5232326716
Change-Id: Ifa607dd2bb366ce09fa16dfcad3cc45a2440c185
282 lines
9.9 KiB
C
282 lines
9.9 KiB
C
/*
|
|
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include <limits.h>
|
|
|
|
#include "vpx_mem/vpx_mem.h"
|
|
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/common/vp9_tile_common.h"
|
|
|
|
#include "vp9/encoder/vp9_cost.h"
|
|
#include "vp9/encoder/vp9_segmentation.h"
|
|
|
|
void vp9_enable_segmentation(struct segmentation *seg) {
|
|
seg->enabled = 1;
|
|
seg->update_map = 1;
|
|
seg->update_data = 1;
|
|
}
|
|
|
|
void vp9_disable_segmentation(struct segmentation *seg) {
|
|
seg->enabled = 0;
|
|
seg->update_map = 0;
|
|
seg->update_data = 0;
|
|
}
|
|
|
|
void vp9_set_segment_data(struct segmentation *seg,
|
|
signed char *feature_data,
|
|
unsigned char abs_delta) {
|
|
seg->abs_delta = abs_delta;
|
|
|
|
memcpy(seg->feature_data, feature_data, sizeof(seg->feature_data));
|
|
}
|
|
void vp9_disable_segfeature(struct segmentation *seg, int segment_id,
|
|
SEG_LVL_FEATURES feature_id) {
|
|
seg->feature_mask[segment_id] &= ~(1 << feature_id);
|
|
}
|
|
|
|
void vp9_clear_segdata(struct segmentation *seg, int segment_id,
|
|
SEG_LVL_FEATURES feature_id) {
|
|
seg->feature_data[segment_id][feature_id] = 0;
|
|
}
|
|
|
|
// Based on set of segment counts calculate a probability tree
|
|
static void calc_segtree_probs(int *segcounts, vpx_prob *segment_tree_probs) {
|
|
// Work out probabilities of each segment
|
|
const int c01 = segcounts[0] + segcounts[1];
|
|
const int c23 = segcounts[2] + segcounts[3];
|
|
const int c45 = segcounts[4] + segcounts[5];
|
|
const int c67 = segcounts[6] + segcounts[7];
|
|
|
|
segment_tree_probs[0] = get_binary_prob(c01 + c23, c45 + c67);
|
|
segment_tree_probs[1] = get_binary_prob(c01, c23);
|
|
segment_tree_probs[2] = get_binary_prob(c45, c67);
|
|
segment_tree_probs[3] = get_binary_prob(segcounts[0], segcounts[1]);
|
|
segment_tree_probs[4] = get_binary_prob(segcounts[2], segcounts[3]);
|
|
segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]);
|
|
segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]);
|
|
}
|
|
|
|
// Based on set of segment counts and probabilities calculate a cost estimate
|
|
static int cost_segmap(int *segcounts, vpx_prob *probs) {
|
|
const int c01 = segcounts[0] + segcounts[1];
|
|
const int c23 = segcounts[2] + segcounts[3];
|
|
const int c45 = segcounts[4] + segcounts[5];
|
|
const int c67 = segcounts[6] + segcounts[7];
|
|
const int c0123 = c01 + c23;
|
|
const int c4567 = c45 + c67;
|
|
|
|
// Cost the top node of the tree
|
|
int cost = c0123 * vp9_cost_zero(probs[0]) +
|
|
c4567 * vp9_cost_one(probs[0]);
|
|
|
|
// Cost subsequent levels
|
|
if (c0123 > 0) {
|
|
cost += c01 * vp9_cost_zero(probs[1]) +
|
|
c23 * vp9_cost_one(probs[1]);
|
|
|
|
if (c01 > 0)
|
|
cost += segcounts[0] * vp9_cost_zero(probs[3]) +
|
|
segcounts[1] * vp9_cost_one(probs[3]);
|
|
if (c23 > 0)
|
|
cost += segcounts[2] * vp9_cost_zero(probs[4]) +
|
|
segcounts[3] * vp9_cost_one(probs[4]);
|
|
}
|
|
|
|
if (c4567 > 0) {
|
|
cost += c45 * vp9_cost_zero(probs[2]) +
|
|
c67 * vp9_cost_one(probs[2]);
|
|
|
|
if (c45 > 0)
|
|
cost += segcounts[4] * vp9_cost_zero(probs[5]) +
|
|
segcounts[5] * vp9_cost_one(probs[5]);
|
|
if (c67 > 0)
|
|
cost += segcounts[6] * vp9_cost_zero(probs[6]) +
|
|
segcounts[7] * vp9_cost_one(probs[6]);
|
|
}
|
|
|
|
return cost;
|
|
}
|
|
|
|
static void count_segs(const VP9_COMMON *cm, MACROBLOCKD *xd,
|
|
const TileInfo *tile, MODE_INFO **mi,
|
|
int *no_pred_segcounts,
|
|
int (*temporal_predictor_count)[2],
|
|
int *t_unpred_seg_counts,
|
|
int bw, int bh, int mi_row, int mi_col) {
|
|
int segment_id;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
xd->mi = mi;
|
|
segment_id = xd->mi[0]->segment_id;
|
|
|
|
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
|
|
|
|
// Count the number of hits on each segment with no prediction
|
|
no_pred_segcounts[segment_id]++;
|
|
|
|
// Temporal prediction not allowed on key frames
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
|
|
// Test to see if the segment id matches the predicted value.
|
|
const int pred_segment_id = get_segment_id(cm, cm->last_frame_seg_map,
|
|
bsize, mi_row, mi_col);
|
|
const int pred_flag = pred_segment_id == segment_id;
|
|
const int pred_context = vp9_get_pred_context_seg_id(xd);
|
|
|
|
// Store the prediction status for this mb and update counts
|
|
// as appropriate
|
|
xd->mi[0]->seg_id_predicted = pred_flag;
|
|
temporal_predictor_count[pred_context][pred_flag]++;
|
|
|
|
// Update the "unpredicted" segment count
|
|
if (!pred_flag)
|
|
t_unpred_seg_counts[segment_id]++;
|
|
}
|
|
}
|
|
|
|
static void count_segs_sb(const VP9_COMMON *cm, MACROBLOCKD *xd,
|
|
const TileInfo *tile, MODE_INFO **mi,
|
|
int *no_pred_segcounts,
|
|
int (*temporal_predictor_count)[2],
|
|
int *t_unpred_seg_counts,
|
|
int mi_row, int mi_col,
|
|
BLOCK_SIZE bsize) {
|
|
const int mis = cm->mi_stride;
|
|
int bw, bh;
|
|
const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2;
|
|
|
|
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
|
|
return;
|
|
|
|
bw = num_8x8_blocks_wide_lookup[mi[0]->sb_type];
|
|
bh = num_8x8_blocks_high_lookup[mi[0]->sb_type];
|
|
|
|
if (bw == bs && bh == bs) {
|
|
count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
|
|
t_unpred_seg_counts, bs, bs, mi_row, mi_col);
|
|
} else if (bw == bs && bh < bs) {
|
|
count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
|
|
t_unpred_seg_counts, bs, hbs, mi_row, mi_col);
|
|
count_segs(cm, xd, tile, mi + hbs * mis, no_pred_segcounts,
|
|
temporal_predictor_count, t_unpred_seg_counts, bs, hbs,
|
|
mi_row + hbs, mi_col);
|
|
} else if (bw < bs && bh == bs) {
|
|
count_segs(cm, xd, tile, mi, no_pred_segcounts, temporal_predictor_count,
|
|
t_unpred_seg_counts, hbs, bs, mi_row, mi_col);
|
|
count_segs(cm, xd, tile, mi + hbs,
|
|
no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts,
|
|
hbs, bs, mi_row, mi_col + hbs);
|
|
} else {
|
|
const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
|
|
int n;
|
|
|
|
assert(bw < bs && bh < bs);
|
|
|
|
for (n = 0; n < 4; n++) {
|
|
const int mi_dc = hbs * (n & 1);
|
|
const int mi_dr = hbs * (n >> 1);
|
|
|
|
count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc],
|
|
no_pred_segcounts, temporal_predictor_count,
|
|
t_unpred_seg_counts,
|
|
mi_row + mi_dr, mi_col + mi_dc, subsize);
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp9_choose_segmap_coding_method(VP9_COMMON *cm, MACROBLOCKD *xd) {
|
|
struct segmentation *seg = &cm->seg;
|
|
|
|
int no_pred_cost;
|
|
int t_pred_cost = INT_MAX;
|
|
|
|
int i, tile_col, mi_row, mi_col;
|
|
|
|
int temporal_predictor_count[PREDICTION_PROBS][2] = { { 0 } };
|
|
int no_pred_segcounts[MAX_SEGMENTS] = { 0 };
|
|
int t_unpred_seg_counts[MAX_SEGMENTS] = { 0 };
|
|
|
|
vpx_prob no_pred_tree[SEG_TREE_PROBS];
|
|
vpx_prob t_pred_tree[SEG_TREE_PROBS];
|
|
vpx_prob t_nopred_prob[PREDICTION_PROBS];
|
|
|
|
// Set default state for the segment tree probabilities and the
|
|
// temporal coding probabilities
|
|
memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
|
|
memset(seg->pred_probs, 255, sizeof(seg->pred_probs));
|
|
|
|
// First of all generate stats regarding how well the last segment map
|
|
// predicts this one
|
|
for (tile_col = 0; tile_col < 1 << cm->log2_tile_cols; tile_col++) {
|
|
TileInfo tile;
|
|
MODE_INFO **mi_ptr;
|
|
vp9_tile_init(&tile, cm, 0, tile_col);
|
|
|
|
mi_ptr = cm->mi_grid_visible + tile.mi_col_start;
|
|
for (mi_row = 0; mi_row < cm->mi_rows;
|
|
mi_row += 8, mi_ptr += 8 * cm->mi_stride) {
|
|
MODE_INFO **mi = mi_ptr;
|
|
for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
|
|
mi_col += 8, mi += 8)
|
|
count_segs_sb(cm, xd, &tile, mi, no_pred_segcounts,
|
|
temporal_predictor_count, t_unpred_seg_counts,
|
|
mi_row, mi_col, BLOCK_64X64);
|
|
}
|
|
}
|
|
|
|
// Work out probability tree for coding segments without prediction
|
|
// and the cost.
|
|
calc_segtree_probs(no_pred_segcounts, no_pred_tree);
|
|
no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree);
|
|
|
|
// Key frames cannot use temporal prediction
|
|
if (!frame_is_intra_only(cm)) {
|
|
// Work out probability tree for coding those segments not
|
|
// predicted using the temporal method and the cost.
|
|
calc_segtree_probs(t_unpred_seg_counts, t_pred_tree);
|
|
t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree);
|
|
|
|
// Add in the cost of the signaling for each prediction context.
|
|
for (i = 0; i < PREDICTION_PROBS; i++) {
|
|
const int count0 = temporal_predictor_count[i][0];
|
|
const int count1 = temporal_predictor_count[i][1];
|
|
|
|
t_nopred_prob[i] = get_binary_prob(count0, count1);
|
|
|
|
// Add in the predictor signaling cost
|
|
t_pred_cost += count0 * vp9_cost_zero(t_nopred_prob[i]) +
|
|
count1 * vp9_cost_one(t_nopred_prob[i]);
|
|
}
|
|
}
|
|
|
|
// Now choose which coding method to use.
|
|
if (t_pred_cost < no_pred_cost) {
|
|
seg->temporal_update = 1;
|
|
memcpy(seg->tree_probs, t_pred_tree, sizeof(t_pred_tree));
|
|
memcpy(seg->pred_probs, t_nopred_prob, sizeof(t_nopred_prob));
|
|
} else {
|
|
seg->temporal_update = 0;
|
|
memcpy(seg->tree_probs, no_pred_tree, sizeof(no_pred_tree));
|
|
}
|
|
}
|
|
|
|
void vp9_reset_segment_features(struct segmentation *seg) {
|
|
// Set up default state for MB feature flags
|
|
seg->enabled = 0;
|
|
seg->update_map = 0;
|
|
seg->update_data = 0;
|
|
memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
|
|
vp9_clearall_segfeatures(seg);
|
|
}
|