sad8x4x4d_bits8)
HIGHBD_BFP(BLOCK_4X8,
vpx_highbd_sad4x8_bits8,
vpx_highbd_sad4x8_avg_bits8,
vpx_highbd_8_variance4x8,
vpx_highbd_8_sub_pixel_variance4x8,
vpx_highbd_8_sub_pixel_avg_variance4x8,
NULL,
vpx_highbd_sad4x8x8_bits8,
vpx_highbd_sad4x8x4d_bits8)
HIGHBD_BFP(BLOCK_4X4,
vpx_highbd_sad4x4_bits8,
vpx_highbd_sad4x4_avg_bits8,
vpx_highbd_8_variance4x4,
vpx_highbd_8_sub_pixel_variance4x4,
vpx_highbd_8_sub_pixel_avg_variance4x4,
vpx_highbd_sad4x4x3_bits8,
vpx_highbd_sad4x4x8_bits8,
vpx_highbd_sad4x4x4d_bits8)
#if CONFIG_EXT_PARTITION
HIGHBD_BFP(BLOCK_128X128,
vpx_highbd_sad128x128_bits8,
vpx_highbd_sad128x128_avg_bits8,
vpx_highbd_8_variance128x128,
vpx_highbd_8_sub_pixel_variance128x128,
vpx_highbd_8_sub_pixel_avg_variance128x128,
vpx_highbd_sad128x128x3_bits8,
vpx_highbd_sad128x128x8_bits8,
vpx_highbd_sad128x128x4d_bits8)
HIGHBD_BFP(BLOCK_128X64,
vpx_highbd_sad128x64_bits8,
vpx_highbd_sad128x64_avg_bits8,
vpx_highbd_8_variance128x64,
vpx_highbd_8_sub_pixel_variance128x64,
vpx_highbd_8_sub_pixel_avg_variance128x64,
NULL,
NULL,
vpx_highbd_sad128x64x4d_bits8)
HIGHBD_BFP(BLOCK_64X128,
vpx_highbd_sad64x128_bits8,
vpx_highbd_sad64x128_avg_bits8,
vpx_highbd_8_variance64x128,
vpx_highbd_8_sub_pixel_variance64x128,
vpx_highbd_8_sub_pixel_avg_variance64x128,
NULL,
NULL,
vpx_highbd_sad64x128x4d_bits8)
#endif // CONFIG_EXT_PARTITION
#if CONFIG_EXT_INTER
#if CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_128X128,
vpx_highbd_masked_sad128x128_bits8,
vpx_highbd_masked_variance128x128,
vpx_highbd_masked_sub_pixel_variance128x128)
HIGHBD_MBFP(BLOCK_128X64,
vpx_highbd_masked_sad128x64_bits8,
vpx_highbd_masked_variance128x64,
vpx_highbd_masked_sub_pixel_variance128x64)
HIGHBD_MBFP(BLOCK_64X128,
vpx_highbd_masked_sad64x128_bits8,
vpx_highbd_masked_variance64x128,
vpx_highbd_masked_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_64X64,
vpx_highbd_masked_sad64x64_bits8,
vpx_highbd_masked_variance64x64,
vpx_highbd_masked_sub_pixel_variance64x64)
HIGHBD_MBFP(BLOCK_64X32,
vpx_highbd_masked_sad64x32_bits8,
vpx_highbd_masked_variance64x32,
vpx_highbd_masked_sub_pixel_variance64x32)
HIGHBD_MBFP(BLOCK_32X64,
vpx_highbd_masked_sad32x64_bits8,
vpx_highbd_masked_variance32x64,
vpx_highbd_masked_sub_pixel_variance32x64)
HIGHBD_MBFP(BLOCK_32X32,
vpx_highbd_masked_sad32x32_bits8,
vpx_highbd_masked_variance32x32,
vpx_highbd_masked_sub_pixel_variance32x32)
HIGHBD_MBFP(BLOCK_32X16,
vpx_highbd_masked_sad32x16_bits8,
vpx_highbd_masked_variance32x16,
vpx_highbd_masked_sub_pixel_variance32x16)
HIGHBD_MBFP(BLOCK_16X32,
vpx_highbd_masked_sad16x32_bits8,
vpx_highbd_masked_variance16x32,
vpx_highbd_masked_sub_pixel_variance16x32)
HIGHBD_MBFP(BLOCK_16X16,
vpx_highbd_masked_sad16x16_bits8,
vpx_highbd_masked_variance16x16,
vpx_highbd_masked_sub_pixel_variance16x16)
HIGHBD_MBFP(BLOCK_8X16,
vpx_highbd_masked_sad8x16_bits8,
vpx_highbd_masked_variance8x16,
vpx_highbd_masked_sub_pixel_variance8x16)
HIGHBD_MBFP(BLOCK_16X8,
vpx_highbd_masked_sad16x8_bits8,
vpx_highbd_masked_variance16x8,
vpx_highbd_masked_sub_pixel_variance16x8)
HIGHBD_MBFP(BLOCK_8X8,
vpx_highbd_masked_sad8x8_bits8,
vpx_highbd_masked_variance8x8,
vpx_highbd_masked_sub_pixel_variance8x8)
HIGHBD_MBFP(BLOCK_4X8,
vpx_highbd_masked_sad4x8_bits8,
vpx_highbd_masked_variance4x8,
vpx_highbd_masked_sub_pixel_variance4x8)
HIGHBD_MBFP(BLOCK_8X4,
vpx_highbd_masked_sad8x4_bits8,
vpx_highbd_masked_variance8x4,
vpx_highbd_masked_sub_pixel_variance8x4)
HIGHBD_MBFP(BLOCK_4X4,
vpx_highbd_masked_sad4x4_bits8,
vpx_highbd_masked_variance4x4,
vpx_highbd_masked_sub_pixel_variance4x4)
#endif // CONFIG_EXT_INTER
#if CONFIG_OBMC
#if CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_128X128,
vpx_highbd_obmc_sad128x128_bits8,
vpx_highbd_obmc_variance128x128,
vpx_highbd_obmc_sub_pixel_variance128x128)
HIGHBD_OBFP(BLOCK_128X64,
vpx_highbd_obmc_sad128x64_bits8,
vpx_highbd_obmc_variance128x64,
vpx_highbd_obmc_sub_pixel_variance128x64)
HIGHBD_OBFP(BLOCK_64X128,
vpx_highbd_obmc_sad64x128_bits8,
vpx_highbd_obmc_variance64x128,
vpx_highbd_obmc_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_64X64,
vpx_highbd_obmc_sad64x64_bits8,
vpx_highbd_obmc_variance64x64,
vpx_highbd_obmc_sub_pixel_variance64x64)
HIGHBD_OBFP(BLOCK_64X32,
vpx_highbd_obmc_sad64x32_bits8,
vpx_highbd_obmc_variance64x32,
vpx_highbd_obmc_sub_pixel_variance64x32)
HIGHBD_OBFP(BLOCK_32X64,
vpx_highbd_obmc_sad32x64_bits8,
vpx_highbd_obmc_variance32x64,
vpx_highbd_obmc_sub_pixel_variance32x64)
HIGHBD_OBFP(BLOCK_32X32,
vpx_highbd_obmc_sad32x32_bits8,
vpx_highbd_obmc_variance32x32,
vpx_highbd_obmc_sub_pixel_variance32x32)
HIGHBD_OBFP(BLOCK_32X16,
vpx_highbd_obmc_sad32x16_bits8,
vpx_highbd_obmc_variance32x16,
vpx_highbd_obmc_sub_pixel_variance32x16)
HIGHBD_OBFP(BLOCK_16X32,
vpx_highbd_obmc_sad16x32_bits8,
vpx_highbd_obmc_variance16x32,
vpx_highbd_obmc_sub_pixel_variance16x32)
HIGHBD_OBFP(BLOCK_16X16,
vpx_highbd_obmc_sad16x16_bits8,
vpx_highbd_obmc_variance16x16,
vpx_highbd_obmc_sub_pixel_variance16x16)
HIGHBD_OBFP(BLOCK_8X16,
vpx_highbd_obmc_sad8x16_bits8,
vpx_highbd_obmc_variance8x16,
vpx_highbd_obmc_sub_pixel_variance8x16)
HIGHBD_OBFP(BLOCK_16X8,
vpx_highbd_obmc_sad16x8_bits8,
vpx_highbd_obmc_variance16x8,
vpx_highbd_obmc_sub_pixel_variance16x8)
HIGHBD_OBFP(BLOCK_8X8,
vpx_highbd_obmc_sad8x8_bits8,
vpx_highbd_obmc_variance8x8,
vpx_highbd_obmc_sub_pixel_variance8x8)
HIGHBD_OBFP(BLOCK_4X8,
vpx_highbd_obmc_sad4x8_bits8,
vpx_highbd_obmc_variance4x8,
vpx_highbd_obmc_sub_pixel_variance4x8)
HIGHBD_OBFP(BLOCK_8X4,
vpx_highbd_obmc_sad8x4_bits8,
vpx_highbd_obmc_variance8x4,
vpx_highbd_obmc_sub_pixel_variance8x4)
HIGHBD_OBFP(BLOCK_4X4,
vpx_highbd_obmc_sad4x4_bits8,
vpx_highbd_obmc_variance4x4,
vpx_highbd_obmc_sub_pixel_variance4x4)
#endif // CONFIG_OBMC
break;
case VPX_BITS_10:
HIGHBD_BFP(BLOCK_32X16,
vpx_highbd_sad32x16_bits10,
vpx_highbd_sad32x16_avg_bits10,
vpx_highbd_10_variance32x16,
vpx_highbd_10_sub_pixel_variance32x16,
vpx_highbd_10_sub_pixel_avg_variance32x16,
NULL,
NULL,
vpx_highbd_sad32x16x4d_bits10)
HIGHBD_BFP(BLOCK_16X32,
vpx_highbd_sad16x32_bits10,
vpx_highbd_sad16x32_avg_bits10,
vpx_highbd_10_variance16x32,
vpx_highbd_10_sub_pixel_variance16x32,
vpx_highbd_10_sub_pixel_avg_variance16x32,
NULL,
NULL,
vpx_highbd_sad16x32x4d_bits10)
HIGHBD_BFP(BLOCK_64X32,
vpx_highbd_sad64x32_bits10,
vpx_highbd_sad64x32_avg_bits10,
vpx_highbd_10_variance64x32,
vpx_highbd_10_sub_pixel_variance64x32,
vpx_highbd_10_sub_pixel_avg_variance64x32,
NULL,
NULL,
vpx_highbd_sad64x32x4d_bits10)
HIGHBD_BFP(BLOCK_32X64,
vpx_highbd_sad32x64_bits10,
vpx_highbd_sad32x64_avg_bits10,
vpx_highbd_10_variance32x64,
vpx_highbd_10_sub_pixel_variance32x64,
vpx_highbd_10_sub_pixel_avg_variance32x64,
NULL,
NULL,
vpx_highbd_sad32x64x4d_bits10)
HIGHBD_BFP(BLOCK_32X32,
vpx_highbd_sad32x32_bits10,
vpx_highbd_sad32x32_avg_bits10,
vpx_highbd_10_variance32x32,
vpx_highbd_10_sub_pixel_variance32x32,
vpx_highbd_10_sub_pixel_avg_variance32x32,
vpx_highbd_sad32x32x3_bits10,
vpx_highbd_sad32x32x8_bits10,
vpx_highbd_sad32x32x4d_bits10)
HIGHBD_BFP(BLOCK_64X64,
vpx_highbd_sad64x64_bits10,
vpx_highbd_sad64x64_avg_bits10,
vpx_highbd_10_variance64x64,
vpx_highbd_10_sub_pixel_variance64x64,
vpx_highbd_10_sub_pixel_avg_variance64x64,
vpx_highbd_sad64x64x3_bits10,
vpx_highbd_sad64x64x8_bits10,
vpx_highbd_sad64x64x4d_bits10)
HIGHBD_BFP(BLOCK_16X16,
vpx_highbd_sad16x16_bits10,
vpx_highbd_sad16x16_avg_bits10,
vpx_highbd_10_variance16x16,
vpx_highbd_10_sub_pixel_variance16x16,
vpx_highbd_10_sub_pixel_avg_variance16x16,
vpx_highbd_sad16x16x3_bits10,
vpx_highbd_sad16x16x8_bits10,
vpx_highbd_sad16x16x4d_bits10)
HIGHBD_BFP(BLOCK_16X8,
vpx_highbd_sad16x8_bits10,
vpx_highbd_sad16x8_avg_bits10,
vpx_highbd_10_variance16x8,
vpx_highbd_10_sub_pixel_variance16x8,
vpx_highbd_10_sub_pixel_avg_variance16x8,
vpx_highbd_sad16x8x3_bits10,
vpx_highbd_sad16x8x8_bits10,
vpx_highbd_sad16x8x4d_bits10)
HIGHBD_BFP(BLOCK_8X16,
vpx_highbd_sad8x16_bits10,
vpx_highbd_sad8x16_avg_bits10,
vpx_highbd_10_variance8x16,
vpx_highbd_10_sub_pixel_variance8x16,
vpx_highbd_10_sub_pixel_avg_variance8x16,
vpx_highbd_sad8x16x3_bits10,
vpx_highbd_sad8x16x8_bits10,
vpx_highbd_sad8x16x4d_bits10)
HIGHBD_BFP(BLOCK_8X8,
vpx_highbd_sad8x8_bits10,
vpx_highbd_sad8x8_avg_bits10,
vpx_highbd_10_variance8x8,
vpx_highbd_10_sub_pixel_variance8x8,
vpx_highbd_10_sub_pixel_avg_variance8x8,
vpx_highbd_sad8x8x3_bits10,
vpx_highbd_sad8x8x8_bits10,
vpx_highbd_sad8x8x4d_bits10)
HIGHBD_BFP(BLOCK_8X4,
vpx_highbd_sad8x4_bits10,
vpx_highbd_sad8x4_avg_bits10,
vpx_highbd_10_variance8x4,
vpx_highbd_10_sub_pixel_variance8x4,
vpx_highbd_10_sub_pixel_avg_variance8x4,
NULL,
vpx_highbd_sad8x4x8_bits10,
vpx_highbd_sad8x4x4d_bits10)
HIGHBD_BFP(BLOCK_4X8,
vpx_highbd_sad4x8_bits10,
vpx_highbd_sad4x8_avg_bits10,
vpx_highbd_10_variance4x8,
vpx_highbd_10_sub_pixel_variance4x8,
vpx_highbd_10_sub_pixel_avg_variance4x8,
NULL,
vpx_highbd_sad4x8x8_bits10,
vpx_highbd_sad4x8x4d_bits10)
HIGHBD_BFP(BLOCK_4X4,
vpx_highbd_sad4x4_bits10,
vpx_highbd_sad4x4_avg_bits10,
vpx_highbd_10_variance4x4,
vpx_highbd_10_sub_pixel_variance4x4,
vpx_highbd_10_sub_pixel_avg_variance4x4,
vpx_highbd_sad4x4x3_bits10,
vpx_highbd_sad4x4x8_bits10,
vpx_highbd_sad4x4x4d_bits10)
#if CONFIG_EXT_PARTITION
HIGHBD_BFP(BLOCK_128X128,
vpx_highbd_sad128x128_bits10,
vpx_highbd_sad128x128_avg_bits10,
vpx_highbd_10_variance128x128,
vpx_highbd_10_sub_pixel_variance128x128,
vpx_highbd_10_sub_pixel_avg_variance128x128,
vpx_highbd_sad128x128x3_bits10,
vpx_highbd_sad128x128x8_bits10,
vpx_highbd_sad128x128x4d_bits10)
HIGHBD_BFP(BLOCK_128X64,
vpx_highbd_sad128x64_bits10,
vpx_highbd_sad128x64_avg_bits10,
vpx_highbd_10_variance128x64,
vpx_highbd_10_sub_pixel_variance128x64,
vpx_highbd_10_sub_pixel_avg_variance128x64,
NULL,
NULL,
vpx_highbd_sad128x64x4d_bits10)
HIGHBD_BFP(BLOCK_64X128,
vpx_highbd_sad64x128_bits10,
vpx_highbd_sad64x128_avg_bits10,
vpx_highbd_10_variance64x128,
vpx_highbd_10_sub_pixel_variance64x128,
vpx_highbd_10_sub_pixel_avg_variance64x128,
NULL,
NULL,
vpx_highbd_sad64x128x4d_bits10)
#endif // CONFIG_EXT_PARTITION
#if CONFIG_EXT_INTER
#if CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_128X128,
vpx_highbd_masked_sad128x128_bits10,
vpx_highbd_10_masked_variance128x128,
vpx_highbd_10_masked_sub_pixel_variance128x128)
HIGHBD_MBFP(BLOCK_128X64,
vpx_highbd_masked_sad128x64_bits10,
vpx_highbd_10_masked_variance128x64,
vpx_highbd_10_masked_sub_pixel_variance128x64)
HIGHBD_MBFP(BLOCK_64X128,
vpx_highbd_masked_sad64x128_bits10,
vpx_highbd_10_masked_variance64x128,
vpx_highbd_10_masked_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_64X64,
vpx_highbd_masked_sad64x64_bits10,
vpx_highbd_10_masked_variance64x64,
vpx_highbd_10_masked_sub_pixel_variance64x64)
HIGHBD_MBFP(BLOCK_64X32,
vpx_highbd_masked_sad64x32_bits10,
vpx_highbd_10_masked_variance64x32,
vpx_highbd_10_masked_sub_pixel_variance64x32)
HIGHBD_MBFP(BLOCK_32X64,
vpx_highbd_masked_sad32x64_bits10,
vpx_highbd_10_masked_variance32x64,
vpx_highbd_10_masked_sub_pixel_variance32x64)
HIGHBD_MBFP(BLOCK_32X32,
vpx_highbd_masked_sad32x32_bits10,
vpx_highbd_10_masked_variance32x32,
vpx_highbd_10_masked_sub_pixel_variance32x32)
HIGHBD_MBFP(BLOCK_32X16,
vpx_highbd_masked_sad32x16_bits10,
vpx_highbd_10_masked_variance32x16,
vpx_highbd_10_masked_sub_pixel_variance32x16)
HIGHBD_MBFP(BLOCK_16X32,
vpx_highbd_masked_sad16x32_bits10,
vpx_highbd_10_masked_variance16x32,
vpx_highbd_10_masked_sub_pixel_variance16x32)
HIGHBD_MBFP(BLOCK_16X16,
vpx_highbd_masked_sad16x16_bits10,
vpx_highbd_10_masked_variance16x16,
vpx_highbd_10_masked_sub_pixel_variance16x16)
HIGHBD_MBFP(BLOCK_8X16,
vpx_highbd_masked_sad8x16_bits10,
vpx_highbd_10_masked_variance8x16,
vpx_highbd_10_masked_sub_pixel_variance8x16)
HIGHBD_MBFP(BLOCK_16X8,
vpx_highbd_masked_sad16x8_bits10,
vpx_highbd_10_masked_variance16x8,
vpx_highbd_10_masked_sub_pixel_variance16x8)
HIGHBD_MBFP(BLOCK_8X8,
vpx_highbd_masked_sad8x8_bits10,
vpx_highbd_10_masked_variance8x8,
vpx_highbd_10_masked_sub_pixel_variance8x8)
HIGHBD_MBFP(BLOCK_4X8,
vpx_highbd_masked_sad4x8_bits10,
vpx_highbd_10_masked_variance4x8,
vpx_highbd_10_masked_sub_pixel_variance4x8)
HIGHBD_MBFP(BLOCK_8X4,
vpx_highbd_masked_sad8x4_bits10,
vpx_highbd_10_masked_variance8x4,
vpx_highbd_10_masked_sub_pixel_variance8x4)
HIGHBD_MBFP(BLOCK_4X4,
vpx_highbd_masked_sad4x4_bits10,
vpx_highbd_10_masked_variance4x4,
vpx_highbd_10_masked_sub_pixel_variance4x4)
#endif // CONFIG_EXT_INTER
#if CONFIG_OBMC
#if CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_128X128,
vpx_highbd_obmc_sad128x128_bits10,
vpx_highbd_10_obmc_variance128x128,
vpx_highbd_10_obmc_sub_pixel_variance128x128)
HIGHBD_OBFP(BLOCK_128X64,
vpx_highbd_obmc_sad128x64_bits10,
vpx_highbd_10_obmc_variance128x64,
vpx_highbd_10_obmc_sub_pixel_variance128x64)
HIGHBD_OBFP(BLOCK_64X128,
vpx_highbd_obmc_sad64x128_bits10,
vpx_highbd_10_obmc_variance64x128,
vpx_highbd_10_obmc_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_64X64,
vpx_highbd_obmc_sad64x64_bits10,
vpx_highbd_10_obmc_variance64x64,
vpx_highbd_10_obmc_sub_pixel_variance64x64)
HIGHBD_OBFP(BLOCK_64X32,
vpx_highbd_obmc_sad64x32_bits10,
vpx_highbd_10_obmc_variance64x32,
vpx_highbd_10_obmc_sub_pixel_variance64x32)
HIGHBD_OBFP(BLOCK_32X64,
vpx_highbd_obmc_sad32x64_bits10,
vpx_highbd_10_obmc_variance32x64,
vpx_highbd_10_obmc_sub_pixel_variance32x64)
HIGHBD_OBFP(BLOCK_32X32,
vpx_highbd_obmc_sad32x32_bits10,
vpx_highbd_10_obmc_variance32x32,
vpx_highbd_10_obmc_sub_pixel_variance32x32)
HIGHBD_OBFP(BLOCK_32X16,
vpx_highbd_obmc_sad32x16_bits10,
vpx_highbd_10_obmc_variance32x16,
vpx_highbd_10_obmc_sub_pixel_variance32x16)
HIGHBD_OBFP(BLOCK_16X32,
vpx_highbd_obmc_sad16x32_bits10,
vpx_highbd_10_obmc_variance16x32,
vpx_highbd_10_obmc_sub_pixel_variance16x32)
HIGHBD_OBFP(BLOCK_16X16,
vpx_highbd_obmc_sad16x16_bits10,
vpx_highbd_10_obmc_variance16x16,
vpx_highbd_10_obmc_sub_pixel_variance16x16)
HIGHBD_OBFP(BLOCK_8X16,
vpx_highbd_obmc_sad8x16_bits10,
vpx_highbd_10_obmc_variance8x16,
vpx_highbd_10_obmc_sub_pixel_variance8x16)
HIGHBD_OBFP(BLOCK_16X8,
vpx_highbd_obmc_sad16x8_bits10,
vpx_highbd_10_obmc_variance16x8,
vpx_highbd_10_obmc_sub_pixel_variance16x8)
HIGHBD_OBFP(BLOCK_8X8,
vpx_highbd_obmc_sad8x8_bits10,
vpx_highbd_10_obmc_variance8x8,
vpx_highbd_10_obmc_sub_pixel_variance8x8)
HIGHBD_OBFP(BLOCK_4X8,
vpx_highbd_obmc_sad4x8_bits10,
vpx_highbd_10_obmc_variance4x8,
vpx_highbd_10_obmc_sub_pixel_variance4x8)
HIGHBD_OBFP(BLOCK_8X4,
vpx_highbd_obmc_sad8x4_bits10,
vpx_highbd_10_obmc_variance8x4,
vpx_highbd_10_obmc_sub_pixel_variance8x4)
HIGHBD_OBFP(BLOCK_4X4,
vpx_highbd_obmc_sad4x4_bits10,
vpx_highbd_10_obmc_variance4x4,
vpx_highbd_10_obmc_sub_pixel_variance4x4)
#endif // CONFIG_OBMC
break;
case VPX_BITS_12:
HIGHBD_BFP(BLOCK_32X16,
vpx_highbd_sad32x16_bits12,
vpx_highbd_sad32x16_avg_bits12,
vpx_highbd_12_variance32x16,
vpx_highbd_12_sub_pixel_variance32x16,
vpx_highbd_12_sub_pixel_avg_variance32x16,
NULL,
NULL,
vpx_highbd_sad32x16x4d_bits12)
HIGHBD_BFP(BLOCK_16X32,
vpx_highbd_sad16x32_bits12,
vpx_highbd_sad16x32_avg_bits12,
vpx_highbd_12_variance16x32,
vpx_highbd_12_sub_pixel_variance16x32,
vpx_highbd_12_sub_pixel_avg_variance16x32,
NULL,
NULL,
vpx_highbd_sad16x32x4d_bits12)
HIGHBD_BFP(BLOCK_64X32,
vpx_highbd_sad64x32_bits12,
vpx_highbd_sad64x32_avg_bits12,
vpx_highbd_12_variance64x32,
vpx_highbd_12_sub_pixel_variance64x32,
vpx_highbd_12_sub_pixel_avg_variance64x32,
NULL,
NULL,
vpx_highbd_sad64x32x4d_bits12)
HIGHBD_BFP(BLOCK_32X64,
vpx_highbd_sad32x64_bits12,
vpx_highbd_sad32x64_avg_bits12,
vpx_highbd_12_variance32x64,
vpx_highbd_12_sub_pixel_variance32x64,
vpx_highbd_12_sub_pixel_avg_variance32x64,
NULL,
NULL,
vpx_highbd_sad32x64x4d_bits12)
HIGHBD_BFP(BLOCK_32X32,
vpx_highbd_sad32x32_bits12,
vpx_highbd_sad32x32_avg_bits12,
vpx_highbd_12_variance32x32,
vpx_highbd_12_sub_pixel_variance32x32,
vpx_highbd_12_sub_pixel_avg_variance32x32,
vpx_highbd_sad32x32x3_bits12,
vpx_highbd_sad32x32x8_bits12,
vpx_highbd_sad32x32x4d_bits12)
HIGHBD_BFP(BLOCK_64X64,
vpx_highbd_sad64x64_bits12,
vpx_highbd_sad64x64_avg_bits12,
vpx_highbd_12_variance64x64,
vpx_highbd_12_sub_pixel_variance64x64,
vpx_highbd_12_sub_pixel_avg_variance64x64,
vpx_highbd_sad64x64x3_bits12,
vpx_highbd_sad64x64x8_bits12,
vpx_highbd_sad64x64x4d_bits12)
HIGHBD_BFP(BLOCK_16X16,
vpx_highbd_sad16x16_bits12,
vpx_highbd_sad16x16_avg_bits12,
vpx_highbd_12_variance16x16,
vpx_highbd_12_sub_pixel_variance16x16,
vpx_highbd_12_sub_pixel_avg_variance16x16,
vpx_highbd_sad16x16x3_bits12,
vpx_highbd_sad16x16x8_bits12,
vpx_highbd_sad16x16x4d_bits12)
HIGHBD_BFP(BLOCK_16X8,
vpx_highbd_sad16x8_bits12,
vpx_highbd_sad16x8_avg_bits12,
vpx_highbd_12_variance16x8,
vpx_highbd_12_sub_pixel_variance16x8,
vpx_highbd_12_sub_pixel_avg_variance16x8,
vpx_highbd_sad16x8x3_bits12,
vpx_highbd_sad16x8x8_bits12,
vpx_highbd_sad16x8x4d_bits12)
HIGHBD_BFP(BLOCK_8X16,
vpx_highbd_sad8x16_bits12,
vpx_highbd_sad8x16_avg_bits12,
vpx_highbd_12_variance8x16,
vpx_highbd_12_sub_pixel_variance8x16,
vpx_highbd_12_sub_pixel_avg_variance8x16,
vpx_highbd_sad8x16x3_bits12,
vpx_highbd_sad8x16x8_bits12,
vpx_highbd_sad8x16x4d_bits12)
HIGHBD_BFP(BLOCK_8X8,
vpx_highbd_sad8x8_bits12,
vpx_highbd_sad8x8_avg_bits12,
vpx_highbd_12_variance8x8,
vpx_highbd_12_sub_pixel_variance8x8,
vpx_highbd_12_sub_pixel_avg_variance8x8,
vpx_highbd_sad8x8x3_bits12,
vpx_highbd_sad8x8x8_bits12,
vpx_highbd_sad8x8x4d_bits12)
HIGHBD_BFP(BLOCK_8X4,
vpx_highbd_sad8x4_bits12,
vpx_highbd_sad8x4_avg_bits12,
vpx_highbd_12_variance8x4,
vpx_highbd_12_sub_pixel_variance8x4,
vpx_highbd_12_sub_pixel_avg_variance8x4,
NULL,
vpx_highbd_sad8x4x8_bits12,
vpx_highbd_sad8x4x4d_bits12)
HIGHBD_BFP(BLOCK_4X8,
vpx_highbd_sad4x8_bits12,
vpx_highbd_sad4x8_avg_bits12,
vpx_highbd_12_variance4x8,
vpx_highbd_12_sub_pixel_variance4x8,
vpx_highbd_12_sub_pixel_avg_variance4x8,
NULL,
vpx_highbd_sad4x8x8_bits12,
vpx_highbd_sad4x8x4d_bits12)
HIGHBD_BFP(BLOCK_4X4,
vpx_highbd_sad4x4_bits12,
vpx_highbd_sad4x4_avg_bits12,
vpx_highbd_12_variance4x4,
vpx_highbd_12_sub_pixel_variance4x4,
vpx_highbd_12_sub_pixel_avg_variance4x4,
vpx_highbd_sad4x4x3_bits12,
vpx_highbd_sad4x4x8_bits12,
vpx_highbd_sad4x4x4d_bits12)
#if CONFIG_EXT_PARTITION
HIGHBD_BFP(BLOCK_128X128,
vpx_highbd_sad128x128_bits12,
vpx_highbd_sad128x128_avg_bits12,
vpx_highbd_12_variance128x128,
vpx_highbd_12_sub_pixel_variance128x128,
vpx_highbd_12_sub_pixel_avg_variance128x128,
vpx_highbd_sad128x128x3_bits12,
vpx_highbd_sad128x128x8_bits12,
vpx_highbd_sad128x128x4d_bits12)
HIGHBD_BFP(BLOCK_128X64,
vpx_highbd_sad128x64_bits12,
vpx_highbd_sad128x64_avg_bits12,
vpx_highbd_12_variance128x64,
vpx_highbd_12_sub_pixel_variance128x64,
vpx_highbd_12_sub_pixel_avg_variance128x64,
NULL,
NULL,
vpx_highbd_sad128x64x4d_bits12)
HIGHBD_BFP(BLOCK_64X128,
vpx_highbd_sad64x128_bits12,
vpx_highbd_sad64x128_avg_bits12,
vpx_highbd_12_variance64x128,
vpx_highbd_12_sub_pixel_variance64x128,
vpx_highbd_12_sub_pixel_avg_variance64x128,
NULL,
NULL,
vpx_highbd_sad64x128x4d_bits12)
#endif // CONFIG_EXT_PARTITION
#if CONFIG_EXT_INTER
#if CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_128X128,
vpx_highbd_masked_sad128x128_bits12,
vpx_highbd_12_masked_variance128x128,
vpx_highbd_12_masked_sub_pixel_variance128x128)
HIGHBD_MBFP(BLOCK_128X64,
vpx_highbd_masked_sad128x64_bits12,
vpx_highbd_12_masked_variance128x64,
vpx_highbd_12_masked_sub_pixel_variance128x64)
HIGHBD_MBFP(BLOCK_64X128,
vpx_highbd_masked_sad64x128_bits12,
vpx_highbd_12_masked_variance64x128,
vpx_highbd_12_masked_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_MBFP(BLOCK_64X64,
vpx_highbd_masked_sad64x64_bits12,
vpx_highbd_12_masked_variance64x64,
vpx_highbd_12_masked_sub_pixel_variance64x64)
HIGHBD_MBFP(BLOCK_64X32,
vpx_highbd_masked_sad64x32_bits12,
vpx_highbd_12_masked_variance64x32,
vpx_highbd_12_masked_sub_pixel_variance64x32)
HIGHBD_MBFP(BLOCK_32X64,
vpx_highbd_masked_sad32x64_bits12,
vpx_highbd_12_masked_variance32x64,
vpx_highbd_12_masked_sub_pixel_variance32x64)
HIGHBD_MBFP(BLOCK_32X32,
vpx_highbd_masked_sad32x32_bits12,
vpx_highbd_12_masked_variance32x32,
vpx_highbd_12_masked_sub_pixel_variance32x32)
HIGHBD_MBFP(BLOCK_32X16,
vpx_highbd_masked_sad32x16_bits12,
vpx_highbd_12_masked_variance32x16,
vpx_highbd_12_masked_sub_pixel_variance32x16)
HIGHBD_MBFP(BLOCK_16X32,
vpx_highbd_masked_sad16x32_bits12,
vpx_highbd_12_masked_variance16x32,
vpx_highbd_12_masked_sub_pixel_variance16x32)
HIGHBD_MBFP(BLOCK_16X16,
vpx_highbd_masked_sad16x16_bits12,
vpx_highbd_12_masked_variance16x16,
vpx_highbd_12_masked_sub_pixel_variance16x16)
HIGHBD_MBFP(BLOCK_8X16,
vpx_highbd_masked_sad8x16_bits12,
vpx_highbd_12_masked_variance8x16,
vpx_highbd_12_masked_sub_pixel_variance8x16)
HIGHBD_MBFP(BLOCK_16X8,
vpx_highbd_masked_sad16x8_bits12,
vpx_highbd_12_masked_variance16x8,
vpx_highbd_12_masked_sub_pixel_variance16x8)
HIGHBD_MBFP(BLOCK_8X8,
vpx_highbd_masked_sad8x8_bits12,
vpx_highbd_12_masked_variance8x8,
vpx_highbd_12_masked_sub_pixel_variance8x8)
HIGHBD_MBFP(BLOCK_4X8,
vpx_highbd_masked_sad4x8_bits12,
vpx_highbd_12_masked_variance4x8,
vpx_highbd_12_masked_sub_pixel_variance4x8)
HIGHBD_MBFP(BLOCK_8X4,
vpx_highbd_masked_sad8x4_bits12,
vpx_highbd_12_masked_variance8x4,
vpx_highbd_12_masked_sub_pixel_variance8x4)
HIGHBD_MBFP(BLOCK_4X4,
vpx_highbd_masked_sad4x4_bits12,
vpx_highbd_12_masked_variance4x4,
vpx_highbd_12_masked_sub_pixel_variance4x4)
#endif // CONFIG_EXT_INTER
#if CONFIG_OBMC
#if CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_128X128,
vpx_highbd_obmc_sad128x128_bits12,
vpx_highbd_12_obmc_variance128x128,
vpx_highbd_12_obmc_sub_pixel_variance128x128)
HIGHBD_OBFP(BLOCK_128X64,
vpx_highbd_obmc_sad128x64_bits12,
vpx_highbd_12_obmc_variance128x64,
vpx_highbd_12_obmc_sub_pixel_variance128x64)
HIGHBD_OBFP(BLOCK_64X128,
vpx_highbd_obmc_sad64x128_bits12,
vpx_highbd_12_obmc_variance64x128,
vpx_highbd_12_obmc_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
HIGHBD_OBFP(BLOCK_64X64,
vpx_highbd_obmc_sad64x64_bits12,
vpx_highbd_12_obmc_variance64x64,
vpx_highbd_12_obmc_sub_pixel_variance64x64)
HIGHBD_OBFP(BLOCK_64X32,
vpx_highbd_obmc_sad64x32_bits12,
vpx_highbd_12_obmc_variance64x32,
vpx_highbd_12_obmc_sub_pixel_variance64x32)
HIGHBD_OBFP(BLOCK_32X64,
vpx_highbd_obmc_sad32x64_bits12,
vpx_highbd_12_obmc_variance32x64,
vpx_highbd_12_obmc_sub_pixel_variance32x64)
HIGHBD_OBFP(BLOCK_32X32,
vpx_highbd_obmc_sad32x32_bits12,
vpx_highbd_12_obmc_variance32x32,
vpx_highbd_12_obmc_sub_pixel_variance32x32)
HIGHBD_OBFP(BLOCK_32X16,
vpx_highbd_obmc_sad32x16_bits12,
vpx_highbd_12_obmc_variance32x16,
vpx_highbd_12_obmc_sub_pixel_variance32x16)
HIGHBD_OBFP(BLOCK_16X32,
vpx_highbd_obmc_sad16x32_bits12,
vpx_highbd_12_obmc_variance16x32,
vpx_highbd_12_obmc_sub_pixel_variance16x32)
HIGHBD_OBFP(BLOCK_16X16,
vpx_highbd_obmc_sad16x16_bits12,
vpx_highbd_12_obmc_variance16x16,
vpx_highbd_12_obmc_sub_pixel_variance16x16)
HIGHBD_OBFP(BLOCK_8X16,
vpx_highbd_obmc_sad8x16_bits12,
vpx_highbd_12_obmc_variance8x16,
vpx_highbd_12_obmc_sub_pixel_variance8x16)
HIGHBD_OBFP(BLOCK_16X8,
vpx_highbd_obmc_sad16x8_bits12,
vpx_highbd_12_obmc_variance16x8,
vpx_highbd_12_obmc_sub_pixel_variance16x8)
HIGHBD_OBFP(BLOCK_8X8,
vpx_highbd_obmc_sad8x8_bits12,
vpx_highbd_12_obmc_variance8x8,
vpx_highbd_12_obmc_sub_pixel_variance8x8)
HIGHBD_OBFP(BLOCK_4X8,
vpx_highbd_obmc_sad4x8_bits12,
vpx_highbd_12_obmc_variance4x8,
vpx_highbd_12_obmc_sub_pixel_variance4x8)
HIGHBD_OBFP(BLOCK_8X4,
vpx_highbd_obmc_sad8x4_bits12,
vpx_highbd_12_obmc_variance8x4,
vpx_highbd_12_obmc_sub_pixel_variance8x4)
HIGHBD_OBFP(BLOCK_4X4,
vpx_highbd_obmc_sad4x4_bits12,
vpx_highbd_12_obmc_variance4x4,
vpx_highbd_12_obmc_sub_pixel_variance4x4)
#endif // CONFIG_OBMC
break;
default:
assert(0 && "cm->bit_depth should be VPX_BITS_8, "
"VPX_BITS_10 or VPX_BITS_12");
}
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static void realloc_segmentation_maps(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
// Create the encoder segmentation map and set all entries to 0
vpx_free(cpi->segmentation_map);
CHECK_MEM_ERROR(cm, cpi->segmentation_map,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
// Create a map used for cyclic background refresh.
if (cpi->cyclic_refresh)
vp10_cyclic_refresh_free(cpi->cyclic_refresh);
CHECK_MEM_ERROR(cm, cpi->cyclic_refresh,
vp10_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols));
// Create a map used to mark inactive areas.
vpx_free(cpi->active_map.map);
CHECK_MEM_ERROR(cm, cpi->active_map.map,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
// And a place holder structure is the coding context
// for use if we want to save and restore it
vpx_free(cpi->coding_context.last_frame_seg_map_copy);
CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
}
void vp10_change_config(struct VP10_COMP *cpi, const VP10EncoderConfig *oxcf) {
VP10_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
if (cm->profile != oxcf->profile)
cm->profile = oxcf->profile;
cm->bit_depth = oxcf->bit_depth;
cm->color_space = oxcf->color_space;
cm->color_range = oxcf->color_range;
if (cm->profile <= PROFILE_1)
assert(cm->bit_depth == VPX_BITS_8);
else
assert(cm->bit_depth > VPX_BITS_8);
cpi->oxcf = *oxcf;
#if CONFIG_VP9_HIGHBITDEPTH
cpi->td.mb.e_mbd.bd = (int)cm->bit_depth;
#endif // CONFIG_VP9_HIGHBITDEPTH
if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) {
rc->baseline_gf_interval = FIXED_GF_INTERVAL;
} else {
rc->baseline_gf_interval = (MIN_GF_INTERVAL + MAX_GF_INTERVAL) / 2;
}
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 1;
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
cpi->refresh_bwd_ref_frame = 0;
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
cm->refresh_frame_context =
(oxcf->error_resilient_mode || oxcf->frame_parallel_decoding_mode) ?
REFRESH_FRAME_CONTEXT_FORWARD : REFRESH_FRAME_CONTEXT_BACKWARD;
cm->reset_frame_context = RESET_FRAME_CONTEXT_NONE;
cm->allow_screen_content_tools = (cpi->oxcf.content == VP9E_CONTENT_SCREEN);
if (cm->allow_screen_content_tools) {
MACROBLOCK *x = &cpi->td.mb;
if (x->palette_buffer == 0) {
CHECK_MEM_ERROR(cm, x->palette_buffer,
vpx_memalign(16, sizeof(*x->palette_buffer)));
}
// Reallocate the pc_tree, as it's contents depends on
// the state of cm->allow_screen_content_tools
vp10_free_pc_tree(&cpi->td);
vp10_setup_pc_tree(&cpi->common, &cpi->td);
}
vp10_reset_segment_features(cm);
vp10_set_high_precision_mv(cpi, 0);
{
int i;
for (i = 0; i < MAX_SEGMENTS; i++)
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
cpi->encode_breakout = cpi->oxcf.encode_breakout;
set_rc_buffer_sizes(rc, &cpi->oxcf);
// Under a configuration change, where maximum_buffer_size may change,
// keep buffer level clipped to the maximum allowed buffer size.
rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size);
rc->buffer_level = VPXMIN(rc->buffer_level, rc->maximum_buffer_size);
// Set up frame rate and related parameters rate control values.
vp10_new_framerate(cpi, cpi->framerate);
// Set absolute upper and lower quality limits
rc->worst_quality = cpi->oxcf.worst_allowed_q;
rc->best_quality = cpi->oxcf.best_allowed_q;
cm->interp_filter = cpi->sf.default_interp_filter;
if (cpi->oxcf.render_width > 0 && cpi->oxcf.render_height > 0) {
cm->render_width = cpi->oxcf.render_width;
cm->render_height = cpi->oxcf.render_height;
} else {
cm->render_width = cpi->oxcf.width;
cm->render_height = cpi->oxcf.height;
}
cm->width = cpi->oxcf.width;
cm->height = cpi->oxcf.height;
if (cpi->initial_width) {
if (cm->width > cpi->initial_width || cm->height > cpi->initial_height) {
vp10_free_context_buffers(cm);
vp10_alloc_compressor_data(cpi);
realloc_segmentation_maps(cpi);
cpi->initial_width = cpi->initial_height = 0;
}
}
update_frame_size(cpi);
cpi->alt_ref_source = NULL;
rc->is_src_frame_alt_ref = 0;
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
rc->is_bwd_ref_frame = 0;
rc->is_last_bipred_frame = 0;
rc->is_bipred_frame = 0;
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
#if 0
// Experimental RD Code
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
set_tile_info(cpi);
cpi->ext_refresh_frame_flags_pending = 0;
cpi->ext_refresh_frame_context_pending = 0;
#if CONFIG_VP9_HIGHBITDEPTH
highbd_set_var_fns(cpi);
#endif
}
#ifndef M_LOG2_E
#define M_LOG2_E 0.693147180559945309417
#endif
#define log2f(x) (log (x) / (float) M_LOG2_E)
#if !CONFIG_REF_MV
static void cal_nmvjointsadcost(int *mvjointsadcost) {
mvjointsadcost[0] = 600;
mvjointsadcost[1] = 300;
mvjointsadcost[2] = 300;
mvjointsadcost[3] = 300;
}
#endif
static void cal_nmvsadcosts(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
static INLINE void init_upsampled_ref_frame_bufs(VP10_COMP *cpi) {
int i;
for (i = 0; i < MAX_REF_FRAMES; ++i) {
cpi->upsampled_ref_bufs[i].ref_count = 0;
cpi->upsampled_ref_idx[i] = INVALID_IDX;
}
}
VP10_COMP *vp10_create_compressor(VP10EncoderConfig *oxcf,
BufferPool *const pool) {
unsigned int i;
VP10_COMP *volatile const cpi = vpx_memalign(32, sizeof(VP10_COMP));
VP10_COMMON *volatile const cm = cpi != NULL ? &cpi->common : NULL;
if (!cm)
return NULL;
vp10_zero(*cpi);
if (setjmp(cm->error.jmp)) {
cm->error.setjmp = 0;
vp10_remove_compressor(cpi);
return 0;
}
cm->error.setjmp = 1;
cm->alloc_mi = vp10_enc_alloc_mi;
cm->free_mi = vp10_enc_free_mi;
cm->setup_mi = vp10_enc_setup_mi;
CHECK_MEM_ERROR(cm, cm->fc,
(FRAME_CONTEXT *)vpx_calloc(1, sizeof(*cm->fc)));
CHECK_MEM_ERROR(cm, cm->frame_contexts,
(FRAME_CONTEXT *)vpx_calloc(FRAME_CONTEXTS,
sizeof(*cm->frame_contexts)));
cpi->resize_state = 0;
cpi->resize_avg_qp = 0;
cpi->resize_buffer_underflow = 0;
cpi->common.buffer_pool = pool;
init_config(cpi, oxcf);
vp10_rc_init(&cpi->oxcf, oxcf->pass, &cpi->rc);
cm->current_video_frame = 0;
cpi->partition_search_skippable_frame = 0;
cpi->tile_data = NULL;
cpi->last_show_frame_buf_idx = INVALID_IDX;
realloc_segmentation_maps(cpi);
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) {
CHECK_MEM_ERROR(cm, cpi->nmv_costs[i][0],
vpx_calloc(MV_VALS, sizeof(*cpi->nmv_costs[i][0])));
CHECK_MEM_ERROR(cm, cpi->nmv_costs[i][1],
vpx_calloc(MV_VALS, sizeof(*cpi->nmv_costs[i][1])));
CHECK_MEM_ERROR(cm, cpi->nmv_costs_hp[i][0],
vpx_calloc(MV_VALS, sizeof(*cpi->nmv_costs_hp[i][0])));
CHECK_MEM_ERROR(cm, cpi->nmv_costs_hp[i][1],
vpx_calloc(MV_VALS, sizeof(*cpi->nmv_costs_hp[i][1])));
}
#endif
CHECK_MEM_ERROR(cm, cpi->nmvcosts[0],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[0])));
CHECK_MEM_ERROR(cm, cpi->nmvcosts[1],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts[1])));
CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[0],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[0])));
CHECK_MEM_ERROR(cm, cpi->nmvcosts_hp[1],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvcosts_hp[1])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[0],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[0])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts[1],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts[1])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[0],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[0])));
CHECK_MEM_ERROR(cm, cpi->nmvsadcosts_hp[1],
vpx_calloc(MV_VALS, sizeof(*cpi->nmvsadcosts_hp[1])));
for (i = 0; i < (sizeof(cpi->mbgraph_stats) /
sizeof(cpi->mbgraph_stats[0])); i++) {
CHECK_MEM_ERROR(cm, cpi->mbgraph_stats[i].mb_stats,
vpx_calloc(cm->MBs *
sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
}
#if CONFIG_FP_MB_STATS
cpi->use_fp_mb_stats = 0;
if (cpi->use_fp_mb_stats) {
// a place holder used to store the first pass mb stats in the first pass
CHECK_MEM_ERROR(cm, cpi->twopass.frame_mb_stats_buf,
vpx_calloc(cm->MBs * sizeof(uint8_t), 1));
} else {
cpi->twopass.frame_mb_stats_buf = NULL;
}
#endif
cpi->refresh_alt_ref_frame = 0;
cpi->multi_arf_last_grp_enabled = 0;
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
cpi->b_calculate_blockiness = 1;
cpi->b_calculate_consistency = 1;
cpi->total_inconsistency = 0;
cpi->psnr.worst = 100.0;
cpi->worst_ssim = 100.0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr) {
cpi->total_sq_error = 0;
cpi->total_samples = 0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
}
cpi->fastssim.worst = 100.0;
cpi->psnrhvs.worst = 100.0;
if (cpi->b_calculate_blockiness) {
cpi->total_blockiness = 0;
cpi->worst_blockiness = 0.0;
}
if (cpi->b_calculate_consistency) {
CHECK_MEM_ERROR(cm, cpi->ssim_vars,
vpx_malloc(sizeof(*cpi->ssim_vars) * 4 *
cpi->common.mi_rows * cpi->common.mi_cols));
cpi->worst_consistency = 100.0;
}
#endif
cpi->first_time_stamp_ever = INT64_MAX;
#if CONFIG_REF_MV
for (i = 0; i < NMV_CONTEXTS; ++i) {
cpi->td.mb.nmvcost[i][0] = &cpi->nmv_costs[i][0][MV_MAX];
cpi->td.mb.nmvcost[i][1] = &cpi->nmv_costs[i][1][MV_MAX];
cpi->td.mb.nmvcost_hp[i][0] = &cpi->nmv_costs_hp[i][0][MV_MAX];
cpi->td.mb.nmvcost_hp[i][1] = &cpi->nmv_costs_hp[i][1][MV_MAX];
}
#else
cal_nmvjointsadcost(cpi->td.mb.nmvjointsadcost);
cpi->td.mb.nmvcost[0] = &cpi->nmvcosts[0][MV_MAX];
cpi->td.mb.nmvcost[1] = &cpi->nmvcosts[1][MV_MAX];
cpi->td.mb.nmvcost_hp[0] = &cpi->nmvcosts_hp[0][MV_MAX];
cpi->td.mb.nmvcost_hp[1] = &cpi->nmvcosts_hp[1][MV_MAX];
#endif
cpi->td.mb.nmvsadcost[0] = &cpi->nmvsadcosts[0][MV_MAX];
cpi->td.mb.nmvsadcost[1] = &cpi->nmvsadcosts[1][MV_MAX];
cal_nmvsadcosts(cpi->td.mb.nmvsadcost);
cpi->td.mb.nmvsadcost_hp[0] = &cpi->nmvsadcosts_hp[0][MV_MAX];
cpi->td.mb.nmvsadcost_hp[1] = &cpi->nmvsadcosts_hp[1][MV_MAX];
cal_nmvsadcosts_hp(cpi->td.mb.nmvsadcost_hp);
#if CONFIG_VP9_TEMPORAL_DENOISING
#ifdef OUTPUT_YUV_DENOISED
yuv_denoised_file = fopen("denoised.yuv", "ab");
#endif
#endif
#ifdef OUTPUT_YUV_SKINMAP
yuv_skinmap_file = fopen("skinmap.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_REC
yuv_rec_file = fopen("rec.yuv", "wb");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
#endif
cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
if (oxcf->pass == 1) {
vp10_init_first_pass(cpi);
} else if (oxcf->pass == 2) {
const size_t packet_sz = sizeof(FIRSTPASS_STATS);
const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
const size_t psz = cpi->common.MBs * sizeof(uint8_t);
const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz);
cpi->twopass.firstpass_mb_stats.mb_stats_start =
oxcf->firstpass_mb_stats_in.buf;
cpi->twopass.firstpass_mb_stats.mb_stats_end =
cpi->twopass.firstpass_mb_stats.mb_stats_start +
(ps - 1) * cpi->common.MBs * sizeof(uint8_t);
}
#endif
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1];
vp10_init_second_pass(cpi);
}
init_upsampled_ref_frame_bufs(cpi);
vp10_set_speed_features_framesize_independent(cpi);
vp10_set_speed_features_framesize_dependent(cpi);
// Allocate memory to store variances for a frame.
CHECK_MEM_ERROR(cm, cpi->source_diff_var,
vpx_calloc(cm->MBs, sizeof(diff)));
cpi->source_var_thresh = 0;
cpi->frames_till_next_var_check = 0;
#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX3F, SDX8F, SDX4DF)\
cpi->fn_ptr[BT].sdf = SDF; \
cpi->fn_ptr[BT].sdaf = SDAF; \
cpi->fn_ptr[BT].vf = VF; \
cpi->fn_ptr[BT].svf = SVF; \
cpi->fn_ptr[BT].svaf = SVAF; \
cpi->fn_ptr[BT].sdx3f = SDX3F; \
cpi->fn_ptr[BT].sdx8f = SDX8F; \
cpi->fn_ptr[BT].sdx4df = SDX4DF;
#if CONFIG_EXT_PARTITION
BFP(BLOCK_128X128, vpx_sad128x128, vpx_sad128x128_avg,
vpx_variance128x128, vpx_sub_pixel_variance128x128,
vpx_sub_pixel_avg_variance128x128, vpx_sad128x128x3, vpx_sad128x128x8,
vpx_sad128x128x4d)
BFP(BLOCK_128X64, vpx_sad128x64, vpx_sad128x64_avg,
vpx_variance128x64, vpx_sub_pixel_variance128x64,
vpx_sub_pixel_avg_variance128x64, NULL, NULL, vpx_sad128x64x4d)
BFP(BLOCK_64X128, vpx_sad64x128, vpx_sad64x128_avg,
vpx_variance64x128, vpx_sub_pixel_variance64x128,
vpx_sub_pixel_avg_variance64x128, NULL, NULL, vpx_sad64x128x4d)
#endif // CONFIG_EXT_PARTITION
BFP(BLOCK_32X16, vpx_sad32x16, vpx_sad32x16_avg,
vpx_variance32x16, vpx_sub_pixel_variance32x16,
vpx_sub_pixel_avg_variance32x16, NULL, NULL, vpx_sad32x16x4d)
BFP(BLOCK_16X32, vpx_sad16x32, vpx_sad16x32_avg,
vpx_variance16x32, vpx_sub_pixel_variance16x32,
vpx_sub_pixel_avg_variance16x32, NULL, NULL, vpx_sad16x32x4d)
BFP(BLOCK_64X32, vpx_sad64x32, vpx_sad64x32_avg,
vpx_variance64x32, vpx_sub_pixel_variance64x32,
vpx_sub_pixel_avg_variance64x32, NULL, NULL, vpx_sad64x32x4d)
BFP(BLOCK_32X64, vpx_sad32x64, vpx_sad32x64_avg,
vpx_variance32x64, vpx_sub_pixel_variance32x64,
vpx_sub_pixel_avg_variance32x64, NULL, NULL, vpx_sad32x64x4d)
BFP(BLOCK_32X32, vpx_sad32x32, vpx_sad32x32_avg,
vpx_variance32x32, vpx_sub_pixel_variance32x32,
vpx_sub_pixel_avg_variance32x32, vpx_sad32x32x3, vpx_sad32x32x8,
vpx_sad32x32x4d)
BFP(BLOCK_64X64, vpx_sad64x64, vpx_sad64x64_avg,
vpx_variance64x64, vpx_sub_pixel_variance64x64,
vpx_sub_pixel_avg_variance64x64, vpx_sad64x64x3, vpx_sad64x64x8,
vpx_sad64x64x4d)
BFP(BLOCK_16X16, vpx_sad16x16, vpx_sad16x16_avg,
vpx_variance16x16, vpx_sub_pixel_variance16x16,
vpx_sub_pixel_avg_variance16x16, vpx_sad16x16x3, vpx_sad16x16x8,
vpx_sad16x16x4d)
BFP(BLOCK_16X8, vpx_sad16x8, vpx_sad16x8_avg,
vpx_variance16x8, vpx_sub_pixel_variance16x8,
vpx_sub_pixel_avg_variance16x8,
vpx_sad16x8x3, vpx_sad16x8x8, vpx_sad16x8x4d)
BFP(BLOCK_8X16, vpx_sad8x16, vpx_sad8x16_avg,
vpx_variance8x16, vpx_sub_pixel_variance8x16,
vpx_sub_pixel_avg_variance8x16,
vpx_sad8x16x3, vpx_sad8x16x8, vpx_sad8x16x4d)
BFP(BLOCK_8X8, vpx_sad8x8, vpx_sad8x8_avg,
vpx_variance8x8, vpx_sub_pixel_variance8x8,
vpx_sub_pixel_avg_variance8x8,
vpx_sad8x8x3, vpx_sad8x8x8, vpx_sad8x8x4d)
BFP(BLOCK_8X4, vpx_sad8x4, vpx_sad8x4_avg,
vpx_variance8x4, vpx_sub_pixel_variance8x4,
vpx_sub_pixel_avg_variance8x4, NULL, vpx_sad8x4x8, vpx_sad8x4x4d)
BFP(BLOCK_4X8, vpx_sad4x8, vpx_sad4x8_avg,
vpx_variance4x8, vpx_sub_pixel_variance4x8,
vpx_sub_pixel_avg_variance4x8, NULL, vpx_sad4x8x8, vpx_sad4x8x4d)
BFP(BLOCK_4X4, vpx_sad4x4, vpx_sad4x4_avg,
vpx_variance4x4, vpx_sub_pixel_variance4x4,
vpx_sub_pixel_avg_variance4x4,
vpx_sad4x4x3, vpx_sad4x4x8, vpx_sad4x4x4d)
#if CONFIG_OBMC
#define OBFP(BT, OSDF, OVF, OSVF) \
cpi->fn_ptr[BT].osdf = OSDF; \
cpi->fn_ptr[BT].ovf = OVF; \
cpi->fn_ptr[BT].osvf = OSVF;
#if CONFIG_EXT_PARTITION
OBFP(BLOCK_128X128, vpx_obmc_sad128x128, vpx_obmc_variance128x128,
vpx_obmc_sub_pixel_variance128x128)
OBFP(BLOCK_128X64, vpx_obmc_sad128x64, vpx_obmc_variance128x64,
vpx_obmc_sub_pixel_variance128x64)
OBFP(BLOCK_64X128, vpx_obmc_sad64x128, vpx_obmc_variance64x128,
vpx_obmc_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
OBFP(BLOCK_64X64, vpx_obmc_sad64x64, vpx_obmc_variance64x64,
vpx_obmc_sub_pixel_variance64x64)
OBFP(BLOCK_64X32, vpx_obmc_sad64x32, vpx_obmc_variance64x32,
vpx_obmc_sub_pixel_variance64x32)
OBFP(BLOCK_32X64, vpx_obmc_sad32x64, vpx_obmc_variance32x64,
vpx_obmc_sub_pixel_variance32x64)
OBFP(BLOCK_32X32, vpx_obmc_sad32x32, vpx_obmc_variance32x32,
vpx_obmc_sub_pixel_variance32x32)
OBFP(BLOCK_32X16, vpx_obmc_sad32x16, vpx_obmc_variance32x16,
vpx_obmc_sub_pixel_variance32x16)
OBFP(BLOCK_16X32, vpx_obmc_sad16x32, vpx_obmc_variance16x32,
vpx_obmc_sub_pixel_variance16x32)
OBFP(BLOCK_16X16, vpx_obmc_sad16x16, vpx_obmc_variance16x16,
vpx_obmc_sub_pixel_variance16x16)
OBFP(BLOCK_16X8, vpx_obmc_sad16x8, vpx_obmc_variance16x8,
vpx_obmc_sub_pixel_variance16x8)
OBFP(BLOCK_8X16, vpx_obmc_sad8x16, vpx_obmc_variance8x16,
vpx_obmc_sub_pixel_variance8x16)
OBFP(BLOCK_8X8, vpx_obmc_sad8x8, vpx_obmc_variance8x8,
vpx_obmc_sub_pixel_variance8x8)
OBFP(BLOCK_4X8, vpx_obmc_sad4x8, vpx_obmc_variance4x8,
vpx_obmc_sub_pixel_variance4x8)
OBFP(BLOCK_8X4, vpx_obmc_sad8x4, vpx_obmc_variance8x4,
vpx_obmc_sub_pixel_variance8x4)
OBFP(BLOCK_4X4, vpx_obmc_sad4x4, vpx_obmc_variance4x4,
vpx_obmc_sub_pixel_variance4x4)
#endif // CONFIG_OBMC
#if CONFIG_EXT_INTER
#define MBFP(BT, MSDF, MVF, MSVF) \
cpi->fn_ptr[BT].msdf = MSDF; \
cpi->fn_ptr[BT].mvf = MVF; \
cpi->fn_ptr[BT].msvf = MSVF;
#if CONFIG_EXT_PARTITION
MBFP(BLOCK_128X128, vpx_masked_sad128x128, vpx_masked_variance128x128,
vpx_masked_sub_pixel_variance128x128)
MBFP(BLOCK_128X64, vpx_masked_sad128x64, vpx_masked_variance128x64,
vpx_masked_sub_pixel_variance128x64)
MBFP(BLOCK_64X128, vpx_masked_sad64x128, vpx_masked_variance64x128,
vpx_masked_sub_pixel_variance64x128)
#endif // CONFIG_EXT_PARTITION
MBFP(BLOCK_64X64, vpx_masked_sad64x64, vpx_masked_variance64x64,
vpx_masked_sub_pixel_variance64x64)
MBFP(BLOCK_64X32, vpx_masked_sad64x32, vpx_masked_variance64x32,
vpx_masked_sub_pixel_variance64x32)
MBFP(BLOCK_32X64, vpx_masked_sad32x64, vpx_masked_variance32x64,
vpx_masked_sub_pixel_variance32x64)
MBFP(BLOCK_32X32, vpx_masked_sad32x32, vpx_masked_variance32x32,
vpx_masked_sub_pixel_variance32x32)
MBFP(BLOCK_32X16, vpx_masked_sad32x16, vpx_masked_variance32x16,
vpx_masked_sub_pixel_variance32x16)
MBFP(BLOCK_16X32, vpx_masked_sad16x32, vpx_masked_variance16x32,
vpx_masked_sub_pixel_variance16x32)
MBFP(BLOCK_16X16, vpx_masked_sad16x16, vpx_masked_variance16x16,
vpx_masked_sub_pixel_variance16x16)
MBFP(BLOCK_16X8, vpx_masked_sad16x8, vpx_masked_variance16x8,
vpx_masked_sub_pixel_variance16x8)
MBFP(BLOCK_8X16, vpx_masked_sad8x16, vpx_masked_variance8x16,
vpx_masked_sub_pixel_variance8x16)
MBFP(BLOCK_8X8, vpx_masked_sad8x8, vpx_masked_variance8x8,
vpx_masked_sub_pixel_variance8x8)
MBFP(BLOCK_4X8, vpx_masked_sad4x8, vpx_masked_variance4x8,
vpx_masked_sub_pixel_variance4x8)
MBFP(BLOCK_8X4, vpx_masked_sad8x4, vpx_masked_variance8x4,
vpx_masked_sub_pixel_variance8x4)
MBFP(BLOCK_4X4, vpx_masked_sad4x4, vpx_masked_variance4x4,
vpx_masked_sub_pixel_variance4x4)
#endif // CONFIG_EXT_INTER
#if CONFIG_VP9_HIGHBITDEPTH
highbd_set_var_fns(cpi);
#endif
/* vp10_init_quantizer() is first called here. Add check in
* vp10_frame_init_quantizer() so that vp10_init_quantizer is only
* called later when needed. This will avoid unnecessary calls of
* vp10_init_quantizer() for every frame.
*/
vp10_init_quantizer(cpi);
vp10_loop_filter_init(cm);
#if CONFIG_LOOP_RESTORATION
vp10_loop_restoration_precal();
#endif // CONFIG_LOOP_RESTORATION
cm->error.setjmp = 0;
return cpi;
}
#define SNPRINT(H, T) \
snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T))
#define SNPRINT2(H, T, V) \
snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V))
void vp10_remove_compressor(VP10_COMP *cpi) {
VP10_COMMON *cm;
unsigned int i;
int t;
if (!cpi)
return;
cm = &cpi->common;
if (cm->current_video_frame > 0) {
#if CONFIG_INTERNAL_STATS
vpx_clear_system_state();
if (cpi->oxcf.pass != 1) {
char headings[512] = {0};
char results[512] = {0};
FILE *f = fopen("opsnr.stt", "a");
double time_encoded = (cpi->last_end_time_stamp_seen
- cpi->first_time_stamp_ever) / 10000000.000;
double total_encode_time = (cpi->time_receive_data +
cpi->time_compress_data) / 1000.000;
const double dr =
(double)cpi->bytes * (double) 8 / (double)1000 / time_encoded;
const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1);
if (cpi->b_calculate_psnr) {
const double total_psnr =
vpx_sse_to_psnr((double)cpi->total_samples, peak,
(double)cpi->total_sq_error);
const double total_ssim = 100 * pow(cpi->summed_quality /
cpi->summed_weights, 8.0);
snprintf(headings, sizeof(headings),
"Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
"VPXSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t"
"WstPsnr\tWstSsim\tWstFast\tWstHVS");
snprintf(results, sizeof(results),
"%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%7.3f\t%7.3f\t%7.3f",
dr, cpi->psnr.stat[ALL] / cpi->count, total_psnr,
cpi->psnr.stat[ALL] / cpi->count, total_psnr,
total_ssim, total_ssim,
cpi->fastssim.stat[ALL] / cpi->count,
cpi->psnrhvs.stat[ALL] / cpi->count,
cpi->psnr.worst, cpi->worst_ssim, cpi->fastssim.worst,
cpi->psnrhvs.worst);
if (cpi->b_calculate_blockiness) {
SNPRINT(headings, "\t Block\tWstBlck");
SNPRINT2(results, "\t%7.3f", cpi->total_blockiness / cpi->count);
SNPRINT2(results, "\t%7.3f", cpi->worst_blockiness);
}
if (cpi->b_calculate_consistency) {
double consistency =
vpx_sse_to_psnr((double)cpi->total_samples, peak,
(double)cpi->total_inconsistency);
SNPRINT(headings, "\tConsist\tWstCons");
SNPRINT2(results, "\t%7.3f", consistency);
SNPRINT2(results, "\t%7.3f", cpi->worst_consistency);
}
fprintf(f, "%s\t Time\n", headings);
fprintf(f, "%s\t%8.0f\n", results, total_encode_time);
}
fclose(f);
}
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame,
cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000,
cpi->time_compress_data / 1000,
(cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
#endif
}
#if CONFIG_VP9_TEMPORAL_DENOISING
vp10_denoiser_free(&(cpi->denoiser));
#endif
for (t = 0; t < cpi->num_workers; ++t) {
VPxWorker *const worker = &cpi->workers[t];
EncWorkerData *const thread_data = &cpi->tile_thr_data[t];
// Deallocate allocated threads.
vpx_get_worker_interface()->end(worker);
// Deallocate allocated thread data.
if (t < cpi->num_workers - 1) {
if (cpi->common.allow_screen_content_tools)
vpx_free(thread_data->td->mb.palette_buffer);
vpx_free(thread_data->td->counts);
vp10_free_pc_tree(thread_data->td);
if (cpi->sf.partition_search_type == VAR_BASED_PARTITION)
vp10_free_var_tree(thread_data->td);
vpx_free(thread_data->td);
}
}
vpx_free(cpi->tile_thr_data);
vpx_free(cpi->workers);
if (cpi->num_workers > 1)
vp10_loop_filter_dealloc(&cpi->lf_row_sync);
dealloc_compressor_data(cpi);
for (i = 0; i < sizeof(cpi->mbgraph_stats) /
sizeof(cpi->mbgraph_stats[0]); ++i) {
vpx_free(cpi->mbgraph_stats[i].mb_stats);
}
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
vpx_free(cpi->twopass.frame_mb_stats_buf);
cpi->twopass.frame_mb_stats_buf = NULL;
}
#endif
vp10_remove_common(cm);
vp10_free_ref_frame_buffers(cm->buffer_pool);
#if CONFIG_VP9_POSTPROC
vp10_free_postproc_buffers(cm);
#endif
vpx_free(cpi);
#if CONFIG_VP9_TEMPORAL_DENOISING
#ifdef OUTPUT_YUV_DENOISED
fclose(yuv_denoised_file);
#endif
#endif
#ifdef OUTPUT_YUV_SKINMAP
fclose(yuv_skinmap_file);
#endif
#ifdef OUTPUT_YUV_REC
fclose(yuv_rec_file);
#endif
#if 0
if (keyfile)
fclose(keyfile);
if (framepsnr)
fclose(framepsnr);
if (kf_list)
fclose(kf_list);
#endif
}
static void generate_psnr_packet(VP10_COMP *cpi) {
struct vpx_codec_cx_pkt pkt;
int i;
PSNR_STATS psnr;
#if CONFIG_VP9_HIGHBITDEPTH
vpx_calc_highbd_psnr(cpi->Source, cpi->common.frame_to_show, &psnr,
cpi->td.mb.e_mbd.bd, cpi->oxcf.input_bit_depth);
#else
vpx_calc_psnr(cpi->Source, cpi->common.frame_to_show, &psnr);
#endif
for (i = 0; i < 4; ++i) {
pkt.data.psnr.samples[i] = psnr.samples[i];
pkt.data.psnr.sse[i] = psnr.sse[i];
pkt.data.psnr.psnr[i] = psnr.psnr[i];
}
pkt.kind = VPX_CODEC_PSNR_PKT;
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int vp10_use_as_reference(VP10_COMP *cpi, int ref_frame_flags) {
if (ref_frame_flags > ((1 << REFS_PER_FRAME) - 1))
return -1;
cpi->ref_frame_flags = ref_frame_flags;
return 0;
}
void vp10_update_reference(VP10_COMP *cpi, int ref_frame_flags) {
cpi->ext_refresh_golden_frame = (ref_frame_flags & VP9_GOLD_FLAG) != 0;
cpi->ext_refresh_alt_ref_frame = (ref_frame_flags & VP9_ALT_FLAG) != 0;
cpi->ext_refresh_last_frame = (ref_frame_flags & VP9_LAST_FLAG) != 0;
cpi->ext_refresh_frame_flags_pending = 1;
}
static YV12_BUFFER_CONFIG *get_vp10_ref_frame_buffer(
VP10_COMP *cpi, VP9_REFFRAME ref_frame_flag) {
MV_REFERENCE_FRAME ref_frame = NONE;
if (ref_frame_flag == VP9_LAST_FLAG)
ref_frame = LAST_FRAME;
#if CONFIG_EXT_REFS
else if (ref_frame_flag == VP9_LAST2_FLAG)
ref_frame = LAST2_FRAME;
else if (ref_frame_flag == VP9_LAST3_FLAG)
ref_frame = LAST3_FRAME;
else if (ref_frame_flag == VP9_LAST4_FLAG)
ref_frame = LAST4_FRAME;
#endif // CONFIG_EXT_REFS
else if (ref_frame_flag == VP9_GOLD_FLAG)
ref_frame = GOLDEN_FRAME;
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
else if (ref_frame_flag == VP9_BWD_FLAG)
ref_frame = BWDREF_FRAME;
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
else if (ref_frame_flag == VP9_ALT_FLAG)
ref_frame = ALTREF_FRAME;
return ref_frame == NONE ? NULL : get_ref_frame_buffer(cpi, ref_frame);
}
int vp10_copy_reference_enc(VP10_COMP *cpi, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
YV12_BUFFER_CONFIG *cfg = get_vp10_ref_frame_buffer(cpi, ref_frame_flag);
if (cfg) {
vp8_yv12_copy_frame(cfg, sd);
return 0;
} else {
return -1;
}
}
int vp10_set_reference_enc(VP10_COMP *cpi, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
YV12_BUFFER_CONFIG *cfg = get_vp10_ref_frame_buffer(cpi, ref_frame_flag);
if (cfg) {
vp8_yv12_copy_frame(sd, cfg);
return 0;
} else {
return -1;
}
}
int vp10_update_entropy(VP10_COMP * cpi, int update) {
cpi->ext_refresh_frame_context = update;
cpi->ext_refresh_frame_context_pending = 1;
return 0;
}
#if defined(OUTPUT_YUV_DENOISED) || defined(OUTPUT_YUV_SKINMAP)
// The denoiser buffer is allocated as a YUV 440 buffer. This function writes it
// as YUV 420. We simply use the top-left pixels of the UV buffers, since we do
// not denoise the UV channels at this time. If ever we implement UV channel
// denoising we will have to modify this.
void vp10_write_yuv_frame_420(YV12_BUFFER_CONFIG *s, FILE *f) {
uint8_t *src = s->y_buffer;
int h = s->y_height;
do {
fwrite(src, s->y_width, 1, f);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, f);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, f);
src += s->uv_stride;
} while (--h);
}
#endif
#ifdef OUTPUT_YUV_REC
void vp10_write_yuv_rec_frame(VP10_COMMON *cm) {
YV12_BUFFER_CONFIG *s = cm->frame_to_show;
uint8_t *src = s->y_buffer;
int h = cm->height;
#if CONFIG_VP9_HIGHBITDEPTH
if (s->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer);
do {
fwrite(src16, s->y_width, 2, yuv_rec_file);
src16 += s->y_stride;
} while (--h);
src16 = CONVERT_TO_SHORTPTR(s->u_buffer);
h = s->uv_height;
do {
fwrite(src16, s->uv_width, 2, yuv_rec_file);
src16 += s->uv_stride;
} while (--h);
src16 = CONVERT_TO_SHORTPTR(s->v_buffer);
h = s->uv_height;
do {
fwrite(src16, s->uv_width, 2, yuv_rec_file);
src16 += s->uv_stride;
} while (--h);
fflush(yuv_rec_file);
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
do {
fwrite(src, s->y_width, 1, yuv_rec_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
fflush(yuv_rec_file);
}
#endif
#if CONFIG_VP9_HIGHBITDEPTH
static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst,
int bd) {
#else
static void scale_and_extend_frame_nonnormative(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst) {
#endif // CONFIG_VP9_HIGHBITDEPTH
// TODO(dkovalev): replace YV12_BUFFER_CONFIG with vpx_image_t
int i;
const uint8_t *const srcs[3] = {src->y_buffer, src->u_buffer, src->v_buffer};
const int src_strides[3] = {src->y_stride, src->uv_stride, src->uv_stride};
const int src_widths[3] = {src->y_crop_width, src->uv_crop_width,
src->uv_crop_width };
const int src_heights[3] = {src->y_crop_height, src->uv_crop_height,
src->uv_crop_height};
uint8_t *const dsts[3] = {dst->y_buffer, dst->u_buffer, dst->v_buffer};
const int dst_strides[3] = {dst->y_stride, dst->uv_stride, dst->uv_stride};
const int dst_widths[3] = {dst->y_crop_width, dst->uv_crop_width,
dst->uv_crop_width};
const int dst_heights[3] = {dst->y_crop_height, dst->uv_crop_height,
dst->uv_crop_height};
for (i = 0; i < MAX_MB_PLANE; ++i) {
#if CONFIG_VP9_HIGHBITDEPTH
if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
vp10_highbd_resize_plane(srcs[i], src_heights[i], src_widths[i],
src_strides[i], dsts[i], dst_heights[i],
dst_widths[i], dst_strides[i], bd);
} else {
vp10_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
}
#else
vp10_resize_plane(srcs[i], src_heights[i], src_widths[i], src_strides[i],
dsts[i], dst_heights[i], dst_widths[i], dst_strides[i]);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
vpx_extend_frame_borders(dst);
}
#if CONFIG_VP9_HIGHBITDEPTH
static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst, int planes,
int bd) {
#else
static void scale_and_extend_frame(const YV12_BUFFER_CONFIG *src,
YV12_BUFFER_CONFIG *dst, int planes) {
#endif // CONFIG_VP9_HIGHBITDEPTH
const int src_w = src->y_crop_width;
const int src_h = src->y_crop_height;
const int dst_w = dst->y_crop_width;
const int dst_h = dst->y_crop_height;
const uint8_t *const srcs[3] = {src->y_buffer, src->u_buffer, src->v_buffer};
const int src_strides[3] = {src->y_stride, src->uv_stride, src->uv_stride};
uint8_t *const dsts[3] = {dst->y_buffer, dst->u_buffer, dst->v_buffer};
const int dst_strides[3] = {dst->y_stride, dst->uv_stride, dst->uv_stride};
const InterpFilterParams interp_filter_params =
vp10_get_interp_filter_params(EIGHTTAP_REGULAR);
const int16_t *kernel = interp_filter_params.filter_ptr;
const int taps = interp_filter_params.taps;
int x, y, i;
for (y = 0; y < dst_h; y += 16) {
for (x = 0; x < dst_w; x += 16) {
for (i = 0; i < planes; ++i) {
const int factor = (i == 0 || i == 3 ? 1 : 2);
const int x_q4 = x * (16 / factor) * src_w / dst_w;
const int y_q4 = y * (16 / factor) * src_h / dst_h;
const int src_stride = src_strides[i];
const int dst_stride = dst_strides[i];
const uint8_t *src_ptr = srcs[i] + (y / factor) * src_h / dst_h *
src_stride + (x / factor) * src_w / dst_w;
uint8_t *dst_ptr = dsts[i] + (y / factor) * dst_stride + (x / factor);
#if CONFIG_VP9_HIGHBITDEPTH
if (src->flags & YV12_FLAG_HIGHBITDEPTH) {
vpx_highbd_convolve8(src_ptr, src_stride, dst_ptr, dst_stride,
&kernel[(x_q4 & 0xf) * taps], 16 * src_w / dst_w,
&kernel[(y_q4 & 0xf) * taps], 16 * src_h / dst_h,
16 / factor, 16 / factor, bd);
} else {
vpx_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride,
&kernel[(x_q4 & 0xf) * taps], 16 * src_w / dst_w,
&kernel[(y_q4 & 0xf) * taps], 16 * src_h / dst_h,
16 / factor, 16 / factor);
}
#else
vpx_scaled_2d(src_ptr, src_stride, dst_ptr, dst_stride,
&kernel[(x_q4 & 0xf) * taps], 16 * src_w / dst_w,
&kernel[(y_q4 & 0xf) * taps], 16 * src_h / dst_h,
16 / factor, 16 / factor);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
}
if (planes == 1)
vpx_extend_frame_borders_y(dst);
else
vpx_extend_frame_borders(dst);
}
static int scale_down(VP10_COMP *cpi, int q) {
RATE_CONTROL *const rc = &cpi->rc;
GF_GROUP *const gf_group = &cpi->twopass.gf_group;
int scale = 0;
assert(frame_is_kf_gf_arf(cpi));
if (rc->frame_size_selector == UNSCALED &&
q >= rc->rf_level_maxq[gf_group->rf_level[gf_group->index]]) {
const int max_size_thresh = (int)(rate_thresh_mult[SCALE_STEP1]
* VPXMAX(rc->this_frame_target, rc->avg_frame_bandwidth));
scale = rc->projected_frame_size > max_size_thresh ? 1 : 0;
}
return scale;
}
// Function to test for conditions that indicate we should loop
// back and recode a frame.
static int recode_loop_test(VP10_COMP *cpi,
int high_limit, int low_limit,
int q, int maxq, int minq) {
const RATE_CONTROL *const rc = &cpi->rc;
const VP10EncoderConfig *const oxcf = &cpi->oxcf;
const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi);
int force_recode = 0;
if ((rc->projected_frame_size >= rc->max_frame_bandwidth) ||
(cpi->sf.recode_loop == ALLOW_RECODE) ||
(frame_is_kfgfarf &&
(cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF))) {
if (frame_is_kfgfarf &&
(oxcf->resize_mode == RESIZE_DYNAMIC) &&
scale_down(cpi, q)) {
// Code this group at a lower resolution.
cpi->resize_pending = 1;
return 1;
}
// TODO(agrange) high_limit could be greater than the scale-down threshold.
if ((rc->projected_frame_size > high_limit && q < maxq) ||
(rc->projected_frame_size < low_limit && q > minq)) {
force_recode = 1;
} else if (cpi->oxcf.rc_mode == VPX_CQ) {
// Deal with frame undershoot and whether or not we are
// below the automatically set cq level.
if (q > oxcf->cq_level &&
rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) {
force_recode = 1;
}
}
}
return force_recode;
}
static INLINE int get_free_upsampled_ref_buf(EncRefCntBuffer *ubufs) {
int i;
for (i = 0; i < MAX_REF_FRAMES; i++) {
if (!ubufs[i].ref_count) {
return i;
}
}
return INVALID_IDX;
}
// Up-sample 1 reference frame.
static INLINE int upsample_ref_frame(VP10_COMP *cpi,
const YV12_BUFFER_CONFIG *const ref) {
VP10_COMMON * const cm = &cpi->common;
EncRefCntBuffer *ubufs = cpi->upsampled_ref_bufs;
int new_uidx = get_free_upsampled_ref_buf(ubufs);
if (new_uidx == INVALID_IDX) {
return INVALID_IDX;
} else {
YV12_BUFFER_CONFIG *upsampled_ref = &ubufs[new_uidx].buf;
// Can allocate buffer for Y plane only.
if (upsampled_ref->buffer_alloc_sz < (ref->buffer_alloc_sz << 6))
if (vpx_realloc_frame_buffer(upsampled_ref,
(cm->width << 3), (cm->height << 3),
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
(VP9_ENC_BORDER_IN_PIXELS << 3),
cm->byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate up-sampled frame buffer");
// Currently, only Y plane is up-sampled, U, V are not used.
#if CONFIG_VP9_HIGHBITDEPTH
scale_and_extend_frame(ref, upsampled_ref, 1, (int)cm->bit_depth);
#else
scale_and_extend_frame(ref, upsampled_ref, 1);
#endif
return new_uidx;
}
}
#define DUMP_REF_FRAME_IMAGES 0
#if DUMP_REF_FRAME_IMAGES == 1
static int dump_one_image(VP10_COMMON *cm,
const YV12_BUFFER_CONFIG *const ref_buf,
char *file_name) {
int h;
FILE *f_ref = NULL;
if (ref_buf == NULL) {
printf("Frame data buffer is NULL.\n");
return VPX_CODEC_MEM_ERROR;
}
if ((f_ref = fopen(file_name, "wb")) == NULL) {
printf("Unable to open file %s to write.\n", file_name);
return VPX_CODEC_MEM_ERROR;
}
// --- Y ---
for (h = 0; h < cm->height; ++h) {
fwrite(&ref_buf->y_buffer[h*ref_buf->y_stride],
1, cm->width, f_ref);
}
// --- U ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&ref_buf->u_buffer[h*ref_buf->uv_stride],
1, (cm->width >> 1), f_ref);
}
// --- V ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&ref_buf->v_buffer[h*ref_buf->uv_stride],
1, (cm->width >> 1), f_ref);
}
fclose(f_ref);
return VPX_CODEC_OK;
}
static void dump_ref_frame_images(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
char file_name[256] = "";
snprintf(file_name, sizeof(file_name), "/tmp/enc_F%d_ref_%d.yuv",
cm->current_video_frame, ref_frame);
dump_one_image(
cm, get_ref_frame_buffer(cpi, ref_frame), file_name);
}
}
#endif // DUMP_REF_FRAME_IMAGES == 1
void vp10_update_reference_frames(VP10_COMP *cpi) {
VP10_COMMON * const cm = &cpi->common;
BufferPool *const pool = cm->buffer_pool;
const int use_upsampled_ref = cpi->sf.use_upsampled_references;
int new_uidx = 0;
#if CONFIG_EXT_REFS
int ref_frame;
#endif // CONFIG_EXT_REFS
// NOTE: Save the new show frame buffer index for --test-code=warn, i.e.,
// for the purpose to verify no mismatch between encoder and decoder.
if (cm->show_frame)
cpi->last_show_frame_buf_idx = cm->new_fb_idx;
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
// TODO(zoeliu): To remove the reference buffer update for the
// show_existing_frame==1 case.
#if 0
if (cpi->rc.is_last_bipred_frame) {
// NOTE: After the encoding of the LAST_BIPRED_FRAME, the flag of
// show_existing_frame will be set, to notify the decoder to show the
// coded BWDREF_FRAME. During the handling of the show_existing_frame,
// no update will be conducted on the reference frame buffer.
// Following is to get the BWDREF_FRAME to show to be regarded as the
// LAST_FRAME, preparing for the encoding of the next BWDREF_FRAME.
cpi->lst_fb_idx = cpi->bwd_fb_idx;
return;
}
#endif // 0
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
if (use_upsampled_ref) {
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
if (cm->show_existing_frame) {
new_uidx = cpi->upsampled_ref_idx[cpi->existing_fb_idx_to_show];
// TODO(zoeliu): Once following is confirmed, remove it.
assert(cpi->upsampled_ref_bufs[new_uidx].ref_count > 0);
} else {
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
// Up-sample the current encoded frame.
RefCntBuffer *bufs = pool->frame_bufs;
const YV12_BUFFER_CONFIG *const ref = &bufs[cm->new_fb_idx].buf;
new_uidx = upsample_ref_frame(cpi, ref);
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
}
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
}
// At this point the new frame has been encoded.
// If any buffer copy / swapping is signaled it should be done here.
if (cm->frame_type == KEY_FRAME) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->bwd_fb_idx], cm->new_fb_idx);
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
if (use_upsampled_ref) {
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->gld_fb_idx], new_uidx);
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->bwd_fb_idx], new_uidx);
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->alt_fb_idx], new_uidx);
}
} else if (vp10_preserve_existing_gf(cpi)) {
// We have decided to preserve the previously existing golden frame as our
// new ARF frame. However, in the short term in function
// vp10_bitstream.c::get_refresh_mask() we left it in the GF slot and, if
// we're updating the GF with the current decoded frame, we save it to the
// ARF slot instead.
// We now have to update the ARF with the current frame and swap gld_fb_idx
// and alt_fb_idx so that, overall, we've stored the old GF in the new ARF
// slot and, if we're updating the GF, the current frame becomes the new GF.
int tmp;
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->alt_fb_idx], new_uidx);
tmp = cpi->alt_fb_idx;
cpi->alt_fb_idx = cpi->gld_fb_idx;
cpi->gld_fb_idx = tmp;
// TODO(zoeliu): Do we need to copy cpi->interp_filter_selected[0] over to
// cpi->interp_filter_selected[GOLDEN_FRAME]?
} else { /* For non key/golden frames */
if (cpi->refresh_alt_ref_frame) {
int arf_idx = cpi->alt_fb_idx;
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_idx = gf_group->arf_update_idx[gf_group->index];
}
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[arf_idx], cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->alt_fb_idx], new_uidx);
memcpy(cpi->interp_filter_selected[ALTREF_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
if (cpi->refresh_golden_frame) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->gld_fb_idx], new_uidx);
if (!cpi->rc.is_src_frame_alt_ref)
memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
else
memcpy(cpi->interp_filter_selected[GOLDEN_FRAME],
cpi->interp_filter_selected[ALTREF_FRAME],
sizeof(cpi->interp_filter_selected[ALTREF_FRAME]));
}
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
if (cpi->refresh_bwd_ref_frame) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->bwd_fb_idx], cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->bwd_fb_idx], new_uidx);
memcpy(cpi->interp_filter_selected[BWDREF_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
}
if (cpi->refresh_last_frame) {
#if CONFIG_EXT_REFS
// NOTE(zoeliu): We have two layers of mapping (1) from the per-frame
// reference to the reference frame buffer virtual index; and then (2) from
// the virtual index to the reference frame buffer physical index:
//
// LAST_FRAME, ..., LAST4_FRAME, GOLDEN_FRAME, ALTREF_FRAME
// | | | |
// v v v v
// lst_fb_idxes[0], ..., lst_fb_idxes[3], gld_fb_idx, alt_fb_idx
// | | | |
// v v v v
// ref_frame_map[], ..., ref_frame_map[], ref_frame_map[], ref_frame_map[]
//
// When refresh_last_frame is set, it is intended to retire LAST4_FRAME,
// have all the other 3 reference frames shifted as follows:
// LAST_FRAME -> LAST2_FRAME -> LAST3_FRAME -> LAST4_FRAME,
// , and then have LAST_FRAME refreshed by the newly coded frame.
//
// To fulfill it, the decoder will be notified to execute following 2 steps:
//
// (a) To change ref_frame_map[] and have the virtual index of LAST4_FRAME
// to point to the newly coded frame, i.e.
// ref_frame_map[lst_fb_idexes[3]] => new_fb_idx;
//
// (b) To change the 1st layer mapping to have LAST_FRAME mapped to the
// original virtual index of LAST4_FRAME and have all the other mapping
// shifted as follows:
// LAST_FRAME, LAST2_FRAME, LAST3_FRAME, LAST4_FRAME
// | | | |
// v v v v
// lst_fb_idxes[3], lst_fb_idxes[0], lst_fb_idxes[1], lst_fb_idxes[2]
int tmp;
if (cm->frame_type == KEY_FRAME) {
for (ref_frame = LAST_FRAME; ref_frame <= LAST4_FRAME; ++ref_frame) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->lst_fb_idxes[ref_frame-LAST_FRAME]],
cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(
cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->lst_fb_idxes[ref_frame-LAST_FRAME]],
new_uidx);
}
} else {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->lst_fb_idxes[LAST4_FRAME-LAST_FRAME]],
cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(
cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->lst_fb_idxes[LAST4_FRAME-LAST_FRAME]],
new_uidx);
tmp = cpi->lst_fb_idxes[LAST4_FRAME-LAST_FRAME];
for (ref_frame = LAST4_FRAME; ref_frame > LAST_FRAME; --ref_frame) {
cpi->lst_fb_idxes[ref_frame - LAST_FRAME] =
cpi->lst_fb_idxes[ref_frame - LAST_FRAME - 1];
if (!cpi->rc.is_src_frame_alt_ref) {
memcpy(cpi->interp_filter_selected[ref_frame],
cpi->interp_filter_selected[ref_frame - 1],
sizeof(cpi->interp_filter_selected[ref_frame - 1]));
}
}
cpi->lst_fb_idxes[LAST_FRAME-LAST_FRAME] = tmp;
memcpy(cpi->interp_filter_selected[LAST_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
#else // CONFIG_EXT_REFS
#if CONFIG_BIDIR_PRED
// TODO(zoeliu): To remove the reference buffer update for the
// show_existing_frame==1 case; Instead, we move the reference buffer update
// to the previous coded frame, i.e. the last-bipred-frame. In that case, no
// bit should be set in the refresh-mask, but the visual ref-idx should be
// updated and written to the bitstream accordingly, as the virtual ref-idx
// for LAST_FRAME and BWDREF_FRAME should be switched, i.e. cpi->lst_fb_idx
// and cpi->bwd_fb_idx should be switched.
if (cm->show_existing_frame) {
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->lst_fb_idx], new_uidx);
// NOTE(zoeliu): OVERLAY should not be the last non-reference frame.
assert(!cpi->rc.is_src_frame_alt_ref);
memcpy(cpi->interp_filter_selected[LAST_FRAME],
cpi->interp_filter_selected[BWDREF_FRAME],
sizeof(cpi->interp_filter_selected[BWDREF_FRAME]));
} else {
#endif // CONFIG_BIDIR_PRED
ref_cnt_fb(pool->frame_bufs,
&cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx);
if (use_upsampled_ref)
uref_cnt_fb(cpi->upsampled_ref_bufs,
&cpi->upsampled_ref_idx[cpi->lst_fb_idx], new_uidx);
if (!cpi->rc.is_src_frame_alt_ref) {
memcpy(cpi->interp_filter_selected[LAST_FRAME],
cpi->interp_filter_selected[0],
sizeof(cpi->interp_filter_selected[0]));
}
#if CONFIG_BIDIR_PRED
}
#endif // CONFIG_BIDIR_PRED
#endif // CONFIG_EXT_REFS
}
#if DUMP_REF_FRAME_IMAGES == 1
// Dump out all reference frame images.
dump_ref_frame_images(cpi);
#endif // DUMP_REF_FRAME_IMAGES
#if CONFIG_VP9_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0) {
vp10_denoiser_update_frame_info(&cpi->denoiser,
*cpi->Source,
cpi->common.frame_type,
cpi->refresh_last_frame,
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
cpi->refresh_bwd_ref_frame,
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
cpi->refresh_alt_ref_frame,
cpi->refresh_golden_frame);
}
#endif
}
static void loopfilter_frame(VP10_COMP *cpi, VP10_COMMON *cm) {
MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
struct loopfilter *lf = &cm->lf;
if (is_lossless_requested(&cpi->oxcf)) {
lf->filter_level = 0;
} else {
struct vpx_usec_timer timer;
vpx_clear_system_state();
vpx_usec_timer_start(&timer);
#if CONFIG_LOOP_RESTORATION
vp10_pick_filter_restoration(cpi->Source, cpi, cpi->sf.lpf_pick);
#else
vp10_pick_filter_level(cpi->Source, cpi, cpi->sf.lpf_pick);
#endif // CONFIG_LOOP_RESTORATION
vpx_usec_timer_mark(&timer);
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
}
if (lf->filter_level > 0) {
#if CONFIG_VAR_TX || CONFIG_EXT_PARTITION
vp10_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0);
#else
if (cpi->num_workers > 1)
vp10_loop_filter_frame_mt(cm->frame_to_show, cm, xd->plane,
lf->filter_level, 0, 0,
cpi->workers, cpi->num_workers,
&cpi->lf_row_sync);
else
vp10_loop_filter_frame(cm->frame_to_show, cm, xd, lf->filter_level, 0, 0);
#endif
}
#if CONFIG_LOOP_RESTORATION
if (cm->rst_info.restoration_type != RESTORE_NONE) {
vp10_loop_restoration_init(&cm->rst_internal, &cm->rst_info,
cm->frame_type == KEY_FRAME);
vp10_loop_restoration_rows(cm->frame_to_show, cm, 0, cm->mi_rows, 0);
}
#endif // CONFIG_LOOP_RESTORATION
vpx_extend_frame_inner_borders(cm->frame_to_show);
}
static INLINE void alloc_frame_mvs(VP10_COMMON *const cm,
int buffer_idx) {
RefCntBuffer *const new_fb_ptr = &cm->buffer_pool->frame_bufs[buffer_idx];
if (new_fb_ptr->mvs == NULL ||
new_fb_ptr->mi_rows < cm->mi_rows ||
new_fb_ptr->mi_cols < cm->mi_cols) {
vpx_free(new_fb_ptr->mvs);
CHECK_MEM_ERROR(cm, new_fb_ptr->mvs,
(MV_REF *)vpx_calloc(cm->mi_rows * cm->mi_cols,
sizeof(*new_fb_ptr->mvs)));
new_fb_ptr->mi_rows = cm->mi_rows;
new_fb_ptr->mi_cols = cm->mi_cols;
}
}
void vp10_scale_references(VP10_COMP *cpi) {
VP10_COMMON *cm = &cpi->common;
MV_REFERENCE_FRAME ref_frame;
const VP9_REFFRAME ref_mask[REFS_PER_FRAME] = {
VP9_LAST_FLAG,
#if CONFIG_EXT_REFS
VP9_LAST2_FLAG,
VP9_LAST3_FLAG,
VP9_LAST4_FLAG,
#endif // CONFIG_EXT_REFS
VP9_GOLD_FLAG,
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
VP9_BWD_FLAG,
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
VP9_ALT_FLAG
};
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
// Need to convert from VP9_REFFRAME to index into ref_mask (subtract 1).
if (cpi->ref_frame_flags & ref_mask[ref_frame - 1]) {
BufferPool *const pool = cm->buffer_pool;
const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi,
ref_frame);
if (ref == NULL) {
cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
continue;
}
#if CONFIG_VP9_HIGHBITDEPTH
if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
RefCntBuffer *new_fb_ptr = NULL;
int force_scaling = 0;
int new_fb = cpi->scaled_ref_idx[ref_frame - 1];
if (new_fb == INVALID_IDX) {
new_fb = get_free_fb(cm);
force_scaling = 1;
}
if (new_fb == INVALID_IDX)
return;
new_fb_ptr = &pool->frame_bufs[new_fb];
if (force_scaling ||
new_fb_ptr->buf.y_crop_width != cm->width ||
new_fb_ptr->buf.y_crop_height != cm->height) {
if (vpx_realloc_frame_buffer(&new_fb_ptr->buf, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
cm->use_highbitdepth,
VP9_ENC_BORDER_IN_PIXELS,
cm->byte_alignment, NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
scale_and_extend_frame(ref, &new_fb_ptr->buf, MAX_MB_PLANE,
(int)cm->bit_depth);
cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
alloc_frame_mvs(cm, new_fb);
}
#else
if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) {
RefCntBuffer *new_fb_ptr = NULL;
int force_scaling = 0;
int new_fb = cpi->scaled_ref_idx[ref_frame - 1];
if (new_fb == INVALID_IDX) {
new_fb = get_free_fb(cm);
force_scaling = 1;
}
if (new_fb == INVALID_IDX)
return;
new_fb_ptr = &pool->frame_bufs[new_fb];
if (force_scaling ||
new_fb_ptr->buf.y_crop_width != cm->width ||
new_fb_ptr->buf.y_crop_height != cm->height) {
if (vpx_realloc_frame_buffer(&new_fb_ptr->buf, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS,
cm->byte_alignment, NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
scale_and_extend_frame(ref, &new_fb_ptr->buf, MAX_MB_PLANE);
cpi->scaled_ref_idx[ref_frame - 1] = new_fb;
alloc_frame_mvs(cm, new_fb);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
if (cpi->sf.use_upsampled_references && (force_scaling ||
new_fb_ptr->buf.y_crop_width != cm->width ||
new_fb_ptr->buf.y_crop_height != cm->height)) {
const int map_idx = get_ref_frame_map_idx(cpi, ref_frame);
EncRefCntBuffer *ubuf =
&cpi->upsampled_ref_bufs[cpi->upsampled_ref_idx[map_idx]];
if (vpx_realloc_frame_buffer(&ubuf->buf,
(cm->width << 3), (cm->height << 3),
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
(VP9_ENC_BORDER_IN_PIXELS << 3),
cm->byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate up-sampled frame buffer");
#if CONFIG_VP9_HIGHBITDEPTH
scale_and_extend_frame(&new_fb_ptr->buf, &ubuf->buf, 1,
(int)cm->bit_depth);
#else
scale_and_extend_frame(&new_fb_ptr->buf, &ubuf->buf, 1);
#endif
}
} else {
const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
RefCntBuffer *const buf = &pool->frame_bufs[buf_idx];
buf->buf.y_crop_width = ref->y_crop_width;
buf->buf.y_crop_height = ref->y_crop_height;
cpi->scaled_ref_idx[ref_frame - 1] = buf_idx;
++buf->ref_count;
}
} else {
if (cpi->oxcf.pass != 0)
cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX;
}
}
}
static void release_scaled_references(VP10_COMP *cpi) {
VP10_COMMON *cm = &cpi->common;
int i;
if (cpi->oxcf.pass == 0) {
// Only release scaled references under certain conditions:
// if reference will be updated, or if scaled reference has same resolution.
int refresh[REFS_PER_FRAME];
refresh[0] = (cpi->refresh_last_frame) ? 1 : 0;
#if CONFIG_EXT_REFS
refresh[1] = refresh[2] = refresh[3] = 0;
refresh[4] = (cpi->refresh_golden_frame) ? 1 : 0;
refresh[5] = (cpi->refresh_alt_ref_frame) ? 1 : 0;
#else // CONFIG_EXT_REFS
refresh[1] = (cpi->refresh_golden_frame) ? 1 : 0;
#if CONFIG_BIDIR_PRED
refresh[2] = (cpi->refresh_bwd_ref_frame) ? 1 : 0;
refresh[3] = (cpi->refresh_alt_ref_frame) ? 1 : 0;
#else // CONFIG_BIDIR_PRED
refresh[2] = (cpi->refresh_alt_ref_frame) ? 1 : 0;
#endif // CONFIG_BIDIR_PRED
#endif // CONFIG_EXT_REFS
for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
const int idx = cpi->scaled_ref_idx[i - 1];
RefCntBuffer *const buf = idx != INVALID_IDX ?
&cm->buffer_pool->frame_bufs[idx] : NULL;
const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, i);
if (buf != NULL &&
(refresh[i - 1] ||
(buf->buf.y_crop_width == ref->y_crop_width &&
buf->buf.y_crop_height == ref->y_crop_height))) {
--buf->ref_count;
cpi->scaled_ref_idx[i -1] = INVALID_IDX;
}
}
} else {
for (i = 0; i < MAX_REF_FRAMES; ++i) {
const int idx = cpi->scaled_ref_idx[i];
RefCntBuffer *const buf = idx != INVALID_IDX ?
&cm->buffer_pool->frame_bufs[idx] : NULL;
if (buf != NULL) {
--buf->ref_count;
cpi->scaled_ref_idx[i] = INVALID_IDX;
}
}
}
}
static void full_to_model_count(unsigned int *model_count,
unsigned int *full_count) {
int n;
model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
for (n = THREE_TOKEN; n < EOB_TOKEN; ++n)
model_count[TWO_TOKEN] += full_count[n];
model_count[EOB_MODEL_TOKEN] = full_count[EOB_TOKEN];
}
void vp10_full_to_model_counts(vp10_coeff_count_model *model_count,
vp10_coeff_count *full_count) {
int i, j, k, l;
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]);
}
#if 0 && CONFIG_INTERNAL_STATS
static void output_frame_level_debug_stats(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
FILE *const f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w");
int64_t recon_err;
vpx_clear_system_state();
recon_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
if (cpi->twopass.total_left_stats.coded_error != 0.0)
fprintf(f, "%10u %dx%d %10d %10d %d %d %10d %10d %10d %10d"
"%10"PRId64" %10"PRId64" %5d %5d %10"PRId64" "
"%10"PRId64" %10"PRId64" %10d "
"%7.2lf %7.2lf %7.2lf %7.2lf %7.2lf"
"%6d %6d %5d %5d %5d "
"%10"PRId64" %10.3lf"
"%10lf %8u %10"PRId64" %10d %10d %10d\n",
cpi->common.current_video_frame,
cm->width, cm->height,
cpi->td.rd_counts.m_search_count,
cpi->td.rd_counts.ex_search_count,
cpi->rc.source_alt_ref_pending,
cpi->rc.source_alt_ref_active,
cpi->rc.this_frame_target,
cpi->rc.projected_frame_size,
cpi->rc.projected_frame_size / cpi->common.MBs,
(cpi->rc.projected_frame_size - cpi->rc.this_frame_target),
cpi->rc.vbr_bits_off_target,
cpi->rc.vbr_bits_off_target_fast,
cpi->twopass.extend_minq,
cpi->twopass.extend_minq_fast,
cpi->rc.total_target_vs_actual,
(cpi->rc.starting_buffer_level - cpi->rc.bits_off_target),
cpi->rc.total_actual_bits, cm->base_qindex,
vp10_convert_qindex_to_q(cm->base_qindex, cm->bit_depth),
(double)vp10_dc_quant(cm->base_qindex, 0, cm->bit_depth) / 4.0,
vp10_convert_qindex_to_q(cpi->twopass.active_worst_quality,
cm->bit_depth),
cpi->rc.avg_q,
vp10_convert_qindex_to_q(cpi->oxcf.cq_level, cm->bit_depth),
cpi->refresh_last_frame, cpi->refresh_golden_frame,
cpi->refresh_alt_ref_frame, cm->frame_type, cpi->rc.gfu_boost,
cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
cpi->twopass.bits_left /
(1 + cpi->twopass.total_left_stats.coded_error),
cpi->tot_recode_hits, recon_err, cpi->rc.kf_boost,
cpi->twopass.kf_zeromotion_pct,
cpi->twopass.fr_content_type);
fclose(f);
if (0) {
FILE *const fmodes = fopen("Modes.stt", "a");
int i;
fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame,
cm->frame_type, cpi->refresh_golden_frame,
cpi->refresh_alt_ref_frame);
for (i = 0; i < MAX_MODES; ++i)
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
fprintf(fmodes, "\n");
fclose(fmodes);
}
}
#endif
static void set_mv_search_params(VP10_COMP *cpi) {
const VP10_COMMON *const cm = &cpi->common;
const unsigned int max_mv_def = VPXMIN(cm->width, cm->height);
// Default based on max resolution.
cpi->mv_step_param = vp10_init_search_range(max_mv_def);
if (cpi->sf.mv.auto_mv_step_size) {
if (frame_is_intra_only(cm)) {
// Initialize max_mv_magnitude for use in the first INTER frame
// after a key/intra-only frame.
cpi->max_mv_magnitude = max_mv_def;
} else {
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
// TODO(zoeliu): Maybe we should leave it the same as base.
if (cm->show_frame || cpi->rc.is_bwd_ref_frame) {
#else
if (cm->show_frame) {
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
// Allow mv_steps to correspond to twice the max mv magnitude found
// in the previous frame, capped by the default max_mv_magnitude based
// on resolution.
cpi->mv_step_param = vp10_init_search_range(
VPXMIN(max_mv_def, 2 * cpi->max_mv_magnitude));
}
cpi->max_mv_magnitude = 0;
}
}
}
static void set_size_independent_vars(VP10_COMP *cpi) {
vp10_set_speed_features_framesize_independent(cpi);
vp10_set_rd_speed_thresholds(cpi);
vp10_set_rd_speed_thresholds_sub8x8(cpi);
cpi->common.interp_filter = cpi->sf.default_interp_filter;
}
static void set_size_dependent_vars(VP10_COMP *cpi, int *q,
int *bottom_index, int *top_index) {
VP10_COMMON *const cm = &cpi->common;
const VP10EncoderConfig *const oxcf = &cpi->oxcf;
// Setup variables that depend on the dimensions of the frame.
vp10_set_speed_features_framesize_dependent(cpi);
// Decide q and q bounds.
*q = vp10_rc_pick_q_and_bounds(cpi, bottom_index, top_index);
if (!frame_is_intra_only(cm)) {
vp10_set_high_precision_mv(cpi, (*q) < HIGH_PRECISION_MV_QTHRESH);
}
// Configure experimental use of segmentation for enhanced coding of
// static regions if indicated.
// Only allowed in the second pass of a two pass encode, as it requires
// lagged coding, and if the relevant speed feature flag is set.
if (oxcf->pass == 2 && cpi->sf.static_segmentation)
configure_static_seg_features(cpi);
#if CONFIG_VP9_POSTPROC
if (oxcf->noise_sensitivity > 0) {
int l = 0;
switch (oxcf->noise_sensitivity) {
case 1:
l = 20;
break;
case 2:
l = 40;
break;
case 3:
l = 60;
break;
case 4:
case 5:
l = 100;
break;
case 6:
l = 150;
break;
}
vp10_denoise(cpi->Source, cpi->Source, l);
}
#endif // CONFIG_VP9_POSTPROC
}
static void init_motion_estimation(VP10_COMP *cpi) {
int y_stride = cpi->scaled_source.y_stride;
if (cpi->sf.mv.search_method == NSTEP) {
vp10_init3smotion_compensation(&cpi->ss_cfg, y_stride);
} else if (cpi->sf.mv.search_method == DIAMOND) {
vp10_init_dsmotion_compensation(&cpi->ss_cfg, y_stride);
}
}
static void set_frame_size(VP10_COMP *cpi) {
int ref_frame;
VP10_COMMON *const cm = &cpi->common;
VP10EncoderConfig *const oxcf = &cpi->oxcf;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
if (oxcf->pass == 2 &&
oxcf->rc_mode == VPX_VBR &&
((oxcf->resize_mode == RESIZE_FIXED && cm->current_video_frame == 0) ||
(oxcf->resize_mode == RESIZE_DYNAMIC && cpi->resize_pending))) {
vp10_calculate_coded_size(
cpi, &oxcf->scaled_frame_width, &oxcf->scaled_frame_height);
// There has been a change in frame size.
vp10_set_size_literal(cpi, oxcf->scaled_frame_width,
oxcf->scaled_frame_height);
}
if (oxcf->pass == 0 &&
oxcf->rc_mode == VPX_CBR &&
oxcf->resize_mode == RESIZE_DYNAMIC) {
if (cpi->resize_pending == 1) {
oxcf->scaled_frame_width =
(cm->width * cpi->resize_scale_num) / cpi->resize_scale_den;
oxcf->scaled_frame_height =
(cm->height * cpi->resize_scale_num) /cpi->resize_scale_den;
} else if (cpi->resize_pending == -1) {
// Go back up to original size.
oxcf->scaled_frame_width = oxcf->width;
oxcf->scaled_frame_height = oxcf->height;
}
if (cpi->resize_pending != 0) {
// There has been a change in frame size.
vp10_set_size_literal(cpi,
oxcf->scaled_frame_width,
oxcf->scaled_frame_height);
// TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed.
set_mv_search_params(cpi);
}
}
if (oxcf->pass == 2) {
vp10_set_target_rate(cpi);
}
alloc_frame_mvs(cm, cm->new_fb_idx);
// Reset the frame pointers to the current frame size.
if (vpx_realloc_frame_buffer(get_frame_new_buffer(cm), cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS, cm->byte_alignment,
NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
alloc_util_frame_buffers(cpi);
init_motion_estimation(cpi);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - LAST_FRAME];
const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
ref_buf->idx = buf_idx;
if (buf_idx != INVALID_IDX) {
YV12_BUFFER_CONFIG *const buf = &cm->buffer_pool->frame_bufs[buf_idx].buf;
ref_buf->buf = buf;
#if CONFIG_VP9_HIGHBITDEPTH
vp10_setup_scale_factors_for_frame(&ref_buf->sf,
buf->y_crop_width, buf->y_crop_height,
cm->width, cm->height,
(buf->flags & YV12_FLAG_HIGHBITDEPTH) ?
1 : 0);
#else
vp10_setup_scale_factors_for_frame(&ref_buf->sf,
buf->y_crop_width, buf->y_crop_height,
cm->width, cm->height);
#endif // CONFIG_VP9_HIGHBITDEPTH
if (vp10_is_scaled(&ref_buf->sf))
vpx_extend_frame_borders(buf);
} else {
ref_buf->buf = NULL;
}
}
set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME);
}
static void reset_use_upsampled_references(VP10_COMP *cpi) {
MV_REFERENCE_FRAME ref_frame;
// reset up-sampled reference buffer structure.
init_upsampled_ref_frame_bufs(cpi);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi,
ref_frame);
int new_uidx = upsample_ref_frame(cpi, ref);
// Update the up-sampled reference index.
cpi->upsampled_ref_idx[get_ref_frame_map_idx(cpi, ref_frame)] =
new_uidx;
cpi->upsampled_ref_bufs[new_uidx].ref_count++;
}
}
static void encode_without_recode_loop(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
int q = 0, bottom_index = 0, top_index = 0; // Dummy variables.
const int use_upsampled_ref = cpi->sf.use_upsampled_references;
vpx_clear_system_state();
set_frame_size(cpi);
// For 1 pass CBR under dynamic resize mode: use faster scaling for source.
// Only for 2x2 scaling for now.
if (cpi->oxcf.pass == 0 &&
cpi->oxcf.rc_mode == VPX_CBR &&
cpi->oxcf.resize_mode == RESIZE_DYNAMIC &&
cpi->un_scaled_source->y_width == (cm->width << 1) &&
cpi->un_scaled_source->y_height == (cm->height << 1)) {
cpi->Source = vp10_scale_if_required_fast(cm,
cpi->un_scaled_source,
&cpi->scaled_source);
if (cpi->unscaled_last_source != NULL)
cpi->Last_Source = vp10_scale_if_required_fast(cm,
cpi->unscaled_last_source,
&cpi->scaled_last_source);
} else {
cpi->Source = vp10_scale_if_required(cm, cpi->un_scaled_source,
&cpi->scaled_source);
if (cpi->unscaled_last_source != NULL)
cpi->Last_Source = vp10_scale_if_required(cm, cpi->unscaled_last_source,
&cpi->scaled_last_source);
}
if (frame_is_intra_only(cm) == 0) {
vp10_scale_references(cpi);
}
set_size_independent_vars(cpi);
set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
// cpi->sf.use_upsampled_references can be different from frame to frame.
// Every time when cpi->sf.use_upsampled_references is changed from 0 to 1.
// The reference frames for this frame have to be up-sampled before encoding.
if (!use_upsampled_ref && cpi->sf.use_upsampled_references)
reset_use_upsampled_references(cpi);
vp10_set_quantizer(cm, q);
vp10_set_variance_partition_thresholds(cpi, q);
setup_frame(cpi);
#if CONFIG_ENTROPY
cm->do_subframe_update = cm->tile_cols == 1 && cm->tile_rows == 1;
vp10_copy(cm->starting_coef_probs, cm->fc->coef_probs);
vp10_copy(cpi->subframe_stats.enc_starting_coef_probs,
cm->fc->coef_probs);
cm->coef_probs_update_idx = 0;
vp10_copy(cpi->subframe_stats.coef_probs_buf[0], cm->fc->coef_probs);
#endif // CONFIG_ENTROPY
suppress_active_map(cpi);
// Variance adaptive and in frame q adjustment experiments are mutually
// exclusive.
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
vp10_vaq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
vp10_setup_in_frame_q_adj(cpi);
} else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
vp10_cyclic_refresh_setup(cpi);
}
apply_active_map(cpi);
// transform / motion compensation build reconstruction frame
vp10_encode_frame(cpi);
// Update some stats from cyclic refresh, and check if we should not update
// golden reference, for 1 pass CBR.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
cm->frame_type != KEY_FRAME &&
(cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR))
vp10_cyclic_refresh_check_golden_update(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
vpx_clear_system_state();
}
static void encode_with_recode_loop(VP10_COMP *cpi,
size_t *size,
uint8_t *dest) {
VP10_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
int bottom_index, top_index;
int loop_count = 0;
int loop_at_this_size = 0;
int loop = 0;
int overshoot_seen = 0;
int undershoot_seen = 0;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
int q = 0, q_low = 0, q_high = 0;
const int use_upsampled_ref = cpi->sf.use_upsampled_references;
set_size_independent_vars(cpi);
// cpi->sf.use_upsampled_references can be different from frame to frame.
// Every time when cpi->sf.use_upsampled_references is changed from 0 to 1.
// The reference frames for this frame have to be up-sampled before encoding.
if (!use_upsampled_ref && cpi->sf.use_upsampled_references)
reset_use_upsampled_references(cpi);
do {
vpx_clear_system_state();
set_frame_size(cpi);
if (loop_count == 0 || cpi->resize_pending != 0) {
set_size_dependent_vars(cpi, &q, &bottom_index, &top_index);
// TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed.
set_mv_search_params(cpi);
// Reset the loop state for new frame size.
overshoot_seen = 0;
undershoot_seen = 0;
// Reconfiguration for change in frame size has concluded.
cpi->resize_pending = 0;
q_low = bottom_index;
q_high = top_index;
loop_at_this_size = 0;
}
// Decide frame size bounds first time through.
if (loop_count == 0) {
vp10_rc_compute_frame_size_bounds(cpi, rc->this_frame_target,
&frame_under_shoot_limit,
&frame_over_shoot_limit);
}
cpi->Source = vp10_scale_if_required(cm, cpi->un_scaled_source,
&cpi->scaled_source);
if (cpi->unscaled_last_source != NULL)
cpi->Last_Source = vp10_scale_if_required(cm, cpi->unscaled_last_source,
&cpi->scaled_last_source);
if (frame_is_intra_only(cm) == 0) {
if (loop_count > 0) {
release_scaled_references(cpi);
}
vp10_scale_references(cpi);
}
vp10_set_quantizer(cm, q);
if (loop_count == 0)
setup_frame(cpi);
#if CONFIG_ENTROPY
// Base q-index may have changed, so we need to assign proper default coef
// probs before every iteration.
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
int i;
vp10_default_coef_probs(cm);
if (cm->frame_type == KEY_FRAME || cm->error_resilient_mode ||
cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL) {
for (i = 0; i < FRAME_CONTEXTS; ++i)
cm->frame_contexts[i] = *cm->fc;
} else if (cm->reset_frame_context == RESET_FRAME_CONTEXT_CURRENT) {
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
}
}
#endif // CONFIG_ENTROPY
#if CONFIG_ENTROPY
cm->do_subframe_update = cm->tile_cols == 1 && cm->tile_rows == 1;
if (loop_count == 0 || frame_is_intra_only(cm) ||
cm->error_resilient_mode) {
vp10_copy(cm->starting_coef_probs, cm->fc->coef_probs);
vp10_copy(cpi->subframe_stats.enc_starting_coef_probs,
cm->fc->coef_probs);
} else {
if (cm->do_subframe_update) {
vp10_copy(cm->fc->coef_probs,
cpi->subframe_stats.enc_starting_coef_probs);
vp10_copy(cm->starting_coef_probs,
cpi->subframe_stats.enc_starting_coef_probs);
vp10_zero(cpi->subframe_stats.coef_counts_buf);
vp10_zero(cpi->subframe_stats.eob_counts_buf);
}
}
cm->coef_probs_update_idx = 0;
vp10_copy(cpi->subframe_stats.coef_probs_buf[0], cm->fc->coef_probs);
#endif // CONFIG_ENTROPY
// Variance adaptive and in frame q adjustment experiments are mutually
// exclusive.
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
vp10_vaq_frame_setup(cpi);
} else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
vp10_setup_in_frame_q_adj(cpi);
}
// transform / motion compensation build reconstruction frame
vp10_encode_frame(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
vpx_clear_system_state();
// Dummy pack of the bitstream using up to date stats to get an
// accurate estimate of output frame size to determine if we need
// to recode.
if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) {
save_coding_context(cpi);
vp10_pack_bitstream(cpi, dest, size);
rc->projected_frame_size = (int)(*size) << 3;
restore_coding_context(cpi);
if (frame_over_shoot_limit == 0)
frame_over_shoot_limit = 1;
}
if (cpi->oxcf.rc_mode == VPX_Q) {
loop = 0;
} else {
if ((cm->frame_type == KEY_FRAME) &&
rc->this_key_frame_forced &&
(rc->projected_frame_size < rc->max_frame_bandwidth)) {
int last_q = q;
int64_t kf_err;
int64_t high_err_target = cpi->ambient_err;
int64_t low_err_target = cpi->ambient_err >> 1;
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
kf_err = vpx_highbd_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
} else {
kf_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
}
#else
kf_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
#endif // CONFIG_VP9_HIGHBITDEPTH
// Prevent possible divide by zero error below for perfect KF
kf_err += !kf_err;
// The key frame is not good enough or we can afford
// to make it better without undue risk of popping.
if ((kf_err > high_err_target &&
rc->projected_frame_size <= frame_over_shoot_limit) ||
(kf_err > low_err_target &&
rc->projected_frame_size <= frame_under_shoot_limit)) {
// Lower q_high
q_high = q > q_low ? q - 1 : q_low;
// Adjust Q
q = (int)((q * high_err_target) / kf_err);
q = VPXMIN(q, (q_high + q_low) >> 1);
} else if (kf_err < low_err_target &&
rc->projected_frame_size >= frame_under_shoot_limit) {
// The key frame is much better than the previous frame
// Raise q_low
q_low = q < q_high ? q + 1 : q_high;
// Adjust Q
q = (int)((q * low_err_target) / kf_err);
q = VPXMIN(q, (q_high + q_low + 1) >> 1);
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = q != last_q;
} else if (recode_loop_test(
cpi, frame_over_shoot_limit, frame_under_shoot_limit,
q, VPXMAX(q_high, top_index), bottom_index)) {
// Is the projected frame size out of range and are we allowed
// to attempt to recode.
int last_q = q;
int retries = 0;
if (cpi->resize_pending == 1) {
// Change in frame size so go back around the recode loop.
cpi->rc.frame_size_selector =
SCALE_STEP1 - cpi->rc.frame_size_selector;
cpi->rc.next_frame_size_selector = cpi->rc.frame_size_selector;
#if CONFIG_INTERNAL_STATS
++cpi->tot_recode_hits;
#endif
++loop_count;
loop = 1;
continue;
}
// Frame size out of permitted range:
// Update correction factor & compute new Q to try...
// Frame is too large
if (rc->projected_frame_size > rc->this_frame_target) {
// Special case if the projected size is > the max allowed.
if (rc->projected_frame_size >= rc->max_frame_bandwidth)
q_high = rc->worst_quality;
// Raise Qlow as to at least the current value
q_low = q < q_high ? q + 1 : q_high;
if (undershoot_seen || loop_at_this_size > 1) {
// Update rate_correction_factor unless
vp10_rc_update_rate_correction_factors(cpi);
q = (q_high + q_low + 1) / 2;
} else {
// Update rate_correction_factor unless
vp10_rc_update_rate_correction_factors(cpi);
q = vp10_rc_regulate_q(cpi, rc->this_frame_target,
bottom_index, VPXMAX(q_high, top_index));
while (q < q_low && retries < 10) {
vp10_rc_update_rate_correction_factors(cpi);
q = vp10_rc_regulate_q(cpi, rc->this_frame_target,
bottom_index, VPXMAX(q_high, top_index));
retries++;
}
}
overshoot_seen = 1;
} else {
// Frame is too small
q_high = q > q_low ? q - 1 : q_low;
if (overshoot_seen || loop_at_this_size > 1) {
vp10_rc_update_rate_correction_factors(cpi);
q = (q_high + q_low) / 2;
} else {
vp10_rc_update_rate_correction_factors(cpi);
q = vp10_rc_regulate_q(cpi, rc->this_frame_target,
bottom_index, top_index);
// Special case reset for qlow for constrained quality.
// This should only trigger where there is very substantial
// undershoot on a frame and the auto cq level is above
// the user passsed in value.
if (cpi->oxcf.rc_mode == VPX_CQ &&
q < q_low) {
q_low = q;
}
while (q > q_high && retries < 10) {
vp10_rc_update_rate_correction_factors(cpi);
q = vp10_rc_regulate_q(cpi, rc->this_frame_target,
bottom_index, top_index);
retries++;
}
}
undershoot_seen = 1;
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = (q != last_q);
} else {
loop = 0;
}
}
// Special case for overlay frame.
if (rc->is_src_frame_alt_ref &&
rc->projected_frame_size < rc->max_frame_bandwidth)
loop = 0;
if (loop) {
++loop_count;
++loop_at_this_size;
#if CONFIG_INTERNAL_STATS
++cpi->tot_recode_hits;
#endif
}
} while (loop);
}
static int get_ref_frame_flags(const VP10_COMP *cpi) {
const int *const map = cpi->common.ref_frame_map;
#if CONFIG_EXT_REFS
const int gld_is_last = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idxes[0]];
const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idxes[0]];
const int last2_is_last =
map[cpi->lst_fb_idxes[1]] == map[cpi->lst_fb_idxes[0]];
const int gld_is_last2 = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idxes[1]];
const int last2_is_alt = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idxes[1]];
const int last3_is_last =
map[cpi->lst_fb_idxes[2]] == map[cpi->lst_fb_idxes[0]];
const int last3_is_last2 =
map[cpi->lst_fb_idxes[2]] == map[cpi->lst_fb_idxes[1]];
const int gld_is_last3 = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idxes[2]];
const int last3_is_alt = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idxes[2]];
const int last4_is_last =
map[cpi->lst_fb_idxes[3]] == map[cpi->lst_fb_idxes[0]];
const int last4_is_last2 =
map[cpi->lst_fb_idxes[3]] == map[cpi->lst_fb_idxes[1]];
const int last4_is_last3 =
map[cpi->lst_fb_idxes[3]] == map[cpi->lst_fb_idxes[2]];
const int last4_is_alt = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idxes[3]];
const int gld_is_last4 = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idxes[3]];
#else // CONFIG_EXT_REFS
const int gld_is_last = map[cpi->gld_fb_idx] == map[cpi->lst_fb_idx];
#if CONFIG_BIDIR_PRED
const int bwd_is_last = map[cpi->bwd_fb_idx] == map[cpi->lst_fb_idx];
#endif // CONFIG_BIDIR_PRED
const int alt_is_last = map[cpi->alt_fb_idx] == map[cpi->lst_fb_idx];
#endif // CONFIG_EXT_REFS
const int gld_is_alt = map[cpi->gld_fb_idx] == map[cpi->alt_fb_idx];
int flags = VP9_REFFRAME_ALL;
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
if (!cpi->rc.is_bwd_ref_frame)
flags &= ~VP9_BWD_FLAG;
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
if (gld_is_alt || gld_is_last)
flags &= ~VP9_GOLD_FLAG;
if (cpi->rc.frames_till_gf_update_due == INT_MAX)
flags &= ~VP9_GOLD_FLAG;
if (alt_is_last)
flags &= ~VP9_ALT_FLAG;
#if CONFIG_EXT_REFS
if (last4_is_alt || last4_is_last || last4_is_last2 || last4_is_last3)
flags &= ~VP9_LAST4_FLAG;
if (last3_is_alt || last3_is_last || last3_is_last2)
flags &= ~VP9_LAST3_FLAG;
if (last2_is_alt || last2_is_last)
flags &= ~VP9_LAST2_FLAG;
if (gld_is_last4 || gld_is_last3 || gld_is_last2)
flags &= ~VP9_GOLD_FLAG;
#else // CONFIG_EXT_REFS
#if CONFIG_BIDIR_PRED
if (bwd_is_last && (flags & VP9_BWD_FLAG))
flags &= ~VP9_BWD_FLAG;
#endif // CONFIG_BIDIR_PRED
#endif // CONFIG_EXT_REFS
return flags;
}
static void set_ext_overrides(VP10_COMP *cpi) {
// Overrides the defaults with the externally supplied values with
// vp10_update_reference() and vp10_update_entropy() calls
// Note: The overrides are valid only for the next frame passed
// to encode_frame_to_data_rate() function
if (cpi->ext_refresh_frame_context_pending) {
cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context;
cpi->ext_refresh_frame_context_pending = 0;
}
if (cpi->ext_refresh_frame_flags_pending) {
cpi->refresh_last_frame = cpi->ext_refresh_last_frame;
cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame;
cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame;
cpi->ext_refresh_frame_flags_pending = 0;
}
}
YV12_BUFFER_CONFIG *vp10_scale_if_required_fast(VP10_COMMON *cm,
YV12_BUFFER_CONFIG *unscaled,
YV12_BUFFER_CONFIG *scaled) {
if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
cm->mi_rows * MI_SIZE != unscaled->y_height) {
// For 2x2 scaling down.
vpx_scale_frame(unscaled, scaled, unscaled->y_buffer, 9, 2, 1,
2, 1, 0);
vpx_extend_frame_borders(scaled);
return scaled;
} else {
return unscaled;
}
}
YV12_BUFFER_CONFIG *vp10_scale_if_required(VP10_COMMON *cm,
YV12_BUFFER_CONFIG *unscaled,
YV12_BUFFER_CONFIG *scaled) {
if (cm->mi_cols * MI_SIZE != unscaled->y_width ||
cm->mi_rows * MI_SIZE != unscaled->y_height) {
#if CONFIG_VP9_HIGHBITDEPTH
scale_and_extend_frame_nonnormative(unscaled, scaled, (int)cm->bit_depth);
#else
scale_and_extend_frame_nonnormative(unscaled, scaled);
#endif // CONFIG_VP9_HIGHBITDEPTH
return scaled;
} else {
return unscaled;
}
}
static void set_arf_sign_bias(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
int arf_sign_bias;
if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_sign_bias = cpi->rc.source_alt_ref_active &&
(!cpi->refresh_alt_ref_frame ||
(gf_group->rf_level[gf_group->index] == GF_ARF_LOW));
} else {
arf_sign_bias =
(cpi->rc.source_alt_ref_active && !cpi->refresh_alt_ref_frame);
}
cm->ref_frame_sign_bias[ALTREF_FRAME] = arf_sign_bias;
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
cm->ref_frame_sign_bias[BWDREF_FRAME] = cm->ref_frame_sign_bias[ALTREF_FRAME];
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
}
static int setup_interp_filter_search_mask(VP10_COMP *cpi) {
INTERP_FILTER ifilter;
int ref_total[MAX_REF_FRAMES] = {0};
MV_REFERENCE_FRAME ref;
int mask = 0;
if (cpi->common.last_frame_type == KEY_FRAME ||
cpi->refresh_alt_ref_frame)
return mask;
for (ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref)
for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter)
ref_total[ref] += cpi->interp_filter_selected[ref][ifilter];
for (ifilter = EIGHTTAP_REGULAR; ifilter < SWITCHABLE_FILTERS; ++ifilter) {
if ((ref_total[LAST_FRAME] &&
cpi->interp_filter_selected[LAST_FRAME][ifilter] == 0) &&
#if CONFIG_EXT_REFS
(ref_total[LAST2_FRAME] == 0 ||
cpi->interp_filter_selected[LAST2_FRAME][ifilter] * 50
< ref_total[LAST2_FRAME]) &&
(ref_total[LAST3_FRAME] == 0 ||
cpi->interp_filter_selected[LAST3_FRAME][ifilter] * 50
< ref_total[LAST3_FRAME]) &&
(ref_total[LAST4_FRAME] == 0 ||
cpi->interp_filter_selected[LAST4_FRAME][ifilter] * 50
< ref_total[LAST4_FRAME]) &&
#endif // CONFIG_EXT_REFS
(ref_total[GOLDEN_FRAME] == 0 ||
cpi->interp_filter_selected[GOLDEN_FRAME][ifilter] * 50
< ref_total[GOLDEN_FRAME]) &&
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
(ref_total[BWDREF_FRAME] == 0 ||
cpi->interp_filter_selected[BWDREF_FRAME][ifilter] * 50
< ref_total[BWDREF_FRAME]) &&
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
(ref_total[ALTREF_FRAME] == 0 ||
cpi->interp_filter_selected[ALTREF_FRAME][ifilter] * 50
< ref_total[ALTREF_FRAME]))
mask |= 1 << ifilter;
}
return mask;
}
#define DUMP_RECON_FRAMES 0
#if DUMP_RECON_FRAMES == 1
// NOTE(zoeliu): For debug - Output the filtered reconstructed video.
static void dump_filtered_recon_frames(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
const YV12_BUFFER_CONFIG *recon_buf = cm->frame_to_show;
int h;
char file_name[256] = "/tmp/enc_filtered_recon.yuv";
FILE *f_recon = NULL;
if (recon_buf == NULL || !cm->show_frame) {
printf("Frame %d is not ready or no show to dump.\n",
cm->current_video_frame);
return;
}
if (cm->current_video_frame == 0) {
if ((f_recon = fopen(file_name, "wb")) == NULL) {
printf("Unable to open file %s to write.\n", file_name);
return;
}
} else {
if ((f_recon = fopen(file_name, "ab")) == NULL) {
printf("Unable to open file %s to append.\n", file_name);
return;
}
}
printf("\nFrame=%5d, encode_update_type[%5d]=%1d, show_existing_frame=%d, "
"y_stride=%4d, uv_stride=%4d, width=%4d, height=%4d\n",
cm->current_video_frame, cpi->twopass.gf_group.index,
cpi->twopass.gf_group.update_type[cpi->twopass.gf_group.index],
cm->show_existing_frame,
recon_buf->y_stride, recon_buf->uv_stride, cm->width, cm->height);
// --- Y ---
for (h = 0; h < cm->height; ++h) {
fwrite(&recon_buf->y_buffer[h*recon_buf->y_stride],
1, cm->width, f_recon);
}
// --- U ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&recon_buf->u_buffer[h*recon_buf->uv_stride],
1, (cm->width >> 1), f_recon);
}
// --- V ---
for (h = 0; h < (cm->height >> 1); ++h) {
fwrite(&recon_buf->v_buffer[h*recon_buf->uv_stride],
1, (cm->width >> 1), f_recon);
}
fclose(f_recon);
}
#endif // DUMP_RECON_FRAMES
static void encode_frame_to_data_rate(VP10_COMP *cpi,
size_t *size,
uint8_t *dest,
unsigned int *frame_flags) {
VP10_COMMON *const cm = &cpi->common;
const VP10EncoderConfig *const oxcf = &cpi->oxcf;
struct segmentation *const seg = &cm->seg;
TX_SIZE t;
set_ext_overrides(cpi);
vpx_clear_system_state();
// Set the arf sign bias for this frame.
set_arf_sign_bias(cpi);
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
if (cm->show_existing_frame) {
// NOTE(zoeliu): In BIDIR_PRED, the existing frame to show is the current
// BWDREF_FRAME in the reference frame buffer.
cm->frame_type = INTER_FRAME;
cm->show_frame = 1;
cpi->frame_flags = *frame_flags;
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_bwd_ref_frame = 0;
cpi->refresh_alt_ref_frame = 0;
cpi->rc.is_bwd_ref_frame = 0;
cpi->rc.is_last_bipred_frame = 0;
cpi->rc.is_bipred_frame = 0;
// Build the bitstream
vp10_pack_bitstream(cpi, dest, size);
// Set up frame to show to get ready for stats collection.
cm->frame_to_show = get_frame_new_buffer(cm);
#if DUMP_RECON_FRAMES == 1
// NOTE(zoeliu): For debug - Output the filtered reconstructed video.
dump_filtered_recon_frames(cpi);
#endif // DUMP_RECON_FRAMES
// Update the LAST_FRAME in the reference frame buffer.
vp10_update_reference_frames(cpi);
cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
cpi->frame_flags &= ~FRAMEFLAGS_BWDREF;
cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
*frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
// Update the frame type
cm->last_frame_type = cm->frame_type;
cm->last_width = cm->width;
cm->last_height = cm->height;
++cm->current_video_frame;
return;
}
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
// Set default state for segment based loop filter update flags.
cm->lf.mode_ref_delta_update = 0;
if (cpi->oxcf.pass == 2 &&
cpi->sf.adaptive_interp_filter_search)
cpi->sf.interp_filter_search_mask =
setup_interp_filter_search_mask(cpi);
// Set various flags etc to special state if it is a key frame.
if (frame_is_intra_only(cm)) {
// Reset the loop filter deltas and segmentation map.
vp10_reset_segment_features(cm);
// If segmentation is enabled force a map update for key frames.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
}
// The alternate reference frame cannot be active for a key frame.
cpi->rc.source_alt_ref_active = 0;
cm->error_resilient_mode = oxcf->error_resilient_mode;
// By default, encoder assumes decoder can use prev_mi.
if (cm->error_resilient_mode) {
cm->reset_frame_context = RESET_FRAME_CONTEXT_NONE;
cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_FORWARD;
} else if (cm->intra_only) {
// Only reset the current context.
cm->reset_frame_context = RESET_FRAME_CONTEXT_CURRENT;
}
}
// For 1 pass CBR, check if we are dropping this frame.
// Never drop on key frame.
if (oxcf->pass == 0 &&
oxcf->rc_mode == VPX_CBR &&
cm->frame_type != KEY_FRAME) {
if (vp10_rc_drop_frame(cpi)) {
vp10_rc_postencode_update_drop_frame(cpi);
++cm->current_video_frame;
return;
}
}
vpx_clear_system_state();
#if CONFIG_INTERNAL_STATS
memset(cpi->mode_chosen_counts, 0,
MAX_MODES * sizeof(*cpi->mode_chosen_counts));
#endif
if (cpi->sf.recode_loop == DISALLOW_RECODE) {
encode_without_recode_loop(cpi);
} else {
encode_with_recode_loop(cpi, size, dest);
}
#if CONFIG_VP9_TEMPORAL_DENOISING
#ifdef OUTPUT_YUV_DENOISED
if (oxcf->noise_sensitivity > 0) {
vp10_write_yuv_frame_420(&cpi->denoiser.running_avg_y[INTRA_FRAME],
yuv_denoised_file);
}
#endif // OUTPUT_YUV_DENOISED
#endif // CONFIG_VP9_TEMPORAL_DENOISING
#ifdef OUTPUT_YUV_SKINMAP
if (cpi->common.current_video_frame > 1) {
vp10_compute_skin_map(cpi, yuv_skinmap_file);
}
#endif // OUTPUT_YUV_SKINMAP
// Special case code to reduce pulsing when key frames are forced at a
// fixed interval. Note the reconstruction error if it is the frame before
// the force key frame
if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) {
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
cpi->ambient_err = vpx_highbd_get_y_sse(cpi->Source,
get_frame_new_buffer(cm));
} else {
cpi->ambient_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
}
#else
cpi->ambient_err = vpx_get_y_sse(cpi->Source, get_frame_new_buffer(cm));
#endif // CONFIG_VP9_HIGHBITDEPTH
}
// If the encoder forced a KEY_FRAME decision
if (cm->frame_type == KEY_FRAME) {
cpi->refresh_last_frame = 1;
}
cm->frame_to_show = get_frame_new_buffer(cm);
cm->frame_to_show->color_space = cm->color_space;
cm->frame_to_show->color_range = cm->color_range;
cm->frame_to_show->render_width = cm->render_width;
cm->frame_to_show->render_height = cm->render_height;
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
// TODO(zoeliu): For non-ref frames, loop filtering may need to be turned
// off.
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
// Pick the loop filter level for the frame.
loopfilter_frame(cpi, cm);
// Build the bitstream
vp10_pack_bitstream(cpi, dest, size);
#if DUMP_RECON_FRAMES == 1
// NOTE(zoeliu): For debug - Output the filtered reconstructed video.
if (cm->show_frame)
dump_filtered_recon_frames(cpi);
#endif // DUMP_RECON_FRAMES
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
if (cpi->rc.is_last_bipred_frame) {
// NOTE: If the current frame is a LAST_BIPRED_FRAME, next it is needed
// to show the BWDREF_FRAME.
cpi->existing_fb_idx_to_show = cpi->bwd_fb_idx;
}
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
if (cm->seg.update_map)
update_reference_segmentation_map(cpi);
if (frame_is_intra_only(cm) == 0) {
release_scaled_references(cpi);
}
vp10_update_reference_frames(cpi);
for (t = TX_4X4; t <= TX_32X32; t++)
vp10_full_to_model_counts(cpi->td.counts->coef[t],
cpi->td.rd_counts.coef_counts[t]);
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
#if CONFIG_ENTROPY
cm->partial_prob_update = 0;
#endif // CONFIG_ENTROPY
vp10_adapt_coef_probs(cm);
vp10_adapt_intra_frame_probs(cm);
}
if (!frame_is_intra_only(cm)) {
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
vp10_adapt_inter_frame_probs(cm);
vp10_adapt_mv_probs(cm, cm->allow_high_precision_mv);
}
}
if (cpi->refresh_golden_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_GOLDEN;
else
cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN;
if (cpi->refresh_alt_ref_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_ALTREF;
else
cpi->frame_flags &= ~FRAMEFLAGS_ALTREF;
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
if (cpi->refresh_bwd_ref_frame == 1)
cpi->frame_flags |= FRAMEFLAGS_BWDREF;
else
cpi->frame_flags &= ~FRAMEFLAGS_BWDREF;
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
cpi->ref_frame_flags = get_ref_frame_flags(cpi);
#if CONFIG_EXT_REFS
cm->last3_frame_type = cm->last2_frame_type;
cm->last2_frame_type = cm->last_frame_type;
#endif // CONFIG_EXT_REFS
cm->last_frame_type = cm->frame_type;
vp10_rc_postencode_update(cpi, *size);
#if 0
output_frame_level_debug_stats(cpi);
#endif
if (cm->frame_type == KEY_FRAME) {
// Tell the caller that the frame was coded as a key frame
*frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY;
} else {
*frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
}
// Clear the one shot update flags for segmentation map and mode/ref loop
// filter deltas.
cm->seg.update_map = 0;
cm->seg.update_data = 0;
cm->lf.mode_ref_delta_update = 0;
// keep track of the last coded dimensions
cm->last_width = cm->width;
cm->last_height = cm->height;
// reset to normal state now that we are done.
if (!cm->show_existing_frame)
cm->last_show_frame = cm->show_frame;
if (cm->show_frame) {
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
// TODO(zoeliu): We may only swamp mi and prev_mi for those frames that are
// being used as reference.
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
vp10_swap_mi_and_prev_mi(cm);
// Don't increment frame counters if this was an altref buffer
// update not a real frame
++cm->current_video_frame;
}
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
// NOTE: Shall not refer to any frame not used as reference.
if (cm->is_reference_frame)
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
cm->prev_frame = cm->cur_frame;
}
static void Pass0Encode(VP10_COMP *cpi, size_t *size, uint8_t *dest,
unsigned int *frame_flags) {
if (cpi->oxcf.rc_mode == VPX_CBR) {
vp10_rc_get_one_pass_cbr_params(cpi);
} else {
vp10_rc_get_one_pass_vbr_params(cpi);
}
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
}
static void Pass2Encode(VP10_COMP *cpi, size_t *size,
uint8_t *dest, unsigned int *frame_flags) {
cpi->allow_encode_breakout = ENCODE_BREAKOUT_ENABLED;
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
if (!cpi->common.show_existing_frame)
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
vp10_twopass_postencode_update(cpi);
}
static void init_ref_frame_bufs(VP10_COMMON *cm) {
int i;
BufferPool *const pool = cm->buffer_pool;
cm->new_fb_idx = INVALID_IDX;
for (i = 0; i < REF_FRAMES; ++i) {
cm->ref_frame_map[i] = INVALID_IDX;
pool->frame_bufs[i].ref_count = 0;
}
}
static void check_initial_width(VP10_COMP *cpi,
#if CONFIG_VP9_HIGHBITDEPTH
int use_highbitdepth,
#endif
int subsampling_x, int subsampling_y) {
VP10_COMMON *const cm = &cpi->common;
if (!cpi->initial_width ||
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth != use_highbitdepth ||
#endif
cm->subsampling_x != subsampling_x ||
cm->subsampling_y != subsampling_y) {
cm->subsampling_x = subsampling_x;
cm->subsampling_y = subsampling_y;
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth = use_highbitdepth;
#endif
alloc_raw_frame_buffers(cpi);
init_ref_frame_bufs(cm);
alloc_util_frame_buffers(cpi);
init_motion_estimation(cpi); // TODO(agrange) This can be removed.
cpi->initial_width = cm->width;
cpi->initial_height = cm->height;
cpi->initial_mbs = cm->MBs;
}
}
#if CONFIG_VP9_TEMPORAL_DENOISING
static void setup_denoiser_buffer(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
if (cpi->oxcf.noise_sensitivity > 0 &&
!cpi->denoiser.frame_buffer_initialized) {
if (vp10_denoiser_alloc(&cpi->denoiser, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_ENC_BORDER_IN_PIXELS))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate denoiser");
}
}
#endif
int vp10_receive_raw_frame(VP10_COMP *cpi, unsigned int frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time) {
VP10_COMMON *const cm = &cpi->common;
struct vpx_usec_timer timer;
int res = 0;
const int subsampling_x = sd->subsampling_x;
const int subsampling_y = sd->subsampling_y;
#if CONFIG_VP9_HIGHBITDEPTH
const int use_highbitdepth = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0;
#endif
#if CONFIG_VP9_HIGHBITDEPTH
check_initial_width(cpi, use_highbitdepth, subsampling_x, subsampling_y);
#else
check_initial_width(cpi, subsampling_x, subsampling_y);
#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_VP9_TEMPORAL_DENOISING
setup_denoiser_buffer(cpi);
#endif
vpx_usec_timer_start(&timer);
if (vp10_lookahead_push(cpi->lookahead, sd, time_stamp, end_time,
#if CONFIG_VP9_HIGHBITDEPTH
use_highbitdepth,
#endif // CONFIG_VP9_HIGHBITDEPTH
frame_flags))
res = -1;
vpx_usec_timer_mark(&timer);
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
if ((cm->profile == PROFILE_0 || cm->profile == PROFILE_2) &&
(subsampling_x != 1 || subsampling_y != 1)) {
vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM,
"Non-4:2:0 color format requires profile 1 or 3");
res = -1;
}
if ((cm->profile == PROFILE_1 || cm->profile == PROFILE_3) &&
(subsampling_x == 1 && subsampling_y == 1)) {
vpx_internal_error(&cm->error, VPX_CODEC_INVALID_PARAM,
"4:2:0 color format requires profile 0 or 2");
res = -1;
}
return res;
}
static int frame_is_reference(const VP10_COMP *cpi) {
const VP10_COMMON *cm = &cpi->common;
return cm->frame_type == KEY_FRAME ||
cpi->refresh_last_frame ||
cpi->refresh_golden_frame ||
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
cpi->refresh_bwd_ref_frame ||
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
cpi->refresh_alt_ref_frame ||
!cm->error_resilient_mode ||
cm->lf.mode_ref_delta_update ||
cm->seg.update_map ||
cm->seg.update_data;
}
static void adjust_frame_rate(VP10_COMP *cpi,
const struct lookahead_entry *source) {
int64_t this_duration;
int step = 0;
if (source->ts_start == cpi->first_time_stamp_ever) {
this_duration = source->ts_end - source->ts_start;
step = 1;
} else {
int64_t last_duration = cpi->last_end_time_stamp_seen
- cpi->last_time_stamp_seen;
this_duration = source->ts_end - cpi->last_end_time_stamp_seen;
// do a step update if the duration changes by 10%
if (last_duration)
step = (int)((this_duration - last_duration) * 10 / last_duration);
}
if (this_duration) {
if (step) {
vp10_new_framerate(cpi, 10000000.0 / this_duration);
} else {
// Average this frame's rate into the last second's average
// frame rate. If we haven't seen 1 second yet, then average
// over the whole interval seen.
const double interval = VPXMIN(
(double)(source->ts_end - cpi->first_time_stamp_ever), 10000000.0);
double avg_duration = 10000000.0 / cpi->framerate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
vp10_new_framerate(cpi, 10000000.0 / avg_duration);
}
}
cpi->last_time_stamp_seen = source->ts_start;
cpi->last_end_time_stamp_seen = source->ts_end;
}
// Returns 0 if this is not an alt ref else the offset of the source frame
// used as the arf midpoint.
static int get_arf_src_index(VP10_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
int arf_src_index = 0;
if (is_altref_enabled(cpi)) {
if (cpi->oxcf.pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
arf_src_index = gf_group->arf_src_offset[gf_group->index];
}
} else if (rc->source_alt_ref_pending) {
arf_src_index = rc->frames_till_gf_update_due;
}
}
return arf_src_index;
}
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
static int get_brf_src_index(VP10_COMP *cpi) {
int brf_src_index = 0;
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
// TODO(zoeliu): We need to add the check on the -bwd_ref command line setup
// flag.
if (gf_group->bidir_pred_enabled[gf_group->index]) {
if (cpi->oxcf.pass == 2) {
if (gf_group->update_type[gf_group->index] == BRF_UPDATE)
brf_src_index = gf_group->brf_src_offset[gf_group->index];
} else {
// TODO(zoeliu): To re-visit the setup for this scenario
brf_src_index = cpi->rc.bipred_group_interval - 1;
}
}
return brf_src_index;
}
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
static void check_src_altref(VP10_COMP *cpi,
const struct lookahead_entry *source) {
RATE_CONTROL *const rc = &cpi->rc;
if (cpi->oxcf.pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
rc->is_src_frame_alt_ref =
(gf_group->update_type[gf_group->index] == OVERLAY_UPDATE);
} else {
rc->is_src_frame_alt_ref = cpi->alt_ref_source &&
(source == cpi->alt_ref_source);
}
if (rc->is_src_frame_alt_ref) {
// Current frame is an ARF overlay frame.
cpi->alt_ref_source = NULL;
// Don't refresh the last buffer for an ARF overlay frame. It will
// become the GF so preserve last as an alternative prediction option.
cpi->refresh_last_frame = 0;
}
}
#if CONFIG_INTERNAL_STATS
extern double vp10_get_blockiness(const unsigned char *img1, int img1_pitch,
const unsigned char *img2, int img2_pitch,
int width, int height);
static void adjust_image_stat(double y, double u, double v, double all,
ImageStat *s) {
s->stat[Y] += y;
s->stat[U] += u;
s->stat[V] += v;
s->stat[ALL] += all;
s->worst = VPXMIN(s->worst, all);
}
static void compute_internal_stats(VP10_COMP *cpi) {
VP10_COMMON *const cm = &cpi->common;
double samples = 0.0;
uint32_t in_bit_depth = 8;
uint32_t bit_depth = 8;
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
in_bit_depth = cpi->oxcf.input_bit_depth;
bit_depth = cm->bit_depth;
}
#endif
if (cm->show_frame) {
const YV12_BUFFER_CONFIG *orig = cpi->Source;
const YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
double y, u, v, frame_all;
cpi->count++;
if (cpi->b_calculate_psnr) {
PSNR_STATS psnr;
double frame_ssim2 = 0.0, weight = 0.0;
vpx_clear_system_state();
// TODO(yaowu): unify these two versions into one.
#if CONFIG_VP9_HIGHBITDEPTH
vpx_calc_highbd_psnr(orig, recon, &psnr, bit_depth, in_bit_depth);
#else
vpx_calc_psnr(orig, recon, &psnr);
#endif // CONFIG_VP9_HIGHBITDEPTH
adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3],
psnr.psnr[0], &cpi->psnr);
cpi->total_sq_error += psnr.sse[0];
cpi->total_samples += psnr.samples[0];
samples = psnr.samples[0];
// TODO(yaowu): unify these two versions into one.
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth)
frame_ssim2 = vpx_highbd_calc_ssim(orig, recon, &weight,
bit_depth, in_bit_depth);
else
frame_ssim2 = vpx_calc_ssim(orig, recon, &weight);
#else
frame_ssim2 = vpx_calc_ssim(orig, recon, &weight);
#endif // CONFIG_VP9_HIGHBITDEPTH
cpi->worst_ssim= VPXMIN(cpi->worst_ssim, frame_ssim2);
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
#if 0
{
FILE *f = fopen("q_used.stt", "a");
fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
cpi->common.current_video_frame, y2, u2, v2,
frame_psnr2, frame_ssim2);
fclose(f);
}
#endif
}
if (cpi->b_calculate_blockiness) {
#if CONFIG_VP9_HIGHBITDEPTH
if (!cm->use_highbitdepth)
#endif
{
const double frame_blockiness = vp10_get_blockiness(
orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride,
orig->y_width, orig->y_height);
cpi->worst_blockiness = VPXMAX(cpi->worst_blockiness, frame_blockiness);
cpi->total_blockiness += frame_blockiness;
}
if (cpi->b_calculate_consistency) {
#if CONFIG_VP9_HIGHBITDEPTH
if (!cm->use_highbitdepth)
#endif
{
const double this_inconsistency = vpx_get_ssim_metrics(
orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride,
orig->y_width, orig->y_height, cpi->ssim_vars, &cpi->metrics, 1);
const double peak = (double)((1 << in_bit_depth) - 1);
const double consistency = vpx_sse_to_psnr(
samples, peak, cpi->total_inconsistency);
if (consistency > 0.0)
cpi->worst_consistency =
VPXMIN(cpi->worst_consistency, consistency);
cpi->total_inconsistency += this_inconsistency;
}
}
}
frame_all = vpx_calc_fastssim(orig, recon, &y, &u, &v,
bit_depth, in_bit_depth);
adjust_image_stat(y, u, v, frame_all, &cpi->fastssim);
frame_all = vpx_psnrhvs(orig, recon, &y, &u, &v, bit_depth, in_bit_depth);
adjust_image_stat(y, u, v, frame_all, &cpi->psnrhvs);
}
}
#endif // CONFIG_INTERNAL_STATS
int vp10_get_compressed_data(VP10_COMP *cpi, unsigned int *frame_flags,
size_t *size, uint8_t *dest,
int64_t *time_stamp, int64_t *time_end, int flush) {
const VP10EncoderConfig *const oxcf = &cpi->oxcf;
VP10_COMMON *const cm = &cpi->common;
BufferPool *const pool = cm->buffer_pool;
RATE_CONTROL *const rc = &cpi->rc;
struct vpx_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
struct lookahead_entry *last_source = NULL;
struct lookahead_entry *source = NULL;
int arf_src_index;
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
int brf_src_index;
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
int i;
vpx_usec_timer_start(&cmptimer);
vp10_set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV);
// Is multi-arf enabled.
// Note that at the moment multi_arf is only configured for 2 pass VBR
if ((oxcf->pass == 2) && (cpi->oxcf.enable_auto_arf > 1))
cpi->multi_arf_allowed = 1;
else
cpi->multi_arf_allowed = 0;
// Normal defaults
cm->reset_frame_context = RESET_FRAME_CONTEXT_NONE;
cm->refresh_frame_context =
(oxcf->error_resilient_mode || oxcf->frame_parallel_decoding_mode) ?
REFRESH_FRAME_CONTEXT_FORWARD : REFRESH_FRAME_CONTEXT_BACKWARD;
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
cpi->refresh_bwd_ref_frame = 0;
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
cpi->refresh_alt_ref_frame = 0;
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
if (oxcf->pass == 2 && cm->show_existing_frame) {
// Manage the source buffer and flush out the source frame that has been
// coded already; Also get prepared for PSNR calculation if needed.
if ((source = vp10_lookahead_pop(cpi->lookahead, flush)) == NULL) {
*size = 0;
return -1;
}
cpi->Source = &source->img;
// TODO(zoeliu): To track down to determine whether it's needed to adjust
// the frame rate.
*time_stamp = source->ts_start;
*time_end = source->ts_end;
// Find a free buffer for the new frame, releasing the reference previously
// held.
if (cm->new_fb_idx != INVALID_IDX) {
--pool->frame_bufs[cm->new_fb_idx].ref_count;
}
cm->new_fb_idx = get_free_fb(cm);
if (cm->new_fb_idx == INVALID_IDX)
return -1;
// Clear down mmx registers
vpx_clear_system_state();
// Start with a 0 size frame.
*size = 0;
Pass2Encode(cpi, size, dest, frame_flags);
if (cpi->b_calculate_psnr)
generate_psnr_packet(cpi);
#if CONFIG_INTERNAL_STATS
compute_internal_stats(cpi);
cpi->bytes += (int)(*size);
#endif // CONFIG_INTERNAL_STATS
// Clear down mmx registers
vpx_clear_system_state();
cm->show_existing_frame = 0;
return 0;
}
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
// Should we encode an arf frame.
arf_src_index = get_arf_src_index(cpi);
if (arf_src_index) {
for (i = 0; i <= arf_src_index; ++i) {
struct lookahead_entry *e = vp10_lookahead_peek(cpi->lookahead, i);
// Avoid creating an alt-ref if there's a forced keyframe pending.
if (e == NULL) {
break;
} else if (e->flags == VPX_EFLAG_FORCE_KF) {
arf_src_index = 0;
flush = 1;
break;
}
}
}
if (arf_src_index) {
assert(arf_src_index <= rc->frames_to_key);
if ((source = vp10_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) {
cpi->alt_ref_source = source;
if (oxcf->arnr_max_frames > 0) {
// Produce the filtered ARF frame.
vp10_temporal_filter(cpi, arf_src_index);
vpx_extend_frame_borders(&cpi->alt_ref_buffer);
force_src_buffer = &cpi->alt_ref_buffer;
}
cm->show_frame = 0;
cm->intra_only = 0;
cpi->refresh_alt_ref_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 0;
rc->is_src_frame_alt_ref = 0;
}
rc->source_alt_ref_pending = 0;
}
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
rc->is_bwd_ref_frame = 0;
brf_src_index = get_brf_src_index(cpi);
// TODO(zoeliu): Need to handle when alt-ref is disabled; Currently bwd-ref
// works only when alt-ref is on.
if (brf_src_index) {
assert(brf_src_index <= rc->frames_to_key);
if ((source = vp10_lookahead_peek(cpi->lookahead, brf_src_index)) != NULL) {
cm->show_frame = 0;
cm->intra_only = 0;
cpi->refresh_bwd_ref_frame = 1;
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
rc->is_bwd_ref_frame = 1;
}
}
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
if (!source) {
// Get last frame source.
if (cm->current_video_frame > 0) {
if ((last_source = vp10_lookahead_peek(cpi->lookahead, -1)) == NULL)
return -1;
}
// Read in the source frame.
source = vp10_lookahead_pop(cpi->lookahead, flush);
if (source != NULL) {
cm->show_frame = 1;
cm->intra_only = 0;
// Check to see if the frame should be encoded as an arf overlay.
check_src_altref(cpi, source);
}
}
if (source) {
cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer
: &source->img;
cpi->unscaled_last_source = last_source != NULL ? &last_source->img : NULL;
*time_stamp = source->ts_start;
*time_end = source->ts_end;
*frame_flags = (source->flags & VPX_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0;
} else {
*size = 0;
if (flush && oxcf->pass == 1 && !cpi->twopass.first_pass_done) {
vp10_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
}
return -1;
}
if (source->ts_start < cpi->first_time_stamp_ever) {
cpi->first_time_stamp_ever = source->ts_start;
cpi->last_end_time_stamp_seen = source->ts_start;
}
// Clear down mmx registers
vpx_clear_system_state();
// adjust frame rates based on timestamps given
if (cm->show_frame)
adjust_frame_rate(cpi, source);
// Find a free buffer for the new frame, releasing the reference previously
// held.
if (cm->new_fb_idx != INVALID_IDX) {
--pool->frame_bufs[cm->new_fb_idx].ref_count;
}
cm->new_fb_idx = get_free_fb(cm);
if (cm->new_fb_idx == INVALID_IDX)
return -1;
cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx];
if (cpi->multi_arf_allowed) {
if (cm->frame_type == KEY_FRAME) {
init_buffer_indices(cpi);
} else if (oxcf->pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
cpi->alt_fb_idx = gf_group->arf_ref_idx[gf_group->index];
}
}
// Start with a 0 size frame.
*size = 0;
cpi->frame_flags = *frame_flags;
if (oxcf->pass == 2) {
vp10_rc_get_second_pass_params(cpi);
} else if (oxcf->pass == 1) {
set_frame_size(cpi);
}
if (cpi->oxcf.pass != 0 || frame_is_intra_only(cm) == 1) {
for (i = 0; i < MAX_REF_FRAMES; ++i)
cpi->scaled_ref_idx[i] = INVALID_IDX;
}
if (oxcf->pass == 1) {
cpi->td.mb.e_mbd.lossless[0] = is_lossless_requested(oxcf);
vp10_first_pass(cpi, source);
} else if (oxcf->pass == 2) {
Pass2Encode(cpi, size, dest, frame_flags);
} else {
// One pass encode
Pass0Encode(cpi, size, dest, frame_flags);
}
if (!cm->error_resilient_mode)
cm->frame_contexts[cm->frame_context_idx] = *cm->fc;
// No frame encoded, or frame was dropped, release scaled references.
if ((*size == 0) && (frame_is_intra_only(cm) == 0)) {
release_scaled_references(cpi);
}
if (*size > 0) {
cpi->droppable = !frame_is_reference(cpi);
}
vpx_usec_timer_mark(&cmptimer);
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && oxcf->pass != 1 && cm->show_frame)
generate_psnr_packet(cpi);
#if CONFIG_INTERNAL_STATS
if (oxcf->pass != 1) {
compute_internal_stats(cpi);
cpi->bytes += (int)(*size);
}
#endif // CONFIG_INTERNAL_STATS
vpx_clear_system_state();
#if !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
if (cpi->rc.is_last_bipred_frame) {
// NOTE(zoeliu): If the current frame is a last bi-predictive frame, it is
// needed next to show the BWDREF_FRAME.
cpi->rc.is_last_bipred_frame = 0;
cm->show_existing_frame = 1;
} else {
cm->show_existing_frame = 0;
}
#endif // !CONFIG_EXT_REFS && CONFIG_BIDIR_PRED
return 0;
}
int vp10_get_preview_raw_frame(VP10_COMP *cpi, YV12_BUFFER_CONFIG *dest,
vp10_ppflags_t *flags) {
VP10_COMMON *cm = &cpi->common;
#if !CONFIG_VP9_POSTPROC
(void)flags;
#endif
if (!cm->show_frame) {
return -1;
} else {
int ret;
#if CONFIG_VP9_POSTPROC
ret = vp10_post_proc_frame(cm, dest, flags);
#else
if (cm->frame_to_show) {
*dest = *cm->frame_to_show;
dest->y_width = cm->width;
dest->y_height = cm->height;
dest->uv_width = cm->width >> cm->subsampling_x;
dest->uv_height = cm->height >> cm->subsampling_y;
ret = 0;
} else {
ret = -1;
}
#endif // !CONFIG_VP9_POSTPROC
vpx_clear_system_state();
return ret;
}
}
int vp10_get_last_show_frame(VP10_COMP *cpi, YV12_BUFFER_CONFIG *frame) {
if (cpi->last_show_frame_buf_idx == INVALID_IDX)
return -1;
*frame =
cpi->common.buffer_pool->frame_bufs[cpi->last_show_frame_buf_idx].buf;
return 0;
}
int vp10_set_internal_size(VP10_COMP *cpi,
VPX_SCALING horiz_mode, VPX_SCALING vert_mode) {
VP10_COMMON *cm = &cpi->common;
int hr = 0, hs = 0, vr = 0, vs = 0;
if (horiz_mode > ONETWO || vert_mode > ONETWO)
return -1;
Scale2Ratio(horiz_mode, &hr, &hs);
Scale2Ratio(vert_mode, &vr, &vs);
// always go to the next whole number
cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs;
cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs;
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
update_frame_size(cpi);
return 0;
}
int vp10_set_size_literal(VP10_COMP *cpi, unsigned int width,
unsigned int height) {
VP10_COMMON *cm = &cpi->common;
#if CONFIG_VP9_HIGHBITDEPTH
check_initial_width(cpi, cm->use_highbitdepth, 1, 1);
#else
check_initial_width(cpi, 1, 1);
#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_VP9_TEMPORAL_DENOISING
setup_denoiser_buffer(cpi);
#endif
if (width) {
cm->width = width;
if (cm->width > cpi->initial_width) {
cm->width = cpi->initial_width;
printf("Warning: Desired width too large, changed to %d\n", cm->width);
}
}
if (height) {
cm->height = height;
if (cm->height > cpi->initial_height) {
cm->height = cpi->initial_height;
printf("Warning: Desired height too large, changed to %d\n", cm->height);
}
}
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
update_frame_size(cpi);
return 0;
}
int vp10_get_quantizer(VP10_COMP *cpi) {
return cpi->common.base_qindex;
}
void vp10_apply_encoding_flags(VP10_COMP *cpi, vpx_enc_frame_flags_t flags) {
if (flags & (VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_REF_ARF)) {
int ref = VP9_REFFRAME_ALL;
if (flags & VP8_EFLAG_NO_REF_LAST) {
ref ^= VP9_LAST_FLAG;
#if CONFIG_EXT_REFS
ref ^= VP9_LAST2_FLAG;
ref ^= VP9_LAST3_FLAG;
ref ^= VP9_LAST4_FLAG;
#endif // CONFIG_EXT_REFS
}
if (flags & VP8_EFLAG_NO_REF_GF)
ref ^= VP9_GOLD_FLAG;
if (flags & VP8_EFLAG_NO_REF_ARF)
ref ^= VP9_ALT_FLAG;
vp10_use_as_reference(cpi, ref);
}
if (flags & (VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_FORCE_GF |
VP8_EFLAG_FORCE_ARF)) {
int upd = VP9_REFFRAME_ALL;
if (flags & VP8_EFLAG_NO_UPD_LAST) {
upd ^= VP9_LAST_FLAG;
#if CONFIG_EXT_REFS
upd ^= VP9_LAST2_FLAG;
upd ^= VP9_LAST3_FLAG;
upd ^= VP9_LAST4_FLAG;
#endif // CONFIG_EXT_REFS
}
if (flags & VP8_EFLAG_NO_UPD_GF)
upd ^= VP9_GOLD_FLAG;
if (flags & VP8_EFLAG_NO_UPD_ARF)
upd ^= VP9_ALT_FLAG;
vp10_update_reference(cpi, upd);
}
if (flags & VP8_EFLAG_NO_UPD_ENTROPY) {
vp10_update_entropy(cpi, 0);
}
}