vpx/vp9/encoder/vp9_pickmode.c

1192 lines
44 KiB
C

/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./vp9_rtcd.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_pickmode.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rd.h"
typedef struct {
uint8_t *data;
int stride;
int in_use;
} PRED_BUFFER;
static int mv_refs_rt(const VP9_COMMON *cm, const MACROBLOCKD *xd,
const TileInfo *const tile,
MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame,
int_mv *mv_ref_list,
int mi_row, int mi_col) {
const int *ref_sign_bias = cm->ref_frame_sign_bias;
int i, refmv_count = 0;
const POSITION *const mv_ref_search = mv_ref_blocks[mi->mbmi.sb_type];
int different_ref_found = 0;
int context_counter = 0;
int const_motion = 0;
// Blank the reference vector list
vpx_memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES);
// The nearest 2 blocks are treated differently
// if the size < 8x8 we get the mv from the bmi substructure,
// and we also need to keep a mode count.
for (i = 0; i < 2; ++i) {
const POSITION *const mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MODE_INFO *const candidate_mi = xd->mi[mv_ref->col + mv_ref->row *
xd->mi_stride].src_mi;
const MB_MODE_INFO *const candidate = &candidate_mi->mbmi;
// Keep counts for entropy encoding.
context_counter += mode_2_counter[candidate->mode];
different_ref_found = 1;
if (candidate->ref_frame[0] == ref_frame)
ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 0, mv_ref->col, -1),
refmv_count, mv_ref_list, Done);
}
}
const_motion = 1;
// Check the rest of the neighbors in much the same way
// as before except we don't need to keep track of sub blocks or
// mode counts.
for (; i < MVREF_NEIGHBOURS && !refmv_count; ++i) {
const POSITION *const mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row *
xd->mi_stride].src_mi->mbmi;
different_ref_found = 1;
if (candidate->ref_frame[0] == ref_frame)
ADD_MV_REF_LIST(candidate->mv[0], refmv_count, mv_ref_list, Done);
}
}
// Since we couldn't find 2 mvs from the same reference frame
// go back through the neighbors and find motion vectors from
// different reference frames.
if (different_ref_found && !refmv_count) {
for (i = 0; i < MVREF_NEIGHBOURS; ++i) {
const POSITION *mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row
* xd->mi_stride].src_mi->mbmi;
// If the candidate is INTRA we don't want to consider its mv.
IF_DIFF_REF_FRAME_ADD_MV(candidate, ref_frame, ref_sign_bias,
refmv_count, mv_ref_list, Done);
}
}
}
Done:
mi->mbmi.mode_context[ref_frame] = counter_to_context[context_counter];
// Clamp vectors
for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i)
clamp_mv_ref(&mv_ref_list[i].as_mv, xd);
return const_motion;
}
static int combined_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv,
int64_t best_rd_sofar) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0].src_mi->mbmi;
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0, 0}};
const int step_param = cpi->sf.mv.fullpel_search_step_param;
const int sadpb = x->sadperbit16;
MV mvp_full;
const int ref = mbmi->ref_frame[0];
const MV ref_mv = mbmi->ref_mvs[ref][0].as_mv;
int dis;
int rate_mode;
const int tmp_col_min = x->mv_col_min;
const int tmp_col_max = x->mv_col_max;
const int tmp_row_min = x->mv_row_min;
const int tmp_row_max = x->mv_row_max;
int rv = 0;
int cost_list[5];
const YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi,
ref);
if (cpi->common.show_frame &&
(x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[LAST_FRAME])
return rv;
if (scaled_ref_frame) {
int i;
// Swap out the reference frame for a version that's been scaled to
// match the resolution of the current frame, allowing the existing
// motion search code to be used without additional modifications.
for (i = 0; i < MAX_MB_PLANE; i++)
backup_yv12[i] = xd->plane[i].pre[0];
vp9_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL);
}
vp9_set_mv_search_range(x, &ref_mv);
assert(x->mv_best_ref_index[ref] <= 2);
if (x->mv_best_ref_index[ref] < 2)
mvp_full = mbmi->ref_mvs[ref][x->mv_best_ref_index[ref]].as_mv;
else
mvp_full = x->pred_mv[ref];
mvp_full.col >>= 3;
mvp_full.row >>= 3;
vp9_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb,
cond_cost_list(cpi, cost_list),
&ref_mv, &tmp_mv->as_mv, INT_MAX, 0);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
// calculate the bit cost on motion vector
mvp_full.row = tmp_mv->as_mv.row * 8;
mvp_full.col = tmp_mv->as_mv.col * 8;
*rate_mv = vp9_mv_bit_cost(&mvp_full, &ref_mv,
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
rate_mode = cpi->inter_mode_cost[mbmi->mode_context[ref]]
[INTER_OFFSET(NEWMV)];
rv = !(RDCOST(x->rdmult, x->rddiv, (*rate_mv + rate_mode), 0) >
best_rd_sofar);
if (rv) {
cpi->find_fractional_mv_step(x, &tmp_mv->as_mv, &ref_mv,
cpi->common.allow_high_precision_mv,
x->errorperbit,
&cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost,
&dis, &x->pred_sse[ref], NULL, 0, 0);
x->pred_mv[ref] = tmp_mv->as_mv;
}
if (scaled_ref_frame) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++)
xd->plane[i].pre[0] = backup_yv12[i];
}
return rv;
}
static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize,
MACROBLOCK *x, MACROBLOCKD *xd,
int *out_rate_sum, int64_t *out_dist_sum,
unsigned int *var_y, unsigned int *sse_y) {
// Note our transform coeffs are 8 times an orthogonal transform.
// Hence quantizer step is also 8 times. To get effective quantizer
// we need to divide by 8 before sending to modeling function.
unsigned int sse;
int rate;
int64_t dist;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const uint32_t dc_quant = pd->dequant[0];
const uint32_t ac_quant = pd->dequant[1];
unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
*var_y = var;
*sse_y = sse;
if (sse < dc_quant * dc_quant >> 6)
x->skip_txfm[0] = 1;
else if (var < ac_quant * ac_quant >> 6)
x->skip_txfm[0] = 2;
else
x->skip_txfm[0] = 0;
if (cpi->common.tx_mode == TX_MODE_SELECT) {
if (sse > (var << 2))
xd->mi[0].src_mi->mbmi.tx_size =
MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
else
xd->mi[0].src_mi->mbmi.tx_size = TX_8X8;
if (cpi->sf.partition_search_type == VAR_BASED_PARTITION &&
xd->mi[0].src_mi->mbmi.tx_size > TX_16X16)
xd->mi[0].src_mi->mbmi.tx_size = TX_16X16;
} else {
xd->mi[0].src_mi->mbmi.tx_size =
MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
}
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
dc_quant >> (xd->bd - 5), &rate, &dist);
} else {
vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
dc_quant >> 3, &rate, &dist);
}
#else
vp9_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bsize],
dc_quant >> 3, &rate, &dist);
#endif // CONFIG_VP9_HIGHBITDEPTH
*out_rate_sum = rate >> 1;
*out_dist_sum = dist << 3;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
ac_quant >> (xd->bd - 5), &rate, &dist);
} else {
vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
ac_quant >> 3, &rate, &dist);
}
#else
vp9_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bsize],
ac_quant >> 3, &rate, &dist);
#endif // CONFIG_VP9_HIGHBITDEPTH
*out_rate_sum += rate;
*out_dist_sum += dist << 4;
if (*out_rate_sum == 0)
x->skip_txfm[0] = 1;
}
static int get_pred_buffer(PRED_BUFFER *p, int len) {
int i;
for (i = 0; i < len; i++) {
if (!p[i].in_use) {
p[i].in_use = 1;
return i;
}
}
return -1;
}
static void free_pred_buffer(PRED_BUFFER *p) {
if (p != NULL)
p->in_use = 0;
}
static void encode_breakout_test(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
MV_REFERENCE_FRAME ref_frame,
PREDICTION_MODE this_mode,
unsigned int var_y, unsigned int sse_y,
struct buf_2d yv12_mb[][MAX_MB_PLANE],
int *rate, int64_t *dist) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0].src_mi->mbmi;
const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]);
unsigned int var = var_y, sse = sse_y;
// Skipping threshold for ac.
unsigned int thresh_ac;
// Skipping threshold for dc.
unsigned int thresh_dc;
if (x->encode_breakout > 0) {
// Set a maximum for threshold to avoid big PSNR loss in low bit rate
// case. Use extreme low threshold for static frames to limit
// skipping.
const unsigned int max_thresh = 36000;
// The encode_breakout input
const unsigned int min_thresh =
MIN(((unsigned int)x->encode_breakout << 4), max_thresh);
#if CONFIG_VP9_HIGHBITDEPTH
const int shift = 2 * xd->bd - 16;
#endif
// Calculate threshold according to dequant value.
thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) / 9;
#if CONFIG_VP9_HIGHBITDEPTH
if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
thresh_ac = ROUND_POWER_OF_TWO(thresh_ac, shift);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
thresh_ac = clamp(thresh_ac, min_thresh, max_thresh);
// Adjust ac threshold according to partition size.
thresh_ac >>=
8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6);
#if CONFIG_VP9_HIGHBITDEPTH
if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) && shift > 0) {
thresh_dc = ROUND_POWER_OF_TWO(thresh_dc, shift);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
} else {
thresh_ac = 0;
thresh_dc = 0;
}
// Y skipping condition checking for ac and dc.
if (var <= thresh_ac && (sse - var) <= thresh_dc) {
unsigned int sse_u, sse_v;
unsigned int var_u, var_v;
// Skip UV prediction unless breakout is zero (lossless) to save
// computation with low impact on the result
if (x->encode_breakout == 0) {
xd->plane[1].pre[0] = yv12_mb[ref_frame][1];
xd->plane[2].pre[0] = yv12_mb[ref_frame][2];
vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize);
}
var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf,
x->plane[1].src.stride,
xd->plane[1].dst.buf,
xd->plane[1].dst.stride, &sse_u);
// U skipping condition checking
if ((var_u * 4 <= thresh_ac) && (sse_u - var_u <= thresh_dc)) {
var_v = cpi->fn_ptr[uv_size].vf(x->plane[2].src.buf,
x->plane[2].src.stride,
xd->plane[2].dst.buf,
xd->plane[2].dst.stride, &sse_v);
// V skipping condition checking
if ((var_v * 4 <= thresh_ac) && (sse_v - var_v <= thresh_dc)) {
x->skip = 1;
// The cost of skip bit needs to be added.
*rate = cpi->inter_mode_cost[mbmi->mode_context[ref_frame]]
[INTER_OFFSET(this_mode)];
// More on this part of rate
// rate += vp9_cost_bit(vp9_get_skip_prob(cm, xd), 1);
// Scaling factor for SSE from spatial domain to frequency
// domain is 16. Adjust distortion accordingly.
// TODO(yunqingwang): In this function, only y-plane dist is
// calculated.
*dist = (sse << 4); // + ((sse_u + sse_v) << 4);
// *disable_skip = 1;
}
}
}
}
struct estimate_block_intra_args {
VP9_COMP *cpi;
MACROBLOCK *x;
PREDICTION_MODE mode;
int rate;
int64_t dist;
};
static void estimate_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct estimate_block_intra_args* const args = arg;
VP9_COMP *const cpi = args->cpi;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[0];
struct macroblockd_plane *const pd = &xd->plane[0];
const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
uint8_t *const src_buf_base = p->src.buf;
uint8_t *const dst_buf_base = pd->dst.buf;
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
int i, j;
int rate;
int64_t dist;
unsigned int var_y, sse_y;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
assert(plane == 0);
(void) plane;
p->src.buf = &src_buf_base[4 * (j * src_stride + i)];
pd->dst.buf = &dst_buf_base[4 * (j * dst_stride + i)];
// Use source buffer as an approximation for the fully reconstructed buffer.
vp9_predict_intra_block(xd, block >> (2 * tx_size),
b_width_log2_lookup[plane_bsize],
tx_size, args->mode,
x->skip_encode ? p->src.buf : pd->dst.buf,
x->skip_encode ? src_stride : dst_stride,
pd->dst.buf, dst_stride,
i, j, 0);
// This procedure assumes zero offset from p->src.buf and pd->dst.buf.
model_rd_for_sb_y(cpi, bsize_tx, x, xd, &rate, &dist, &var_y, &sse_y);
p->src.buf = src_buf_base;
pd->dst.buf = dst_buf_base;
args->rate += rate;
args->dist += dist;
}
static const THR_MODES mode_idx[MAX_REF_FRAMES - 1][4] = {
{THR_DC, THR_H_PRED, THR_V_PRED, THR_TM},
{THR_NEARESTMV, THR_NEARMV, THR_ZEROMV, THR_NEWMV},
{THR_NEARESTG, THR_NEARG, THR_ZEROG, THR_NEWG},
};
static const PREDICTION_MODE intra_mode_list[] = {
DC_PRED, V_PRED, H_PRED, TM_PRED
};
void vp9_pick_intra_mode(VP9_COMP *cpi, MACROBLOCK *x, RD_COST *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0].src_mi->mbmi;
RD_COST this_rdc, best_rdc;
PREDICTION_MODE this_mode;
struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 };
const TX_SIZE intra_tx_size =
MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
MODE_INFO *const mic = xd->mi[0].src_mi;
int *bmode_costs;
const MODE_INFO *above_mi = xd->mi[-xd->mi_stride].src_mi;
const MODE_INFO *left_mi = xd->left_available ? xd->mi[-1].src_mi : NULL;
const PREDICTION_MODE A = vp9_above_block_mode(mic, above_mi, 0);
const PREDICTION_MODE L = vp9_left_block_mode(mic, left_mi, 0);
bmode_costs = cpi->y_mode_costs[A][L];
(void) ctx;
vp9_rd_cost_reset(&best_rdc);
vp9_rd_cost_reset(&this_rdc);
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->mv[0].as_int = INVALID_MV;
mbmi->uv_mode = DC_PRED;
vpx_memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
// Change the limit of this loop to add other intra prediction
// mode tests.
for (this_mode = DC_PRED; this_mode <= H_PRED; ++this_mode) {
args.mode = this_mode;
args.rate = 0;
args.dist = 0;
mbmi->tx_size = intra_tx_size;
vp9_foreach_transformed_block_in_plane(xd, bsize, 0,
estimate_block_intra, &args);
this_rdc.rate = args.rate;
this_rdc.dist = args.dist;
this_rdc.rate += bmode_costs[this_mode];
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost < best_rdc.rdcost) {
best_rdc = this_rdc;
mbmi->mode = this_mode;
}
}
*rd_cost = best_rdc;
}
// TODO(jingning) placeholder for inter-frame non-RD mode decision.
// this needs various further optimizations. to be continued..
void vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
TileDataEnc *tile_data,
int mi_row, int mi_col, RD_COST *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0].src_mi->mbmi;
struct macroblockd_plane *const pd = &xd->plane[0];
PREDICTION_MODE best_mode = ZEROMV;
MV_REFERENCE_FRAME ref_frame, best_ref_frame = LAST_FRAME;
TX_SIZE best_tx_size = TX_SIZES;
INTERP_FILTER best_pred_filter = EIGHTTAP;
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
struct buf_2d yv12_mb[4][MAX_MB_PLANE];
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
RD_COST this_rdc, best_rdc;
uint8_t skip_txfm = 0, best_mode_skip_txfm = 0;
// var_y and sse_y are saved to be used in skipping checking
unsigned int var_y = UINT_MAX;
unsigned int sse_y = UINT_MAX;
// Reduce the intra cost penalty for small blocks (<=16x16).
const int reduction_fac =
(cpi->sf.partition_search_type == VAR_BASED_PARTITION &&
bsize <= BLOCK_16X16) ? 2 : 0;
const int intra_cost_penalty = vp9_get_intra_cost_penalty(
cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth) >> reduction_fac;
const int64_t inter_mode_thresh = RDCOST(x->rdmult, x->rddiv,
intra_cost_penalty, 0);
const int *const rd_threshes = cpi->rd.threshes[mbmi->segment_id][bsize];
const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize];
INTERP_FILTER filter_ref;
const int bsl = mi_width_log2_lookup[bsize];
const int pred_filter_search = cm->interp_filter == SWITCHABLE ?
(((mi_row + mi_col) >> bsl) +
get_chessboard_index(cm->current_video_frame)) & 0x1 : 0;
int const_motion[MAX_REF_FRAMES] = { 0 };
const int bh = num_4x4_blocks_high_lookup[bsize] << 2;
const int bw = num_4x4_blocks_wide_lookup[bsize] << 2;
// For speed 6, the result of interp filter is reused later in actual encoding
// process.
// tmp[3] points to dst buffer, and the other 3 point to allocated buffers.
PRED_BUFFER tmp[4];
DECLARE_ALIGNED_ARRAY(16, uint8_t, pred_buf, 3 * 64 * 64);
#if CONFIG_VP9_HIGHBITDEPTH
DECLARE_ALIGNED_ARRAY(16, uint16_t, pred_buf_16, 3 * 64 * 64);
#endif
struct buf_2d orig_dst = pd->dst;
PRED_BUFFER *best_pred = NULL;
PRED_BUFFER *this_mode_pred = NULL;
const int pixels_in_block = bh * bw;
int reuse_inter_pred = cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready;
int ref_frame_skip_mask = 0;
if (reuse_inter_pred) {
int i;
for (i = 0; i < 3; i++) {
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth)
tmp[i].data = CONVERT_TO_BYTEPTR(&pred_buf_16[pixels_in_block * i]);
else
tmp[i].data = &pred_buf[pixels_in_block * i];
#else
tmp[i].data = &pred_buf[pixels_in_block * i];
#endif // CONFIG_VP9_HIGHBITDEPTH
tmp[i].stride = bw;
tmp[i].in_use = 0;
}
tmp[3].data = pd->dst.buf;
tmp[3].stride = pd->dst.stride;
tmp[3].in_use = 0;
}
x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
x->skip = 0;
if (xd->up_available)
filter_ref = xd->mi[-xd->mi_stride].src_mi->mbmi.interp_filter;
else if (xd->left_available)
filter_ref = xd->mi[-1].src_mi->mbmi.interp_filter;
else
filter_ref = cm->interp_filter;
// initialize mode decisions
vp9_rd_cost_reset(&best_rdc);
vp9_rd_cost_reset(rd_cost);
mbmi->sb_type = bsize;
mbmi->ref_frame[0] = NONE;
mbmi->ref_frame[1] = NONE;
mbmi->tx_size = MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cm->tx_mode]);
mbmi->interp_filter = cm->interp_filter == SWITCHABLE ?
EIGHTTAP : cm->interp_filter;
for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
x->pred_mv_sad[ref_frame] = INT_MAX;
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZEROMV][ref_frame].as_int = 0;
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
int_mv *const candidates = mbmi->ref_mvs[ref_frame];
const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col,
sf, sf);
if (cm->use_prev_frame_mvs)
vp9_find_mv_refs(cm, xd, tile_info, xd->mi[0].src_mi, ref_frame,
candidates, mi_row, mi_col);
else
const_motion[ref_frame] = mv_refs_rt(cm, xd, tile_info,
xd->mi[0].src_mi,
ref_frame, candidates,
mi_row, mi_col);
vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
&frame_mv[NEARESTMV][ref_frame],
&frame_mv[NEARMV][ref_frame]);
if (!vp9_is_scaled(sf) && bsize >= BLOCK_8X8)
vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride,
ref_frame, bsize);
} else {
ref_frame_skip_mask |= (1 << ref_frame);
}
}
for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
PREDICTION_MODE this_mode;
int i = (ref_frame == LAST_FRAME) ? GOLDEN_FRAME : LAST_FRAME;
if (!(cpi->ref_frame_flags & flag_list[ref_frame]))
continue;
if (cpi->ref_frame_flags & flag_list[i])
if (x->pred_mv_sad[ref_frame] > (x->pred_mv_sad[i] << 1))
ref_frame_skip_mask |= (1 << ref_frame);
if (ref_frame_skip_mask & (1 << ref_frame))
continue;
// Select prediction reference frames.
xd->plane[0].pre[0] = yv12_mb[ref_frame][0];
clamp_mv2(&frame_mv[NEARESTMV][ref_frame].as_mv, xd);
clamp_mv2(&frame_mv[NEARMV][ref_frame].as_mv, xd);
mbmi->ref_frame[0] = ref_frame;
set_ref_ptrs(cm, xd, ref_frame, NONE);
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
int rate_mv = 0;
int mode_rd_thresh;
int mode_index = mode_idx[ref_frame][INTER_OFFSET(this_mode)];
if (const_motion[ref_frame] && this_mode == NEARMV)
continue;
if (!(cpi->sf.inter_mode_mask[bsize] & (1 << this_mode)))
continue;
mode_rd_thresh = best_mode_skip_txfm ? rd_threshes[mode_index] << 1 :
rd_threshes[mode_index];
if (rd_less_than_thresh(best_rdc.rdcost, mode_rd_thresh,
rd_thresh_freq_fact[mode_index]))
continue;
if (this_mode == NEWMV) {
if (ref_frame > LAST_FRAME)
continue;
if (cpi->sf.partition_search_type != VAR_BASED_PARTITION &&
best_rdc.rdcost < (int64_t)(1 << num_pels_log2_lookup[bsize]))
continue;
if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
&frame_mv[NEWMV][ref_frame],
&rate_mv, best_rdc.rdcost))
continue;
}
if (this_mode != NEARESTMV &&
frame_mv[this_mode][ref_frame].as_int ==
frame_mv[NEARESTMV][ref_frame].as_int)
continue;
mbmi->mode = this_mode;
mbmi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;
// Search for the best prediction filter type, when the resulting
// motion vector is at sub-pixel accuracy level for luma component, i.e.,
// the last three bits are all zeros.
if (reuse_inter_pred) {
if (!this_mode_pred) {
this_mode_pred = &tmp[3];
} else {
this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
pd->dst.buf = this_mode_pred->data;
pd->dst.stride = bw;
}
}
if ((this_mode == NEWMV || filter_ref == SWITCHABLE) &&
pred_filter_search &&
((mbmi->mv[0].as_mv.row & 0x07) != 0 ||
(mbmi->mv[0].as_mv.col & 0x07) != 0)) {
int pf_rate[3];
int64_t pf_dist[3];
unsigned int pf_var[3];
unsigned int pf_sse[3];
TX_SIZE pf_tx_size[3];
int64_t best_cost = INT64_MAX;
INTERP_FILTER best_filter = SWITCHABLE, filter;
PRED_BUFFER *current_pred = this_mode_pred;
for (filter = EIGHTTAP; filter <= EIGHTTAP_SHARP; ++filter) {
int64_t cost;
mbmi->interp_filter = filter;
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rate[filter],
&pf_dist[filter], &pf_var[filter], &pf_sse[filter]);
cost = RDCOST(x->rdmult, x->rddiv,
vp9_get_switchable_rate(cpi, xd) + pf_rate[filter],
pf_dist[filter]);
pf_tx_size[filter] = mbmi->tx_size;
if (cost < best_cost) {
best_filter = filter;
best_cost = cost;
skip_txfm = x->skip_txfm[0];
if (reuse_inter_pred) {
if (this_mode_pred != current_pred) {
free_pred_buffer(this_mode_pred);
this_mode_pred = current_pred;
}
if (filter < EIGHTTAP_SHARP) {
current_pred = &tmp[get_pred_buffer(tmp, 3)];
pd->dst.buf = current_pred->data;
pd->dst.stride = bw;
}
}
}
}
if (reuse_inter_pred && this_mode_pred != current_pred)
free_pred_buffer(current_pred);
mbmi->interp_filter = best_filter;
mbmi->tx_size = pf_tx_size[mbmi->interp_filter];
this_rdc.rate = pf_rate[mbmi->interp_filter];
this_rdc.dist = pf_dist[mbmi->interp_filter];
var_y = pf_var[mbmi->interp_filter];
sse_y = pf_sse[mbmi->interp_filter];
x->skip_txfm[0] = skip_txfm;
} else {
mbmi->interp_filter = (filter_ref == SWITCHABLE) ? EIGHTTAP: filter_ref;
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
&var_y, &sse_y);
}
this_rdc.rate += rate_mv;
this_rdc.rate += cpi->inter_mode_cost[mbmi->mode_context[ref_frame]]
[INTER_OFFSET(this_mode)];
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
this_rdc.rate, this_rdc.dist);
// Skipping checking: test to see if this block can be reconstructed by
// prediction only.
if (cpi->allow_encode_breakout) {
encode_breakout_test(cpi, x, bsize, mi_row, mi_col, ref_frame,
this_mode, var_y, sse_y, yv12_mb,
&this_rdc.rate, &this_rdc.dist);
if (x->skip) {
this_rdc.rate += rate_mv;
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
this_rdc.rate, this_rdc.dist);
}
}
#if CONFIG_VP9_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0)
vp9_denoiser_update_frame_stats(mbmi, sse_y, this_mode, ctx);
#else
(void)ctx;
#endif
if (this_rdc.rdcost < best_rdc.rdcost || x->skip) {
best_rdc = this_rdc;
best_mode = this_mode;
best_pred_filter = mbmi->interp_filter;
best_tx_size = mbmi->tx_size;
best_ref_frame = ref_frame;
best_mode_skip_txfm = x->skip_txfm[0];
if (reuse_inter_pred) {
free_pred_buffer(best_pred);
best_pred = this_mode_pred;
}
} else {
if (reuse_inter_pred)
free_pred_buffer(this_mode_pred);
}
if (x->skip)
break;
}
// Check that a prediction mode has been selected.
assert(best_rdc.rdcost < INT64_MAX);
if (x->skip)
break;
}
mbmi->mode = best_mode;
mbmi->interp_filter = best_pred_filter;
mbmi->tx_size = best_tx_size;
mbmi->ref_frame[0] = best_ref_frame;
mbmi->mv[0].as_int = frame_mv[best_mode][best_ref_frame].as_int;
xd->mi[0].src_mi->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int;
x->skip_txfm[0] = best_mode_skip_txfm;
// Perform intra prediction search, if the best SAD is above a certain
// threshold.
if (best_rdc.rdcost == INT64_MAX ||
(!x->skip && best_rdc.rdcost > inter_mode_thresh &&
bsize <= cpi->sf.max_intra_bsize)) {
struct estimate_block_intra_args args = { cpi, x, DC_PRED, 0, 0 };
const TX_SIZE intra_tx_size =
MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
int i;
TX_SIZE best_intra_tx_size = TX_SIZES;
if (reuse_inter_pred && best_pred != NULL) {
if (best_pred->data == orig_dst.buf) {
this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth)
vp9_highbd_convolve_copy(best_pred->data, best_pred->stride,
this_mode_pred->data, this_mode_pred->stride,
NULL, 0, NULL, 0, bw, bh, xd->bd);
else
vp9_convolve_copy(best_pred->data, best_pred->stride,
this_mode_pred->data, this_mode_pred->stride,
NULL, 0, NULL, 0, bw, bh);
#else
vp9_convolve_copy(best_pred->data, best_pred->stride,
this_mode_pred->data, this_mode_pred->stride,
NULL, 0, NULL, 0, bw, bh);
#endif // CONFIG_VP9_HIGHBITDEPTH
best_pred = this_mode_pred;
}
}
pd->dst = orig_dst;
for (i = 0; i < 4; ++i) {
const PREDICTION_MODE this_mode = intra_mode_list[i];
if (!((1 << this_mode) & cpi->sf.intra_y_mode_mask[intra_tx_size]))
continue;
args.mode = this_mode;
args.rate = 0;
args.dist = 0;
mbmi->tx_size = intra_tx_size;
vp9_foreach_transformed_block_in_plane(xd, bsize, 0,
estimate_block_intra, &args);
this_rdc.rate = args.rate;
this_rdc.dist = args.dist;
this_rdc.rate += cpi->mbmode_cost[this_mode];
this_rdc.rate += intra_cost_penalty;
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost < best_rdc.rdcost) {
best_rdc = this_rdc;
mbmi->mode = this_mode;
best_intra_tx_size = mbmi->tx_size;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->uv_mode = this_mode;
mbmi->mv[0].as_int = INVALID_MV;
}
}
// Reset mb_mode_info to the best inter mode.
if (mbmi->ref_frame[0] != INTRA_FRAME) {
x->skip_txfm[0] = best_mode_skip_txfm;
mbmi->tx_size = best_tx_size;
} else {
mbmi->tx_size = best_intra_tx_size;
}
}
pd->dst = orig_dst;
if (reuse_inter_pred && best_pred != NULL) {
if (best_pred->data != orig_dst.buf && is_inter_mode(mbmi->mode)) {
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth)
vp9_highbd_convolve_copy(best_pred->data, best_pred->stride,
pd->dst.buf, pd->dst.stride, NULL, 0,
NULL, 0, bw, bh, xd->bd);
else
vp9_convolve_copy(best_pred->data, best_pred->stride,
pd->dst.buf, pd->dst.stride, NULL, 0,
NULL, 0, bw, bh);
#else
vp9_convolve_copy(best_pred->data, best_pred->stride,
pd->dst.buf, pd->dst.stride, NULL, 0,
NULL, 0, bw, bh);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
if (cpi->sf.adaptive_rd_thresh) {
THR_MODES best_mode_idx = is_inter_block(mbmi) ?
mode_idx[best_ref_frame][INTER_OFFSET(mbmi->mode)] :
mode_idx[INTRA_FRAME][mbmi->mode];
PREDICTION_MODE this_mode;
for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
THR_MODES thr_mode_idx = mode_idx[ref_frame][INTER_OFFSET(this_mode)];
int *freq_fact = &tile_data->thresh_freq_fact[bsize][thr_mode_idx];
if (thr_mode_idx == best_mode_idx)
*freq_fact -= (*freq_fact >> 4);
else
*freq_fact = MIN(*freq_fact + RD_THRESH_INC,
cpi->sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
}
}
}
*rd_cost = best_rdc;
}
void vp9_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
TileDataEnc *tile_data,
int mi_row, int mi_col, RD_COST *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0].src_mi->mbmi;
const struct segmentation *const seg = &cm->seg;
MV_REFERENCE_FRAME ref_frame, second_ref_frame = NONE;
MV_REFERENCE_FRAME best_ref_frame = NONE;
unsigned char segment_id = mbmi->segment_id;
struct buf_2d yv12_mb[4][MAX_MB_PLANE];
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
VP9_ALT_FLAG };
int64_t best_rd = INT64_MAX;
b_mode_info bsi[MAX_REF_FRAMES][4];
int ref_frame_skip_mask = 0;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
x->skip_encode = sf->skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
ctx->pred_pixel_ready = 0;
for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ref_frame++) {
int_mv dummy_mv[2];
x->pred_mv_sad[ref_frame] = INT_MAX;
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
int_mv *const candidates = mbmi->ref_mvs[ref_frame];
const struct scale_factors *const sf =
&cm->frame_refs[ref_frame - 1].sf;
vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col,
sf, sf);
vp9_find_mv_refs(cm, xd, tile_info, xd->mi[0].src_mi, ref_frame,
candidates, mi_row, mi_col);
vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
&dummy_mv[0], &dummy_mv[1]);
} else {
ref_frame_skip_mask |= (1 << ref_frame);
}
}
mbmi->sb_type = bsize;
mbmi->tx_size = TX_4X4;
mbmi->uv_mode = DC_PRED;
mbmi->ref_frame[0] = LAST_FRAME;
mbmi->ref_frame[1] = NONE;
mbmi->interp_filter = cm->interp_filter == SWITCHABLE ? EIGHTTAP
: cm->interp_filter;
for (ref_frame = LAST_FRAME; ref_frame <= GOLDEN_FRAME; ++ref_frame) {
int64_t this_rd = 0;
int plane;
if (ref_frame_skip_mask & (1 << ref_frame))
continue;
// TODO(jingning, agrange): Scaling reference frame not supported for
// sub8x8 blocks. Is this supported now?
if (ref_frame > INTRA_FRAME &&
vp9_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
continue;
// If the segment reference frame feature is enabled....
// then do nothing if the current ref frame is not allowed..
if (vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
vp9_get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame)
continue;
mbmi->ref_frame[0] = ref_frame;
x->skip = 0;
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
// Select prediction reference frames.
for (plane = 0; plane < MAX_MB_PLANE; plane++)
xd->plane[plane].pre[0] = yv12_mb[ref_frame][plane];
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
int_mv b_mv[MB_MODE_COUNT];
int64_t b_best_rd = INT64_MAX;
const int i = idy * 2 + idx;
PREDICTION_MODE this_mode;
int b_rate = 0;
int64_t b_dist = 0;
RD_COST this_rdc;
unsigned int var_y, sse_y;
struct macroblock_plane *p = &x->plane[0];
struct macroblockd_plane *pd = &xd->plane[0];
const struct buf_2d orig_src = p->src;
const struct buf_2d orig_dst = pd->dst;
struct buf_2d orig_pre[2];
vpx_memcpy(orig_pre, xd->plane[0].pre, sizeof(orig_pre));
// set buffer pointers for sub8x8 motion search.
p->src.buf =
&p->src.buf[vp9_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
pd->dst.buf =
&pd->dst.buf[vp9_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)];
pd->pre[0].buf =
&pd->pre[0].buf[vp9_raster_block_offset(BLOCK_8X8,
i, pd->pre[0].stride)];
b_mv[ZEROMV].as_int = 0;
b_mv[NEWMV].as_int = INVALID_MV;
vp9_append_sub8x8_mvs_for_idx(cm, xd, tile_info, i, 0, mi_row, mi_col,
&b_mv[NEARESTMV],
&b_mv[NEARMV]);
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
xd->mi[0].bmi[i].as_mv[0].as_int = b_mv[this_mode].as_int;
if (this_mode == NEWMV) {
const int step_param = cpi->sf.mv.fullpel_search_step_param;
MV mvp_full;
MV tmp_mv;
int cost_list[5];
const int tmp_col_min = x->mv_col_min;
const int tmp_col_max = x->mv_col_max;
const int tmp_row_min = x->mv_row_min;
const int tmp_row_max = x->mv_row_max;
int dummy_dist;
if (i == 0) {
mvp_full.row = b_mv[NEARESTMV].as_mv.row >> 3;
mvp_full.col = b_mv[NEARESTMV].as_mv.col >> 3;
} else {
mvp_full.row = xd->mi[0].bmi[0].as_mv[0].as_mv.row >> 3;
mvp_full.col = xd->mi[0].bmi[0].as_mv[0].as_mv.col >> 3;
}
vp9_set_mv_search_range(x, &mbmi->ref_mvs[0]->as_mv);
vp9_full_pixel_search(
cpi, x, bsize, &mvp_full, step_param, x->sadperbit4,
cond_cost_list(cpi, cost_list),
&mbmi->ref_mvs[ref_frame][0].as_mv, &tmp_mv,
INT_MAX, 0);
x->mv_col_min = tmp_col_min;
x->mv_col_max = tmp_col_max;
x->mv_row_min = tmp_row_min;
x->mv_row_max = tmp_row_max;
// calculate the bit cost on motion vector
mvp_full.row = tmp_mv.row * 8;
mvp_full.col = tmp_mv.col * 8;
b_rate += vp9_mv_bit_cost(&mvp_full,
&mbmi->ref_mvs[ref_frame][0].as_mv,
x->nmvjointcost, x->mvcost,
MV_COST_WEIGHT);
b_rate += cpi->inter_mode_cost[mbmi->mode_context[ref_frame]]
[INTER_OFFSET(NEWMV)];
if (RDCOST(x->rdmult, x->rddiv, b_rate, 0) > b_best_rd)
continue;
cpi->find_fractional_mv_step(x, &tmp_mv,
&mbmi->ref_mvs[ref_frame][0].as_mv,
cpi->common.allow_high_precision_mv,
x->errorperbit,
&cpi->fn_ptr[bsize],
cpi->sf.mv.subpel_force_stop,
cpi->sf.mv.subpel_iters_per_step,
cond_cost_list(cpi, cost_list),
x->nmvjointcost, x->mvcost,
&dummy_dist,
&x->pred_sse[ref_frame], NULL, 0, 0);
xd->mi[0].bmi[i].as_mv[0].as_mv = tmp_mv;
}
vp9_build_inter_predictor(pd->pre[0].buf, pd->pre[0].stride,
pd->dst.buf, pd->dst.stride,
&xd->mi[0].bmi[i].as_mv[0].as_mv,
&xd->block_refs[0]->sf,
4 * num_4x4_blocks_wide,
4 * num_4x4_blocks_high, 0,
vp9_get_interp_kernel(mbmi->interp_filter),
MV_PRECISION_Q3,
mi_col * MI_SIZE + 4 * (i & 0x01),
mi_row * MI_SIZE + 4 * (i >> 1));
model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc.rate, &this_rdc.dist,
&var_y, &sse_y);
this_rdc.rate += b_rate;
this_rdc.dist += b_dist;
this_rdc.rdcost = RDCOST(x->rdmult, x->rddiv,
this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost < b_best_rd) {
b_best_rd = this_rdc.rdcost;
bsi[ref_frame][i].as_mode = this_mode;
bsi[ref_frame][i].as_mv[0].as_mv = xd->mi[0].bmi[i].as_mv[0].as_mv;
}
} // mode search
// restore source and prediction buffer pointers.
p->src = orig_src;
pd->pre[0] = orig_pre[0];
pd->dst = orig_dst;
this_rd += b_best_rd;
xd->mi[0].bmi[i] = bsi[ref_frame][i];
if (num_4x4_blocks_wide > 1)
xd->mi[0].bmi[i + 1] = xd->mi[0].bmi[i];
if (num_4x4_blocks_high > 1)
xd->mi[0].bmi[i + 2] = xd->mi[0].bmi[i];
}
} // loop through sub8x8 blocks
if (this_rd < best_rd) {
this_rd = best_rd;
best_ref_frame = ref_frame;
}
} // reference frames
mbmi->tx_size = TX_4X4;
mbmi->ref_frame[0] = best_ref_frame;
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
const int block = idy * 2 + idx;
xd->mi[0].bmi[block] = bsi[best_ref_frame][block];
if (num_4x4_blocks_wide > 1)
xd->mi[0].bmi[block + 1] = bsi[best_ref_frame][block];
if (num_4x4_blocks_high > 1)
xd->mi[0].bmi[block + 2] = bsi[best_ref_frame][block];
}
}
mbmi->mode = xd->mi[0].bmi[3].as_mode;
ctx->mic = *(xd->mi[0].src_mi);
ctx->skip_txfm[0] = 0;
ctx->skip = 0;
// Dummy assignment for speed -5. No effect in speed -6.
rd_cost->rdcost = best_rd;
}