e606cac046
Renamed cpi->sf.first_step to cpi->sf.reduce_first_step_size and changed its meaning such that it is a delta applied to reduce the default first step size (>> x) in the motion search rather than an absolute value. The default first step size is already changed according to the image dimensions (smaller for smaller images). cpi->sf.reduce_first_step_size now applies a further correction from the default. Change-Id: Ia94e08bc24c67b604831f980909af7e982fcd16d
3351 lines
122 KiB
C
3351 lines
122 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
#include <assert.h>
|
|
|
|
#include "vp9/common/vp9_pragmas.h"
|
|
#include "vp9/encoder/vp9_tokenize.h"
|
|
#include "vp9/encoder/vp9_treewriter.h"
|
|
#include "vp9/encoder/vp9_onyx_int.h"
|
|
#include "vp9/encoder/vp9_modecosts.h"
|
|
#include "vp9/encoder/vp9_encodeintra.h"
|
|
#include "vp9/common/vp9_entropymode.h"
|
|
#include "vp9/common/vp9_reconinter.h"
|
|
#include "vp9/common/vp9_reconintra.h"
|
|
#include "vp9/common/vp9_findnearmv.h"
|
|
#include "vp9/common/vp9_quant_common.h"
|
|
#include "vp9/encoder/vp9_encodemb.h"
|
|
#include "vp9/encoder/vp9_quantize.h"
|
|
#include "vp9/encoder/vp9_variance.h"
|
|
#include "vp9/encoder/vp9_mcomp.h"
|
|
#include "vp9/encoder/vp9_rdopt.h"
|
|
#include "vp9/encoder/vp9_ratectrl.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vp9/common/vp9_systemdependent.h"
|
|
#include "vp9/encoder/vp9_encodemv.h"
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/common/vp9_entropy.h"
|
|
#include "vp9_rtcd.h"
|
|
#include "vp9/common/vp9_mvref_common.h"
|
|
#include "vp9/common/vp9_common.h"
|
|
|
|
#define INVALID_MV 0x80008000
|
|
|
|
/* Factor to weigh the rate for switchable interp filters */
|
|
#define SWITCHABLE_INTERP_RATE_FACTOR 1
|
|
|
|
DECLARE_ALIGNED(16, extern const uint8_t,
|
|
vp9_pt_energy_class[MAX_ENTROPY_TOKENS]);
|
|
|
|
#define I4X4_PRED 0x8000
|
|
#define SPLITMV 0x10000
|
|
|
|
const MODE_DEFINITION vp9_mode_order[MAX_MODES] = {
|
|
{ZEROMV, LAST_FRAME, NONE},
|
|
{DC_PRED, INTRA_FRAME, NONE},
|
|
|
|
{NEARESTMV, LAST_FRAME, NONE},
|
|
{NEARMV, LAST_FRAME, NONE},
|
|
|
|
{ZEROMV, GOLDEN_FRAME, NONE},
|
|
{NEARESTMV, GOLDEN_FRAME, NONE},
|
|
|
|
{ZEROMV, ALTREF_FRAME, NONE},
|
|
{NEARESTMV, ALTREF_FRAME, NONE},
|
|
|
|
{NEARMV, GOLDEN_FRAME, NONE},
|
|
{NEARMV, ALTREF_FRAME, NONE},
|
|
|
|
{V_PRED, INTRA_FRAME, NONE},
|
|
{H_PRED, INTRA_FRAME, NONE},
|
|
{D45_PRED, INTRA_FRAME, NONE},
|
|
{D135_PRED, INTRA_FRAME, NONE},
|
|
{D117_PRED, INTRA_FRAME, NONE},
|
|
{D153_PRED, INTRA_FRAME, NONE},
|
|
{D27_PRED, INTRA_FRAME, NONE},
|
|
{D63_PRED, INTRA_FRAME, NONE},
|
|
|
|
{TM_PRED, INTRA_FRAME, NONE},
|
|
|
|
{NEWMV, LAST_FRAME, NONE},
|
|
{NEWMV, GOLDEN_FRAME, NONE},
|
|
{NEWMV, ALTREF_FRAME, NONE},
|
|
|
|
{SPLITMV, LAST_FRAME, NONE},
|
|
{SPLITMV, GOLDEN_FRAME, NONE},
|
|
{SPLITMV, ALTREF_FRAME, NONE},
|
|
|
|
{I4X4_PRED, INTRA_FRAME, NONE},
|
|
|
|
/* compound prediction modes */
|
|
{ZEROMV, LAST_FRAME, ALTREF_FRAME},
|
|
{NEARESTMV, LAST_FRAME, ALTREF_FRAME},
|
|
{NEARMV, LAST_FRAME, ALTREF_FRAME},
|
|
|
|
{ZEROMV, GOLDEN_FRAME, ALTREF_FRAME},
|
|
{NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME},
|
|
{NEARMV, GOLDEN_FRAME, ALTREF_FRAME},
|
|
|
|
{NEWMV, LAST_FRAME, ALTREF_FRAME},
|
|
{NEWMV, GOLDEN_FRAME, ALTREF_FRAME},
|
|
|
|
{SPLITMV, LAST_FRAME, ALTREF_FRAME},
|
|
{SPLITMV, GOLDEN_FRAME, ALTREF_FRAME},
|
|
};
|
|
|
|
// The baseline rd thresholds for breaking out of the rd loop for
|
|
// certain modes are assumed to be based on 8x8 blocks.
|
|
// This table is used to correct for blocks size.
|
|
// The factors here are << 2 (2 = x0.5, 32 = x8 etc).
|
|
static int rd_thresh_block_size_factor[BLOCK_SIZE_TYPES] =
|
|
{2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32};
|
|
|
|
#define BASE_RD_THRESH_FREQ_FACT 16
|
|
#define MAX_RD_THRESH_FREQ_FACT 32
|
|
#define MAX_RD_THRESH_FREQ_INC 1
|
|
|
|
static void fill_token_costs(vp9_coeff_count (*c)[BLOCK_TYPES],
|
|
vp9_coeff_count (*cnoskip)[BLOCK_TYPES],
|
|
vp9_coeff_probs_model (*p)[BLOCK_TYPES]) {
|
|
int i, j, k, l;
|
|
TX_SIZE t;
|
|
for (t = TX_4X4; t <= TX_32X32; t++)
|
|
for (i = 0; i < BLOCK_TYPES; i++)
|
|
for (j = 0; j < REF_TYPES; j++)
|
|
for (k = 0; k < COEF_BANDS; k++)
|
|
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
|
|
vp9_prob probs[ENTROPY_NODES];
|
|
vp9_model_to_full_probs(p[t][i][j][k][l], probs);
|
|
vp9_cost_tokens((int *)cnoskip[t][i][j][k][l], probs,
|
|
vp9_coef_tree);
|
|
#if CONFIG_BALANCED_COEFTREE
|
|
// Replace the eob node prob with a very small value so that the
|
|
// cost approximately equals the cost without the eob node
|
|
probs[1] = 1;
|
|
vp9_cost_tokens((int *)c[t][i][j][k][l], probs, vp9_coef_tree);
|
|
#else
|
|
vp9_cost_tokens_skip((int *)c[t][i][j][k][l], probs,
|
|
vp9_coef_tree);
|
|
assert(c[t][i][j][k][l][DCT_EOB_TOKEN] ==
|
|
cnoskip[t][i][j][k][l][DCT_EOB_TOKEN]);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static int rd_iifactor[32] = { 4, 4, 3, 2, 1, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, };
|
|
|
|
// 3* dc_qlookup[Q]*dc_qlookup[Q];
|
|
|
|
/* values are now correlated to quantizer */
|
|
static int sad_per_bit16lut[QINDEX_RANGE];
|
|
static int sad_per_bit4lut[QINDEX_RANGE];
|
|
|
|
void vp9_init_me_luts() {
|
|
int i;
|
|
|
|
// Initialize the sad lut tables using a formulaic calculation for now
|
|
// This is to make it easier to resolve the impact of experimental changes
|
|
// to the quantizer tables.
|
|
for (i = 0; i < QINDEX_RANGE; i++) {
|
|
sad_per_bit16lut[i] =
|
|
(int)((0.0418 * vp9_convert_qindex_to_q(i)) + 2.4107);
|
|
sad_per_bit4lut[i] = (int)(0.063 * vp9_convert_qindex_to_q(i) + 2.742);
|
|
}
|
|
}
|
|
|
|
static int compute_rd_mult(int qindex) {
|
|
const int q = vp9_dc_quant(qindex, 0);
|
|
return (11 * q * q) >> 2;
|
|
}
|
|
|
|
void vp9_initialize_me_consts(VP9_COMP *cpi, int qindex) {
|
|
cpi->mb.sadperbit16 = sad_per_bit16lut[qindex];
|
|
cpi->mb.sadperbit4 = sad_per_bit4lut[qindex];
|
|
}
|
|
|
|
|
|
void vp9_initialize_rd_consts(VP9_COMP *cpi, int qindex) {
|
|
int q, i, bsize;
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
// Further tests required to see if optimum is different
|
|
// for key frames, golden frames and arf frames.
|
|
// if (cpi->common.refresh_golden_frame ||
|
|
// cpi->common.refresh_alt_ref_frame)
|
|
qindex = clamp(qindex, 0, MAXQ);
|
|
|
|
cpi->RDMULT = compute_rd_mult(qindex);
|
|
if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) {
|
|
if (cpi->twopass.next_iiratio > 31)
|
|
cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4;
|
|
else
|
|
cpi->RDMULT +=
|
|
(cpi->RDMULT * rd_iifactor[cpi->twopass.next_iiratio]) >> 4;
|
|
}
|
|
cpi->mb.errorperbit = cpi->RDMULT >> 6;
|
|
cpi->mb.errorperbit += (cpi->mb.errorperbit == 0);
|
|
|
|
vp9_set_speed_features(cpi);
|
|
|
|
q = (int)pow(vp9_dc_quant(qindex, 0) >> 2, 1.25);
|
|
q <<= 2;
|
|
if (q < 8)
|
|
q = 8;
|
|
|
|
if (cpi->RDMULT > 1000) {
|
|
cpi->RDDIV = 1;
|
|
cpi->RDMULT /= 100;
|
|
|
|
for (bsize = 0; bsize < BLOCK_SIZE_TYPES; ++bsize) {
|
|
for (i = 0; i < MAX_MODES; ++i) {
|
|
// Threshold here seem unecessarily harsh but fine given actual
|
|
// range of values used for cpi->sf.thresh_mult[]
|
|
int thresh_max = INT_MAX / (q * rd_thresh_block_size_factor[bsize]);
|
|
|
|
// *4 relates to the scaling of rd_thresh_block_size_factor[]
|
|
if ((int64_t)cpi->sf.thresh_mult[i] < thresh_max) {
|
|
cpi->rd_threshes[bsize][i] =
|
|
cpi->sf.thresh_mult[i] * q *
|
|
rd_thresh_block_size_factor[bsize] / (4 * 100);
|
|
} else {
|
|
cpi->rd_threshes[bsize][i] = INT_MAX;
|
|
}
|
|
cpi->rd_baseline_thresh[bsize][i] = cpi->rd_threshes[bsize][i];
|
|
cpi->rd_thresh_freq_fact[bsize][i] = BASE_RD_THRESH_FREQ_FACT;
|
|
}
|
|
}
|
|
} else {
|
|
cpi->RDDIV = 100;
|
|
|
|
for (bsize = 0; bsize < BLOCK_SIZE_TYPES; ++bsize) {
|
|
for (i = 0; i < MAX_MODES; i++) {
|
|
// Threshold here seem unecessarily harsh but fine given actual
|
|
// range of values used for cpi->sf.thresh_mult[]
|
|
int thresh_max = INT_MAX / (q * rd_thresh_block_size_factor[bsize]);
|
|
|
|
if (cpi->sf.thresh_mult[i] < thresh_max) {
|
|
cpi->rd_threshes[bsize][i] =
|
|
cpi->sf.thresh_mult[i] * q *
|
|
rd_thresh_block_size_factor[bsize] / 4;
|
|
} else {
|
|
cpi->rd_threshes[bsize][i] = INT_MAX;
|
|
}
|
|
cpi->rd_baseline_thresh[bsize][i] = cpi->rd_threshes[bsize][i];
|
|
cpi->rd_thresh_freq_fact[bsize][i] = BASE_RD_THRESH_FREQ_FACT;
|
|
}
|
|
}
|
|
}
|
|
|
|
fill_token_costs(cpi->mb.token_costs,
|
|
cpi->mb.token_costs_noskip,
|
|
cpi->common.fc.coef_probs);
|
|
|
|
for (i = 0; i < NUM_PARTITION_CONTEXTS; i++)
|
|
vp9_cost_tokens(cpi->mb.partition_cost[i],
|
|
cpi->common.fc.partition_prob[cpi->common.frame_type][i],
|
|
vp9_partition_tree);
|
|
|
|
/*rough estimate for costing*/
|
|
vp9_init_mode_costs(cpi);
|
|
|
|
if (cpi->common.frame_type != KEY_FRAME) {
|
|
vp9_build_nmv_cost_table(
|
|
cpi->mb.nmvjointcost,
|
|
cpi->mb.e_mbd.allow_high_precision_mv ?
|
|
cpi->mb.nmvcost_hp : cpi->mb.nmvcost,
|
|
&cpi->common.fc.nmvc,
|
|
cpi->mb.e_mbd.allow_high_precision_mv, 1, 1);
|
|
}
|
|
}
|
|
|
|
int64_t vp9_block_error_c(int16_t *coeff, int16_t *dqcoeff,
|
|
intptr_t block_size) {
|
|
int i;
|
|
int64_t error = 0;
|
|
|
|
for (i = 0; i < block_size; i++) {
|
|
int this_diff = coeff[i] - dqcoeff[i];
|
|
error += (unsigned)this_diff * this_diff;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static INLINE int cost_coeffs(VP9_COMMON *const cm, MACROBLOCK *mb,
|
|
int plane, int block, PLANE_TYPE type,
|
|
ENTROPY_CONTEXT *A,
|
|
ENTROPY_CONTEXT *L,
|
|
TX_SIZE tx_size,
|
|
int y_blocks) {
|
|
MACROBLOCKD *const xd = &mb->e_mbd;
|
|
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
|
|
int pt;
|
|
int c = 0;
|
|
int cost = 0, pad;
|
|
const int *scan, *nb;
|
|
const int eob = xd->plane[plane].eobs[block];
|
|
const int16_t *qcoeff_ptr = BLOCK_OFFSET(xd->plane[plane].qcoeff,
|
|
block, 16);
|
|
const int ref = mbmi->ref_frame[0] != INTRA_FRAME;
|
|
unsigned int (*token_costs)[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS] =
|
|
mb->token_costs[tx_size][type][ref];
|
|
ENTROPY_CONTEXT above_ec, left_ec;
|
|
TX_TYPE tx_type = DCT_DCT;
|
|
|
|
const int segment_id = xd->mode_info_context->mbmi.segment_id;
|
|
unsigned int (*token_costs_noskip)[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS] =
|
|
mb->token_costs_noskip[tx_size][type][ref];
|
|
|
|
int seg_eob, default_eob;
|
|
uint8_t token_cache[1024];
|
|
const uint8_t * band_translate;
|
|
|
|
// Check for consistency of tx_size with mode info
|
|
assert((!type && !plane) || (type && plane));
|
|
if (type == PLANE_TYPE_Y_WITH_DC) {
|
|
assert(xd->mode_info_context->mbmi.txfm_size == tx_size);
|
|
} else {
|
|
TX_SIZE tx_size_uv = get_uv_tx_size(mbmi);
|
|
assert(tx_size == tx_size_uv);
|
|
}
|
|
|
|
switch (tx_size) {
|
|
case TX_4X4: {
|
|
tx_type = (type == PLANE_TYPE_Y_WITH_DC) ?
|
|
get_tx_type_4x4(xd, block) : DCT_DCT;
|
|
above_ec = A[0] != 0;
|
|
left_ec = L[0] != 0;
|
|
seg_eob = 16;
|
|
scan = get_scan_4x4(tx_type);
|
|
band_translate = vp9_coefband_trans_4x4;
|
|
break;
|
|
}
|
|
case TX_8X8: {
|
|
const TX_TYPE tx_type = type == PLANE_TYPE_Y_WITH_DC ?
|
|
get_tx_type_8x8(xd) : DCT_DCT;
|
|
above_ec = (A[0] + A[1]) != 0;
|
|
left_ec = (L[0] + L[1]) != 0;
|
|
scan = get_scan_8x8(tx_type);
|
|
seg_eob = 64;
|
|
band_translate = vp9_coefband_trans_8x8plus;
|
|
break;
|
|
}
|
|
case TX_16X16: {
|
|
const TX_TYPE tx_type = type == PLANE_TYPE_Y_WITH_DC ?
|
|
get_tx_type_16x16(xd) : DCT_DCT;
|
|
scan = get_scan_16x16(tx_type);
|
|
seg_eob = 256;
|
|
above_ec = (A[0] + A[1] + A[2] + A[3]) != 0;
|
|
left_ec = (L[0] + L[1] + L[2] + L[3]) != 0;
|
|
band_translate = vp9_coefband_trans_8x8plus;
|
|
break;
|
|
}
|
|
case TX_32X32:
|
|
scan = vp9_default_scan_32x32;
|
|
seg_eob = 1024;
|
|
above_ec = (A[0] + A[1] + A[2] + A[3] + A[4] + A[5] + A[6] + A[7]) != 0;
|
|
left_ec = (L[0] + L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7]) != 0;
|
|
band_translate = vp9_coefband_trans_8x8plus;
|
|
break;
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
assert(eob <= seg_eob);
|
|
|
|
pt = combine_entropy_contexts(above_ec, left_ec);
|
|
nb = vp9_get_coef_neighbors_handle(scan, &pad);
|
|
default_eob = seg_eob;
|
|
|
|
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP))
|
|
seg_eob = 0;
|
|
|
|
/* sanity check to ensure that we do not have spurious non-zero q values */
|
|
if (eob < seg_eob)
|
|
assert(qcoeff_ptr[scan[eob]] == 0);
|
|
|
|
{
|
|
for (c = 0; c < eob; c++) {
|
|
int v = qcoeff_ptr[scan[c]];
|
|
int t = vp9_dct_value_tokens_ptr[v].token;
|
|
int band = get_coef_band(band_translate, c);
|
|
if (c)
|
|
pt = vp9_get_coef_context(scan, nb, pad, token_cache, c, default_eob);
|
|
|
|
if (!c || token_cache[scan[c - 1]]) // do not skip eob
|
|
cost += token_costs_noskip[band][pt][t] + vp9_dct_value_cost_ptr[v];
|
|
else
|
|
cost += token_costs[band][pt][t] + vp9_dct_value_cost_ptr[v];
|
|
token_cache[scan[c]] = vp9_pt_energy_class[t];
|
|
}
|
|
if (c < seg_eob) {
|
|
if (c)
|
|
pt = vp9_get_coef_context(scan, nb, pad, token_cache, c, default_eob);
|
|
cost += mb->token_costs_noskip[tx_size][type][ref]
|
|
[get_coef_band(band_translate, c)]
|
|
[pt][DCT_EOB_TOKEN];
|
|
}
|
|
}
|
|
|
|
// is eob first coefficient;
|
|
for (pt = 0; pt < (1 << tx_size); pt++) {
|
|
A[pt] = L[pt] = c > 0;
|
|
}
|
|
|
|
return cost;
|
|
}
|
|
|
|
static void choose_txfm_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int (*r)[2], int *rate,
|
|
int64_t *d, int64_t *distortion,
|
|
int *s, int *skip,
|
|
int64_t txfm_cache[NB_TXFM_MODES],
|
|
TX_SIZE max_txfm_size) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
|
|
vp9_prob skip_prob = vp9_get_pred_prob(cm, xd, PRED_MBSKIP);
|
|
int64_t rd[TX_SIZE_MAX_SB][2];
|
|
int n, m;
|
|
int s0, s1;
|
|
|
|
const vp9_prob *tx_probs = vp9_get_pred_probs(cm, xd, PRED_TX_SIZE);
|
|
|
|
for (n = TX_4X4; n <= max_txfm_size; n++) {
|
|
r[n][1] = r[n][0];
|
|
for (m = 0; m <= n - (n == max_txfm_size); m++) {
|
|
if (m == n)
|
|
r[n][1] += vp9_cost_zero(tx_probs[m]);
|
|
else
|
|
r[n][1] += vp9_cost_one(tx_probs[m]);
|
|
}
|
|
}
|
|
|
|
assert(skip_prob > 0);
|
|
s0 = vp9_cost_bit(skip_prob, 0);
|
|
s1 = vp9_cost_bit(skip_prob, 1);
|
|
|
|
for (n = TX_4X4; n <= max_txfm_size; n++) {
|
|
if (s[n]) {
|
|
rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]);
|
|
} else {
|
|
rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]);
|
|
rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]);
|
|
}
|
|
}
|
|
|
|
if (max_txfm_size == TX_32X32 &&
|
|
(cm->txfm_mode == ALLOW_32X32 ||
|
|
(cm->txfm_mode == TX_MODE_SELECT &&
|
|
rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
|
|
rd[TX_32X32][1] < rd[TX_4X4][1]))) {
|
|
mbmi->txfm_size = TX_32X32;
|
|
} else if (max_txfm_size >= TX_16X16 &&
|
|
(cm->txfm_mode == ALLOW_16X16 ||
|
|
cm->txfm_mode == ALLOW_32X32 ||
|
|
(cm->txfm_mode == TX_MODE_SELECT &&
|
|
rd[TX_16X16][1] < rd[TX_8X8][1] &&
|
|
rd[TX_16X16][1] < rd[TX_4X4][1]))) {
|
|
mbmi->txfm_size = TX_16X16;
|
|
} else if (cm->txfm_mode == ALLOW_8X8 ||
|
|
cm->txfm_mode == ALLOW_16X16 ||
|
|
cm->txfm_mode == ALLOW_32X32 ||
|
|
(cm->txfm_mode == TX_MODE_SELECT && rd[TX_8X8][1] < rd[TX_4X4][1])) {
|
|
mbmi->txfm_size = TX_8X8;
|
|
} else {
|
|
mbmi->txfm_size = TX_4X4;
|
|
}
|
|
|
|
*distortion = d[mbmi->txfm_size];
|
|
*rate = r[mbmi->txfm_size][cm->txfm_mode == TX_MODE_SELECT];
|
|
*skip = s[mbmi->txfm_size];
|
|
|
|
txfm_cache[ONLY_4X4] = rd[TX_4X4][0];
|
|
txfm_cache[ALLOW_8X8] = rd[TX_8X8][0];
|
|
txfm_cache[ALLOW_16X16] = rd[MIN(max_txfm_size, TX_16X16)][0];
|
|
txfm_cache[ALLOW_32X32] = rd[MIN(max_txfm_size, TX_32X32)][0];
|
|
if (max_txfm_size == TX_32X32 &&
|
|
rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
|
|
rd[TX_32X32][1] < rd[TX_4X4][1])
|
|
txfm_cache[TX_MODE_SELECT] = rd[TX_32X32][1];
|
|
else if (max_txfm_size >= TX_16X16 &&
|
|
rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1])
|
|
txfm_cache[TX_MODE_SELECT] = rd[TX_16X16][1];
|
|
else
|
|
txfm_cache[TX_MODE_SELECT] = rd[TX_4X4][1] < rd[TX_8X8][1] ?
|
|
rd[TX_4X4][1] : rd[TX_8X8][1];
|
|
}
|
|
|
|
static int64_t block_error_sby(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize,
|
|
int shift) {
|
|
const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize);
|
|
return vp9_block_error(x->plane[0].coeff, x->e_mbd.plane[0].dqcoeff,
|
|
16 << (bwl + bhl)) >> shift;
|
|
}
|
|
|
|
static int64_t block_error_sbuv(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize,
|
|
int shift) {
|
|
const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize);
|
|
int64_t sum = 0;
|
|
int plane;
|
|
|
|
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
|
|
const int subsampling = x->e_mbd.plane[plane].subsampling_x +
|
|
x->e_mbd.plane[plane].subsampling_y;
|
|
sum += vp9_block_error(x->plane[plane].coeff, x->e_mbd.plane[plane].dqcoeff,
|
|
16 << (bwl + bhl - subsampling));
|
|
}
|
|
return sum >> shift;
|
|
}
|
|
|
|
struct rdcost_block_args {
|
|
VP9_COMMON *cm;
|
|
MACROBLOCK *x;
|
|
ENTROPY_CONTEXT t_above[16];
|
|
ENTROPY_CONTEXT t_left[16];
|
|
TX_SIZE tx_size;
|
|
int bw;
|
|
int bh;
|
|
int cost;
|
|
};
|
|
|
|
static void rdcost_block(int plane, int block, BLOCK_SIZE_TYPE bsize,
|
|
int ss_txfrm_size, void *arg) {
|
|
struct rdcost_block_args* args = arg;
|
|
int x_idx, y_idx;
|
|
MACROBLOCKD * const xd = &args->x->e_mbd;
|
|
|
|
txfrm_block_to_raster_xy(xd, bsize, plane, block, args->tx_size * 2, &x_idx,
|
|
&y_idx);
|
|
|
|
args->cost += cost_coeffs(args->cm, args->x, plane, block,
|
|
xd->plane[plane].plane_type, args->t_above + x_idx,
|
|
args->t_left + y_idx, args->tx_size,
|
|
args->bw * args->bh);
|
|
}
|
|
|
|
static int rdcost_plane(VP9_COMMON * const cm, MACROBLOCK *x, int plane,
|
|
BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) {
|
|
MACROBLOCKD * const xd = &x->e_mbd;
|
|
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
|
|
const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
|
|
const int bw = 1 << bwl, bh = 1 << bhl;
|
|
struct rdcost_block_args args = { cm, x, { 0 }, { 0 }, tx_size, bw, bh, 0 };
|
|
|
|
vpx_memcpy(&args.t_above, xd->plane[plane].above_context,
|
|
sizeof(ENTROPY_CONTEXT) * bw);
|
|
vpx_memcpy(&args.t_left, xd->plane[plane].left_context,
|
|
sizeof(ENTROPY_CONTEXT) * bh);
|
|
|
|
foreach_transformed_block_in_plane(xd, bsize, plane, rdcost_block, &args);
|
|
|
|
return args.cost;
|
|
}
|
|
|
|
static int rdcost_uv(VP9_COMMON *const cm, MACROBLOCK *x,
|
|
BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) {
|
|
int cost = 0, plane;
|
|
|
|
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
|
|
cost += rdcost_plane(cm, x, plane, bsize, tx_size);
|
|
}
|
|
return cost;
|
|
}
|
|
|
|
static void super_block_yrd_for_txfm(VP9_COMMON *const cm, MACROBLOCK *x,
|
|
int *rate, int64_t *distortion,
|
|
int *skippable,
|
|
BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
xd->mode_info_context->mbmi.txfm_size = tx_size;
|
|
|
|
if (xd->mode_info_context->mbmi.ref_frame[0] == INTRA_FRAME)
|
|
vp9_encode_intra_block_y(cm, x, bsize);
|
|
else
|
|
vp9_xform_quant_sby(cm, x, bsize);
|
|
|
|
*distortion = block_error_sby(x, bsize, tx_size == TX_32X32 ? 0 : 2);
|
|
*rate = rdcost_plane(cm, x, 0, bsize, tx_size);
|
|
*skippable = vp9_sby_is_skippable(xd, bsize);
|
|
}
|
|
|
|
static void super_block_yrd(VP9_COMP *cpi,
|
|
MACROBLOCK *x, int *rate, int64_t *distortion,
|
|
int *skip, BLOCK_SIZE_TYPE bs,
|
|
int64_t txfm_cache[NB_TXFM_MODES]) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
int r[TX_SIZE_MAX_SB][2], s[TX_SIZE_MAX_SB];
|
|
int64_t d[TX_SIZE_MAX_SB];
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
|
|
|
|
assert(bs == mbmi->sb_type);
|
|
if (mbmi->ref_frame[0] > INTRA_FRAME)
|
|
vp9_subtract_sby(x, bs);
|
|
|
|
if (cpi->sf.use_largest_txform) {
|
|
if (bs >= BLOCK_SIZE_SB32X32) {
|
|
mbmi->txfm_size = TX_32X32;
|
|
} else if (bs >= BLOCK_SIZE_MB16X16) {
|
|
mbmi->txfm_size = TX_16X16;
|
|
} else if (bs >= BLOCK_SIZE_SB8X8) {
|
|
mbmi->txfm_size = TX_8X8;
|
|
} else {
|
|
mbmi->txfm_size = TX_4X4;
|
|
}
|
|
vpx_memset(txfm_cache, 0, NB_TXFM_MODES * sizeof(int64_t));
|
|
super_block_yrd_for_txfm(cm, x, rate, distortion, skip, bs,
|
|
mbmi->txfm_size);
|
|
return;
|
|
}
|
|
if (bs >= BLOCK_SIZE_SB32X32)
|
|
super_block_yrd_for_txfm(cm, x, &r[TX_32X32][0], &d[TX_32X32], &s[TX_32X32],
|
|
bs, TX_32X32);
|
|
if (bs >= BLOCK_SIZE_MB16X16)
|
|
super_block_yrd_for_txfm(cm, x, &r[TX_16X16][0], &d[TX_16X16], &s[TX_16X16],
|
|
bs, TX_16X16);
|
|
super_block_yrd_for_txfm(cm, x, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8], bs,
|
|
TX_8X8);
|
|
super_block_yrd_for_txfm(cm, x, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4], bs,
|
|
TX_4X4);
|
|
|
|
choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s,
|
|
skip, txfm_cache,
|
|
TX_32X32 - (bs < BLOCK_SIZE_SB32X32)
|
|
- (bs < BLOCK_SIZE_MB16X16));
|
|
}
|
|
|
|
static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int ib,
|
|
MB_PREDICTION_MODE *best_mode,
|
|
int *bmode_costs,
|
|
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
|
|
int *bestrate, int *bestratey,
|
|
int64_t *bestdistortion,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
MB_PREDICTION_MODE mode;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
int64_t best_rd = INT64_MAX;
|
|
int rate = 0;
|
|
int64_t distortion;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
const int src_stride = x->plane[0].src.stride;
|
|
uint8_t *src, *dst;
|
|
int16_t *src_diff, *coeff;
|
|
|
|
ENTROPY_CONTEXT ta[2], tempa[2];
|
|
ENTROPY_CONTEXT tl[2], templ[2];
|
|
TX_TYPE tx_type = DCT_DCT;
|
|
TX_TYPE best_tx_type = DCT_DCT;
|
|
int bw = 1 << b_width_log2(bsize);
|
|
int bh = 1 << b_height_log2(bsize);
|
|
int idx, idy, block;
|
|
DECLARE_ALIGNED(16, int16_t, best_dqcoeff[4][16]);
|
|
|
|
assert(ib < 4);
|
|
|
|
vpx_memcpy(ta, a, sizeof(ta));
|
|
vpx_memcpy(tl, l, sizeof(tl));
|
|
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
|
|
|
|
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
|
|
int64_t this_rd;
|
|
int ratey = 0;
|
|
|
|
rate = bmode_costs[mode];
|
|
distortion = 0;
|
|
|
|
vpx_memcpy(tempa, ta, sizeof(ta));
|
|
vpx_memcpy(templ, tl, sizeof(tl));
|
|
|
|
for (idy = 0; idy < bh; ++idy) {
|
|
for (idx = 0; idx < bw; ++idx) {
|
|
block = ib + idy * 2 + idx;
|
|
xd->mode_info_context->bmi[block].as_mode.first = mode;
|
|
src = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, block,
|
|
x->plane[0].src.buf, src_stride);
|
|
src_diff = raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, block,
|
|
x->plane[0].src_diff);
|
|
coeff = BLOCK_OFFSET(x->plane[0].coeff, block, 16);
|
|
dst = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, block,
|
|
xd->plane[0].dst.buf,
|
|
xd->plane[0].dst.stride);
|
|
vp9_predict_intra_block(xd, block, b_width_log2(BLOCK_SIZE_SB8X8),
|
|
TX_4X4, mode, dst, xd->plane[0].dst.stride);
|
|
vp9_subtract_block(4, 4, src_diff, 8,
|
|
src, src_stride,
|
|
dst, xd->plane[0].dst.stride);
|
|
|
|
tx_type = get_tx_type_4x4(xd, block);
|
|
if (tx_type != DCT_DCT) {
|
|
vp9_short_fht4x4(src_diff, coeff, 8, tx_type);
|
|
x->quantize_b_4x4(x, block, tx_type, 16);
|
|
} else {
|
|
x->fwd_txm4x4(src_diff, coeff, 16);
|
|
x->quantize_b_4x4(x, block, tx_type, 16);
|
|
}
|
|
|
|
ratey += cost_coeffs(cm, x, 0, block, PLANE_TYPE_Y_WITH_DC,
|
|
tempa + idx, templ + idy, TX_4X4, 16);
|
|
distortion += vp9_block_error(coeff, BLOCK_OFFSET(xd->plane[0].dqcoeff,
|
|
block, 16), 16) >> 2;
|
|
|
|
if (best_tx_type != DCT_DCT)
|
|
vp9_short_iht4x4_add(BLOCK_OFFSET(xd->plane[0].dqcoeff, block, 16),
|
|
dst, xd->plane[0].dst.stride, best_tx_type);
|
|
else
|
|
xd->inv_txm4x4_add(BLOCK_OFFSET(xd->plane[0].dqcoeff, block, 16),
|
|
dst, xd->plane[0].dst.stride);
|
|
}
|
|
}
|
|
|
|
rate += ratey;
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
|
|
|
|
if (this_rd < best_rd) {
|
|
*bestrate = rate;
|
|
*bestratey = ratey;
|
|
*bestdistortion = distortion;
|
|
best_rd = this_rd;
|
|
*best_mode = mode;
|
|
best_tx_type = tx_type;
|
|
vpx_memcpy(a, tempa, sizeof(tempa));
|
|
vpx_memcpy(l, templ, sizeof(templ));
|
|
for (idy = 0; idy < bh; ++idy) {
|
|
for (idx = 0; idx < bw; ++idx) {
|
|
block = ib + idy * 2 + idx;
|
|
vpx_memcpy(best_dqcoeff[idy * 2 + idx],
|
|
BLOCK_OFFSET(xd->plane[0].dqcoeff, block, 16),
|
|
sizeof(best_dqcoeff[0]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (idy = 0; idy < bh; ++idy) {
|
|
for (idx = 0; idx < bw; ++idx) {
|
|
block = ib + idy * 2 + idx;
|
|
xd->mode_info_context->bmi[block].as_mode.first = *best_mode;
|
|
dst = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, block,
|
|
xd->plane[0].dst.buf,
|
|
xd->plane[0].dst.stride);
|
|
|
|
vp9_predict_intra_block(xd, block, b_width_log2(BLOCK_SIZE_SB8X8), TX_4X4,
|
|
*best_mode, dst, xd->plane[0].dst.stride);
|
|
// inverse transform
|
|
if (best_tx_type != DCT_DCT)
|
|
vp9_short_iht4x4_add(best_dqcoeff[idy * 2 + idx], dst,
|
|
xd->plane[0].dst.stride, best_tx_type);
|
|
else
|
|
xd->inv_txm4x4_add(best_dqcoeff[idy * 2 + idx], dst,
|
|
xd->plane[0].dst.stride);
|
|
}
|
|
}
|
|
|
|
return best_rd;
|
|
}
|
|
|
|
static int64_t rd_pick_intra4x4mby_modes(VP9_COMP *cpi, MACROBLOCK *mb,
|
|
int *Rate, int *rate_y,
|
|
int64_t *Distortion, int64_t best_rd) {
|
|
int i, j;
|
|
MACROBLOCKD *const xd = &mb->e_mbd;
|
|
BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type;
|
|
int bw = 1 << b_width_log2(bsize);
|
|
int bh = 1 << b_height_log2(bsize);
|
|
int idx, idy;
|
|
int cost = 0;
|
|
int64_t distortion = 0;
|
|
int tot_rate_y = 0;
|
|
int64_t total_rd = 0;
|
|
ENTROPY_CONTEXT t_above[4], t_left[4];
|
|
int *bmode_costs;
|
|
MODE_INFO *const mic = xd->mode_info_context;
|
|
|
|
vpx_memcpy(t_above, xd->plane[0].above_context, sizeof(t_above));
|
|
vpx_memcpy(t_left, xd->plane[0].left_context, sizeof(t_left));
|
|
|
|
bmode_costs = mb->mbmode_cost;
|
|
|
|
for (idy = 0; idy < 2; idy += bh) {
|
|
for (idx = 0; idx < 2; idx += bw) {
|
|
const int mis = xd->mode_info_stride;
|
|
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode);
|
|
int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry);
|
|
int64_t UNINITIALIZED_IS_SAFE(d);
|
|
i = idy * 2 + idx;
|
|
|
|
if (xd->frame_type == KEY_FRAME) {
|
|
const MB_PREDICTION_MODE A = above_block_mode(mic, i, mis);
|
|
const MB_PREDICTION_MODE L = (xd->left_available || idx) ?
|
|
left_block_mode(mic, i) : DC_PRED;
|
|
|
|
bmode_costs = mb->y_mode_costs[A][L];
|
|
}
|
|
|
|
total_rd += rd_pick_intra4x4block(cpi, mb, i, &best_mode, bmode_costs,
|
|
t_above + idx, t_left + idy,
|
|
&r, &ry, &d, bsize);
|
|
cost += r;
|
|
distortion += d;
|
|
tot_rate_y += ry;
|
|
|
|
mic->bmi[i].as_mode.first = best_mode;
|
|
for (j = 1; j < bh; ++j)
|
|
mic->bmi[i + j * 2].as_mode.first = best_mode;
|
|
for (j = 1; j < bw; ++j)
|
|
mic->bmi[i + j].as_mode.first = best_mode;
|
|
|
|
if (total_rd >= best_rd)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (total_rd >= best_rd)
|
|
return INT64_MAX;
|
|
|
|
*Rate = cost;
|
|
*rate_y = tot_rate_y;
|
|
*Distortion = distortion;
|
|
xd->mode_info_context->mbmi.mode = mic->bmi[3].as_mode.first;
|
|
|
|
return RDCOST(mb->rdmult, mb->rddiv, cost, distortion);
|
|
}
|
|
|
|
static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int *rate, int *rate_tokenonly,
|
|
int64_t *distortion, int *skippable,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int64_t txfm_cache[NB_TXFM_MODES]) {
|
|
MB_PREDICTION_MODE mode;
|
|
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int this_rate, this_rate_tokenonly, s;
|
|
int64_t this_distortion;
|
|
int64_t best_rd = INT64_MAX, this_rd;
|
|
TX_SIZE UNINITIALIZED_IS_SAFE(best_tx);
|
|
int i;
|
|
int *bmode_costs = x->mbmode_cost;
|
|
|
|
if (bsize < BLOCK_SIZE_SB8X8) {
|
|
x->e_mbd.mode_info_context->mbmi.txfm_size = TX_4X4;
|
|
return best_rd;
|
|
}
|
|
|
|
for (i = 0; i < NB_TXFM_MODES; i++)
|
|
txfm_cache[i] = INT64_MAX;
|
|
|
|
/* Y Search for 32x32 intra prediction mode */
|
|
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
|
|
int64_t local_txfm_cache[NB_TXFM_MODES];
|
|
MODE_INFO *const mic = xd->mode_info_context;
|
|
const int mis = xd->mode_info_stride;
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME) {
|
|
const MB_PREDICTION_MODE A = above_block_mode(mic, 0, mis);
|
|
const MB_PREDICTION_MODE L = xd->left_available ?
|
|
left_block_mode(mic, 0) : DC_PRED;
|
|
|
|
bmode_costs = x->y_mode_costs[A][L];
|
|
}
|
|
x->e_mbd.mode_info_context->mbmi.mode = mode;
|
|
|
|
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
|
|
bsize, local_txfm_cache);
|
|
|
|
this_rate = this_rate_tokenonly + bmode_costs[mode];
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
|
|
|
|
if (this_rd < best_rd) {
|
|
mode_selected = mode;
|
|
best_rd = this_rd;
|
|
best_tx = x->e_mbd.mode_info_context->mbmi.txfm_size;
|
|
*rate = this_rate;
|
|
*rate_tokenonly = this_rate_tokenonly;
|
|
*distortion = this_distortion;
|
|
*skippable = s;
|
|
}
|
|
|
|
for (i = 0; i < NB_TXFM_MODES; i++) {
|
|
int64_t adj_rd = this_rd + local_txfm_cache[i] -
|
|
local_txfm_cache[cpi->common.txfm_mode];
|
|
if (adj_rd < txfm_cache[i]) {
|
|
txfm_cache[i] = adj_rd;
|
|
}
|
|
}
|
|
}
|
|
|
|
x->e_mbd.mode_info_context->mbmi.mode = mode_selected;
|
|
x->e_mbd.mode_info_context->mbmi.txfm_size = best_tx;
|
|
|
|
return best_rd;
|
|
}
|
|
|
|
static void super_block_uvrd_for_txfm(VP9_COMMON *const cm, MACROBLOCK *x,
|
|
int *rate, int64_t *distortion,
|
|
int *skippable, BLOCK_SIZE_TYPE bsize,
|
|
TX_SIZE uv_tx_size) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
if (xd->mode_info_context->mbmi.ref_frame[0] == INTRA_FRAME)
|
|
vp9_encode_intra_block_uv(cm, x, bsize);
|
|
else
|
|
vp9_xform_quant_sbuv(cm, x, bsize);
|
|
|
|
*distortion = block_error_sbuv(x, bsize, uv_tx_size == TX_32X32 ? 0 : 2);
|
|
*rate = rdcost_uv(cm, x, bsize, uv_tx_size);
|
|
*skippable = vp9_sbuv_is_skippable(xd, bsize);
|
|
}
|
|
|
|
static void super_block_uvrd(VP9_COMMON *const cm, MACROBLOCK *x,
|
|
int *rate, int64_t *distortion, int *skippable,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
|
|
|
|
if (mbmi->ref_frame[0] > INTRA_FRAME)
|
|
vp9_subtract_sbuv(x, bsize);
|
|
|
|
if (mbmi->txfm_size >= TX_32X32 && bsize >= BLOCK_SIZE_SB64X64) {
|
|
super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize,
|
|
TX_32X32);
|
|
} else if (mbmi->txfm_size >= TX_16X16 && bsize >= BLOCK_SIZE_SB32X32) {
|
|
super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize,
|
|
TX_16X16);
|
|
} else if (mbmi->txfm_size >= TX_8X8 && bsize >= BLOCK_SIZE_MB16X16) {
|
|
super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize,
|
|
TX_8X8);
|
|
} else {
|
|
super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize,
|
|
TX_4X4);
|
|
}
|
|
}
|
|
|
|
static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int *rate, int *rate_tokenonly,
|
|
int64_t *distortion, int *skippable,
|
|
BLOCK_SIZE_TYPE bsize) {
|
|
MB_PREDICTION_MODE mode;
|
|
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
|
|
int64_t best_rd = INT64_MAX, this_rd;
|
|
int this_rate_tokenonly, this_rate, s;
|
|
int64_t this_distortion;
|
|
|
|
for (mode = DC_PRED; mode <= TM_PRED; mode++) {
|
|
x->e_mbd.mode_info_context->mbmi.uv_mode = mode;
|
|
super_block_uvrd(&cpi->common, x, &this_rate_tokenonly,
|
|
&this_distortion, &s, bsize);
|
|
this_rate = this_rate_tokenonly +
|
|
x->intra_uv_mode_cost[x->e_mbd.frame_type][mode];
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
|
|
|
|
if (this_rd < best_rd) {
|
|
mode_selected = mode;
|
|
best_rd = this_rd;
|
|
*rate = this_rate;
|
|
*rate_tokenonly = this_rate_tokenonly;
|
|
*distortion = this_distortion;
|
|
*skippable = s;
|
|
}
|
|
}
|
|
|
|
x->e_mbd.mode_info_context->mbmi.uv_mode = mode_selected;
|
|
|
|
return best_rd;
|
|
}
|
|
|
|
int vp9_cost_mv_ref(VP9_COMP *cpi,
|
|
MB_PREDICTION_MODE m,
|
|
const int mode_context) {
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
int segment_id = xd->mode_info_context->mbmi.segment_id;
|
|
|
|
// Dont account for mode here if segment skip is enabled.
|
|
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
|
|
VP9_COMMON *pc = &cpi->common;
|
|
assert(NEARESTMV <= m && m <= NEWMV);
|
|
return cost_token(vp9_sb_mv_ref_tree,
|
|
pc->fc.inter_mode_probs[mode_context],
|
|
vp9_sb_mv_ref_encoding_array - NEARESTMV + m);
|
|
} else
|
|
return 0;
|
|
}
|
|
|
|
void vp9_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv) {
|
|
x->e_mbd.mode_info_context->mbmi.mode = mb;
|
|
x->e_mbd.mode_info_context->mbmi.mv[0].as_int = mv->as_int;
|
|
}
|
|
|
|
static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int_mv *frame_mv,
|
|
int mi_row, int mi_col,
|
|
int_mv single_newmv[MAX_REF_FRAMES],
|
|
int *rate_mv);
|
|
static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int mi_row, int mi_col,
|
|
int_mv *tmp_mv, int *rate_mv);
|
|
|
|
static int labels2mode(MACROBLOCK *x, int i,
|
|
MB_PREDICTION_MODE this_mode,
|
|
int_mv *this_mv, int_mv *this_second_mv,
|
|
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES],
|
|
int_mv seg_mvs[MAX_REF_FRAMES],
|
|
int_mv *best_ref_mv,
|
|
int_mv *second_best_ref_mv,
|
|
int *mvjcost, int *mvcost[2], VP9_COMP *cpi) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mic = xd->mode_info_context;
|
|
MB_MODE_INFO * mbmi = &mic->mbmi;
|
|
int cost = 0, thismvcost = 0;
|
|
int idx, idy;
|
|
int bw = 1 << b_width_log2(mbmi->sb_type);
|
|
int bh = 1 << b_height_log2(mbmi->sb_type);
|
|
|
|
/* We have to be careful retrieving previously-encoded motion vectors.
|
|
Ones from this macroblock have to be pulled from the BLOCKD array
|
|
as they have not yet made it to the bmi array in our MB_MODE_INFO. */
|
|
MB_PREDICTION_MODE m;
|
|
|
|
// the only time we should do costing for new motion vector or mode
|
|
// is when we are on a new label (jbb May 08, 2007)
|
|
switch (m = this_mode) {
|
|
case NEWMV:
|
|
this_mv->as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
|
|
thismvcost = vp9_mv_bit_cost(this_mv, best_ref_mv, mvjcost, mvcost,
|
|
102, xd->allow_high_precision_mv);
|
|
if (mbmi->ref_frame[1] > 0) {
|
|
this_second_mv->as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
|
|
thismvcost += vp9_mv_bit_cost(this_second_mv, second_best_ref_mv,
|
|
mvjcost, mvcost, 102,
|
|
xd->allow_high_precision_mv);
|
|
}
|
|
break;
|
|
case NEARESTMV:
|
|
this_mv->as_int = frame_mv[NEARESTMV][mbmi->ref_frame[0]].as_int;
|
|
if (mbmi->ref_frame[1] > 0)
|
|
this_second_mv->as_int =
|
|
frame_mv[NEARESTMV][mbmi->ref_frame[1]].as_int;
|
|
break;
|
|
case NEARMV:
|
|
this_mv->as_int = frame_mv[NEARMV][mbmi->ref_frame[0]].as_int;
|
|
if (mbmi->ref_frame[1] > 0)
|
|
this_second_mv->as_int =
|
|
frame_mv[NEARMV][mbmi->ref_frame[1]].as_int;
|
|
break;
|
|
case ZEROMV:
|
|
this_mv->as_int = 0;
|
|
if (mbmi->ref_frame[1] > 0)
|
|
this_second_mv->as_int = 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
cost = vp9_cost_mv_ref(cpi, this_mode,
|
|
mbmi->mb_mode_context[mbmi->ref_frame[0]]);
|
|
|
|
mic->bmi[i].as_mv[0].as_int = this_mv->as_int;
|
|
if (mbmi->ref_frame[1] > 0)
|
|
mic->bmi[i].as_mv[1].as_int = this_second_mv->as_int;
|
|
|
|
x->partition_info->bmi[i].mode = m;
|
|
x->partition_info->bmi[i].mv.as_int = this_mv->as_int;
|
|
if (mbmi->ref_frame[1] > 0)
|
|
x->partition_info->bmi[i].second_mv.as_int = this_second_mv->as_int;
|
|
for (idy = 0; idy < bh; ++idy) {
|
|
for (idx = 0; idx < bw; ++idx) {
|
|
vpx_memcpy(&mic->bmi[i + idy * 2 + idx],
|
|
&mic->bmi[i], sizeof(mic->bmi[i]));
|
|
vpx_memcpy(&x->partition_info->bmi[i + idy * 2 + idx],
|
|
&x->partition_info->bmi[i],
|
|
sizeof(x->partition_info->bmi[i]));
|
|
}
|
|
}
|
|
|
|
cost += thismvcost;
|
|
return cost;
|
|
}
|
|
|
|
static int64_t encode_inter_mb_segment(VP9_COMMON *const cm,
|
|
MACROBLOCK *x,
|
|
int i,
|
|
int *labelyrate,
|
|
int64_t *distortion,
|
|
ENTROPY_CONTEXT *ta,
|
|
ENTROPY_CONTEXT *tl) {
|
|
int k;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type;
|
|
int bwl = b_width_log2(bsize), bw = 1 << bwl;
|
|
int bhl = b_height_log2(bsize), bh = 1 << bhl;
|
|
int idx, idy;
|
|
const int src_stride = x->plane[0].src.stride;
|
|
uint8_t* const src =
|
|
raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
|
|
x->plane[0].src.buf, src_stride);
|
|
int16_t* src_diff =
|
|
raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, i,
|
|
x->plane[0].src_diff);
|
|
int16_t* coeff = BLOCK_OFFSET(x->plane[0].coeff, 16, i);
|
|
uint8_t* const pre =
|
|
raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
|
|
xd->plane[0].pre[0].buf,
|
|
xd->plane[0].pre[0].stride);
|
|
uint8_t* const dst =
|
|
raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
|
|
xd->plane[0].dst.buf,
|
|
xd->plane[0].dst.stride);
|
|
int64_t thisdistortion = 0;
|
|
int thisrate = 0;
|
|
|
|
*labelyrate = 0;
|
|
*distortion = 0;
|
|
|
|
vp9_build_inter_predictor(pre,
|
|
xd->plane[0].pre[0].stride,
|
|
dst,
|
|
xd->plane[0].dst.stride,
|
|
&xd->mode_info_context->bmi[i].as_mv[0],
|
|
&xd->scale_factor[0],
|
|
4 * bw, 4 * bh, 0 /* no avg */, &xd->subpix,
|
|
MV_PRECISION_Q3);
|
|
|
|
// TODO(debargha): Make this work properly with the
|
|
// implicit-compoundinter-weight experiment when implicit
|
|
// weighting for splitmv modes is turned on.
|
|
if (xd->mode_info_context->mbmi.ref_frame[1] > 0) {
|
|
uint8_t* const second_pre =
|
|
raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i,
|
|
xd->plane[0].pre[1].buf,
|
|
xd->plane[0].pre[1].stride);
|
|
vp9_build_inter_predictor(second_pre, xd->plane[0].pre[1].stride,
|
|
dst, xd->plane[0].dst.stride,
|
|
&xd->mode_info_context->bmi[i].as_mv[1],
|
|
&xd->scale_factor[1], 4 * bw, 4 * bh, 1,
|
|
&xd->subpix, MV_PRECISION_Q3);
|
|
}
|
|
|
|
vp9_subtract_block(4 * bh, 4 * bw, src_diff, 8,
|
|
src, src_stride,
|
|
dst, xd->plane[0].dst.stride);
|
|
|
|
k = i;
|
|
for (idy = 0; idy < bh; ++idy) {
|
|
for (idx = 0; idx < bw; ++idx) {
|
|
k += (idy * 2 + idx);
|
|
src_diff = raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, k,
|
|
x->plane[0].src_diff);
|
|
coeff = BLOCK_OFFSET(x->plane[0].coeff, 16, k);
|
|
x->fwd_txm4x4(src_diff, coeff, 16);
|
|
x->quantize_b_4x4(x, k, DCT_DCT, 16);
|
|
thisdistortion += vp9_block_error(coeff,
|
|
BLOCK_OFFSET(xd->plane[0].dqcoeff,
|
|
k, 16), 16);
|
|
thisrate += cost_coeffs(cm, x, 0, k, PLANE_TYPE_Y_WITH_DC,
|
|
ta + (k & 1),
|
|
tl + (k >> 1), TX_4X4, 16);
|
|
}
|
|
}
|
|
*distortion += thisdistortion;
|
|
*labelyrate += thisrate;
|
|
|
|
*distortion >>= 2;
|
|
return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
|
|
}
|
|
|
|
typedef struct {
|
|
int_mv *ref_mv, *second_ref_mv;
|
|
int_mv mvp;
|
|
|
|
int64_t segment_rd;
|
|
int r;
|
|
int64_t d;
|
|
int segment_yrate;
|
|
MB_PREDICTION_MODE modes[4];
|
|
int_mv mvs[4], second_mvs[4];
|
|
int eobs[4];
|
|
int mvthresh;
|
|
} BEST_SEG_INFO;
|
|
|
|
static INLINE int mv_check_bounds(MACROBLOCK *x, int_mv *mv) {
|
|
int r = 0;
|
|
r |= (mv->as_mv.row >> 3) < x->mv_row_min;
|
|
r |= (mv->as_mv.row >> 3) > x->mv_row_max;
|
|
r |= (mv->as_mv.col >> 3) < x->mv_col_min;
|
|
r |= (mv->as_mv.col >> 3) > x->mv_col_max;
|
|
return r;
|
|
}
|
|
|
|
static enum BlockSize get_block_size(int bw, int bh) {
|
|
if (bw == 4 && bh == 4)
|
|
return BLOCK_4X4;
|
|
|
|
if (bw == 4 && bh == 8)
|
|
return BLOCK_4X8;
|
|
|
|
if (bw == 8 && bh == 4)
|
|
return BLOCK_8X4;
|
|
|
|
if (bw == 8 && bh == 8)
|
|
return BLOCK_8X8;
|
|
|
|
if (bw == 8 && bh == 16)
|
|
return BLOCK_8X16;
|
|
|
|
if (bw == 16 && bh == 8)
|
|
return BLOCK_16X8;
|
|
|
|
if (bw == 16 && bh == 16)
|
|
return BLOCK_16X16;
|
|
|
|
if (bw == 32 && bh == 32)
|
|
return BLOCK_32X32;
|
|
|
|
if (bw == 32 && bh == 16)
|
|
return BLOCK_32X16;
|
|
|
|
if (bw == 16 && bh == 32)
|
|
return BLOCK_16X32;
|
|
|
|
if (bw == 64 && bh == 32)
|
|
return BLOCK_64X32;
|
|
|
|
if (bw == 32 && bh == 64)
|
|
return BLOCK_32X64;
|
|
|
|
if (bw == 64 && bh == 64)
|
|
return BLOCK_64X64;
|
|
|
|
assert(0);
|
|
return -1;
|
|
}
|
|
|
|
static INLINE void mi_buf_shift(MACROBLOCK *x, int i) {
|
|
MB_MODE_INFO *mbmi = &x->e_mbd.mode_info_context->mbmi;
|
|
x->plane[0].src.buf =
|
|
raster_block_offset_uint8(&x->e_mbd, BLOCK_SIZE_SB8X8, 0, i,
|
|
x->plane[0].src.buf,
|
|
x->plane[0].src.stride);
|
|
assert(((intptr_t)x->e_mbd.plane[0].pre[0].buf & 0x7) == 0);
|
|
x->e_mbd.plane[0].pre[0].buf =
|
|
raster_block_offset_uint8(&x->e_mbd, BLOCK_SIZE_SB8X8, 0, i,
|
|
x->e_mbd.plane[0].pre[0].buf,
|
|
x->e_mbd.plane[0].pre[0].stride);
|
|
if (mbmi->ref_frame[1])
|
|
x->e_mbd.plane[0].pre[1].buf =
|
|
raster_block_offset_uint8(&x->e_mbd, BLOCK_SIZE_SB8X8, 0, i,
|
|
x->e_mbd.plane[0].pre[1].buf,
|
|
x->e_mbd.plane[0].pre[1].stride);
|
|
}
|
|
|
|
static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src,
|
|
struct buf_2d orig_pre[2]) {
|
|
MB_MODE_INFO *mbmi = &x->e_mbd.mode_info_context->mbmi;
|
|
x->plane[0].src = orig_src;
|
|
x->e_mbd.plane[0].pre[0] = orig_pre[0];
|
|
if (mbmi->ref_frame[1])
|
|
x->e_mbd.plane[0].pre[1] = orig_pre[1];
|
|
}
|
|
|
|
static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x,
|
|
BEST_SEG_INFO *bsi,
|
|
int_mv seg_mvs[4][MAX_REF_FRAMES],
|
|
int mi_row, int mi_col) {
|
|
int i, j, br = 0, rate = 0, sbr = 0, idx, idy;
|
|
int64_t bd = 0, sbd = 0;
|
|
MB_PREDICTION_MODE this_mode;
|
|
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
|
|
const int label_count = 4;
|
|
int64_t this_segment_rd = 0, other_segment_rd;
|
|
int label_mv_thresh;
|
|
int segmentyrate = 0;
|
|
int best_eobs[4] = { 0 };
|
|
BLOCK_SIZE_TYPE bsize = mbmi->sb_type;
|
|
int bwl = b_width_log2(bsize), bw = 1 << bwl;
|
|
int bhl = b_height_log2(bsize), bh = 1 << bhl;
|
|
vp9_variance_fn_ptr_t *v_fn_ptr;
|
|
ENTROPY_CONTEXT t_above[4], t_left[4];
|
|
ENTROPY_CONTEXT t_above_b[4], t_left_b[4];
|
|
|
|
vpx_memcpy(t_above, x->e_mbd.plane[0].above_context, sizeof(t_above));
|
|
vpx_memcpy(t_left, x->e_mbd.plane[0].left_context, sizeof(t_left));
|
|
|
|
v_fn_ptr = &cpi->fn_ptr[get_block_size(4 << bwl, 4 << bhl)];
|
|
|
|
// 64 makes this threshold really big effectively
|
|
// making it so that we very rarely check mvs on
|
|
// segments. setting this to 1 would make mv thresh
|
|
// roughly equal to what it is for macroblocks
|
|
label_mv_thresh = 1 * bsi->mvthresh / label_count;
|
|
|
|
// Segmentation method overheads
|
|
other_segment_rd = this_segment_rd;
|
|
|
|
for (idy = 0; idy < 2; idy += bh) {
|
|
for (idx = 0; idx < 2; idx += bw) {
|
|
// TODO(jingning,rbultje): rewrite the rate-distortion optimization
|
|
// loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop
|
|
int_mv mode_mv[MB_MODE_COUNT], second_mode_mv[MB_MODE_COUNT];
|
|
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
|
|
int64_t best_label_rd = INT64_MAX, best_other_rd = INT64_MAX;
|
|
MB_PREDICTION_MODE mode_selected = ZEROMV;
|
|
int bestlabelyrate = 0;
|
|
i = idy * 2 + idx;
|
|
|
|
frame_mv[ZEROMV][mbmi->ref_frame[0]].as_int = 0;
|
|
frame_mv[ZEROMV][mbmi->ref_frame[1]].as_int = 0;
|
|
vp9_append_sub8x8_mvs_for_idx(&cpi->common, &x->e_mbd,
|
|
&frame_mv[NEARESTMV][mbmi->ref_frame[0]],
|
|
&frame_mv[NEARMV][mbmi->ref_frame[0]],
|
|
i, 0);
|
|
if (mbmi->ref_frame[1] > 0)
|
|
vp9_append_sub8x8_mvs_for_idx(&cpi->common, &x->e_mbd,
|
|
&frame_mv[NEARESTMV][mbmi->ref_frame[1]],
|
|
&frame_mv[NEARMV][mbmi->ref_frame[1]],
|
|
i, 1);
|
|
|
|
// search for the best motion vector on this segment
|
|
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
|
|
int64_t this_rd;
|
|
int64_t distortion;
|
|
int labelyrate;
|
|
ENTROPY_CONTEXT t_above_s[4], t_left_s[4];
|
|
const struct buf_2d orig_src = x->plane[0].src;
|
|
struct buf_2d orig_pre[2];
|
|
|
|
vpx_memcpy(orig_pre, x->e_mbd.plane[0].pre, sizeof(orig_pre));
|
|
|
|
vpx_memcpy(t_above_s, t_above, sizeof(t_above_s));
|
|
vpx_memcpy(t_left_s, t_left, sizeof(t_left_s));
|
|
|
|
// motion search for newmv (single predictor case only)
|
|
if (mbmi->ref_frame[1] <= 0 && this_mode == NEWMV) {
|
|
int step_param = 0;
|
|
int further_steps;
|
|
int thissme, bestsme = INT_MAX;
|
|
int sadpb = x->sadperbit4;
|
|
int_mv mvp_full;
|
|
|
|
/* Is the best so far sufficiently good that we cant justify doing
|
|
* and new motion search. */
|
|
if (best_label_rd < label_mv_thresh)
|
|
break;
|
|
|
|
if (cpi->compressor_speed) {
|
|
// use previous block's result as next block's MV predictor.
|
|
if (i > 0) {
|
|
bsi->mvp.as_int =
|
|
x->e_mbd.mode_info_context->bmi[i - 1].as_mv[0].as_int;
|
|
if (i == 2)
|
|
bsi->mvp.as_int =
|
|
x->e_mbd.mode_info_context->bmi[i - 2].as_mv[0].as_int;
|
|
step_param = 2;
|
|
}
|
|
}
|
|
|
|
further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
|
|
|
|
mvp_full.as_mv.row = bsi->mvp.as_mv.row >> 3;
|
|
mvp_full.as_mv.col = bsi->mvp.as_mv.col >> 3;
|
|
|
|
// adjust src pointer for this block
|
|
mi_buf_shift(x, i);
|
|
bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param,
|
|
sadpb, further_steps, 0, v_fn_ptr,
|
|
bsi->ref_mv, &mode_mv[NEWMV]);
|
|
|
|
// Should we do a full search (best quality only)
|
|
if (cpi->compressor_speed == 0) {
|
|
/* Check if mvp_full is within the range. */
|
|
clamp_mv(&mvp_full, x->mv_col_min, x->mv_col_max,
|
|
x->mv_row_min, x->mv_row_max);
|
|
|
|
thissme = cpi->full_search_sad(x, &mvp_full,
|
|
sadpb, 16, v_fn_ptr,
|
|
x->nmvjointcost, x->mvcost,
|
|
bsi->ref_mv, i);
|
|
|
|
if (thissme < bestsme) {
|
|
bestsme = thissme;
|
|
mode_mv[NEWMV].as_int =
|
|
x->e_mbd.mode_info_context->bmi[i].as_mv[0].as_int;
|
|
} else {
|
|
/* The full search result is actually worse so re-instate the
|
|
* previous best vector */
|
|
x->e_mbd.mode_info_context->bmi[i].as_mv[0].as_int =
|
|
mode_mv[NEWMV].as_int;
|
|
}
|
|
}
|
|
|
|
if (bestsme < INT_MAX) {
|
|
int distortion;
|
|
unsigned int sse;
|
|
cpi->find_fractional_mv_step(x, &mode_mv[NEWMV],
|
|
bsi->ref_mv, x->errorperbit, v_fn_ptr,
|
|
x->nmvjointcost, x->mvcost,
|
|
&distortion, &sse);
|
|
|
|
// safe motion search result for use in compound prediction
|
|
seg_mvs[i][mbmi->ref_frame[0]].as_int = mode_mv[NEWMV].as_int;
|
|
}
|
|
|
|
// restore src pointers
|
|
mi_buf_restore(x, orig_src, orig_pre);
|
|
} else if (mbmi->ref_frame[1] > 0 && this_mode == NEWMV) {
|
|
if (seg_mvs[i][mbmi->ref_frame[1]].as_int == INVALID_MV ||
|
|
seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV)
|
|
continue;
|
|
|
|
// adjust src pointers
|
|
mi_buf_shift(x, i);
|
|
if (cpi->sf.comp_inter_joint_search_thresh < bsize) {
|
|
int rate_mv;
|
|
joint_motion_search(cpi, x, bsize, frame_mv[this_mode],
|
|
mi_row, mi_col, seg_mvs[i],
|
|
&rate_mv);
|
|
seg_mvs[i][mbmi->ref_frame[0]].as_int =
|
|
frame_mv[this_mode][mbmi->ref_frame[0]].as_int;
|
|
seg_mvs[i][mbmi->ref_frame[1]].as_int =
|
|
frame_mv[this_mode][mbmi->ref_frame[1]].as_int;
|
|
}
|
|
// restore src pointers
|
|
mi_buf_restore(x, orig_src, orig_pre);
|
|
}
|
|
|
|
rate = labels2mode(x, i, this_mode, &mode_mv[this_mode],
|
|
&second_mode_mv[this_mode], frame_mv, seg_mvs[i],
|
|
bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost,
|
|
x->mvcost, cpi);
|
|
|
|
// Trap vectors that reach beyond the UMV borders
|
|
if (((mode_mv[this_mode].as_mv.row >> 3) < x->mv_row_min) ||
|
|
((mode_mv[this_mode].as_mv.row >> 3) > x->mv_row_max) ||
|
|
((mode_mv[this_mode].as_mv.col >> 3) < x->mv_col_min) ||
|
|
((mode_mv[this_mode].as_mv.col >> 3) > x->mv_col_max)) {
|
|
continue;
|
|
}
|
|
if (mbmi->ref_frame[1] > 0 &&
|
|
mv_check_bounds(x, &second_mode_mv[this_mode]))
|
|
continue;
|
|
|
|
this_rd = encode_inter_mb_segment(&cpi->common,
|
|
x, i, &labelyrate,
|
|
&distortion, t_above_s, t_left_s);
|
|
this_rd += RDCOST(x->rdmult, x->rddiv, rate, 0);
|
|
rate += labelyrate;
|
|
|
|
if (this_rd < best_label_rd) {
|
|
sbr = rate;
|
|
sbd = distortion;
|
|
bestlabelyrate = labelyrate;
|
|
mode_selected = this_mode;
|
|
best_label_rd = this_rd;
|
|
best_eobs[i] = x->e_mbd.plane[0].eobs[i];
|
|
vpx_memcpy(t_above_b, t_above_s, sizeof(t_above_s));
|
|
vpx_memcpy(t_left_b, t_left_s, sizeof(t_left_s));
|
|
}
|
|
} /*for each 4x4 mode*/
|
|
|
|
vpx_memcpy(t_above, t_above_b, sizeof(t_above));
|
|
vpx_memcpy(t_left, t_left_b, sizeof(t_left));
|
|
|
|
labels2mode(x, i, mode_selected, &mode_mv[mode_selected],
|
|
&second_mode_mv[mode_selected], frame_mv, seg_mvs[i],
|
|
bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost,
|
|
x->mvcost, cpi);
|
|
|
|
br += sbr;
|
|
bd += sbd;
|
|
segmentyrate += bestlabelyrate;
|
|
this_segment_rd += best_label_rd;
|
|
other_segment_rd += best_other_rd;
|
|
|
|
for (j = 1; j < bh; ++j)
|
|
vpx_memcpy(&x->partition_info->bmi[i + j * 2],
|
|
&x->partition_info->bmi[i],
|
|
sizeof(x->partition_info->bmi[i]));
|
|
for (j = 1; j < bw; ++j)
|
|
vpx_memcpy(&x->partition_info->bmi[i + j],
|
|
&x->partition_info->bmi[i],
|
|
sizeof(x->partition_info->bmi[i]));
|
|
}
|
|
} /* for each label */
|
|
|
|
if (this_segment_rd < bsi->segment_rd) {
|
|
bsi->r = br;
|
|
bsi->d = bd;
|
|
bsi->segment_yrate = segmentyrate;
|
|
bsi->segment_rd = this_segment_rd;
|
|
|
|
// store everything needed to come back to this!!
|
|
for (i = 0; i < 4; i++) {
|
|
bsi->mvs[i].as_mv = x->partition_info->bmi[i].mv.as_mv;
|
|
if (mbmi->ref_frame[1] > 0)
|
|
bsi->second_mvs[i].as_mv = x->partition_info->bmi[i].second_mv.as_mv;
|
|
bsi->modes[i] = x->partition_info->bmi[i].mode;
|
|
bsi->eobs[i] = best_eobs[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
static int rd_pick_best_mbsegmentation(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int_mv *best_ref_mv,
|
|
int_mv *second_best_ref_mv,
|
|
int64_t best_rd,
|
|
int *returntotrate,
|
|
int *returnyrate,
|
|
int64_t *returndistortion,
|
|
int *skippable, int mvthresh,
|
|
int_mv seg_mvs[4][MAX_REF_FRAMES],
|
|
int mi_row, int mi_col) {
|
|
int i;
|
|
BEST_SEG_INFO bsi;
|
|
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
|
|
|
|
vpx_memset(&bsi, 0, sizeof(bsi));
|
|
|
|
bsi.segment_rd = best_rd;
|
|
bsi.ref_mv = best_ref_mv;
|
|
bsi.second_ref_mv = second_best_ref_mv;
|
|
bsi.mvp.as_int = best_ref_mv->as_int;
|
|
bsi.mvthresh = mvthresh;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
bsi.modes[i] = ZEROMV;
|
|
|
|
rd_check_segment_txsize(cpi, x, &bsi, seg_mvs, mi_row, mi_col);
|
|
|
|
/* set it to the best */
|
|
for (i = 0; i < 4; i++) {
|
|
x->e_mbd.mode_info_context->bmi[i].as_mv[0].as_int = bsi.mvs[i].as_int;
|
|
if (mbmi->ref_frame[1] > 0)
|
|
x->e_mbd.mode_info_context->bmi[i].as_mv[1].as_int =
|
|
bsi.second_mvs[i].as_int;
|
|
x->e_mbd.plane[0].eobs[i] = bsi.eobs[i];
|
|
}
|
|
|
|
/* save partitions */
|
|
x->partition_info->count = 4;
|
|
|
|
for (i = 0; i < x->partition_info->count; i++) {
|
|
x->partition_info->bmi[i].mode = bsi.modes[i];
|
|
x->partition_info->bmi[i].mv.as_mv = bsi.mvs[i].as_mv;
|
|
if (mbmi->ref_frame[1] > 0)
|
|
x->partition_info->bmi[i].second_mv.as_mv = bsi.second_mvs[i].as_mv;
|
|
}
|
|
/*
|
|
* used to set mbmi->mv.as_int
|
|
*/
|
|
x->partition_info->bmi[3].mv.as_int = bsi.mvs[3].as_int;
|
|
if (mbmi->ref_frame[1] > 0)
|
|
x->partition_info->bmi[3].second_mv.as_int = bsi.second_mvs[3].as_int;
|
|
|
|
*returntotrate = bsi.r;
|
|
*returndistortion = bsi.d;
|
|
*returnyrate = bsi.segment_yrate;
|
|
*skippable = vp9_sby_is_skippable(&x->e_mbd, BLOCK_SIZE_SB8X8);
|
|
mbmi->mode = bsi.modes[3];
|
|
|
|
return (int)(bsi.segment_rd);
|
|
}
|
|
|
|
static void mv_pred(VP9_COMP *cpi, MACROBLOCK *x,
|
|
uint8_t *ref_y_buffer, int ref_y_stride,
|
|
int ref_frame, enum BlockSize block_size ) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
|
|
int_mv this_mv;
|
|
int i;
|
|
int zero_seen = 0;
|
|
int best_index = 0;
|
|
int best_sad = INT_MAX;
|
|
int this_sad = INT_MAX;
|
|
|
|
uint8_t *src_y_ptr = x->plane[0].src.buf;
|
|
uint8_t *ref_y_ptr;
|
|
int row_offset, col_offset;
|
|
|
|
// Get the sad for each candidate reference mv
|
|
for (i = 0; i < MAX_MV_REF_CANDIDATES; i++) {
|
|
this_mv.as_int = mbmi->ref_mvs[ref_frame][i].as_int;
|
|
|
|
// The list is at an end if we see 0 for a second time.
|
|
if (!this_mv.as_int && zero_seen)
|
|
break;
|
|
zero_seen = zero_seen || !this_mv.as_int;
|
|
|
|
row_offset = this_mv.as_mv.row >> 3;
|
|
col_offset = this_mv.as_mv.col >> 3;
|
|
ref_y_ptr = ref_y_buffer + (ref_y_stride * row_offset) + col_offset;
|
|
|
|
// Find sad for current vector.
|
|
this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride,
|
|
ref_y_ptr, ref_y_stride,
|
|
0x7fffffff);
|
|
|
|
// Note if it is the best so far.
|
|
if (this_sad < best_sad) {
|
|
best_sad = this_sad;
|
|
best_index = i;
|
|
}
|
|
}
|
|
|
|
// Note the index of the mv that worked best in the reference list.
|
|
x->mv_best_ref_index[ref_frame] = best_index;
|
|
}
|
|
|
|
static void estimate_ref_frame_costs(VP9_COMP *cpi, int segment_id,
|
|
unsigned int *ref_costs_single,
|
|
unsigned int *ref_costs_comp,
|
|
vp9_prob *comp_mode_p) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
|
|
int seg_ref_active = vp9_segfeature_active(xd, segment_id,
|
|
SEG_LVL_REF_FRAME);
|
|
if (seg_ref_active) {
|
|
vpx_memset(ref_costs_single, 0, MAX_REF_FRAMES * sizeof(*ref_costs_single));
|
|
vpx_memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp));
|
|
*comp_mode_p = 128;
|
|
} else {
|
|
vp9_prob intra_inter_p = vp9_get_pred_prob(cm, xd, PRED_INTRA_INTER);
|
|
vp9_prob comp_inter_p = 128;
|
|
|
|
if (cm->comp_pred_mode == HYBRID_PREDICTION) {
|
|
comp_inter_p = vp9_get_pred_prob(cm, xd, PRED_COMP_INTER_INTER);
|
|
*comp_mode_p = comp_inter_p;
|
|
} else {
|
|
*comp_mode_p = 128;
|
|
}
|
|
|
|
ref_costs_single[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0);
|
|
|
|
if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) {
|
|
vp9_prob ref_single_p1 = vp9_get_pred_prob(cm, xd, PRED_SINGLE_REF_P1);
|
|
vp9_prob ref_single_p2 = vp9_get_pred_prob(cm, xd, PRED_SINGLE_REF_P2);
|
|
unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1);
|
|
|
|
if (cm->comp_pred_mode == HYBRID_PREDICTION)
|
|
base_cost += vp9_cost_bit(comp_inter_p, 0);
|
|
|
|
ref_costs_single[LAST_FRAME] = ref_costs_single[GOLDEN_FRAME] =
|
|
ref_costs_single[ALTREF_FRAME] = base_cost;
|
|
ref_costs_single[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0);
|
|
ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1);
|
|
ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1);
|
|
ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0);
|
|
ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1);
|
|
} else {
|
|
ref_costs_single[LAST_FRAME] = 512;
|
|
ref_costs_single[GOLDEN_FRAME] = 512;
|
|
ref_costs_single[ALTREF_FRAME] = 512;
|
|
}
|
|
if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY) {
|
|
vp9_prob ref_comp_p = vp9_get_pred_prob(cm, xd, PRED_COMP_REF_P);
|
|
unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1);
|
|
|
|
if (cm->comp_pred_mode == HYBRID_PREDICTION)
|
|
base_cost += vp9_cost_bit(comp_inter_p, 1);
|
|
|
|
ref_costs_comp[LAST_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 0);
|
|
ref_costs_comp[GOLDEN_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 1);
|
|
} else {
|
|
ref_costs_comp[LAST_FRAME] = 512;
|
|
ref_costs_comp[GOLDEN_FRAME] = 512;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
|
|
int mode_index,
|
|
PARTITION_INFO *partition,
|
|
int_mv *ref_mv,
|
|
int_mv *second_ref_mv,
|
|
int64_t comp_pred_diff[NB_PREDICTION_TYPES],
|
|
int64_t txfm_size_diff[NB_TXFM_MODES]) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
// Take a snapshot of the coding context so it can be
|
|
// restored if we decide to encode this way
|
|
ctx->skip = x->skip;
|
|
ctx->best_mode_index = mode_index;
|
|
ctx->mic = *xd->mode_info_context;
|
|
|
|
if (partition)
|
|
ctx->partition_info = *partition;
|
|
|
|
ctx->best_ref_mv.as_int = ref_mv->as_int;
|
|
ctx->second_best_ref_mv.as_int = second_ref_mv->as_int;
|
|
|
|
ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_PREDICTION_ONLY];
|
|
ctx->comp_pred_diff = (int)comp_pred_diff[COMP_PREDICTION_ONLY];
|
|
ctx->hybrid_pred_diff = (int)comp_pred_diff[HYBRID_PREDICTION];
|
|
|
|
memcpy(ctx->txfm_rd_diff, txfm_size_diff, sizeof(ctx->txfm_rd_diff));
|
|
}
|
|
|
|
static void setup_pred_block(const MACROBLOCKD *xd,
|
|
struct buf_2d dst[MAX_MB_PLANE],
|
|
const YV12_BUFFER_CONFIG *src,
|
|
int mi_row, int mi_col,
|
|
const struct scale_factors *scale,
|
|
const struct scale_factors *scale_uv) {
|
|
int i;
|
|
|
|
dst[0].buf = src->y_buffer;
|
|
dst[0].stride = src->y_stride;
|
|
dst[1].buf = src->u_buffer;
|
|
dst[2].buf = src->v_buffer;
|
|
dst[1].stride = dst[2].stride = src->uv_stride;
|
|
#if CONFIG_ALPHA
|
|
dst[3].buf = src->alpha_buffer;
|
|
dst[3].stride = src->alpha_stride;
|
|
#endif
|
|
|
|
// TODO(jkoleszar): Make scale factors per-plane data
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
setup_pred_plane(dst + i, dst[i].buf, dst[i].stride, mi_row, mi_col,
|
|
i ? scale_uv : scale,
|
|
xd->plane[i].subsampling_x, xd->plane[i].subsampling_y);
|
|
}
|
|
}
|
|
|
|
static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int idx, MV_REFERENCE_FRAME frame_type,
|
|
enum BlockSize block_size,
|
|
int mi_row, int mi_col,
|
|
int_mv frame_nearest_mv[MAX_REF_FRAMES],
|
|
int_mv frame_near_mv[MAX_REF_FRAMES],
|
|
struct buf_2d yv12_mb[4][MAX_MB_PLANE],
|
|
struct scale_factors scale[MAX_REF_FRAMES]) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
YV12_BUFFER_CONFIG *yv12 = &cm->yv12_fb[cpi->common.ref_frame_map[idx]];
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
|
|
|
|
// set up scaling factors
|
|
scale[frame_type] = cpi->common.active_ref_scale[frame_type - 1];
|
|
|
|
scale[frame_type].x_offset_q4 =
|
|
ROUND_POWER_OF_TWO(mi_col * MI_SIZE * scale[frame_type].x_scale_fp,
|
|
VP9_REF_SCALE_SHIFT) & 0xf;
|
|
scale[frame_type].y_offset_q4 =
|
|
ROUND_POWER_OF_TWO(mi_row * MI_SIZE * scale[frame_type].y_scale_fp,
|
|
VP9_REF_SCALE_SHIFT) & 0xf;
|
|
|
|
// TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
|
|
// use the UV scaling factors.
|
|
setup_pred_block(xd, yv12_mb[frame_type], yv12, mi_row, mi_col,
|
|
&scale[frame_type], &scale[frame_type]);
|
|
|
|
// Gets an initial list of candidate vectors from neighbours and orders them
|
|
vp9_find_mv_refs(&cpi->common, xd, xd->mode_info_context,
|
|
xd->prev_mode_info_context,
|
|
frame_type,
|
|
mbmi->ref_mvs[frame_type],
|
|
cpi->common.ref_frame_sign_bias);
|
|
|
|
// Candidate refinement carried out at encoder and decoder
|
|
vp9_find_best_ref_mvs(xd,
|
|
mbmi->ref_mvs[frame_type],
|
|
&frame_nearest_mv[frame_type],
|
|
&frame_near_mv[frame_type]);
|
|
|
|
// Further refinement that is encode side only to test the top few candidates
|
|
// in full and choose the best as the centre point for subsequent searches.
|
|
// The current implementation doesn't support scaling.
|
|
if (scale[frame_type].x_scale_fp == (1 << VP9_REF_SCALE_SHIFT) &&
|
|
scale[frame_type].y_scale_fp == (1 << VP9_REF_SCALE_SHIFT))
|
|
mv_pred(cpi, x, yv12_mb[frame_type][0].buf, yv12->y_stride,
|
|
frame_type, block_size);
|
|
}
|
|
|
|
static YV12_BUFFER_CONFIG *get_scaled_ref_frame(VP9_COMP *cpi, int ref_frame) {
|
|
YV12_BUFFER_CONFIG *scaled_ref_frame = NULL;
|
|
int fb = get_ref_frame_idx(cpi, ref_frame);
|
|
if (cpi->scaled_ref_idx[fb] != cpi->common.ref_frame_map[fb])
|
|
scaled_ref_frame = &cpi->common.yv12_fb[cpi->scaled_ref_idx[fb]];
|
|
return scaled_ref_frame;
|
|
}
|
|
|
|
static double linear_interpolate(double x, int ntab, double step,
|
|
const double *tab) {
|
|
double y = x / step;
|
|
int d = (int) y;
|
|
double a = y - d;
|
|
if (d >= ntab - 1)
|
|
return tab[ntab - 1];
|
|
else
|
|
return tab[d] * (1 - a) + tab[d + 1] * a;
|
|
}
|
|
|
|
static double model_rate_norm(double x) {
|
|
// Normalized rate
|
|
// This function models the rate for a Laplacian source
|
|
// source with given variance when quantized with a uniform quantizer
|
|
// with given stepsize. The closed form expressions are in:
|
|
// Hang and Chen, "Source Model for transform video coder and its
|
|
// application - Part I: Fundamental Theory", IEEE Trans. Circ.
|
|
// Sys. for Video Tech., April 1997.
|
|
static const double rate_tab_step = 0.125;
|
|
static const double rate_tab[] = {
|
|
256.0000, 4.944453, 3.949276, 3.371593,
|
|
2.965771, 2.654550, 2.403348, 2.193612,
|
|
2.014208, 1.857921, 1.719813, 1.596364,
|
|
1.484979, 1.383702, 1.291025, 1.205767,
|
|
1.126990, 1.053937, 0.985991, 0.922644,
|
|
0.863472, 0.808114, 0.756265, 0.707661,
|
|
0.662070, 0.619287, 0.579129, 0.541431,
|
|
0.506043, 0.472828, 0.441656, 0.412411,
|
|
0.384980, 0.359260, 0.335152, 0.312563,
|
|
0.291407, 0.271600, 0.253064, 0.235723,
|
|
0.219508, 0.204351, 0.190189, 0.176961,
|
|
0.164611, 0.153083, 0.142329, 0.132298,
|
|
0.122945, 0.114228, 0.106106, 0.098541,
|
|
0.091496, 0.084937, 0.078833, 0.073154,
|
|
0.067872, 0.062959, 0.058392, 0.054147,
|
|
0.050202, 0.046537, 0.043133, 0.039971,
|
|
0.037036, 0.034312, 0.031783, 0.029436,
|
|
0.027259, 0.025240, 0.023367, 0.021631,
|
|
0.020021, 0.018528, 0.017145, 0.015863,
|
|
0.014676, 0.013575, 0.012556, 0.011612,
|
|
0.010738, 0.009929, 0.009180, 0.008487,
|
|
0.007845, 0.007251, 0.006701, 0.006193,
|
|
0.005722, 0.005287, 0.004884, 0.004512,
|
|
0.004168, 0.003850, 0.003556, 0.003284,
|
|
0.003032, 0.002800, 0.002585, 0.002386,
|
|
0.002203, 0.002034, 0.001877, 0.001732,
|
|
0.001599, 0.001476, 0.001362, 0.001256,
|
|
0.001159, 0.001069, 0.000987, 0.000910,
|
|
0.000840, 0.000774, 0.000714, 0.000659,
|
|
0.000608, 0.000560, 0.000517, 0.000476,
|
|
0.000439, 0.000405, 0.000373, 0.000344,
|
|
0.000317, 0.000292, 0.000270, 0.000248,
|
|
0.000229, 0.000211, 0.000195, 0.000179,
|
|
0.000165, 0.000152, 0.000140, 0.000129,
|
|
0.000119, 0.000110, 0.000101, 0.000093,
|
|
0.000086, 0.000079, 0.000073, 0.000067,
|
|
0.000062, 0.000057, 0.000052, 0.000048,
|
|
0.000044, 0.000041, 0.000038, 0.000035,
|
|
0.000032, 0.000029, 0.000027, 0.000025,
|
|
0.000023, 0.000021, 0.000019, 0.000018,
|
|
0.000016, 0.000015, 0.000014, 0.000013,
|
|
0.000012, 0.000011, 0.000010, 0.000009,
|
|
0.000008, 0.000008, 0.000007, 0.000007,
|
|
0.000006, 0.000006, 0.000005, 0.000005,
|
|
0.000004, 0.000004, 0.000004, 0.000003,
|
|
0.000003, 0.000003, 0.000003, 0.000002,
|
|
0.000002, 0.000002, 0.000002, 0.000002,
|
|
0.000002, 0.000001, 0.000001, 0.000001,
|
|
0.000001, 0.000001, 0.000001, 0.000001,
|
|
0.000001, 0.000001, 0.000001, 0.000001,
|
|
0.000001, 0.000001, 0.000000, 0.000000,
|
|
};
|
|
const int rate_tab_num = sizeof(rate_tab)/sizeof(rate_tab[0]);
|
|
assert(x >= 0.0);
|
|
return linear_interpolate(x, rate_tab_num, rate_tab_step, rate_tab);
|
|
}
|
|
|
|
static double model_dist_norm(double x) {
|
|
// Normalized distortion
|
|
// This function models the normalized distortion for a Laplacian source
|
|
// source with given variance when quantized with a uniform quantizer
|
|
// with given stepsize. The closed form expression is:
|
|
// Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
|
|
// where x = qpstep / sqrt(variance)
|
|
// Note the actual distortion is Dn * variance.
|
|
static const double dist_tab_step = 0.25;
|
|
static const double dist_tab[] = {
|
|
0.000000, 0.005189, 0.020533, 0.045381,
|
|
0.078716, 0.119246, 0.165508, 0.215979,
|
|
0.269166, 0.323686, 0.378318, 0.432034,
|
|
0.484006, 0.533607, 0.580389, 0.624063,
|
|
0.664475, 0.701581, 0.735418, 0.766092,
|
|
0.793751, 0.818575, 0.840761, 0.860515,
|
|
0.878045, 0.893554, 0.907238, 0.919281,
|
|
0.929857, 0.939124, 0.947229, 0.954306,
|
|
0.960475, 0.965845, 0.970512, 0.974563,
|
|
0.978076, 0.981118, 0.983750, 0.986024,
|
|
0.987989, 0.989683, 0.991144, 0.992402,
|
|
0.993485, 0.994417, 0.995218, 0.995905,
|
|
0.996496, 0.997002, 0.997437, 0.997809,
|
|
0.998128, 0.998401, 0.998635, 0.998835,
|
|
0.999006, 0.999152, 0.999277, 0.999384,
|
|
0.999475, 0.999553, 0.999619, 0.999676,
|
|
0.999724, 0.999765, 0.999800, 0.999830,
|
|
0.999855, 0.999877, 0.999895, 0.999911,
|
|
0.999924, 0.999936, 0.999945, 0.999954,
|
|
0.999961, 0.999967, 0.999972, 0.999976,
|
|
0.999980, 0.999983, 0.999985, 0.999988,
|
|
0.999989, 0.999991, 0.999992, 0.999994,
|
|
0.999995, 0.999995, 0.999996, 0.999997,
|
|
0.999997, 0.999998, 0.999998, 0.999998,
|
|
0.999999, 0.999999, 0.999999, 0.999999,
|
|
0.999999, 0.999999, 0.999999, 1.000000,
|
|
};
|
|
const int dist_tab_num = sizeof(dist_tab)/sizeof(dist_tab[0]);
|
|
assert(x >= 0.0);
|
|
return linear_interpolate(x, dist_tab_num, dist_tab_step, dist_tab);
|
|
}
|
|
|
|
static void model_rd_from_var_lapndz(int var, int n, int qstep,
|
|
int *rate, int64_t *dist) {
|
|
// This function models the rate and distortion for a Laplacian
|
|
// source with given variance when quantized with a uniform quantizer
|
|
// with given stepsize. The closed form expression is:
|
|
// Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
|
|
// where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance)
|
|
vp9_clear_system_state();
|
|
if (var == 0 || n == 0) {
|
|
*rate = 0;
|
|
*dist = 0;
|
|
} else {
|
|
double D, R;
|
|
double s2 = (double) var / n;
|
|
double x = qstep / sqrt(s2);
|
|
// TODO(debargha): Make the modeling functions take (qstep^2 / s2)
|
|
// as argument rather than qstep / sqrt(s2) to obviate the need for
|
|
// the sqrt() operation.
|
|
D = model_dist_norm(x);
|
|
R = model_rate_norm(x);
|
|
if (R < 0) {
|
|
R = 0;
|
|
D = var;
|
|
}
|
|
*rate = (n * R * 256 + 0.5);
|
|
*dist = (n * D * s2 + 0.5);
|
|
}
|
|
vp9_clear_system_state();
|
|
}
|
|
|
|
static enum BlockSize get_plane_block_size(BLOCK_SIZE_TYPE bsize,
|
|
struct macroblockd_plane *pd) {
|
|
return get_block_size(plane_block_width(bsize, pd),
|
|
plane_block_height(bsize, pd));
|
|
}
|
|
|
|
static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE_TYPE bsize,
|
|
MACROBLOCK *x, MACROBLOCKD *xd,
|
|
int *out_rate_sum, int64_t *out_dist_sum) {
|
|
// Note our transform coeffs are 8 times an orthogonal transform.
|
|
// Hence quantizer step is also 8 times. To get effective quantizer
|
|
// we need to divide by 8 before sending to modeling function.
|
|
unsigned int sse;
|
|
int i, rate_sum = 0;
|
|
int64_t dist_sum = 0;
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
struct macroblock_plane *const p = &x->plane[i];
|
|
struct macroblockd_plane *const pd = &xd->plane[i];
|
|
|
|
// TODO(dkovalev) the same code in get_plane_block_size
|
|
const int bw = plane_block_width(bsize, pd);
|
|
const int bh = plane_block_height(bsize, pd);
|
|
const enum BlockSize bs = get_block_size(bw, bh);
|
|
int rate;
|
|
int64_t dist;
|
|
cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride,
|
|
pd->dst.buf, pd->dst.stride, &sse);
|
|
|
|
model_rd_from_var_lapndz(sse, bw * bh, pd->dequant[1] >> 3, &rate, &dist);
|
|
|
|
rate_sum += rate;
|
|
dist_sum += dist;
|
|
}
|
|
|
|
*out_rate_sum = rate_sum;
|
|
*out_dist_sum = dist_sum << 4;
|
|
}
|
|
|
|
static INLINE int get_switchable_rate(VP9_COMMON *cm, MACROBLOCK *x) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
|
|
|
|
const int c = vp9_get_pred_context(cm, xd, PRED_SWITCHABLE_INTERP);
|
|
const int m = vp9_switchable_interp_map[mbmi->interp_filter];
|
|
return SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs[c][m];
|
|
}
|
|
|
|
static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int mi_row, int mi_col,
|
|
int_mv *tmp_mv, int *rate_mv) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
|
|
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}};
|
|
int bestsme = INT_MAX;
|
|
int further_steps, step_param;
|
|
int sadpb = x->sadperbit16;
|
|
int_mv mvp_full;
|
|
int ref = mbmi->ref_frame[0];
|
|
int_mv ref_mv = mbmi->ref_mvs[ref][0];
|
|
const enum BlockSize block_size = get_plane_block_size(bsize, &xd->plane[0]);
|
|
|
|
int tmp_col_min = x->mv_col_min;
|
|
int tmp_col_max = x->mv_col_max;
|
|
int tmp_row_min = x->mv_row_min;
|
|
int tmp_row_max = x->mv_row_max;
|
|
|
|
YV12_BUFFER_CONFIG *scaled_ref_frame = get_scaled_ref_frame(cpi, ref);
|
|
|
|
if (scaled_ref_frame) {
|
|
int i;
|
|
// Swap out the reference frame for a version that's been scaled to
|
|
// match the resolution of the current frame, allowing the existing
|
|
// motion search code to be used without additional modifications.
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
backup_yv12[i] = xd->plane[i].pre[0];
|
|
|
|
setup_pre_planes(xd, scaled_ref_frame, NULL, mi_row, mi_col,
|
|
NULL, NULL);
|
|
}
|
|
|
|
vp9_clamp_mv_min_max(x, &ref_mv);
|
|
|
|
step_param = vp9_init_search_range(
|
|
cpi, MIN(cpi->common.width, cpi->common.height));
|
|
|
|
// mvp_full.as_int = ref_mv[0].as_int;
|
|
mvp_full.as_int =
|
|
mbmi->ref_mvs[ref][x->mv_best_ref_index[ref]].as_int;
|
|
|
|
mvp_full.as_mv.col >>= 3;
|
|
mvp_full.as_mv.row >>= 3;
|
|
|
|
// Further step/diamond searches as necessary
|
|
further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
|
|
|
|
bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param,
|
|
sadpb, further_steps, 1,
|
|
&cpi->fn_ptr[block_size],
|
|
&ref_mv, tmp_mv);
|
|
|
|
x->mv_col_min = tmp_col_min;
|
|
x->mv_col_max = tmp_col_max;
|
|
x->mv_row_min = tmp_row_min;
|
|
x->mv_row_max = tmp_row_max;
|
|
|
|
if (bestsme < INT_MAX) {
|
|
int dis; /* TODO: use dis in distortion calculation later. */
|
|
unsigned int sse;
|
|
cpi->find_fractional_mv_step(x, tmp_mv, &ref_mv,
|
|
x->errorperbit,
|
|
&cpi->fn_ptr[block_size],
|
|
x->nmvjointcost, x->mvcost,
|
|
&dis, &sse);
|
|
}
|
|
*rate_mv = vp9_mv_bit_cost(tmp_mv, &ref_mv,
|
|
x->nmvjointcost, x->mvcost,
|
|
96, xd->allow_high_precision_mv);
|
|
if (scaled_ref_frame) {
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
xd->plane[i].pre[0] = backup_yv12[i];
|
|
}
|
|
}
|
|
|
|
static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int_mv *frame_mv,
|
|
int mi_row, int mi_col,
|
|
int_mv single_newmv[MAX_REF_FRAMES],
|
|
int *rate_mv) {
|
|
int pw = 4 << b_width_log2(bsize), ph = 4 << b_height_log2(bsize);
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
|
|
int refs[2] = { mbmi->ref_frame[0],
|
|
(mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
|
|
int_mv ref_mv[2];
|
|
const enum BlockSize block_size = get_plane_block_size(bsize, &xd->plane[0]);
|
|
int ite;
|
|
// Prediction buffer from second frame.
|
|
uint8_t *second_pred = vpx_memalign(16, pw * ph * sizeof(uint8_t));
|
|
|
|
// Do joint motion search in compound mode to get more accurate mv.
|
|
struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}};
|
|
struct buf_2d backup_second_yv12[MAX_MB_PLANE] = {{0}};
|
|
struct buf_2d scaled_first_yv12;
|
|
int last_besterr[2] = {INT_MAX, INT_MAX};
|
|
YV12_BUFFER_CONFIG *scaled_ref_frame[2] = {NULL, NULL};
|
|
scaled_ref_frame[0] = get_scaled_ref_frame(cpi, mbmi->ref_frame[0]);
|
|
scaled_ref_frame[1] = get_scaled_ref_frame(cpi, mbmi->ref_frame[1]);
|
|
|
|
ref_mv[0] = mbmi->ref_mvs[refs[0]][0];
|
|
ref_mv[1] = mbmi->ref_mvs[refs[1]][0];
|
|
|
|
if (scaled_ref_frame[0]) {
|
|
int i;
|
|
// Swap out the reference frame for a version that's been scaled to
|
|
// match the resolution of the current frame, allowing the existing
|
|
// motion search code to be used without additional modifications.
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
backup_yv12[i] = xd->plane[i].pre[0];
|
|
setup_pre_planes(xd, scaled_ref_frame[0], NULL, mi_row, mi_col,
|
|
NULL, NULL);
|
|
}
|
|
|
|
if (scaled_ref_frame[1]) {
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
backup_second_yv12[i] = xd->plane[i].pre[1];
|
|
|
|
setup_pre_planes(xd, scaled_ref_frame[1], NULL, mi_row, mi_col,
|
|
NULL, NULL);
|
|
}
|
|
|
|
xd->scale_factor[0].set_scaled_offsets(&xd->scale_factor[0],
|
|
mi_row, mi_col);
|
|
xd->scale_factor[1].set_scaled_offsets(&xd->scale_factor[1],
|
|
mi_row, mi_col);
|
|
scaled_first_yv12 = xd->plane[0].pre[0];
|
|
|
|
// Initialize mv using single prediction mode result.
|
|
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
|
|
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
|
|
|
|
// Allow joint search multiple times iteratively for each ref frame
|
|
// and break out the search loop if it couldn't find better mv.
|
|
for (ite = 0; ite < 4; ite++) {
|
|
struct buf_2d ref_yv12[2];
|
|
int bestsme = INT_MAX;
|
|
int sadpb = x->sadperbit16;
|
|
int_mv tmp_mv;
|
|
int search_range = 3;
|
|
|
|
int tmp_col_min = x->mv_col_min;
|
|
int tmp_col_max = x->mv_col_max;
|
|
int tmp_row_min = x->mv_row_min;
|
|
int tmp_row_max = x->mv_row_max;
|
|
int id = ite % 2;
|
|
|
|
// Initialized here because of compiler problem in Visual Studio.
|
|
ref_yv12[0] = xd->plane[0].pre[0];
|
|
ref_yv12[1] = xd->plane[0].pre[1];
|
|
|
|
// Get pred block from second frame.
|
|
vp9_build_inter_predictor(ref_yv12[!id].buf,
|
|
ref_yv12[!id].stride,
|
|
second_pred, pw,
|
|
&frame_mv[refs[!id]],
|
|
&xd->scale_factor[!id],
|
|
pw, ph, 0,
|
|
&xd->subpix, MV_PRECISION_Q3);
|
|
|
|
// Compound motion search on first ref frame.
|
|
if (id)
|
|
xd->plane[0].pre[0] = ref_yv12[id];
|
|
vp9_clamp_mv_min_max(x, &ref_mv[id]);
|
|
|
|
// Use mv result from single mode as mvp.
|
|
tmp_mv.as_int = frame_mv[refs[id]].as_int;
|
|
|
|
tmp_mv.as_mv.col >>= 3;
|
|
tmp_mv.as_mv.row >>= 3;
|
|
|
|
// Small-range full-pixel motion search
|
|
bestsme = vp9_refining_search_8p_c(x, &tmp_mv, sadpb,
|
|
search_range,
|
|
&cpi->fn_ptr[block_size],
|
|
x->nmvjointcost, x->mvcost,
|
|
&ref_mv[id], second_pred,
|
|
pw, ph);
|
|
|
|
x->mv_col_min = tmp_col_min;
|
|
x->mv_col_max = tmp_col_max;
|
|
x->mv_row_min = tmp_row_min;
|
|
x->mv_row_max = tmp_row_max;
|
|
|
|
if (bestsme < INT_MAX) {
|
|
int dis; /* TODO: use dis in distortion calculation later. */
|
|
unsigned int sse;
|
|
|
|
bestsme = vp9_find_best_sub_pixel_comp(x, &tmp_mv,
|
|
&ref_mv[id],
|
|
x->errorperbit,
|
|
&cpi->fn_ptr[block_size],
|
|
x->nmvjointcost, x->mvcost,
|
|
&dis, &sse, second_pred,
|
|
pw, ph);
|
|
}
|
|
|
|
if (id)
|
|
xd->plane[0].pre[0] = scaled_first_yv12;
|
|
|
|
if (bestsme < last_besterr[id]) {
|
|
frame_mv[refs[id]].as_int = tmp_mv.as_int;
|
|
last_besterr[id] = bestsme;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// restore the predictor
|
|
if (scaled_ref_frame[0]) {
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
xd->plane[i].pre[0] = backup_yv12[i];
|
|
}
|
|
|
|
if (scaled_ref_frame[1]) {
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
xd->plane[i].pre[1] = backup_second_yv12[i];
|
|
}
|
|
*rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]],
|
|
&mbmi->ref_mvs[refs[0]][0],
|
|
x->nmvjointcost, x->mvcost, 96,
|
|
x->e_mbd.allow_high_precision_mv);
|
|
*rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]],
|
|
&mbmi->ref_mvs[refs[1]][0],
|
|
x->nmvjointcost, x->mvcost, 96,
|
|
x->e_mbd.allow_high_precision_mv);
|
|
|
|
vpx_free(second_pred);
|
|
}
|
|
|
|
static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int64_t txfm_cache[],
|
|
int *rate2, int64_t *distortion,
|
|
int *skippable,
|
|
int *rate_y, int64_t *distortion_y,
|
|
int *rate_uv, int64_t *distortion_uv,
|
|
int *mode_excluded, int *disable_skip,
|
|
INTERPOLATIONFILTERTYPE *best_filter,
|
|
int_mv *frame_mv,
|
|
int mi_row, int mi_col,
|
|
int_mv single_newmv[MAX_REF_FRAMES]) {
|
|
const int bw = 1 << mi_width_log2(bsize), bh = 1 << mi_height_log2(bsize);
|
|
|
|
VP9_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
const enum BlockSize block_size = get_plane_block_size(bsize, &xd->plane[0]);
|
|
const enum BlockSize uv_block_size = get_plane_block_size(bsize,
|
|
&xd->plane[1]);
|
|
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
|
|
const int is_comp_pred = (mbmi->ref_frame[1] > 0);
|
|
const int num_refs = is_comp_pred ? 2 : 1;
|
|
const int this_mode = mbmi->mode;
|
|
int i;
|
|
int refs[2] = { mbmi->ref_frame[0],
|
|
(mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
|
|
int_mv cur_mv[2];
|
|
int64_t this_rd = 0;
|
|
unsigned char tmp_buf[MAX_MB_PLANE][64 * 64];
|
|
int pred_exists = 0;
|
|
int interpolating_intpel_seen = 0;
|
|
int intpel_mv;
|
|
int64_t rd, best_rd = INT64_MAX;
|
|
|
|
switch (this_mode) {
|
|
int rate_mv;
|
|
case NEWMV:
|
|
if (is_comp_pred) {
|
|
// Initialize mv using single prediction mode result.
|
|
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
|
|
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
|
|
|
|
if (cpi->sf.comp_inter_joint_search_thresh < bsize) {
|
|
joint_motion_search(cpi, x, bsize, frame_mv,
|
|
mi_row, mi_col, single_newmv, &rate_mv);
|
|
} else {
|
|
rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]],
|
|
&mbmi->ref_mvs[refs[0]][0],
|
|
x->nmvjointcost, x->mvcost, 96,
|
|
x->e_mbd.allow_high_precision_mv);
|
|
rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]],
|
|
&mbmi->ref_mvs[refs[1]][0],
|
|
x->nmvjointcost, x->mvcost, 96,
|
|
x->e_mbd.allow_high_precision_mv);
|
|
}
|
|
if (frame_mv[refs[0]].as_int == INVALID_MV ||
|
|
frame_mv[refs[1]].as_int == INVALID_MV)
|
|
return INT64_MAX;
|
|
*rate2 += rate_mv;
|
|
|
|
} else {
|
|
int_mv tmp_mv;
|
|
single_motion_search(cpi, x, bsize, mi_row, mi_col,
|
|
&tmp_mv, &rate_mv);
|
|
*rate2 += rate_mv;
|
|
frame_mv[refs[0]].as_int =
|
|
xd->mode_info_context->bmi[0].as_mv[0].as_int = tmp_mv.as_int;
|
|
single_newmv[refs[0]].as_int = tmp_mv.as_int;
|
|
}
|
|
break;
|
|
case NEARMV:
|
|
case NEARESTMV:
|
|
case ZEROMV:
|
|
default:
|
|
break;
|
|
}
|
|
for (i = 0; i < num_refs; ++i) {
|
|
cur_mv[i] = frame_mv[refs[i]];
|
|
// Clip "next_nearest" so that it does not extend to far out of image
|
|
if (this_mode == NEWMV)
|
|
assert(!clamp_mv2(&cur_mv[i], xd));
|
|
else
|
|
clamp_mv2(&cur_mv[i], xd);
|
|
|
|
if (mv_check_bounds(x, &cur_mv[i]))
|
|
return INT64_MAX;
|
|
mbmi->mv[i].as_int = cur_mv[i].as_int;
|
|
}
|
|
|
|
/* We don't include the cost of the second reference here, because there
|
|
* are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other
|
|
* words if you present them in that order, the second one is always known
|
|
* if the first is known */
|
|
*rate2 += vp9_cost_mv_ref(cpi, this_mode,
|
|
mbmi->mb_mode_context[mbmi->ref_frame[0]]);
|
|
|
|
pred_exists = 0;
|
|
interpolating_intpel_seen = 0;
|
|
// Are all MVs integer pel for Y and UV
|
|
intpel_mv = (mbmi->mv[0].as_mv.row & 15) == 0 &&
|
|
(mbmi->mv[0].as_mv.col & 15) == 0;
|
|
if (is_comp_pred)
|
|
intpel_mv &= (mbmi->mv[1].as_mv.row & 15) == 0 &&
|
|
(mbmi->mv[1].as_mv.col & 15) == 0;
|
|
// Search for best switchable filter by checking the variance of
|
|
// pred error irrespective of whether the filter will be used
|
|
if (cpi->sf.use_8tap_always) {
|
|
*best_filter = EIGHTTAP;
|
|
} else {
|
|
int i, newbest;
|
|
int tmp_rate_sum = 0;
|
|
int64_t tmp_dist_sum = 0;
|
|
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
|
|
int rs = 0;
|
|
const INTERPOLATIONFILTERTYPE filter = vp9_switchable_interp[i];
|
|
const int is_intpel_interp = intpel_mv &&
|
|
vp9_is_interpolating_filter[filter];
|
|
mbmi->interp_filter = filter;
|
|
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
|
|
|
|
if (cm->mcomp_filter_type == SWITCHABLE)
|
|
rs = get_switchable_rate(cm, x);
|
|
|
|
if (interpolating_intpel_seen && is_intpel_interp) {
|
|
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate_sum, tmp_dist_sum);
|
|
} else {
|
|
int rate_sum = 0;
|
|
int64_t dist_sum = 0;
|
|
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
|
|
model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum);
|
|
rd = RDCOST(x->rdmult, x->rddiv, rs + rate_sum, dist_sum);
|
|
if (!interpolating_intpel_seen && is_intpel_interp) {
|
|
tmp_rate_sum = rate_sum;
|
|
tmp_dist_sum = dist_sum;
|
|
}
|
|
}
|
|
newbest = i == 0 || rd < best_rd;
|
|
|
|
if (newbest) {
|
|
best_rd = rd;
|
|
*best_filter = mbmi->interp_filter;
|
|
}
|
|
|
|
if ((cm->mcomp_filter_type == SWITCHABLE && newbest) ||
|
|
(cm->mcomp_filter_type != SWITCHABLE &&
|
|
cm->mcomp_filter_type == mbmi->interp_filter)) {
|
|
int p;
|
|
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
const int y = (MI_SIZE * bh) >> xd->plane[p].subsampling_y;
|
|
const int x = (MI_SIZE * bw) >> xd->plane[p].subsampling_x;
|
|
int i;
|
|
|
|
for (i = 0; i < y; i++)
|
|
vpx_memcpy(&tmp_buf[p][64 * i],
|
|
xd->plane[p].dst.buf + i * xd->plane[p].dst.stride, x);
|
|
}
|
|
pred_exists = 1;
|
|
}
|
|
interpolating_intpel_seen |= is_intpel_interp;
|
|
}
|
|
}
|
|
|
|
// Set the appripriate filter
|
|
mbmi->interp_filter = cm->mcomp_filter_type != SWITCHABLE ?
|
|
cm->mcomp_filter_type : *best_filter;
|
|
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
|
|
|
|
|
|
if (pred_exists) {
|
|
int p;
|
|
|
|
for (p = 0; p < MAX_MB_PLANE; p++) {
|
|
const int y = (MI_SIZE * bh) >> xd->plane[p].subsampling_y;
|
|
const int x = (MI_SIZE * bw) >> xd->plane[p].subsampling_x;
|
|
int i;
|
|
|
|
for (i = 0; i < y; i++)
|
|
vpx_memcpy(xd->plane[p].dst.buf + i * xd->plane[p].dst.stride,
|
|
&tmp_buf[p][64 * i], x);
|
|
}
|
|
} else {
|
|
// Handles the special case when a filter that is not in the
|
|
// switchable list (ex. bilinear, 6-tap) is indicated at the frame level
|
|
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
|
|
}
|
|
|
|
if (cpi->common.mcomp_filter_type == SWITCHABLE)
|
|
*rate2 += get_switchable_rate(cm, x);
|
|
|
|
if (cpi->active_map_enabled && x->active_ptr[0] == 0)
|
|
x->skip = 1;
|
|
else if (x->encode_breakout) {
|
|
unsigned int var, sse;
|
|
int threshold = (xd->plane[0].dequant[1]
|
|
* xd->plane[0].dequant[1] >> 4);
|
|
|
|
if (threshold < x->encode_breakout)
|
|
threshold = x->encode_breakout;
|
|
|
|
var = cpi->fn_ptr[block_size].vf(x->plane[0].src.buf,
|
|
x->plane[0].src.stride,
|
|
xd->plane[0].dst.buf,
|
|
xd->plane[0].dst.stride,
|
|
&sse);
|
|
|
|
if ((int)sse < threshold) {
|
|
unsigned int q2dc = xd->plane[0].dequant[0];
|
|
/* If there is no codeable 2nd order dc
|
|
or a very small uniform pixel change change */
|
|
if ((sse - var < q2dc * q2dc >> 4) ||
|
|
(sse / 2 > var && sse - var < 64)) {
|
|
// Check u and v to make sure skip is ok
|
|
int sse2;
|
|
unsigned int sse2u, sse2v;
|
|
var = cpi->fn_ptr[uv_block_size].vf(x->plane[1].src.buf,
|
|
x->plane[1].src.stride,
|
|
xd->plane[1].dst.buf,
|
|
xd->plane[1].dst.stride, &sse2u);
|
|
var = cpi->fn_ptr[uv_block_size].vf(x->plane[2].src.buf,
|
|
x->plane[1].src.stride,
|
|
xd->plane[2].dst.buf,
|
|
xd->plane[1].dst.stride, &sse2v);
|
|
sse2 = sse2u + sse2v;
|
|
|
|
if (sse2 * 2 < threshold) {
|
|
x->skip = 1;
|
|
*distortion = sse + sse2;
|
|
*rate2 = 500;
|
|
|
|
/* for best_yrd calculation */
|
|
*rate_uv = 0;
|
|
*distortion_uv = sse2;
|
|
|
|
*disable_skip = 1;
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!x->skip) {
|
|
int skippable_y, skippable_uv;
|
|
|
|
// Y cost and distortion
|
|
super_block_yrd(cpi, x, rate_y, distortion_y, &skippable_y,
|
|
bsize, txfm_cache);
|
|
|
|
*rate2 += *rate_y;
|
|
*distortion += *distortion_y;
|
|
|
|
super_block_uvrd(cm, x, rate_uv, distortion_uv,
|
|
&skippable_uv, bsize);
|
|
|
|
*rate2 += *rate_uv;
|
|
*distortion += *distortion_uv;
|
|
*skippable = skippable_y && skippable_uv;
|
|
}
|
|
|
|
if (!(*mode_excluded)) {
|
|
if (is_comp_pred) {
|
|
*mode_excluded = (cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY);
|
|
} else {
|
|
*mode_excluded = (cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY);
|
|
}
|
|
}
|
|
|
|
return this_rd; // if 0, this will be re-calculated by caller
|
|
}
|
|
|
|
void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int *returnrate, int64_t *returndist,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
PICK_MODE_CONTEXT *ctx) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
int rate_y = 0, rate_uv = 0;
|
|
int rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
|
|
int64_t dist_y = 0, dist_uv = 0;
|
|
int y_skip = 0, uv_skip = 0;
|
|
int64_t txfm_cache[NB_TXFM_MODES], err;
|
|
MB_PREDICTION_MODE mode;
|
|
TX_SIZE txfm_size;
|
|
int rate4x4_y, rate4x4_y_tokenonly;
|
|
int64_t dist4x4_y;
|
|
int64_t err4x4 = INT64_MAX;
|
|
int i;
|
|
|
|
vpx_memset(&txfm_cache,0,sizeof(txfm_cache));
|
|
ctx->skip = 0;
|
|
xd->mode_info_context->mbmi.mode = DC_PRED;
|
|
xd->mode_info_context->mbmi.ref_frame[0] = INTRA_FRAME;
|
|
err = rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly,
|
|
&dist_y, &y_skip, bsize, txfm_cache);
|
|
mode = xd->mode_info_context->mbmi.mode;
|
|
txfm_size = xd->mode_info_context->mbmi.txfm_size;
|
|
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
|
|
&dist_uv, &uv_skip,
|
|
(bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8 :
|
|
bsize);
|
|
if (bsize < BLOCK_SIZE_SB8X8)
|
|
err4x4 = rd_pick_intra4x4mby_modes(cpi, x, &rate4x4_y,
|
|
&rate4x4_y_tokenonly,
|
|
&dist4x4_y, err);
|
|
|
|
if (y_skip && uv_skip) {
|
|
*returnrate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
|
|
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 1);
|
|
*returndist = dist_y + (dist_uv >> 2);
|
|
memset(ctx->txfm_rd_diff, 0, sizeof(ctx->txfm_rd_diff));
|
|
xd->mode_info_context->mbmi.mode = mode;
|
|
xd->mode_info_context->mbmi.txfm_size = txfm_size;
|
|
} else if (bsize < BLOCK_SIZE_SB8X8 && err4x4 < err) {
|
|
*returnrate = rate4x4_y + rate_uv +
|
|
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0);
|
|
*returndist = dist4x4_y + (dist_uv >> 2);
|
|
vpx_memset(ctx->txfm_rd_diff, 0, sizeof(ctx->txfm_rd_diff));
|
|
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
|
|
} else {
|
|
*returnrate = rate_y + rate_uv +
|
|
vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0);
|
|
*returndist = dist_y + (dist_uv >> 2);
|
|
for (i = 0; i < NB_TXFM_MODES; i++) {
|
|
ctx->txfm_rd_diff[i] = txfm_cache[i] - txfm_cache[cm->txfm_mode];
|
|
}
|
|
xd->mode_info_context->mbmi.txfm_size = txfm_size;
|
|
xd->mode_info_context->mbmi.mode = mode;
|
|
}
|
|
|
|
ctx->mic = *xd->mode_info_context;
|
|
}
|
|
|
|
int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int mi_row, int mi_col,
|
|
int *returnrate,
|
|
int64_t *returndistortion,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
PICK_MODE_CONTEXT *ctx) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
|
|
const enum BlockSize block_size = get_plane_block_size(bsize, &xd->plane[0]);
|
|
MB_PREDICTION_MODE this_mode;
|
|
MB_PREDICTION_MODE best_mode = DC_PRED;
|
|
MV_REFERENCE_FRAME ref_frame;
|
|
unsigned char segment_id = xd->mode_info_context->mbmi.segment_id;
|
|
int comp_pred, i;
|
|
int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES];
|
|
struct buf_2d yv12_mb[4][MAX_MB_PLANE];
|
|
int_mv single_newmv[MAX_REF_FRAMES];
|
|
static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG,
|
|
VP9_ALT_FLAG };
|
|
int idx_list[4] = {0,
|
|
cpi->lst_fb_idx,
|
|
cpi->gld_fb_idx,
|
|
cpi->alt_fb_idx};
|
|
int64_t best_rd = INT64_MAX;
|
|
int64_t best_txfm_rd[NB_TXFM_MODES];
|
|
int64_t best_txfm_diff[NB_TXFM_MODES];
|
|
int64_t best_pred_diff[NB_PREDICTION_TYPES];
|
|
int64_t best_pred_rd[NB_PREDICTION_TYPES];
|
|
MB_MODE_INFO best_mbmode;
|
|
int j;
|
|
int mode_index, best_mode_index = 0;
|
|
unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES];
|
|
vp9_prob comp_mode_p;
|
|
int64_t best_overall_rd = INT64_MAX;
|
|
INTERPOLATIONFILTERTYPE best_filter = SWITCHABLE;
|
|
INTERPOLATIONFILTERTYPE tmp_best_filter = SWITCHABLE;
|
|
int rate_uv_intra[TX_SIZE_MAX_SB], rate_uv_tokenonly[TX_SIZE_MAX_SB];
|
|
int64_t dist_uv[TX_SIZE_MAX_SB];
|
|
int skip_uv[TX_SIZE_MAX_SB];
|
|
MB_PREDICTION_MODE mode_uv[TX_SIZE_MAX_SB];
|
|
struct scale_factors scale_factor[4];
|
|
unsigned int ref_frame_mask = 0;
|
|
unsigned int mode_mask = 0;
|
|
int64_t mode_distortions[MB_MODE_COUNT] = {-1};
|
|
int64_t frame_distortions[MAX_REF_FRAMES] = {-1};
|
|
int intra_cost_penalty = 20 * vp9_dc_quant(cpi->common.base_qindex,
|
|
cpi->common.y_dc_delta_q);
|
|
int_mv seg_mvs[4][MAX_REF_FRAMES];
|
|
union b_mode_info best_bmodes[4];
|
|
PARTITION_INFO best_partition;
|
|
int bwsl = b_width_log2(bsize);
|
|
int bws = (1 << bwsl) / 4; // mode_info step for subsize
|
|
int bhsl = b_height_log2(bsize);
|
|
int bhs = (1 << bhsl) / 4; // mode_info step for subsize
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
int j;
|
|
|
|
for (j = 0; j < MAX_REF_FRAMES; j++)
|
|
seg_mvs[i][j].as_int = INVALID_MV;
|
|
}
|
|
// Everywhere the flag is set the error is much higher than its neighbors.
|
|
ctx->frames_with_high_error = 0;
|
|
ctx->modes_with_high_error = 0;
|
|
|
|
xd->mode_info_context->mbmi.segment_id = segment_id;
|
|
estimate_ref_frame_costs(cpi, segment_id, ref_costs_single, ref_costs_comp,
|
|
&comp_mode_p);
|
|
vpx_memset(&best_mbmode, 0, sizeof(best_mbmode));
|
|
vpx_memset(&single_newmv, 0, sizeof(single_newmv));
|
|
|
|
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
|
|
best_pred_rd[i] = INT64_MAX;
|
|
for (i = 0; i < NB_TXFM_MODES; i++)
|
|
best_txfm_rd[i] = INT64_MAX;
|
|
|
|
// Create a mask set to 1 for each frame used by a smaller resolution.
|
|
if (cpi->sf.use_avoid_tested_higherror) {
|
|
switch (block_size) {
|
|
case BLOCK_64X64:
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 4; j++) {
|
|
ref_frame_mask |= x->mb_context[i][j].frames_with_high_error;
|
|
mode_mask |= x->mb_context[i][j].modes_with_high_error;
|
|
}
|
|
}
|
|
for (i = 0; i < 4; i++) {
|
|
ref_frame_mask |= x->sb32_context[i].frames_with_high_error;
|
|
mode_mask |= x->sb32_context[i].modes_with_high_error;
|
|
}
|
|
break;
|
|
case BLOCK_32X32:
|
|
for (i = 0; i < 4; i++) {
|
|
ref_frame_mask |=
|
|
x->mb_context[xd->sb_index][i].frames_with_high_error;
|
|
mode_mask |= x->mb_context[xd->sb_index][i].modes_with_high_error;
|
|
}
|
|
break;
|
|
default:
|
|
// Until we handle all block sizes set it to present;
|
|
ref_frame_mask = 0;
|
|
mode_mask = 0;
|
|
break;
|
|
}
|
|
ref_frame_mask = ~ref_frame_mask;
|
|
mode_mask = ~mode_mask;
|
|
}
|
|
|
|
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
|
|
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
|
|
setup_buffer_inter(cpi, x, idx_list[ref_frame], ref_frame, block_size,
|
|
mi_row, mi_col, frame_mv[NEARESTMV], frame_mv[NEARMV],
|
|
yv12_mb, scale_factor);
|
|
}
|
|
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
|
|
frame_mv[ZEROMV][ref_frame].as_int = 0;
|
|
}
|
|
if (!cpi->sf.use_avoid_tested_higherror
|
|
|| (cpi->sf.use_avoid_tested_higherror
|
|
&& (ref_frame_mask & (1 << INTRA_FRAME)))) {
|
|
mbmi->mode = DC_PRED;
|
|
mbmi->ref_frame[0] = INTRA_FRAME;
|
|
for (i = 0; i <= (bsize < BLOCK_SIZE_MB16X16 ? TX_4X4 :
|
|
(bsize < BLOCK_SIZE_SB32X32 ? TX_8X8 :
|
|
(bsize < BLOCK_SIZE_SB64X64 ? TX_16X16 : TX_32X32)));
|
|
i++) {
|
|
mbmi->txfm_size = i;
|
|
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_intra[i], &rate_uv_tokenonly[i],
|
|
&dist_uv[i], &skip_uv[i],
|
|
(bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8 :
|
|
bsize);
|
|
mode_uv[i] = mbmi->uv_mode;
|
|
}
|
|
}
|
|
|
|
for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) {
|
|
int mode_excluded = 0;
|
|
int64_t this_rd = INT64_MAX;
|
|
int disable_skip = 0;
|
|
int compmode_cost = 0;
|
|
int rate2 = 0, rate_y = 0, rate_uv = 0;
|
|
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
|
|
int skippable;
|
|
int64_t txfm_cache[NB_TXFM_MODES];
|
|
int i;
|
|
|
|
for (i = 0; i < NB_TXFM_MODES; ++i)
|
|
txfm_cache[i] = INT64_MAX;
|
|
|
|
// Test best rd so far against threshold for trying this mode.
|
|
if ((best_rd < ((cpi->rd_threshes[bsize][mode_index] *
|
|
cpi->rd_thresh_freq_fact[bsize][mode_index]) >> 4)) ||
|
|
cpi->rd_threshes[bsize][mode_index] == INT_MAX)
|
|
continue;
|
|
|
|
// Do not allow compound prediction if the segment level reference
|
|
// frame feature is in use as in this case there can only be one reference.
|
|
if ((vp9_mode_order[mode_index].second_ref_frame > INTRA_FRAME) &&
|
|
vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME))
|
|
continue;
|
|
|
|
x->skip = 0;
|
|
this_mode = vp9_mode_order[mode_index].mode;
|
|
ref_frame = vp9_mode_order[mode_index].ref_frame;
|
|
|
|
if (cpi->sf.use_avoid_tested_higherror && bsize >= BLOCK_SIZE_SB8X8) {
|
|
if (!(ref_frame_mask & (1 << ref_frame))) {
|
|
continue;
|
|
}
|
|
if (!(mode_mask & (1 << this_mode))) {
|
|
continue;
|
|
}
|
|
if (vp9_mode_order[mode_index].second_ref_frame != NONE
|
|
&& !(ref_frame_mask
|
|
& (1 << vp9_mode_order[mode_index].second_ref_frame))) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
mbmi->ref_frame[0] = ref_frame;
|
|
mbmi->ref_frame[1] = vp9_mode_order[mode_index].second_ref_frame;
|
|
|
|
if (!(ref_frame == INTRA_FRAME
|
|
|| (cpi->ref_frame_flags & flag_list[ref_frame]))) {
|
|
continue;
|
|
}
|
|
if (!(mbmi->ref_frame[1] == NONE
|
|
|| (cpi->ref_frame_flags & flag_list[mbmi->ref_frame[1]]))) {
|
|
continue;
|
|
}
|
|
|
|
// TODO(jingning, jkoleszar): scaling reference frame not supported for
|
|
// SPLITMV.
|
|
if (mbmi->ref_frame[0] > 0 &&
|
|
(scale_factor[mbmi->ref_frame[0]].x_scale_fp !=
|
|
(1 << VP9_REF_SCALE_SHIFT) ||
|
|
scale_factor[mbmi->ref_frame[0]].y_scale_fp !=
|
|
(1 << VP9_REF_SCALE_SHIFT)) &&
|
|
this_mode == SPLITMV)
|
|
continue;
|
|
|
|
if (mbmi->ref_frame[1] > 0 &&
|
|
(scale_factor[mbmi->ref_frame[1]].x_scale_fp !=
|
|
(1 << VP9_REF_SCALE_SHIFT) ||
|
|
scale_factor[mbmi->ref_frame[1]].y_scale_fp !=
|
|
(1 << VP9_REF_SCALE_SHIFT)) &&
|
|
this_mode == SPLITMV)
|
|
continue;
|
|
|
|
set_scale_factors(xd, mbmi->ref_frame[0], mbmi->ref_frame[1],
|
|
scale_factor);
|
|
comp_pred = mbmi->ref_frame[1] > INTRA_FRAME;
|
|
mbmi->mode = this_mode;
|
|
mbmi->uv_mode = DC_PRED;
|
|
|
|
// Evaluate all sub-pel filters irrespective of whether we can use
|
|
// them for this frame.
|
|
mbmi->interp_filter = cm->mcomp_filter_type;
|
|
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
|
|
|
|
if (bsize >= BLOCK_SIZE_SB8X8 &&
|
|
(this_mode == I4X4_PRED || this_mode == SPLITMV))
|
|
continue;
|
|
if (bsize < BLOCK_SIZE_SB8X8 &&
|
|
!(this_mode == I4X4_PRED || this_mode == SPLITMV))
|
|
continue;
|
|
|
|
if (comp_pred) {
|
|
if (!(cpi->ref_frame_flags & flag_list[mbmi->ref_frame[1]]))
|
|
continue;
|
|
set_scale_factors(xd, mbmi->ref_frame[0], mbmi->ref_frame[1],
|
|
scale_factor);
|
|
|
|
mode_excluded =
|
|
mode_excluded ?
|
|
mode_excluded : cm->comp_pred_mode == SINGLE_PREDICTION_ONLY;
|
|
} else {
|
|
// mbmi->ref_frame[1] = vp9_mode_order[mode_index].ref_frame[1];
|
|
if (ref_frame != INTRA_FRAME) {
|
|
if (mbmi->ref_frame[1] != INTRA_FRAME)
|
|
mode_excluded =
|
|
mode_excluded ?
|
|
mode_excluded : cm->comp_pred_mode == COMP_PREDICTION_ONLY;
|
|
}
|
|
}
|
|
|
|
// Select predictors
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
|
|
if (comp_pred)
|
|
xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
|
|
}
|
|
|
|
// If the segment reference frame feature is enabled....
|
|
// then do nothing if the current ref frame is not allowed..
|
|
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
|
|
vp9_get_segdata(xd, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
|
|
continue;
|
|
// If the segment skip feature is enabled....
|
|
// then do nothing if the current mode is not allowed..
|
|
} else if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP) &&
|
|
(this_mode != ZEROMV && ref_frame != INTRA_FRAME)) {
|
|
continue;
|
|
// Disable this drop out case if the ref frame
|
|
// segment level feature is enabled for this segment. This is to
|
|
// prevent the possibility that we end up unable to pick any mode.
|
|
} else if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME)) {
|
|
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
|
|
// unless ARNR filtering is enabled in which case we want
|
|
// an unfiltered alternative
|
|
if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
|
|
if (this_mode != ZEROMV || ref_frame != ALTREF_FRAME) {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
// TODO(JBB): This is to make up for the fact that we don't have sad
|
|
// functions that work when the block size reads outside the umv. We
|
|
// should fix this either by making the motion search just work on
|
|
// a representative block in the boundary ( first ) and then implement a
|
|
// function that does sads when inside the border..
|
|
if (((mi_row + bhs) > cm->mi_rows || (mi_col + bws) > cm->mi_cols) &&
|
|
this_mode == NEWMV) {
|
|
continue;
|
|
}
|
|
|
|
if (this_mode == I4X4_PRED) {
|
|
int rate;
|
|
|
|
mbmi->txfm_size = TX_4X4;
|
|
rd_pick_intra4x4mby_modes(cpi, x, &rate, &rate_y,
|
|
&distortion_y, INT64_MAX);
|
|
rate2 += rate;
|
|
rate2 += intra_cost_penalty;
|
|
distortion2 += distortion_y;
|
|
|
|
rate2 += rate_uv_intra[TX_4X4];
|
|
rate_uv = rate_uv_intra[TX_4X4];
|
|
distortion2 += dist_uv[TX_4X4];
|
|
distortion_uv = dist_uv[TX_4X4];
|
|
mbmi->uv_mode = mode_uv[TX_4X4];
|
|
txfm_cache[ONLY_4X4] = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
|
|
for (i = 0; i < NB_TXFM_MODES; ++i)
|
|
txfm_cache[i] = txfm_cache[ONLY_4X4];
|
|
} else if (ref_frame == INTRA_FRAME) {
|
|
TX_SIZE uv_tx;
|
|
super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable,
|
|
bsize, txfm_cache);
|
|
|
|
uv_tx = mbmi->txfm_size;
|
|
if (bsize < BLOCK_SIZE_MB16X16 && uv_tx == TX_8X8)
|
|
uv_tx = TX_4X4;
|
|
if (bsize < BLOCK_SIZE_SB32X32 && uv_tx == TX_16X16)
|
|
uv_tx = TX_8X8;
|
|
else if (bsize < BLOCK_SIZE_SB64X64 && uv_tx == TX_32X32)
|
|
uv_tx = TX_16X16;
|
|
|
|
rate_uv = rate_uv_intra[uv_tx];
|
|
distortion_uv = dist_uv[uv_tx];
|
|
skippable = skippable && skip_uv[uv_tx];
|
|
mbmi->uv_mode = mode_uv[uv_tx];
|
|
|
|
rate2 = rate_y + x->mbmode_cost[mbmi->mode] + rate_uv;
|
|
if (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED)
|
|
rate2 += intra_cost_penalty;
|
|
distortion2 = distortion_y + distortion_uv;
|
|
} else if (this_mode == SPLITMV) {
|
|
const int is_comp_pred = mbmi->ref_frame[1] > 0;
|
|
int rate;
|
|
int64_t distortion;
|
|
int64_t this_rd_thresh;
|
|
int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX;
|
|
int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX;
|
|
int64_t tmp_best_distortion = INT_MAX;
|
|
int tmp_best_skippable = 0;
|
|
int switchable_filter_index;
|
|
int_mv *second_ref = is_comp_pred ?
|
|
&mbmi->ref_mvs[mbmi->ref_frame[1]][0] : NULL;
|
|
union b_mode_info tmp_best_bmodes[16];
|
|
MB_MODE_INFO tmp_best_mbmode;
|
|
PARTITION_INFO tmp_best_partition;
|
|
int pred_exists = 0;
|
|
int uv_skippable;
|
|
|
|
this_rd_thresh = (mbmi->ref_frame[0] == LAST_FRAME) ?
|
|
cpi->rd_threshes[bsize][THR_NEWMV] :
|
|
cpi->rd_threshes[bsize][THR_NEWA];
|
|
this_rd_thresh = (mbmi->ref_frame[0] == GOLDEN_FRAME) ?
|
|
cpi->rd_threshes[bsize][THR_NEWG] : this_rd_thresh;
|
|
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
|
|
|
|
for (switchable_filter_index = 0;
|
|
switchable_filter_index < VP9_SWITCHABLE_FILTERS;
|
|
++switchable_filter_index) {
|
|
int newbest;
|
|
mbmi->interp_filter =
|
|
vp9_switchable_interp[switchable_filter_index];
|
|
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
|
|
|
|
tmp_rd = rd_pick_best_mbsegmentation(cpi, x,
|
|
&mbmi->ref_mvs[mbmi->ref_frame[0]][0],
|
|
second_ref, INT64_MAX,
|
|
&rate, &rate_y, &distortion,
|
|
&skippable,
|
|
(int)this_rd_thresh, seg_mvs,
|
|
mi_row, mi_col);
|
|
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
|
|
const int rs = get_switchable_rate(cm, x);
|
|
tmp_rd += RDCOST(x->rdmult, x->rddiv, rs, 0);
|
|
}
|
|
newbest = (tmp_rd < tmp_best_rd);
|
|
if (newbest) {
|
|
tmp_best_filter = mbmi->interp_filter;
|
|
tmp_best_rd = tmp_rd;
|
|
}
|
|
if ((newbest && cm->mcomp_filter_type == SWITCHABLE) ||
|
|
(mbmi->interp_filter == cm->mcomp_filter_type &&
|
|
cm->mcomp_filter_type != SWITCHABLE)) {
|
|
tmp_best_rdu = tmp_rd;
|
|
tmp_best_rate = rate;
|
|
tmp_best_ratey = rate_y;
|
|
tmp_best_distortion = distortion;
|
|
tmp_best_skippable = skippable;
|
|
tmp_best_mbmode = *mbmi;
|
|
tmp_best_partition = *x->partition_info;
|
|
for (i = 0; i < 4; i++)
|
|
tmp_best_bmodes[i] = xd->mode_info_context->bmi[i];
|
|
pred_exists = 1;
|
|
}
|
|
} // switchable_filter_index loop
|
|
|
|
mbmi->interp_filter = (cm->mcomp_filter_type == SWITCHABLE ?
|
|
tmp_best_filter : cm->mcomp_filter_type);
|
|
vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common);
|
|
if (!pred_exists) {
|
|
// Handles the special case when a filter that is not in the
|
|
// switchable list (bilinear, 6-tap) is indicated at the frame level
|
|
tmp_rd = rd_pick_best_mbsegmentation(cpi, x,
|
|
&mbmi->ref_mvs[mbmi->ref_frame[0]][0],
|
|
second_ref, INT64_MAX,
|
|
&rate, &rate_y, &distortion,
|
|
&skippable,
|
|
(int)this_rd_thresh, seg_mvs,
|
|
mi_row, mi_col);
|
|
} else {
|
|
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
|
|
int rs = get_switchable_rate(cm, x);
|
|
tmp_best_rdu -= RDCOST(x->rdmult, x->rddiv, rs, 0);
|
|
}
|
|
tmp_rd = tmp_best_rdu;
|
|
rate = tmp_best_rate;
|
|
rate_y = tmp_best_ratey;
|
|
distortion = tmp_best_distortion;
|
|
skippable = tmp_best_skippable;
|
|
*mbmi = tmp_best_mbmode;
|
|
*x->partition_info = tmp_best_partition;
|
|
for (i = 0; i < 4; i++)
|
|
xd->mode_info_context->bmi[i] = tmp_best_bmodes[i];
|
|
}
|
|
|
|
rate2 += rate;
|
|
distortion2 += distortion;
|
|
|
|
if (cpi->common.mcomp_filter_type == SWITCHABLE)
|
|
rate2 += get_switchable_rate(cm, x);
|
|
|
|
// If even the 'Y' rd value of split is higher than best so far
|
|
// then dont bother looking at UV
|
|
vp9_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col,
|
|
BLOCK_SIZE_SB8X8);
|
|
vp9_subtract_sbuv(x, BLOCK_SIZE_SB8X8);
|
|
super_block_uvrd_for_txfm(cm, x, &rate_uv, &distortion_uv,
|
|
&uv_skippable, BLOCK_SIZE_SB8X8, TX_4X4);
|
|
rate2 += rate_uv;
|
|
distortion2 += distortion_uv;
|
|
skippable = skippable && uv_skippable;
|
|
|
|
txfm_cache[ONLY_4X4] = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
|
|
for (i = 0; i < NB_TXFM_MODES; ++i)
|
|
txfm_cache[i] = txfm_cache[ONLY_4X4];
|
|
|
|
if (!mode_excluded) {
|
|
if (is_comp_pred)
|
|
mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY;
|
|
else
|
|
mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY;
|
|
}
|
|
|
|
compmode_cost = vp9_cost_bit(comp_mode_p, is_comp_pred);
|
|
} else {
|
|
compmode_cost = vp9_cost_bit(comp_mode_p,
|
|
mbmi->ref_frame[1] > INTRA_FRAME);
|
|
this_rd = handle_inter_mode(cpi, x, bsize,
|
|
txfm_cache,
|
|
&rate2, &distortion2, &skippable,
|
|
&rate_y, &distortion_y,
|
|
&rate_uv, &distortion_uv,
|
|
&mode_excluded, &disable_skip,
|
|
&tmp_best_filter, frame_mv[this_mode],
|
|
mi_row, mi_col,
|
|
single_newmv);
|
|
if (this_rd == INT64_MAX)
|
|
continue;
|
|
}
|
|
|
|
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
|
|
rate2 += compmode_cost;
|
|
}
|
|
|
|
// Estimate the reference frame signaling cost and add it
|
|
// to the rolling cost variable.
|
|
if (mbmi->ref_frame[1] > INTRA_FRAME) {
|
|
rate2 += ref_costs_comp[mbmi->ref_frame[0]];
|
|
} else {
|
|
rate2 += ref_costs_single[mbmi->ref_frame[0]];
|
|
}
|
|
|
|
if (!disable_skip) {
|
|
// Test for the condition where skip block will be activated
|
|
// because there are no non zero coefficients and make any
|
|
// necessary adjustment for rate. Ignore if skip is coded at
|
|
// segment level as the cost wont have been added in.
|
|
int mb_skip_allowed;
|
|
|
|
// Is Mb level skip allowed (i.e. not coded at segment level).
|
|
mb_skip_allowed = !vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP);
|
|
|
|
if (skippable && bsize >= BLOCK_SIZE_SB8X8) {
|
|
// Back out the coefficient coding costs
|
|
rate2 -= (rate_y + rate_uv);
|
|
// for best_yrd calculation
|
|
rate_uv = 0;
|
|
|
|
if (mb_skip_allowed) {
|
|
int prob_skip_cost;
|
|
|
|
// Cost the skip mb case
|
|
vp9_prob skip_prob =
|
|
vp9_get_pred_prob(cm, xd, PRED_MBSKIP);
|
|
|
|
if (skip_prob) {
|
|
prob_skip_cost = vp9_cost_bit(skip_prob, 1);
|
|
rate2 += prob_skip_cost;
|
|
}
|
|
}
|
|
} else if (mb_skip_allowed) {
|
|
// Add in the cost of the no skip flag.
|
|
int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob(cm, xd,
|
|
PRED_MBSKIP), 0);
|
|
rate2 += prob_skip_cost;
|
|
}
|
|
|
|
// Calculate the final RD estimate for this mode.
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
|
|
}
|
|
|
|
#if 0
|
|
// Keep record of best intra distortion
|
|
if ((xd->mode_info_context->mbmi.ref_frame[0] == INTRA_FRAME) &&
|
|
(this_rd < best_intra_rd)) {
|
|
best_intra_rd = this_rd;
|
|
*returnintra = distortion2;
|
|
}
|
|
#endif
|
|
|
|
if (!disable_skip && mbmi->ref_frame[0] == INTRA_FRAME)
|
|
for (i = 0; i < NB_PREDICTION_TYPES; ++i)
|
|
best_pred_rd[i] = MIN(best_pred_rd[i], this_rd);
|
|
|
|
if (this_rd < best_overall_rd) {
|
|
best_overall_rd = this_rd;
|
|
best_filter = tmp_best_filter;
|
|
best_mode = this_mode;
|
|
}
|
|
|
|
if (this_mode != I4X4_PRED && this_mode != SPLITMV) {
|
|
// Store the respective mode distortions for later use.
|
|
if (mode_distortions[this_mode] == -1
|
|
|| distortion2 < mode_distortions[this_mode]) {
|
|
mode_distortions[this_mode] = distortion2;
|
|
}
|
|
if (frame_distortions[mbmi->ref_frame[0]] == -1
|
|
|| distortion2 < frame_distortions[mbmi->ref_frame[0]]) {
|
|
frame_distortions[mbmi->ref_frame[0]] = distortion2;
|
|
}
|
|
}
|
|
|
|
// Did this mode help.. i.e. is it the new best mode
|
|
if (this_rd < best_rd || x->skip) {
|
|
if (!mode_excluded) {
|
|
// Note index of best mode so far
|
|
best_mode_index = mode_index;
|
|
|
|
if (ref_frame == INTRA_FRAME) {
|
|
/* required for left and above block mv */
|
|
mbmi->mv[0].as_int = 0;
|
|
}
|
|
|
|
*returnrate = rate2;
|
|
*returndistortion = distortion2;
|
|
best_rd = this_rd;
|
|
best_mbmode = *mbmi;
|
|
best_partition = *x->partition_info;
|
|
|
|
if (this_mode == I4X4_PRED || this_mode == SPLITMV)
|
|
for (i = 0; i < 4; i++)
|
|
best_bmodes[i] = xd->mode_info_context->bmi[i];
|
|
}
|
|
#if 0
|
|
// Testing this mode gave rise to an improvement in best error score.
|
|
// Lower threshold a bit for next time
|
|
cpi->rd_thresh_mult[mode_index] =
|
|
(cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ?
|
|
cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT;
|
|
cpi->rd_threshes[mode_index] =
|
|
(cpi->rd_baseline_thresh[mode_index] >> 7)
|
|
* cpi->rd_thresh_mult[mode_index];
|
|
#endif
|
|
} else {
|
|
// If the mode did not help improve the best error case then
|
|
// raise the threshold for testing that mode next time around.
|
|
#if 0
|
|
cpi->rd_thresh_mult[mode_index] += 4;
|
|
|
|
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
|
|
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
|
|
|
|
cpi->rd_threshes[mode_index] =
|
|
(cpi->rd_baseline_thresh[mode_index] >> 7)
|
|
* cpi->rd_thresh_mult[mode_index];
|
|
#endif
|
|
}
|
|
|
|
/* keep record of best compound/single-only prediction */
|
|
if (!disable_skip && mbmi->ref_frame[0] != INTRA_FRAME) {
|
|
int single_rd, hybrid_rd, single_rate, hybrid_rate;
|
|
|
|
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
|
|
single_rate = rate2 - compmode_cost;
|
|
hybrid_rate = rate2;
|
|
} else {
|
|
single_rate = rate2;
|
|
hybrid_rate = rate2 + compmode_cost;
|
|
}
|
|
|
|
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
|
|
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
|
|
|
|
if (mbmi->ref_frame[1] <= INTRA_FRAME &&
|
|
single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) {
|
|
best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd;
|
|
} else if (mbmi->ref_frame[1] > INTRA_FRAME &&
|
|
single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) {
|
|
best_pred_rd[COMP_PREDICTION_ONLY] = single_rd;
|
|
}
|
|
if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION])
|
|
best_pred_rd[HYBRID_PREDICTION] = hybrid_rd;
|
|
}
|
|
|
|
/* keep record of best txfm size */
|
|
if (bsize < BLOCK_SIZE_SB32X32) {
|
|
if (bsize < BLOCK_SIZE_MB16X16) {
|
|
if (this_mode == SPLITMV || this_mode == I4X4_PRED)
|
|
txfm_cache[ALLOW_8X8] = txfm_cache[ONLY_4X4];
|
|
txfm_cache[ALLOW_16X16] = txfm_cache[ALLOW_8X8];
|
|
}
|
|
txfm_cache[ALLOW_32X32] = txfm_cache[ALLOW_16X16];
|
|
}
|
|
if (!mode_excluded && this_rd != INT64_MAX) {
|
|
for (i = 0; i < NB_TXFM_MODES; i++) {
|
|
int64_t adj_rd = INT64_MAX;
|
|
if (this_mode != I4X4_PRED) {
|
|
adj_rd = this_rd + txfm_cache[i] - txfm_cache[cm->txfm_mode];
|
|
} else {
|
|
adj_rd = this_rd;
|
|
}
|
|
|
|
if (adj_rd < best_txfm_rd[i])
|
|
best_txfm_rd[i] = adj_rd;
|
|
}
|
|
}
|
|
|
|
if (x->skip && !mode_excluded)
|
|
break;
|
|
}
|
|
// Flag all modes that have a distortion thats > 2x the best we found at
|
|
// this level.
|
|
for (mode_index = 0; mode_index < MB_MODE_COUNT; ++mode_index) {
|
|
if (mode_index == NEARESTMV || mode_index == NEARMV || mode_index == NEWMV)
|
|
continue;
|
|
|
|
if (mode_distortions[mode_index] > 2 * *returndistortion) {
|
|
ctx->modes_with_high_error |= (1 << mode_index);
|
|
}
|
|
}
|
|
|
|
// Flag all ref frames that have a distortion thats > 2x the best we found at
|
|
// this level.
|
|
for (ref_frame = INTRA_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
|
|
if (frame_distortions[ref_frame] > 2 * *returndistortion) {
|
|
ctx->frames_with_high_error |= (1 << ref_frame);
|
|
}
|
|
}
|
|
|
|
if (best_rd == INT64_MAX && bsize < BLOCK_SIZE_SB8X8) {
|
|
*returnrate = INT_MAX;
|
|
*returndistortion = INT_MAX;
|
|
return best_rd;
|
|
}
|
|
|
|
assert((cm->mcomp_filter_type == SWITCHABLE) ||
|
|
(cm->mcomp_filter_type == best_mbmode.interp_filter) ||
|
|
(best_mbmode.ref_frame[0] == INTRA_FRAME));
|
|
|
|
// Accumulate filter usage stats
|
|
// TODO(agrange): Use RD criteria to select interpolation filter mode.
|
|
if (is_inter_mode(best_mode))
|
|
++cpi->best_switchable_interp_count[vp9_switchable_interp_map[best_filter]];
|
|
|
|
// Updating rd_thresh_freq_fact[] here means that the differnt
|
|
// partition/block sizes are handled independently based on the best
|
|
// choice for the current partition. It may well be better to keep a scaled
|
|
// best rd so far value and update rd_thresh_freq_fact based on the mode/size
|
|
// combination that wins out.
|
|
if (cpi->sf.adpative_rd_thresh) {
|
|
for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) {
|
|
if (mode_index == best_mode_index) {
|
|
cpi->rd_thresh_freq_fact[bsize][mode_index] = BASE_RD_THRESH_FREQ_FACT;
|
|
} else {
|
|
cpi->rd_thresh_freq_fact[bsize][mode_index] += MAX_RD_THRESH_FREQ_INC;
|
|
if (cpi->rd_thresh_freq_fact[bsize][mode_index] >
|
|
(cpi->sf.adpative_rd_thresh * MAX_RD_THRESH_FREQ_FACT)) {
|
|
cpi->rd_thresh_freq_fact[bsize][mode_index] =
|
|
cpi->sf.adpative_rd_thresh * MAX_RD_THRESH_FREQ_FACT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO(rbultje) integrate with RD trd_thresh_freq_facthresholding
|
|
#if 0
|
|
// Reduce the activation RD thresholds for the best choice mode
|
|
if ((cpi->rd_baseline_thresh[best_mode_index] > 0) &&
|
|
(cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) {
|
|
int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2);
|
|
|
|
cpi->rd_thresh_mult[best_mode_index] =
|
|
(cpi->rd_thresh_mult[best_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ?
|
|
cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT;
|
|
cpi->rd_threshes[best_mode_index] =
|
|
(cpi->rd_baseline_thresh[best_mode_index] >> 7) * cpi->rd_thresh_mult[best_mode_index];
|
|
}
|
|
#endif
|
|
|
|
// This code forces Altref,0,0 and skip for the frame that overlays a
|
|
// an alrtef unless Altref is filtered. However, this is unsafe if
|
|
// segment level coding of ref frame is enabled for this segment.
|
|
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) &&
|
|
cpi->is_src_frame_alt_ref &&
|
|
(cpi->oxcf.arnr_max_frames == 0) &&
|
|
(best_mbmode.mode != ZEROMV || best_mbmode.ref_frame[0] != ALTREF_FRAME)
|
|
&& bsize >= BLOCK_SIZE_SB8X8) {
|
|
mbmi->mode = ZEROMV;
|
|
mbmi->ref_frame[0] = ALTREF_FRAME;
|
|
mbmi->ref_frame[1] = NONE;
|
|
mbmi->mv[0].as_int = 0;
|
|
mbmi->uv_mode = DC_PRED;
|
|
mbmi->mb_skip_coeff = 1;
|
|
if (cm->txfm_mode == TX_MODE_SELECT) {
|
|
if (bsize >= BLOCK_SIZE_SB32X32)
|
|
mbmi->txfm_size = TX_32X32;
|
|
else if (bsize >= BLOCK_SIZE_MB16X16)
|
|
mbmi->txfm_size = TX_16X16;
|
|
else
|
|
mbmi->txfm_size = TX_8X8;
|
|
}
|
|
|
|
vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff));
|
|
vpx_memset(best_pred_diff, 0, sizeof(best_pred_diff));
|
|
goto end;
|
|
}
|
|
|
|
// macroblock modes
|
|
*mbmi = best_mbmode;
|
|
if (best_mbmode.ref_frame[0] == INTRA_FRAME &&
|
|
best_mbmode.sb_type < BLOCK_SIZE_SB8X8) {
|
|
for (i = 0; i < 4; i++)
|
|
xd->mode_info_context->bmi[i].as_mode = best_bmodes[i].as_mode;
|
|
}
|
|
|
|
if (best_mbmode.ref_frame[0] != INTRA_FRAME &&
|
|
best_mbmode.sb_type < BLOCK_SIZE_SB8X8) {
|
|
for (i = 0; i < 4; i++)
|
|
xd->mode_info_context->bmi[i].as_mv[0].as_int =
|
|
best_bmodes[i].as_mv[0].as_int;
|
|
|
|
if (mbmi->ref_frame[1] > 0)
|
|
for (i = 0; i < 4; i++)
|
|
xd->mode_info_context->bmi[i].as_mv[1].as_int =
|
|
best_bmodes[i].as_mv[1].as_int;
|
|
|
|
*x->partition_info = best_partition;
|
|
|
|
mbmi->mv[0].as_int = x->partition_info->bmi[3].mv.as_int;
|
|
mbmi->mv[1].as_int = x->partition_info->bmi[3].second_mv.as_int;
|
|
}
|
|
|
|
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
|
|
if (best_pred_rd[i] == INT64_MAX)
|
|
best_pred_diff[i] = INT_MIN;
|
|
else
|
|
best_pred_diff[i] = best_rd - best_pred_rd[i];
|
|
}
|
|
|
|
if (!x->skip) {
|
|
for (i = 0; i < NB_TXFM_MODES; i++) {
|
|
if (best_txfm_rd[i] == INT64_MAX)
|
|
best_txfm_diff[i] = 0;
|
|
else
|
|
best_txfm_diff[i] = best_rd - best_txfm_rd[i];
|
|
}
|
|
} else {
|
|
vpx_memset(best_txfm_diff, 0, sizeof(best_txfm_diff));
|
|
}
|
|
|
|
end:
|
|
set_scale_factors(xd, mbmi->ref_frame[0], mbmi->ref_frame[1],
|
|
scale_factor);
|
|
store_coding_context(x, ctx, best_mode_index,
|
|
&best_partition,
|
|
&mbmi->ref_mvs[mbmi->ref_frame[0]][0],
|
|
&mbmi->ref_mvs[mbmi->ref_frame[1] < 0 ? 0 :
|
|
mbmi->ref_frame[1]][0],
|
|
best_pred_diff, best_txfm_diff);
|
|
|
|
return best_rd;
|
|
}
|