vpx/vp9/encoder/vp9_bitstream.c

2414 lines
80 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "vp9/common/vp9_header.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_pragmas.h"
#include "vpx/vpx_encoder.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/encoder/vp9_bitstream.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_treecoder.h"
#if defined(SECTIONBITS_OUTPUT)
unsigned __int64 Sectionbits[500];
#endif
#ifdef ENTROPY_STATS
int intra_mode_stats[VP9_KF_BINTRAMODES]
[VP9_KF_BINTRAMODES]
[VP9_KF_BINTRAMODES];
vp9_coeff_stats tree_update_hist_4x4[BLOCK_TYPES];
vp9_coeff_stats tree_update_hist_8x8[BLOCK_TYPES];
vp9_coeff_stats tree_update_hist_16x16[BLOCK_TYPES];
vp9_coeff_stats tree_update_hist_32x32[BLOCK_TYPES];
extern unsigned int active_section;
#endif
#if CONFIG_CODE_ZEROGROUP
#ifdef ZPC_STATS
vp9_zpc_count zpc_stats_4x4;
vp9_zpc_count zpc_stats_8x8;
vp9_zpc_count zpc_stats_16x16;
vp9_zpc_count zpc_stats_32x32;
void init_zpcstats();
void update_zpcstats(VP9_COMMON *const cm);
void print_zpcstats();
#endif
#endif
#ifdef MODE_STATS
int count_mb_seg[4] = { 0, 0, 0, 0 };
#endif
#define vp9_cost_upd ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd)) >> 8)
#define vp9_cost_upd256 ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd)))
#define SEARCH_NEWP
static int update_bits[255];
static INLINE void write_le16(uint8_t *p, int value) {
p[0] = value;
p[1] = value >> 8;
}
static INLINE void write_le32(uint8_t *p, int value) {
p[0] = value;
p[1] = value >> 8;
p[2] = value >> 16;
p[3] = value >> 24;
}
static void compute_update_table() {
int i;
for (i = 0; i < 255; i++)
update_bits[i] = vp9_count_term_subexp(i, SUBEXP_PARAM, 255);
}
static int split_index(int i, int n, int modulus) {
int max1 = (n - 1 - modulus / 2) / modulus + 1;
if (i % modulus == modulus / 2) i = i / modulus;
else i = max1 + i - (i + modulus - modulus / 2) / modulus;
return i;
}
static int remap_prob(int v, int m) {
const int n = 256;
const int modulus = MODULUS_PARAM;
int i;
if ((m << 1) <= n)
i = vp9_recenter_nonneg(v, m) - 1;
else
i = vp9_recenter_nonneg(n - 1 - v, n - 1 - m) - 1;
i = split_index(i, n - 1, modulus);
return i;
}
static void write_prob_diff_update(vp9_writer *const bc,
vp9_prob newp, vp9_prob oldp) {
int delp = remap_prob(newp, oldp);
vp9_encode_term_subexp(bc, delp, SUBEXP_PARAM, 255);
}
static int prob_diff_update_cost(vp9_prob newp, vp9_prob oldp) {
int delp = remap_prob(newp, oldp);
return update_bits[delp] * 256;
}
static void update_mode(
vp9_writer *const bc,
int n,
const struct vp9_token tok[/* n */],
vp9_tree tree,
vp9_prob Pnew [/* n-1 */],
vp9_prob Pcur [/* n-1 */],
unsigned int bct [/* n-1 */] [2],
const unsigned int num_events[/* n */]
) {
unsigned int new_b = 0, old_b = 0;
int i = 0;
vp9_tree_probs_from_distribution(tree, Pnew, bct, num_events, 0);
n--;
do {
new_b += cost_branch(bct[i], Pnew[i]);
old_b += cost_branch(bct[i], Pcur[i]);
} while (++i < n);
if (new_b + (n << 8) < old_b) {
int i = 0;
vp9_write_bit(bc, 1);
do {
const vp9_prob p = Pnew[i];
vp9_write_literal(bc, Pcur[i] = p ? p : 1, 8);
} while (++i < n);
} else
vp9_write_bit(bc, 0);
}
static void update_mbintra_mode_probs(VP9_COMP* const cpi,
vp9_writer* const bc) {
VP9_COMMON *const cm = &cpi->common;
{
vp9_prob Pnew [VP9_YMODES - 1];
unsigned int bct [VP9_YMODES - 1] [2];
update_mode(
bc, VP9_YMODES, vp9_ymode_encodings, vp9_ymode_tree,
Pnew, cm->fc.ymode_prob, bct, (unsigned int *)cpi->ymode_count
);
update_mode(bc, VP9_I32X32_MODES, vp9_sb_ymode_encodings,
vp9_sb_ymode_tree, Pnew, cm->fc.sb_ymode_prob, bct,
(unsigned int *)cpi->sb_ymode_count);
}
}
void vp9_update_skip_probs(VP9_COMP *cpi) {
VP9_COMMON *const pc = &cpi->common;
int k;
for (k = 0; k < MBSKIP_CONTEXTS; ++k) {
pc->mbskip_pred_probs[k] = get_binary_prob(cpi->skip_false_count[k],
cpi->skip_true_count[k]);
}
}
static void update_switchable_interp_probs(VP9_COMP *cpi,
vp9_writer* const bc) {
VP9_COMMON *const pc = &cpi->common;
unsigned int branch_ct[32][2];
int i, j;
for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) {
vp9_tree_probs_from_distribution(
vp9_switchable_interp_tree,
pc->fc.switchable_interp_prob[j], branch_ct,
cpi->switchable_interp_count[j], 0);
for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) {
if (pc->fc.switchable_interp_prob[j][i] < 1)
pc->fc.switchable_interp_prob[j][i] = 1;
vp9_write_prob(bc, pc->fc.switchable_interp_prob[j][i]);
}
}
}
// This function updates the reference frame prediction stats
static void update_refpred_stats(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int i;
vp9_prob new_pred_probs[PREDICTION_PROBS];
int old_cost, new_cost;
// Set the prediction probability structures to defaults
if (cm->frame_type != KEY_FRAME) {
// From the prediction counts set the probabilities for each context
for (i = 0; i < PREDICTION_PROBS; i++) {
new_pred_probs[i] = get_binary_prob(cpi->ref_pred_count[i][0],
cpi->ref_pred_count[i][1]);
// Decide whether or not to update the reference frame probs.
// Returned costs are in 1/256 bit units.
old_cost =
(cpi->ref_pred_count[i][0] * vp9_cost_zero(cm->ref_pred_probs[i])) +
(cpi->ref_pred_count[i][1] * vp9_cost_one(cm->ref_pred_probs[i]));
new_cost =
(cpi->ref_pred_count[i][0] * vp9_cost_zero(new_pred_probs[i])) +
(cpi->ref_pred_count[i][1] * vp9_cost_one(new_pred_probs[i]));
// Cost saving must be >= 8 bits (2048 in these units)
if ((old_cost - new_cost) >= 2048) {
cpi->ref_pred_probs_update[i] = 1;
cm->ref_pred_probs[i] = new_pred_probs[i];
} else
cpi->ref_pred_probs_update[i] = 0;
}
}
}
// This function is called to update the mode probability context used to encode
// inter modes. It assumes the branch counts table has already been populated
// prior to the actual packing of the bitstream (in rd stage or dummy pack)
//
// The branch counts table is re-populated during the actual pack stage and in
// the decoder to facilitate backwards update of the context.
static void update_inter_mode_probs(VP9_COMMON *cm,
int mode_context[INTER_MODE_CONTEXTS][4]) {
int i, j;
unsigned int (*mv_ref_ct)[4][2];
vpx_memcpy(mode_context, cm->fc.vp9_mode_contexts,
sizeof(cm->fc.vp9_mode_contexts));
mv_ref_ct = cm->fc.mv_ref_ct;
for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
for (j = 0; j < 4; j++) {
int new_prob, old_cost, new_cost;
// Work out cost of coding branches with the old and optimal probability
old_cost = cost_branch256(mv_ref_ct[i][j], mode_context[i][j]);
new_prob = get_binary_prob(mv_ref_ct[i][j][0], mv_ref_ct[i][j][1]);
new_cost = cost_branch256(mv_ref_ct[i][j], new_prob);
// If cost saving is >= 14 bits then update the mode probability.
// This is the approximate net cost of updating one probability given
// that the no update case ismuch more common than the update case.
if (new_cost <= (old_cost - (14 << 8))) {
mode_context[i][j] = new_prob;
}
}
}
}
static void write_ymode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_ymode_tree, p, vp9_ymode_encodings + m);
}
static void kfwrite_ymode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_kf_ymode_tree, p, vp9_kf_ymode_encodings + m);
}
static void write_sb_ymode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_sb_ymode_tree, p, vp9_sb_ymode_encodings + m);
}
static void sb_kfwrite_ymode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_uv_mode_tree, p, vp9_sb_kf_ymode_encodings + m);
}
static void write_i8x8_mode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_i8x8_mode_tree, p, vp9_i8x8_mode_encodings + m);
}
static void write_uv_mode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_uv_mode_tree, p, vp9_uv_mode_encodings + m);
}
static void write_bmode(vp9_writer *bc, int m, const vp9_prob *p) {
#if CONFIG_NEWBINTRAMODES
assert(m < B_CONTEXT_PRED - CONTEXT_PRED_REPLACEMENTS || m == B_CONTEXT_PRED);
if (m == B_CONTEXT_PRED) m -= CONTEXT_PRED_REPLACEMENTS;
#endif
write_token(bc, vp9_bmode_tree, p, vp9_bmode_encodings + m);
}
static void write_kf_bmode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_kf_bmode_tree, p, vp9_kf_bmode_encodings + m);
}
static void write_split(vp9_writer *bc, int x, const vp9_prob *p) {
write_token(
bc, vp9_mbsplit_tree, p, vp9_mbsplit_encodings + x);
}
static int prob_update_savings(const unsigned int *ct,
const vp9_prob oldp, const vp9_prob newp,
const vp9_prob upd) {
const int old_b = cost_branch256(ct, oldp);
const int new_b = cost_branch256(ct, newp);
const int update_b = 2048 + vp9_cost_upd256;
return (old_b - new_b - update_b);
}
static int prob_diff_update_savings(const unsigned int *ct,
const vp9_prob oldp, const vp9_prob newp,
const vp9_prob upd) {
const int old_b = cost_branch256(ct, oldp);
const int new_b = cost_branch256(ct, newp);
const int update_b = (newp == oldp ? 0 :
prob_diff_update_cost(newp, oldp) + vp9_cost_upd256);
return (old_b - new_b - update_b);
}
static int prob_diff_update_savings_search(const unsigned int *ct,
const vp9_prob oldp, vp9_prob *bestp,
const vp9_prob upd) {
const int old_b = cost_branch256(ct, oldp);
int new_b, update_b, savings, bestsavings, step;
vp9_prob newp, bestnewp;
bestsavings = 0;
bestnewp = oldp;
step = (*bestp > oldp ? -1 : 1);
for (newp = *bestp; newp != oldp; newp += step) {
new_b = cost_branch256(ct, newp);
update_b = prob_diff_update_cost(newp, oldp) + vp9_cost_upd256;
savings = old_b - new_b - update_b;
if (savings > bestsavings) {
bestsavings = savings;
bestnewp = newp;
}
}
*bestp = bestnewp;
return bestsavings;
}
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
static int prob_diff_update_savings_search_model(const unsigned int *ct,
const vp9_prob *oldp,
vp9_prob *bestp,
const vp9_prob upd,
int b, int r, int q) {
int i, old_b, new_b, update_b, savings, bestsavings, step;
int newp;
vp9_prob bestnewp, newplist[ENTROPY_NODES];
for (i = UNCONSTRAINED_NODES - 1, old_b = 0; i < ENTROPY_NODES; ++i)
old_b += cost_branch256(ct + 2 * i, oldp[i]);
bestsavings = 0;
bestnewp = oldp[UNCONSTRAINED_NODES - 1];
step = (*bestp > oldp[UNCONSTRAINED_NODES - 1] ? -1 : 1);
newp = *bestp;
// newp = *bestp - step * (abs(*bestp - oldp[UNCONSTRAINED_NODES - 1]) >> 1);
for (; newp != oldp[UNCONSTRAINED_NODES - 1]; newp += step) {
if (newp < 1 || newp > 255) continue;
newplist[UNCONSTRAINED_NODES - 1] = newp;
vp9_get_model_distribution(newp, newplist, b, r);
for (i = UNCONSTRAINED_NODES - 1, new_b = 0; i < ENTROPY_NODES; ++i)
new_b += cost_branch256(ct + 2 * i, newplist[i]);
update_b = prob_diff_update_cost(newp, oldp[UNCONSTRAINED_NODES - 1]) +
vp9_cost_upd256;
savings = old_b - new_b - update_b;
if (savings > bestsavings) {
bestsavings = savings;
bestnewp = newp;
}
}
*bestp = bestnewp;
return bestsavings;
}
#endif
static void vp9_cond_prob_update(vp9_writer *bc, vp9_prob *oldp, vp9_prob upd,
unsigned int *ct) {
vp9_prob newp;
int savings;
newp = get_binary_prob(ct[0], ct[1]);
savings = prob_update_savings(ct, *oldp, newp, upd);
if (savings > 0) {
vp9_write(bc, 1, upd);
vp9_write_prob(bc, newp);
*oldp = newp;
} else {
vp9_write(bc, 0, upd);
}
}
static void pack_mb_tokens(vp9_writer* const bc,
TOKENEXTRA **tp,
const TOKENEXTRA *const stop) {
TOKENEXTRA *p = *tp;
while (p < stop) {
const int t = p->token;
const struct vp9_token *const a = vp9_coef_encodings + t;
const vp9_extra_bit *const b = vp9_extra_bits + t;
int i = 0;
const unsigned char *pp = p->context_tree;
int v = a->value;
int n = a->len;
int ncount = n;
if (t == EOSB_TOKEN)
{
++p;
break;
}
assert(pp != 0);
#if CONFIG_CODE_ZEROGROUP
if (t == ZPC_ISOLATED || t == ZPC_EOORIENT) {
assert((p - 1)->token == ZERO_TOKEN);
encode_bool(bc, t == ZPC_ISOLATED, *pp);
++p;
continue;
} else if (p->skip_coef_val) {
assert(p->skip_eob_node == 0);
assert(t == DCT_EOB_TOKEN || t == ZERO_TOKEN);
encode_bool(bc, t == ZERO_TOKEN, *pp);
++p;
continue;
}
#endif
/* skip one or two nodes */
if (p->skip_eob_node) {
n -= p->skip_eob_node;
i = 2 * p->skip_eob_node;
ncount -= p->skip_eob_node;
}
do {
const int bb = (v >> --n) & 1;
vp9_write(bc, bb, pp[i >> 1]);
i = vp9_coef_tree[i + bb];
ncount--;
} while (n && ncount);
if (b->base_val) {
const int e = p->extra, l = b->len;
if (l) {
const unsigned char *pp = b->prob;
int v = e >> 1;
int n = l; /* number of bits in v, assumed nonzero */
int i = 0;
do {
const int bb = (v >> --n) & 1;
vp9_write(bc, bb, pp[i >> 1]);
i = b->tree[i + bb];
} while (n);
}
vp9_write_bit(bc, e & 1);
}
++p;
}
*tp = p;
}
static void write_mv_ref
(
vp9_writer *bc, MB_PREDICTION_MODE m, const vp9_prob *p
) {
#if CONFIG_DEBUG
assert(NEARESTMV <= m && m <= SPLITMV);
#endif
write_token(bc, vp9_mv_ref_tree, p,
vp9_mv_ref_encoding_array - NEARESTMV + m);
}
static void write_sb_mv_ref(vp9_writer *bc, MB_PREDICTION_MODE m,
const vp9_prob *p) {
#if CONFIG_DEBUG
assert(NEARESTMV <= m && m < SPLITMV);
#endif
write_token(bc, vp9_sb_mv_ref_tree, p,
vp9_sb_mv_ref_encoding_array - NEARESTMV + m);
}
static void write_sub_mv_ref
(
vp9_writer *bc, B_PREDICTION_MODE m, const vp9_prob *p
) {
#if CONFIG_DEBUG
assert(LEFT4X4 <= m && m <= NEW4X4);
#endif
write_token(bc, vp9_sub_mv_ref_tree, p,
vp9_sub_mv_ref_encoding_array - LEFT4X4 + m);
}
static void write_nmv(VP9_COMP *cpi, vp9_writer *bc,
const MV *mv, const int_mv *ref,
const nmv_context *nmvc, int usehp) {
MV e;
e.row = mv->row - ref->as_mv.row;
e.col = mv->col - ref->as_mv.col;
vp9_encode_nmv(bc, &e, &ref->as_mv, nmvc);
vp9_encode_nmv_fp(bc, &e, &ref->as_mv, nmvc, usehp);
}
// This function writes the current macro block's segnment id to the bitstream
// It should only be called if a segment map update is indicated.
static void write_mb_segid(vp9_writer *bc,
const MB_MODE_INFO *mi, const MACROBLOCKD *xd) {
// Encode the MB segment id.
int seg_id = mi->segment_id;
if (xd->segmentation_enabled && xd->update_mb_segmentation_map) {
switch (seg_id) {
case 0:
vp9_write(bc, 0, xd->mb_segment_tree_probs[0]);
vp9_write(bc, 0, xd->mb_segment_tree_probs[1]);
vp9_write(bc, 0, xd->mb_segment_tree_probs[2]);
break;
case 1:
vp9_write(bc, 0, xd->mb_segment_tree_probs[0]);
vp9_write(bc, 0, xd->mb_segment_tree_probs[1]);
vp9_write(bc, 1, xd->mb_segment_tree_probs[2]);
break;
case 2:
vp9_write(bc, 0, xd->mb_segment_tree_probs[0]);
vp9_write(bc, 1, xd->mb_segment_tree_probs[1]);
vp9_write(bc, 0, xd->mb_segment_tree_probs[3]);
break;
case 3:
vp9_write(bc, 0, xd->mb_segment_tree_probs[0]);
vp9_write(bc, 1, xd->mb_segment_tree_probs[1]);
vp9_write(bc, 1, xd->mb_segment_tree_probs[3]);
break;
case 4:
vp9_write(bc, 1, xd->mb_segment_tree_probs[0]);
vp9_write(bc, 0, xd->mb_segment_tree_probs[4]);
vp9_write(bc, 0, xd->mb_segment_tree_probs[5]);
break;
case 5:
vp9_write(bc, 1, xd->mb_segment_tree_probs[0]);
vp9_write(bc, 0, xd->mb_segment_tree_probs[4]);
vp9_write(bc, 1, xd->mb_segment_tree_probs[5]);
break;
case 6:
vp9_write(bc, 1, xd->mb_segment_tree_probs[0]);
vp9_write(bc, 1, xd->mb_segment_tree_probs[4]);
vp9_write(bc, 0, xd->mb_segment_tree_probs[6]);
break;
case 7:
vp9_write(bc, 1, xd->mb_segment_tree_probs[0]);
vp9_write(bc, 1, xd->mb_segment_tree_probs[4]);
vp9_write(bc, 1, xd->mb_segment_tree_probs[6]);
break;
// TRAP.. This should not happen
default:
vp9_write(bc, 0, xd->mb_segment_tree_probs[0]);
vp9_write(bc, 0, xd->mb_segment_tree_probs[1]);
vp9_write(bc, 0, xd->mb_segment_tree_probs[2]);
break;
}
}
}
// This function encodes the reference frame
static void encode_ref_frame(vp9_writer *const bc,
VP9_COMMON *const cm,
MACROBLOCKD *xd,
int segment_id,
MV_REFERENCE_FRAME rf) {
int seg_ref_active;
int seg_ref_count = 0;
seg_ref_active = vp9_segfeature_active(xd,
segment_id,
SEG_LVL_REF_FRAME);
if (seg_ref_active) {
seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) +
vp9_check_segref(xd, segment_id, LAST_FRAME) +
vp9_check_segref(xd, segment_id, GOLDEN_FRAME) +
vp9_check_segref(xd, segment_id, ALTREF_FRAME);
}
// If segment level coding of this signal is disabled...
// or the segment allows multiple reference frame options
if (!seg_ref_active || (seg_ref_count > 1)) {
// Values used in prediction model coding
unsigned char prediction_flag;
vp9_prob pred_prob;
MV_REFERENCE_FRAME pred_rf;
// Get the context probability the prediction flag
pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF);
// Get the predicted value.
pred_rf = vp9_get_pred_ref(cm, xd);
// Did the chosen reference frame match its predicted value.
prediction_flag =
(xd->mode_info_context->mbmi.ref_frame == pred_rf);
vp9_set_pred_flag(xd, PRED_REF, prediction_flag);
vp9_write(bc, prediction_flag, pred_prob);
// If not predicted correctly then code value explicitly
if (!prediction_flag) {
vp9_prob mod_refprobs[PREDICTION_PROBS];
vpx_memcpy(mod_refprobs,
cm->mod_refprobs[pred_rf], sizeof(mod_refprobs));
// If segment coding enabled blank out options that cant occur by
// setting the branch probability to 0.
if (seg_ref_active) {
mod_refprobs[INTRA_FRAME] *=
vp9_check_segref(xd, segment_id, INTRA_FRAME);
mod_refprobs[LAST_FRAME] *=
vp9_check_segref(xd, segment_id, LAST_FRAME);
mod_refprobs[GOLDEN_FRAME] *=
(vp9_check_segref(xd, segment_id, GOLDEN_FRAME) *
vp9_check_segref(xd, segment_id, ALTREF_FRAME));
}
if (mod_refprobs[0]) {
vp9_write(bc, (rf != INTRA_FRAME), mod_refprobs[0]);
}
// Inter coded
if (rf != INTRA_FRAME) {
if (mod_refprobs[1]) {
vp9_write(bc, (rf != LAST_FRAME), mod_refprobs[1]);
}
if (rf != LAST_FRAME) {
if (mod_refprobs[2]) {
vp9_write(bc, (rf != GOLDEN_FRAME), mod_refprobs[2]);
}
}
}
}
}
// if using the prediction mdoel we have nothing further to do because
// the reference frame is fully coded by the segment
}
// Update the probabilities used to encode reference frame data
static void update_ref_probs(VP9_COMP *const cpi) {
VP9_COMMON *const cm = &cpi->common;
const int *const rfct = cpi->count_mb_ref_frame_usage;
const int rf_intra = rfct[INTRA_FRAME];
const int rf_inter = rfct[LAST_FRAME] +
rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
cm->prob_intra_coded = get_binary_prob(rf_intra, rf_inter);
cm->prob_last_coded = get_prob(rfct[LAST_FRAME], rf_inter);
cm->prob_gf_coded = get_binary_prob(rfct[GOLDEN_FRAME], rfct[ALTREF_FRAME]);
// Compute a modified set of probabilities to use when prediction of the
// reference frame fails
vp9_compute_mod_refprobs(cm);
}
static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m,
vp9_writer *bc, int mi_row, int mi_col) {
VP9_COMMON *const pc = &cpi->common;
const nmv_context *nmvc = &pc->fc.nmvc;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mis = pc->mode_info_stride;
MB_MODE_INFO *const mi = &m->mbmi;
const MV_REFERENCE_FRAME rf = mi->ref_frame;
const MB_PREDICTION_MODE mode = mi->mode;
const int segment_id = mi->segment_id;
int skip_coeff;
xd->prev_mode_info_context = pc->prev_mi + (m - pc->mi);
x->partition_info = x->pi + (m - pc->mi);
#ifdef ENTROPY_STATS
active_section = 9;
#endif
if (cpi->mb.e_mbd.update_mb_segmentation_map) {
// Is temporal coding of the segment map enabled
if (pc->temporal_update) {
unsigned char prediction_flag = vp9_get_pred_flag(xd, PRED_SEG_ID);
vp9_prob pred_prob = vp9_get_pred_prob(pc, xd, PRED_SEG_ID);
// Code the segment id prediction flag for this mb
vp9_write(bc, prediction_flag, pred_prob);
// If the mb segment id wasn't predicted code explicitly
if (!prediction_flag)
write_mb_segid(bc, mi, &cpi->mb.e_mbd);
} else {
// Normal unpredicted coding
write_mb_segid(bc, mi, &cpi->mb.e_mbd);
}
}
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
skip_coeff = 1;
} else {
skip_coeff = m->mbmi.mb_skip_coeff;
vp9_write(bc, skip_coeff,
vp9_get_pred_prob(pc, xd, PRED_MBSKIP));
}
// Encode the reference frame.
encode_ref_frame(bc, pc, xd, segment_id, rf);
if (rf == INTRA_FRAME) {
#ifdef ENTROPY_STATS
active_section = 6;
#endif
if (m->mbmi.sb_type > BLOCK_SIZE_MB16X16)
write_sb_ymode(bc, mode, pc->fc.sb_ymode_prob);
else
write_ymode(bc, mode, pc->fc.ymode_prob);
if (mode == I4X4_PRED) {
int j = 0;
do {
write_bmode(bc, m->bmi[j].as_mode.first,
pc->fc.bmode_prob);
} while (++j < 16);
}
if (mode == I8X8_PRED) {
write_i8x8_mode(bc, m->bmi[0].as_mode.first,
pc->fc.i8x8_mode_prob);
write_i8x8_mode(bc, m->bmi[2].as_mode.first,
pc->fc.i8x8_mode_prob);
write_i8x8_mode(bc, m->bmi[8].as_mode.first,
pc->fc.i8x8_mode_prob);
write_i8x8_mode(bc, m->bmi[10].as_mode.first,
pc->fc.i8x8_mode_prob);
} else {
write_uv_mode(bc, mi->uv_mode,
pc->fc.uv_mode_prob[mode]);
}
} else {
vp9_prob mv_ref_p[VP9_MVREFS - 1];
vp9_mv_ref_probs(&cpi->common, mv_ref_p, mi->mb_mode_context[rf]);
#ifdef ENTROPY_STATS
active_section = 3;
#endif
// If segment skip is not enabled code the mode.
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
if (mi->sb_type > BLOCK_SIZE_MB16X16) {
write_sb_mv_ref(bc, mode, mv_ref_p);
} else {
write_mv_ref(bc, mode, mv_ref_p);
}
vp9_accum_mv_refs(&cpi->common, mode, mi->mb_mode_context[rf]);
}
if (is_inter_mode(mode)) {
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
write_token(bc, vp9_switchable_interp_tree,
vp9_get_pred_probs(&cpi->common, xd,
PRED_SWITCHABLE_INTERP),
vp9_switchable_interp_encodings +
vp9_switchable_interp_map[mi->interp_filter]);
} else {
assert(mi->interp_filter == cpi->common.mcomp_filter_type);
}
}
// does the feature use compound prediction or not
// (if not specified at the frame/segment level)
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
vp9_write(bc, mi->second_ref_frame > INTRA_FRAME,
vp9_get_pred_prob(pc, xd, PRED_COMP));
}
#if CONFIG_COMP_INTERINTRA_PRED
if (cpi->common.use_interintra &&
mode >= NEARESTMV && mode < SPLITMV &&
mi->second_ref_frame <= INTRA_FRAME) {
vp9_write(bc, mi->second_ref_frame == INTRA_FRAME,
pc->fc.interintra_prob);
// if (!cpi->dummy_packing)
// printf("-- %d (%d)\n", mi->second_ref_frame == INTRA_FRAME,
// pc->fc.interintra_prob);
if (mi->second_ref_frame == INTRA_FRAME) {
// if (!cpi->dummy_packing)
// printf("** %d %d\n", mi->interintra_mode,
// mi->interintra_uv_mode);
write_ymode(bc, mi->interintra_mode, pc->fc.ymode_prob);
#if SEPARATE_INTERINTRA_UV
write_uv_mode(bc, mi->interintra_uv_mode,
pc->fc.uv_mode_prob[mi->interintra_mode]);
#endif
}
}
#endif
switch (mode) { /* new, split require MVs */
case NEWMV:
#ifdef ENTROPY_STATS
active_section = 5;
#endif
write_nmv(cpi, bc, &mi->mv[0].as_mv, &mi->best_mv,
(const nmv_context*) nmvc,
xd->allow_high_precision_mv);
if (mi->second_ref_frame > 0) {
write_nmv(cpi, bc, &mi->mv[1].as_mv, &mi->best_second_mv,
(const nmv_context*) nmvc,
xd->allow_high_precision_mv);
}
break;
case SPLITMV: {
int j = 0;
#ifdef MODE_STATS
++count_mb_seg[mi->partitioning];
#endif
write_split(bc, mi->partitioning, cpi->common.fc.mbsplit_prob);
cpi->mbsplit_count[mi->partitioning]++;
do {
B_PREDICTION_MODE blockmode;
int_mv blockmv;
const int *const L = vp9_mbsplits[mi->partitioning];
int k = -1; /* first block in subset j */
int mv_contz;
int_mv leftmv, abovemv;
blockmode = cpi->mb.partition_info->bmi[j].mode;
blockmv = cpi->mb.partition_info->bmi[j].mv;
#if CONFIG_DEBUG
while (j != L[++k])
if (k >= 16)
assert(0);
#else
while (j != L[++k]);
#endif
leftmv.as_int = left_block_mv(xd, m, k);
abovemv.as_int = above_block_mv(m, k, mis);
mv_contz = vp9_mv_cont(&leftmv, &abovemv);
write_sub_mv_ref(bc, blockmode,
cpi->common.fc.sub_mv_ref_prob[mv_contz]);
cpi->sub_mv_ref_count[mv_contz][blockmode - LEFT4X4]++;
if (blockmode == NEW4X4) {
#ifdef ENTROPY_STATS
active_section = 11;
#endif
write_nmv(cpi, bc, &blockmv.as_mv, &mi->best_mv,
(const nmv_context*) nmvc,
xd->allow_high_precision_mv);
if (mi->second_ref_frame > 0) {
write_nmv(cpi, bc,
&cpi->mb.partition_info->bmi[j].second_mv.as_mv,
&mi->best_second_mv,
(const nmv_context*) nmvc,
xd->allow_high_precision_mv);
}
}
} while (++j < cpi->mb.partition_info->count);
break;
}
default:
break;
}
}
if (((rf == INTRA_FRAME && mode <= I8X8_PRED) ||
(rf != INTRA_FRAME && !(mode == SPLITMV &&
mi->partitioning == PARTITIONING_4X4))) &&
pc->txfm_mode == TX_MODE_SELECT &&
!(skip_coeff || vp9_segfeature_active(xd, segment_id,
SEG_LVL_SKIP))) {
TX_SIZE sz = mi->txfm_size;
// FIXME(rbultje) code ternary symbol once all experiments are merged
vp9_write(bc, sz != TX_4X4, pc->prob_tx[0]);
if (sz != TX_4X4 && mode != I8X8_PRED && mode != SPLITMV) {
vp9_write(bc, sz != TX_8X8, pc->prob_tx[1]);
if (mi->sb_type >= BLOCK_SIZE_SB32X32 && sz != TX_8X8)
vp9_write(bc, sz != TX_16X16, pc->prob_tx[2]);
}
}
}
static void write_mb_modes_kf(const VP9_COMP *cpi,
MODE_INFO *m,
vp9_writer *bc, int mi_row, int mi_col) {
const VP9_COMMON *const c = &cpi->common;
const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
const int mis = c->mode_info_stride;
const int ym = m->mbmi.mode;
const int segment_id = m->mbmi.segment_id;
int skip_coeff;
if (xd->update_mb_segmentation_map) {
write_mb_segid(bc, &m->mbmi, xd);
}
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
skip_coeff = 1;
} else {
skip_coeff = m->mbmi.mb_skip_coeff;
vp9_write(bc, skip_coeff,
vp9_get_pred_prob(c, xd, PRED_MBSKIP));
}
if (m->mbmi.sb_type > BLOCK_SIZE_MB16X16) {
sb_kfwrite_ymode(bc, ym,
c->sb_kf_ymode_prob[c->kf_ymode_probs_index]);
} else {
kfwrite_ymode(bc, ym,
c->kf_ymode_prob[c->kf_ymode_probs_index]);
}
if (ym == I4X4_PRED) {
int i = 0;
do {
const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
const B_PREDICTION_MODE L = (xd->left_available || (i & 3)) ?
left_block_mode(m, i) : B_DC_PRED;
const int bm = m->bmi[i].as_mode.first;
#ifdef ENTROPY_STATS
++intra_mode_stats [A] [L] [bm];
#endif
write_kf_bmode(bc, bm, c->kf_bmode_prob[A][L]);
} while (++i < 16);
}
if (ym == I8X8_PRED) {
write_i8x8_mode(bc, m->bmi[0].as_mode.first,
c->fc.i8x8_mode_prob);
// printf(" mode: %d\n", m->bmi[0].as_mode.first); fflush(stdout);
write_i8x8_mode(bc, m->bmi[2].as_mode.first,
c->fc.i8x8_mode_prob);
// printf(" mode: %d\n", m->bmi[2].as_mode.first); fflush(stdout);
write_i8x8_mode(bc, m->bmi[8].as_mode.first,
c->fc.i8x8_mode_prob);
// printf(" mode: %d\n", m->bmi[8].as_mode.first); fflush(stdout);
write_i8x8_mode(bc, m->bmi[10].as_mode.first,
c->fc.i8x8_mode_prob);
// printf(" mode: %d\n", m->bmi[10].as_mode.first); fflush(stdout);
} else
write_uv_mode(bc, m->mbmi.uv_mode, c->kf_uv_mode_prob[ym]);
if (ym <= I8X8_PRED && c->txfm_mode == TX_MODE_SELECT &&
!(skip_coeff || vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP))) {
TX_SIZE sz = m->mbmi.txfm_size;
// FIXME(rbultje) code ternary symbol once all experiments are merged
vp9_write(bc, sz != TX_4X4, c->prob_tx[0]);
if (sz != TX_4X4 && ym <= TM_PRED) {
vp9_write(bc, sz != TX_8X8, c->prob_tx[1]);
if (m->mbmi.sb_type >= BLOCK_SIZE_SB32X32 && sz != TX_8X8)
vp9_write(bc, sz != TX_16X16, c->prob_tx[2]);
}
}
}
#if CONFIG_CODE_ZEROGROUP
#ifdef ZPC_STATS
void init_zpcstats() {
vp9_zero(zpc_stats_4x4);
vp9_zero(zpc_stats_8x8);
vp9_zero(zpc_stats_16x16);
vp9_zero(zpc_stats_32x32);
}
void update_zpcstats(VP9_COMMON *const cm) {
int r, b, p, n;
for (r = 0; r < REF_TYPES; ++r) {
for (b = 0; b < ZPC_BANDS; ++b) {
for (p = 0; p < ZPC_PTOKS; ++p) {
for (n = 0; n < ZPC_NODES; ++n) {
zpc_stats_4x4[r][b][p][n][0] += cm->fc.zpc_counts_4x4[r][b][p][n][0];
zpc_stats_4x4[r][b][p][n][1] += cm->fc.zpc_counts_4x4[r][b][p][n][1];
zpc_stats_8x8[r][b][p][n][0] += cm->fc.zpc_counts_8x8[r][b][p][n][0];
zpc_stats_8x8[r][b][p][n][1] += cm->fc.zpc_counts_8x8[r][b][p][n][1];
zpc_stats_16x16[r][b][p][n][0] +=
cm->fc.zpc_counts_16x16[r][b][p][n][0];
zpc_stats_16x16[r][b][p][n][1] +=
cm->fc.zpc_counts_16x16[r][b][p][n][1];
zpc_stats_32x32[r][b][p][n][0] +=
cm->fc.zpc_counts_32x32[r][b][p][n][0];
zpc_stats_32x32[r][b][p][n][1] +=
cm->fc.zpc_counts_32x32[r][b][p][n][1];
}
}
}
}
}
void print_zpcstats() {
int r, b, p, n;
FILE *f;
printf(
"static const unsigned int default_zpc_probs_4x4[REF_TYPES]\n"
" [ZPC_BANDS]\n"
" [ZPC_PTOKS]\n"
" [ZPC_NODES] = {\n");
for (r = 0; r < REF_TYPES; ++r) {
printf(" {\n");
for (b = 0; b < ZPC_BANDS; ++b) {
printf(" {\n");
for (p = 0; p < ZPC_PTOKS; ++p) {
printf(" {");
for (n = 0; n < ZPC_NODES; ++n) {
vp9_prob prob = get_binary_prob(zpc_stats_4x4[r][b][p][n][0],
zpc_stats_4x4[r][b][p][n][1]);
printf(" %-3d [%d/%d],", prob, zpc_stats_4x4[r][b][p][n][0],
zpc_stats_4x4[r][b][p][n][1]);
}
printf(" },\n");
}
printf(" },\n");
}
printf(" },\n");
}
printf("};\n");
printf(
"static const unsigned int default_zpc_probs_8x8[REF_TYPES]\n"
" [ZPC_BANDS]\n"
" [ZPC_PTOKS]\n"
" [ZPC_NODES] = {\n");
for (r = 0; r < REF_TYPES; ++r) {
printf(" {\n");
for (b = 0; b < ZPC_BANDS; ++b) {
printf(" {\n");
for (p = 0; p < ZPC_PTOKS; ++p) {
printf(" {");
for (n = 0; n < ZPC_NODES; ++n) {
vp9_prob prob = get_binary_prob(zpc_stats_8x8[r][b][p][n][0],
zpc_stats_8x8[r][b][p][n][1]);
printf(" %-3d [%d/%d],", prob, zpc_stats_8x8[r][b][p][n][0],
zpc_stats_8x8[r][b][p][n][1]);
}
printf(" },\n");
}
printf(" },\n");
}
printf(" },\n");
}
printf("};\n");
printf(
"static const unsigned int default_zpc_probs_16x16[REF_TYPES]\n"
" [ZPC_BANDS]\n"
" [ZPC_PTOKS]\n"
" [ZPC_NODES] = {\n");
for (r = 0; r < REF_TYPES; ++r) {
printf(" {\n");
for (b = 0; b < ZPC_BANDS; ++b) {
printf(" {\n");
for (p = 0; p < ZPC_PTOKS; ++p) {
printf(" {");
for (n = 0; n < ZPC_NODES; ++n) {
vp9_prob prob = get_binary_prob(zpc_stats_16x16[r][b][p][n][0],
zpc_stats_16x16[r][b][p][n][1]);
printf(" %-3d [%d/%d],", prob, zpc_stats_16x16[r][b][p][n][0],
zpc_stats_16x16[r][b][p][n][1]);
}
printf(" },\n");
}
printf(" },\n");
}
printf(" },\n");
}
printf("};\n");
printf(
"static const unsigned int default_zpc_probs_32x32[REF_TYPES]\n"
" [ZPC_BANDS]\n"
" [ZPC_PTOKS]\n"
" [ZPC_NODES] = {\n");
for (r = 0; r < REF_TYPES; ++r) {
printf(" {\n");
for (b = 0; b < ZPC_BANDS; ++b) {
printf(" {\n");
for (p = 0; p < ZPC_PTOKS; ++p) {
printf(" {");
for (n = 0; n < ZPC_NODES; ++n) {
vp9_prob prob = get_binary_prob(zpc_stats_32x32[r][b][p][n][0],
zpc_stats_32x32[r][b][p][n][1]);
printf(" %-3d [%d/%d],", prob, zpc_stats_32x32[r][b][p][n][0],
zpc_stats_32x32[r][b][p][n][1]);
}
printf(" },\n");
}
printf(" },\n");
}
printf(" },\n");
}
printf("};\n");
f = fopen("zpcstats.bin", "wb");
fwrite(zpc_stats_4x4, sizeof(zpc_stats_4x4), 1, f);
fwrite(zpc_stats_8x8, sizeof(zpc_stats_8x8), 1, f);
fwrite(zpc_stats_16x16, sizeof(zpc_stats_16x16), 1, f);
fwrite(zpc_stats_32x32, sizeof(zpc_stats_32x32), 1, f);
fclose(f);
}
#endif
#endif // CONFIG_CODE_ZEROGROUP
static void write_modes_b(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc,
TOKENEXTRA **tok, TOKENEXTRA *tok_end,
int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
xd->mode_info_context = m;
set_mi_row_col(&cpi->common, xd, mi_row,
1 << mi_height_log2(m->mbmi.sb_type),
mi_col, 1 << mi_width_log2(m->mbmi.sb_type));
if (cm->frame_type == KEY_FRAME) {
write_mb_modes_kf(cpi, m, bc, mi_row, mi_col);
#ifdef ENTROPY_STATS
active_section = 8;
#endif
} else {
pack_inter_mode_mvs(cpi, m, bc, mi_row, mi_col);
#ifdef ENTROPY_STATS
active_section = 1;
#endif
}
assert(*tok < tok_end);
pack_mb_tokens(bc, tok, tok_end);
}
static void write_modes_sb(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc,
TOKENEXTRA **tok, TOKENEXTRA *tok_end,
int mi_row, int mi_col,
BLOCK_SIZE_TYPE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
const int mis = cm->mode_info_stride;
int bwl, bhl;
int bw, bh;
int bsl = mi_width_log2(bsize), bs = (1 << bsl) / 2;
int n;
PARTITION_TYPE partition;
BLOCK_SIZE_TYPE subsize;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
bwl = mi_width_log2(m->mbmi.sb_type);
bhl = mi_height_log2(m->mbmi.sb_type);
bw = 1 << bwl;
bh = 1 << bhl;
// parse the partition type
if ((bwl == bsl) && (bhl == bsl))
partition = PARTITION_NONE;
else if ((bwl == bsl) && (bhl < bsl))
partition = PARTITION_HORZ;
else if ((bwl < bsl) && (bhl == bsl))
partition = PARTITION_VERT;
else if ((bwl < bsl) && (bhl < bsl))
partition = PARTITION_SPLIT;
else
assert(0);
if (bsize > BLOCK_SIZE_MB16X16) {
int pl;
xd->left_seg_context =
cm->left_seg_context + ((mi_row >> CONFIG_SB8X8) & 3);
xd->above_seg_context = cm->above_seg_context + (mi_col >> CONFIG_SB8X8);
pl = partition_plane_context(xd, bsize);
// encode the partition information
write_token(bc, vp9_partition_tree, cm->fc.partition_prob[pl],
vp9_partition_encodings + partition);
}
switch (partition) {
case PARTITION_NONE:
subsize = bsize;
write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col);
break;
case PARTITION_HORZ:
subsize = (bsize == BLOCK_SIZE_SB64X64) ? BLOCK_SIZE_SB64X32 :
BLOCK_SIZE_SB32X16;
write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col);
if ((mi_row + bh) < cm->mi_rows)
write_modes_b(cpi, m + bh * mis, bc, tok, tok_end, mi_row + bh, mi_col);
break;
case PARTITION_VERT:
subsize = (bsize == BLOCK_SIZE_SB64X64) ? BLOCK_SIZE_SB32X64 :
BLOCK_SIZE_SB16X32;
write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col);
if ((mi_col + bw) < cm->mi_cols)
write_modes_b(cpi, m + bw, bc, tok, tok_end, mi_row, mi_col + bw);
break;
case PARTITION_SPLIT:
// TODO(jingning): support recursive partitioning down to 16x16 as for
// now. need to merge in 16x8, 8x16, 8x8, and smaller partitions.
if (bsize == BLOCK_SIZE_SB64X64)
subsize = BLOCK_SIZE_SB32X32;
else if (bsize == BLOCK_SIZE_SB32X32)
subsize = BLOCK_SIZE_MB16X16;
else
assert(0);
for (n = 0; n < 4; n++) {
int j = n >> 1, i = n & 0x01;
write_modes_sb(cpi, m + j * bs * mis + i * bs, bc, tok, tok_end,
mi_row + j * bs, mi_col + i * bs, subsize);
}
break;
default:
assert(0);
}
// update partition context
if ((partition == PARTITION_SPLIT) && (bsize > BLOCK_SIZE_SB32X32))
return;
xd->left_seg_context = cm->left_seg_context + ((mi_row >> CONFIG_SB8X8) & 3);
xd->above_seg_context = cm->above_seg_context + (mi_col >> CONFIG_SB8X8);
update_partition_context(xd, subsize, bsize);
}
static void write_modes(VP9_COMP *cpi, vp9_writer* const bc,
TOKENEXTRA **tok, TOKENEXTRA *tok_end) {
VP9_COMMON *const c = &cpi->common;
const int mis = c->mode_info_stride;
MODE_INFO *m, *m_ptr = c->mi;
int mi_row, mi_col;
m_ptr += c->cur_tile_mi_col_start + c->cur_tile_mi_row_start * mis;
vpx_memset(c->above_seg_context, 0, sizeof(PARTITION_CONTEXT) *
mb_cols_aligned_to_sb(c));
for (mi_row = c->cur_tile_mi_row_start;
mi_row < c->cur_tile_mi_row_end;
mi_row += (4 << CONFIG_SB8X8), m_ptr += (4 << CONFIG_SB8X8) * mis) {
m = m_ptr;
vpx_memset(c->left_seg_context, 0, sizeof(c->left_seg_context));
for (mi_col = c->cur_tile_mi_col_start;
mi_col < c->cur_tile_mi_col_end;
mi_col += (4 << CONFIG_SB8X8), m += (4 << CONFIG_SB8X8))
write_modes_sb(cpi, m, bc, tok, tok_end, mi_row, mi_col,
BLOCK_SIZE_SB64X64);
}
}
/* This function is used for debugging probability trees. */
static void print_prob_tree(vp9_coeff_probs *coef_probs, int block_types) {
/* print coef probability tree */
int i, j, k, l, m;
FILE *f = fopen("enc_tree_probs.txt", "a");
fprintf(f, "{\n");
for (i = 0; i < block_types; i++) {
fprintf(f, " {\n");
for (j = 0; j < REF_TYPES; ++j) {
fprintf(f, " {\n");
for (k = 0; k < COEF_BANDS; k++) {
fprintf(f, " {\n");
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
fprintf(f, " {");
for (m = 0; m < ENTROPY_NODES; m++) {
fprintf(f, "%3u, ",
(unsigned int)(coef_probs[i][j][k][l][m]));
}
}
fprintf(f, " }\n");
}
fprintf(f, " }\n");
}
fprintf(f, " }\n");
}
fprintf(f, "}\n");
fclose(f);
}
static void build_tree_distribution(vp9_coeff_probs *coef_probs,
vp9_coeff_count *coef_counts,
unsigned int (*eob_branch_ct)[REF_TYPES]
[COEF_BANDS]
[PREV_COEF_CONTEXTS],
#ifdef ENTROPY_STATS
VP9_COMP *cpi,
vp9_coeff_accum *context_counters,
#endif
vp9_coeff_stats *coef_branch_ct,
int block_types) {
int i, j, k, l;
#ifdef ENTROPY_STATS
int t = 0;
#endif
for (i = 0; i < block_types; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
if (l >= 3 && k == 0)
continue;
vp9_tree_probs_from_distribution(vp9_coef_tree,
coef_probs[i][j][k][l],
coef_branch_ct[i][j][k][l],
coef_counts[i][j][k][l], 0);
coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
coef_branch_ct[i][j][k][l][0][0];
coef_probs[i][j][k][l][0] =
get_binary_prob(coef_branch_ct[i][j][k][l][0][0],
coef_branch_ct[i][j][k][l][0][1]);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing) {
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
context_counters[i][j][k][l][t] += coef_counts[i][j][k][l][t];
context_counters[i][j][k][l][MAX_ENTROPY_TOKENS] +=
eob_branch_ct[i][j][k][l];
}
#endif
}
}
}
}
}
static void build_coeff_contexts(VP9_COMP *cpi) {
build_tree_distribution(cpi->frame_coef_probs_4x4,
cpi->coef_counts_4x4,
cpi->common.fc.eob_branch_counts[TX_4X4],
#ifdef ENTROPY_STATS
cpi, context_counters_4x4,
#endif
cpi->frame_branch_ct_4x4, BLOCK_TYPES);
build_tree_distribution(cpi->frame_coef_probs_8x8,
cpi->coef_counts_8x8,
cpi->common.fc.eob_branch_counts[TX_8X8],
#ifdef ENTROPY_STATS
cpi, context_counters_8x8,
#endif
cpi->frame_branch_ct_8x8, BLOCK_TYPES);
build_tree_distribution(cpi->frame_coef_probs_16x16,
cpi->coef_counts_16x16,
cpi->common.fc.eob_branch_counts[TX_16X16],
#ifdef ENTROPY_STATS
cpi, context_counters_16x16,
#endif
cpi->frame_branch_ct_16x16, BLOCK_TYPES);
build_tree_distribution(cpi->frame_coef_probs_32x32,
cpi->coef_counts_32x32,
cpi->common.fc.eob_branch_counts[TX_32X32],
#ifdef ENTROPY_STATS
cpi, context_counters_32x32,
#endif
cpi->frame_branch_ct_32x32, BLOCK_TYPES);
}
#if CONFIG_CODE_ZEROGROUP
static void update_zpc_probs_common(VP9_COMP* cpi,
vp9_writer* const bc,
TX_SIZE tx_size) {
int r, b, p, n;
VP9_COMMON *const cm = &cpi->common;
int update[2] = {0, 0};
int savings = 0;
vp9_zpc_probs newprobs;
vp9_zpc_probs *zpc_probs;
vp9_zpc_count *zpc_counts;
vp9_prob upd = ZPC_UPDATE_PROB;
if (!get_zpc_used(tx_size)) return;
if (tx_size == TX_32X32) {
zpc_probs = &cm->fc.zpc_probs_32x32;
zpc_counts = &cm->fc.zpc_counts_32x32;
} else if (tx_size == TX_16X16) {
zpc_probs = &cm->fc.zpc_probs_16x16;
zpc_counts = &cm->fc.zpc_counts_16x16;
} else if (tx_size == TX_8X8) {
zpc_probs = &cm->fc.zpc_probs_8x8;
zpc_counts = &cm->fc.zpc_counts_8x8;
} else {
zpc_probs = &cm->fc.zpc_probs_4x4;
zpc_counts = &cm->fc.zpc_counts_4x4;
}
for (r = 0; r < REF_TYPES; ++r) {
for (b = 0; b < ZPC_BANDS; ++b) {
for (p = 0; p < ZPC_PTOKS; ++p) {
for (n = 0; n < ZPC_NODES; ++n) {
newprobs[r][b][p][n] = get_binary_prob((*zpc_counts)[r][b][p][n][0],
(*zpc_counts)[r][b][p][n][1]);
}
}
}
}
for (r = 0; r < REF_TYPES; ++r) {
for (b = 0; b < ZPC_BANDS; ++b) {
for (p = 0; p < ZPC_PTOKS; ++p) {
for (n = 0; n < ZPC_NODES; ++n) {
vp9_prob newp = newprobs[r][b][p][n];
vp9_prob oldp = (*zpc_probs)[r][b][p][n];
int s, u = 0;
#if USE_ZPC_EXTRA == 0
if (n == 1) continue;
#endif
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search((*zpc_counts)[r][b][p][n],
oldp, &newp, upd);
if (s > 0 && newp != oldp)
u = 1;
if (u)
savings += s - (int)(vp9_cost_zero(upd));
else
savings -= (int)(vp9_cost_zero(upd));
#else
s = prob_update_savings((*zpc_counts)[r][b][p][n],
oldp, newp, upd);
if (s > 0)
u = 1;
if (u)
savings += s;
#endif
update[u]++;
}
}
}
}
if (update[1] == 0 || savings < 0) {
vp9_write_bit(bc, 0);
return;
}
vp9_write_bit(bc, 1);
for (r = 0; r < REF_TYPES; ++r) {
for (b = 0; b < ZPC_BANDS; ++b) {
for (p = 0; p < ZPC_PTOKS; ++p) {
for (n = 0; n < ZPC_NODES; ++n) {
vp9_prob newp = newprobs[r][b][p][n];
vp9_prob *oldp = &(*zpc_probs)[r][b][p][n];
int s, u = 0;
#if USE_ZPC_EXTRA == 0
if (n == 1) continue;
#endif
#if defined(SEARCH_NEWP)
s = prob_diff_update_savings_search((*zpc_counts)[r][b][p][n],
*oldp, &newp, upd);
if (s > 0 && newp != *oldp)
u = 1;
#else
s = prob_update_savings((*zpc_counts)[r][b][p][n],
*oldp, newp, upd);
if (s > 0)
u = 1;
#endif
vp9_write(bc, u, upd);
if (u) {
/* send/use new probability */
write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
}
static void update_zpc_probs(VP9_COMP* cpi,
vp9_writer* const bc) {
update_zpc_probs_common(cpi, bc, TX_4X4);
if (cpi->common.txfm_mode != ONLY_4X4)
update_zpc_probs_common(cpi, bc, TX_8X8);
if (cpi->common.txfm_mode > ALLOW_8X8)
update_zpc_probs_common(cpi, bc, TX_16X16);
if (cpi->common.txfm_mode > ALLOW_16X16)
update_zpc_probs_common(cpi, bc, TX_32X32);
#ifdef ZPC_STATS
if (!cpi->dummy_packing)
update_zpcstats(&cpi->common);
#endif
}
#endif // CONFIG_CODE_ZEROGROUP
static void update_coef_probs_common(vp9_writer* const bc,
VP9_COMP *cpi,
#ifdef ENTROPY_STATS
vp9_coeff_stats *tree_update_hist,
#endif
vp9_coeff_probs *new_frame_coef_probs,
vp9_coeff_probs *old_frame_coef_probs,
vp9_coeff_stats *frame_branch_ct,
TX_SIZE tx_size) {
int i, j, k, l, t;
int update[2] = {0, 0};
int savings;
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
const int entropy_nodes_update = UNCONSTRAINED_UPDATE_NODES;
#else
const int entropy_nodes_update = ENTROPY_NODES;
#endif
// vp9_prob bestupd = find_coef_update_prob(cpi);
const int tstart = 0;
/* dry run to see if there is any udpate at all needed */
savings = 0;
for (i = 0; i < BLOCK_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
// int prev_coef_savings[ENTROPY_NODES] = {0};
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
for (t = tstart; t < entropy_nodes_update; ++t) {
vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t];
const vp9_prob upd = vp9_coef_update_prob[t];
int s; // = prev_coef_savings[t];
int u = 0;
if (l >= 3 && k == 0)
continue;
#if defined(SEARCH_NEWP)
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
if (t == UNCONSTRAINED_NODES - 1)
s = prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_frame_coef_probs[i][j][k][l], &newp, upd, i, j,
cpi->common.base_qindex);
else
#endif
s = prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
if (s > 0 && newp != oldp)
u = 1;
if (u)
savings += s - (int)(vp9_cost_zero(upd));
else
savings -= (int)(vp9_cost_zero(upd));
#else
s = prob_update_savings(frame_branch_ct[i][j][k][l][t],
oldp, newp, upd);
if (s > 0)
u = 1;
if (u)
savings += s;
#endif
update[u]++;
}
}
}
}
}
// printf("Update %d %d, savings %d\n", update[0], update[1], savings);
/* Is coef updated at all */
if (update[1] == 0 || savings < 0) {
vp9_write_bit(bc, 0);
return;
}
vp9_write_bit(bc, 1);
for (i = 0; i < BLOCK_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
// int prev_coef_savings[ENTROPY_NODES] = {0};
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
// calc probs and branch cts for this frame only
for (t = tstart; t < entropy_nodes_update; ++t) {
vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
const vp9_prob upd = vp9_coef_update_prob[t];
int s; // = prev_coef_savings[t];
int u = 0;
if (l >= 3 && k == 0)
continue;
#if defined(SEARCH_NEWP)
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
if (t == UNCONSTRAINED_NODES - 1)
s = prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_frame_coef_probs[i][j][k][l], &newp, upd, i, j,
cpi->common.base_qindex);
else
#endif
s = prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t],
*oldp, &newp, upd);
if (s > 0 && newp != *oldp)
u = 1;
#else
s = prob_update_savings(frame_branch_ct[i][j][k][l][t],
*oldp, newp, upd);
if (s > 0)
u = 1;
#endif
vp9_write(bc, u, upd);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
++tree_update_hist[i][j][k][l][t][u];
#endif
if (u) {
/* send/use new probability */
write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
if (t == UNCONSTRAINED_NODES - 1)
vp9_get_model_distribution(
newp, old_frame_coef_probs[i][j][k][l], i, j);
#endif
}
}
}
}
}
}
}
static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) {
vp9_clear_system_state();
// Build the cofficient contexts based on counts collected in encode loop
build_coeff_contexts(cpi);
update_coef_probs_common(bc,
cpi,
#ifdef ENTROPY_STATS
tree_update_hist_4x4,
#endif
cpi->frame_coef_probs_4x4,
cpi->common.fc.coef_probs_4x4,
cpi->frame_branch_ct_4x4,
TX_4X4);
/* do not do this if not even allowed */
if (cpi->common.txfm_mode != ONLY_4X4) {
update_coef_probs_common(bc,
cpi,
#ifdef ENTROPY_STATS
tree_update_hist_8x8,
#endif
cpi->frame_coef_probs_8x8,
cpi->common.fc.coef_probs_8x8,
cpi->frame_branch_ct_8x8,
TX_8X8);
}
if (cpi->common.txfm_mode > ALLOW_8X8) {
update_coef_probs_common(bc,
cpi,
#ifdef ENTROPY_STATS
tree_update_hist_16x16,
#endif
cpi->frame_coef_probs_16x16,
cpi->common.fc.coef_probs_16x16,
cpi->frame_branch_ct_16x16,
TX_16X16);
}
if (cpi->common.txfm_mode > ALLOW_16X16) {
update_coef_probs_common(bc,
cpi,
#ifdef ENTROPY_STATS
tree_update_hist_32x32,
#endif
cpi->frame_coef_probs_32x32,
cpi->common.fc.coef_probs_32x32,
cpi->frame_branch_ct_32x32,
TX_32X32);
}
}
#ifdef PACKET_TESTING
FILE *vpxlogc = 0;
#endif
static void put_delta_q(vp9_writer *bc, int delta_q) {
if (delta_q != 0) {
vp9_write_bit(bc, 1);
vp9_write_literal(bc, abs(delta_q), 4);
vp9_write_bit(bc, delta_q < 0);
} else {
vp9_write_bit(bc, 0);
}
}
static void decide_kf_ymode_entropy(VP9_COMP *cpi) {
int mode_cost[MB_MODE_COUNT];
int cost;
int bestcost = INT_MAX;
int bestindex = 0;
int i, j;
for (i = 0; i < 8; i++) {
vp9_cost_tokens(mode_cost, cpi->common.kf_ymode_prob[i], vp9_kf_ymode_tree);
cost = 0;
for (j = 0; j < VP9_YMODES; j++) {
cost += mode_cost[j] * cpi->ymode_count[j];
}
vp9_cost_tokens(mode_cost, cpi->common.sb_kf_ymode_prob[i],
vp9_sb_ymode_tree);
for (j = 0; j < VP9_I32X32_MODES; j++) {
cost += mode_cost[j] * cpi->sb_ymode_count[j];
}
if (cost < bestcost) {
bestindex = i;
bestcost = cost;
}
}
cpi->common.kf_ymode_probs_index = bestindex;
}
static void segment_reference_frames(VP9_COMP *cpi) {
VP9_COMMON *oci = &cpi->common;
MODE_INFO *mi = oci->mi;
int ref[MAX_MB_SEGMENTS] = {0};
int i, j;
int mb_index = 0;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
for (i = 0; i < oci->mb_rows; i++) {
for (j = 0; j < oci->mb_cols; j++, mb_index++)
ref[mi[mb_index].mbmi.segment_id] |= (1 << mi[mb_index].mbmi.ref_frame);
mb_index++;
}
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
vp9_enable_segfeature(xd, i, SEG_LVL_REF_FRAME);
vp9_set_segdata(xd, i, SEG_LVL_REF_FRAME, ref[i]);
}
}
void vp9_pack_bitstream(VP9_COMP *cpi, unsigned char *dest,
unsigned long *size) {
int i, j;
VP9_HEADER oh;
VP9_COMMON *const pc = &cpi->common;
vp9_writer header_bc, residual_bc;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
int extra_bytes_packed = 0;
unsigned char *cx_data = dest;
oh.show_frame = (int) pc->show_frame;
oh.type = (int)pc->frame_type;
oh.version = pc->version;
oh.first_partition_length_in_bytes = 0;
cx_data += 3;
#if defined(SECTIONBITS_OUTPUT)
Sectionbits[active_section = 1] += sizeof(VP9_HEADER) * 8 * 256;
#endif
compute_update_table();
/* vp9_kf_default_bmode_probs() is called in vp9_setup_key_frame() once
* for each K frame before encode frame. pc->kf_bmode_prob doesn't get
* changed anywhere else. No need to call it again here. --yw
* vp9_kf_default_bmode_probs( pc->kf_bmode_prob);
*/
/* every keyframe send startcode, width, height, scale factor, clamp
* and color type.
*/
if (oh.type == KEY_FRAME) {
// Start / synch code
cx_data[0] = 0x9D;
cx_data[1] = 0x01;
cx_data[2] = 0x2a;
extra_bytes_packed = 3;
cx_data += extra_bytes_packed;
}
if (pc->width != pc->display_width || pc->height != pc->display_height) {
write_le16(cx_data, pc->display_width);
write_le16(cx_data + 2, pc->display_height);
cx_data += 4;
extra_bytes_packed += 4;
}
write_le16(cx_data, pc->width);
write_le16(cx_data + 2, pc->height);
extra_bytes_packed += 4;
cx_data += 4;
vp9_start_encode(&header_bc, cx_data);
// TODO(jkoleszar): remove these two unused bits?
vp9_write_bit(&header_bc, pc->clr_type);
vp9_write_bit(&header_bc, pc->clamp_type);
// error resilient mode
vp9_write_bit(&header_bc, pc->error_resilient_mode);
// lossless mode: note this needs to be before loopfilter
vp9_write_bit(&header_bc, cpi->mb.e_mbd.lossless);
// Encode the loop filter level and type
vp9_write_bit(&header_bc, pc->filter_type);
vp9_write_literal(&header_bc, pc->filter_level, 6);
vp9_write_literal(&header_bc, pc->sharpness_level, 3);
#if CONFIG_LOOP_DERING
if (pc->dering_enabled) {
vp9_write_bit(&header_bc, 1);
vp9_write_literal(&header_bc, pc->dering_enabled - 1, 4);
} else {
vp9_write_bit(&header_bc, 0);
}
#endif
// Write out loop filter deltas applied at the MB level based on mode or ref frame (if they are enabled).
vp9_write_bit(&header_bc, (xd->mode_ref_lf_delta_enabled) ? 1 : 0);
if (xd->mode_ref_lf_delta_enabled) {
// Do the deltas need to be updated
vp9_write_bit(&header_bc, xd->mode_ref_lf_delta_update);
if (xd->mode_ref_lf_delta_update) {
// Send update
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
const int delta = xd->ref_lf_deltas[i];
// Frame level data
if (delta != xd->last_ref_lf_deltas[i]) {
xd->last_ref_lf_deltas[i] = delta;
vp9_write_bit(&header_bc, 1);
if (delta > 0) {
vp9_write_literal(&header_bc, delta & 0x3F, 6);
vp9_write_bit(&header_bc, 0); // sign
} else {
assert(delta < 0);
vp9_write_literal(&header_bc, (-delta) & 0x3F, 6);
vp9_write_bit(&header_bc, 1); // sign
}
} else {
vp9_write_bit(&header_bc, 0);
}
}
// Send update
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
const int delta = xd->mode_lf_deltas[i];
if (delta != xd->last_mode_lf_deltas[i]) {
xd->last_mode_lf_deltas[i] = delta;
vp9_write_bit(&header_bc, 1);
if (delta > 0) {
vp9_write_literal(&header_bc, delta & 0x3F, 6);
vp9_write_bit(&header_bc, 0); // sign
} else {
assert(delta < 0);
vp9_write_literal(&header_bc, (-delta) & 0x3F, 6);
vp9_write_bit(&header_bc, 1); // sign
}
} else {
vp9_write_bit(&header_bc, 0);
}
}
}
}
// TODO(jkoleszar): remove these unused bits
vp9_write_literal(&header_bc, 0, 2);
// Frame Q baseline quantizer index
vp9_write_literal(&header_bc, pc->base_qindex, QINDEX_BITS);
// Transmit Dc, Second order and Uv quantizer delta information
put_delta_q(&header_bc, pc->y_dc_delta_q);
put_delta_q(&header_bc, pc->uv_dc_delta_q);
put_delta_q(&header_bc, pc->uv_ac_delta_q);
// When there is a key frame all reference buffers are updated using the new key frame
if (pc->frame_type != KEY_FRAME) {
int refresh_mask;
// Should the GF or ARF be updated using the transmitted frame or buffer
#if CONFIG_MULTIPLE_ARF
if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
!cpi->refresh_alt_ref_frame) {
#else
if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) {
#endif
/* Preserve the previously existing golden frame and update the frame in
* the alt ref slot instead. This is highly specific to the use of
* alt-ref as a forward reference, and this needs to be generalized as
* other uses are implemented (like RTC/temporal scaling)
*
* gld_fb_idx and alt_fb_idx need to be swapped for future frames, but
* that happens in vp9_onyx_if.c:update_reference_frames() so that it can
* be done outside of the recode loop.
*/
refresh_mask = (cpi->refresh_last_frame << cpi->lst_fb_idx) |
(cpi->refresh_golden_frame << cpi->alt_fb_idx);
} else {
int arf_idx = cpi->alt_fb_idx;
#if CONFIG_MULTIPLE_ARF
// Determine which ARF buffer to use to encode this ARF frame.
if (cpi->multi_arf_enabled) {
int sn = cpi->sequence_number;
arf_idx = (cpi->frame_coding_order[sn] < 0) ?
cpi->arf_buffer_idx[sn + 1] :
cpi->arf_buffer_idx[sn];
}
#endif
refresh_mask = (cpi->refresh_last_frame << cpi->lst_fb_idx) |
(cpi->refresh_golden_frame << cpi->gld_fb_idx) |
(cpi->refresh_alt_ref_frame << arf_idx);
}
vp9_write_literal(&header_bc, refresh_mask, NUM_REF_FRAMES);
vp9_write_literal(&header_bc, cpi->lst_fb_idx, NUM_REF_FRAMES_LG2);
vp9_write_literal(&header_bc, cpi->gld_fb_idx, NUM_REF_FRAMES_LG2);
vp9_write_literal(&header_bc, cpi->alt_fb_idx, NUM_REF_FRAMES_LG2);
// Indicate reference frame sign bias for Golden and ARF frames (always 0 for last frame buffer)
vp9_write_bit(&header_bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]);
vp9_write_bit(&header_bc, pc->ref_frame_sign_bias[ALTREF_FRAME]);
// Signal whether to allow high MV precision
vp9_write_bit(&header_bc, (xd->allow_high_precision_mv) ? 1 : 0);
if (pc->mcomp_filter_type == SWITCHABLE) {
/* Check to see if only one of the filters is actually used */
int count[VP9_SWITCHABLE_FILTERS];
int i, j, c = 0;
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
count[i] = 0;
for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) {
count[i] += cpi->switchable_interp_count[j][i];
}
c += (count[i] > 0);
}
if (c == 1) {
/* Only one filter is used. So set the filter at frame level */
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
if (count[i]) {
pc->mcomp_filter_type = vp9_switchable_interp[i];
break;
}
}
}
}
// Signal the type of subpel filter to use
vp9_write_bit(&header_bc, (pc->mcomp_filter_type == SWITCHABLE));
if (pc->mcomp_filter_type != SWITCHABLE)
vp9_write_literal(&header_bc, (pc->mcomp_filter_type), 2);
#if CONFIG_COMP_INTERINTRA_PRED
// printf("Counts: %d %d\n", cpi->interintra_count[0],
// cpi->interintra_count[1]);
if (!cpi->dummy_packing && pc->use_interintra)
pc->use_interintra = (cpi->interintra_count[1] > 0);
vp9_write_bit(&header_bc, pc->use_interintra);
if (!pc->use_interintra)
vp9_zero(cpi->interintra_count);
#endif
}
if (!pc->error_resilient_mode) {
vp9_write_bit(&header_bc, pc->refresh_frame_context);
vp9_write_bit(&header_bc, pc->frame_parallel_decoding_mode);
}
vp9_write_literal(&header_bc, pc->frame_context_idx,
NUM_FRAME_CONTEXTS_LG2);
#ifdef ENTROPY_STATS
if (pc->frame_type == INTER_FRAME)
active_section = 0;
else
active_section = 7;
#endif
// Signal whether or not Segmentation is enabled
vp9_write_bit(&header_bc, (xd->segmentation_enabled) ? 1 : 0);
// Indicate which features are enabled
if (xd->segmentation_enabled) {
// Indicate whether or not the segmentation map is being updated.
vp9_write_bit(&header_bc, (xd->update_mb_segmentation_map) ? 1 : 0);
#if CONFIG_IMPLICIT_SEGMENTATION
vp9_write_bit(&header_bc, (xd->allow_implicit_segment_update) ? 1 : 0);
#endif
// If it is, then indicate the method that will be used.
if (xd->update_mb_segmentation_map) {
// Select the coding strategy (temporal or spatial)
vp9_choose_segmap_coding_method(cpi);
// Send the tree probabilities used to decode unpredicted
// macro-block segments
for (i = 0; i < MB_SEG_TREE_PROBS; i++) {
const int prob = xd->mb_segment_tree_probs[i];
if (prob != 255) {
vp9_write_bit(&header_bc, 1);
vp9_write_prob(&header_bc, prob);
} else {
vp9_write_bit(&header_bc, 0);
}
}
// Write out the chosen coding method.
vp9_write_bit(&header_bc, (pc->temporal_update) ? 1 : 0);
if (pc->temporal_update) {
for (i = 0; i < PREDICTION_PROBS; i++) {
const int prob = pc->segment_pred_probs[i];
if (prob != 255) {
vp9_write_bit(&header_bc, 1);
vp9_write_prob(&header_bc, prob);
} else {
vp9_write_bit(&header_bc, 0);
}
}
}
}
vp9_write_bit(&header_bc, (xd->update_mb_segmentation_data) ? 1 : 0);
// segment_reference_frames(cpi);
if (xd->update_mb_segmentation_data) {
vp9_write_bit(&header_bc, (xd->mb_segment_abs_delta) ? 1 : 0);
// For each segments id...
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
// For each segmentation codable feature...
for (j = 0; j < SEG_LVL_MAX; j++) {
const int8_t data = vp9_get_segdata(xd, i, j);
const int data_max = vp9_seg_feature_data_max(j);
// If the feature is enabled...
if (vp9_segfeature_active(xd, i, j)) {
vp9_write_bit(&header_bc, 1);
// Is the segment data signed..
if (vp9_is_segfeature_signed(j)) {
// Encode the relevant feature data
if (data < 0) {
vp9_encode_unsigned_max(&header_bc, -data, data_max);
vp9_write_bit(&header_bc, 1);
} else {
vp9_encode_unsigned_max(&header_bc, data, data_max);
vp9_write_bit(&header_bc, 0);
}
} else {
// Unsigned data element so no sign bit needed
vp9_encode_unsigned_max(&header_bc, data, data_max);
}
} else {
vp9_write_bit(&header_bc, 0);
}
}
}
}
}
// Encode the common prediction model status flag probability updates for
// the reference frame
update_refpred_stats(cpi);
if (pc->frame_type != KEY_FRAME) {
for (i = 0; i < PREDICTION_PROBS; i++) {
if (cpi->ref_pred_probs_update[i]) {
vp9_write_bit(&header_bc, 1);
vp9_write_prob(&header_bc, pc->ref_pred_probs[i]);
} else {
vp9_write_bit(&header_bc, 0);
}
}
}
if (cpi->mb.e_mbd.lossless) {
pc->txfm_mode = ONLY_4X4;
} else {
if (pc->txfm_mode == TX_MODE_SELECT) {
pc->prob_tx[0] = get_prob(cpi->txfm_count_32x32p[TX_4X4] +
cpi->txfm_count_16x16p[TX_4X4] +
cpi->txfm_count_8x8p[TX_4X4],
cpi->txfm_count_32x32p[TX_4X4] +
cpi->txfm_count_32x32p[TX_8X8] +
cpi->txfm_count_32x32p[TX_16X16] +
cpi->txfm_count_32x32p[TX_32X32] +
cpi->txfm_count_16x16p[TX_4X4] +
cpi->txfm_count_16x16p[TX_8X8] +
cpi->txfm_count_16x16p[TX_16X16] +
cpi->txfm_count_8x8p[TX_4X4] +
cpi->txfm_count_8x8p[TX_8X8]);
pc->prob_tx[1] = get_prob(cpi->txfm_count_32x32p[TX_8X8] +
cpi->txfm_count_16x16p[TX_8X8],
cpi->txfm_count_32x32p[TX_8X8] +
cpi->txfm_count_32x32p[TX_16X16] +
cpi->txfm_count_32x32p[TX_32X32] +
cpi->txfm_count_16x16p[TX_8X8] +
cpi->txfm_count_16x16p[TX_16X16]);
pc->prob_tx[2] = get_prob(cpi->txfm_count_32x32p[TX_16X16],
cpi->txfm_count_32x32p[TX_16X16] +
cpi->txfm_count_32x32p[TX_32X32]);
} else {
pc->prob_tx[0] = 128;
pc->prob_tx[1] = 128;
pc->prob_tx[2] = 128;
}
vp9_write_literal(&header_bc, pc->txfm_mode <= 3 ? pc->txfm_mode : 3, 2);
if (pc->txfm_mode > ALLOW_16X16) {
vp9_write_bit(&header_bc, pc->txfm_mode == TX_MODE_SELECT);
}
if (pc->txfm_mode == TX_MODE_SELECT) {
vp9_write_prob(&header_bc, pc->prob_tx[0]);
vp9_write_prob(&header_bc, pc->prob_tx[1]);
vp9_write_prob(&header_bc, pc->prob_tx[2]);
}
}
// If appropriate update the inter mode probability context and code the
// changes in the bitstream.
if (pc->frame_type != KEY_FRAME) {
int i, j;
int new_context[INTER_MODE_CONTEXTS][4];
if (!cpi->dummy_packing) {
update_inter_mode_probs(pc, new_context);
} else {
// In dummy pack assume context unchanged.
vpx_memcpy(new_context, pc->fc.vp9_mode_contexts,
sizeof(pc->fc.vp9_mode_contexts));
}
for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
for (j = 0; j < 4; j++) {
if (new_context[i][j] != pc->fc.vp9_mode_contexts[i][j]) {
vp9_write(&header_bc, 1, 252);
vp9_write_prob(&header_bc, new_context[i][j]);
// Only update the persistent copy if this is the "real pack"
if (!cpi->dummy_packing) {
pc->fc.vp9_mode_contexts[i][j] = new_context[i][j];
}
} else {
vp9_write(&header_bc, 0, 252);
}
}
}
}
vp9_clear_system_state(); // __asm emms;
vp9_copy(cpi->common.fc.pre_coef_probs_4x4,
cpi->common.fc.coef_probs_4x4);
vp9_copy(cpi->common.fc.pre_coef_probs_8x8,
cpi->common.fc.coef_probs_8x8);
vp9_copy(cpi->common.fc.pre_coef_probs_16x16,
cpi->common.fc.coef_probs_16x16);
vp9_copy(cpi->common.fc.pre_coef_probs_32x32,
cpi->common.fc.coef_probs_32x32);
#if CONFIG_CODE_ZEROGROUP
vp9_copy(cpi->common.fc.pre_zpc_probs_4x4,
cpi->common.fc.zpc_probs_4x4);
vp9_copy(cpi->common.fc.pre_zpc_probs_8x8,
cpi->common.fc.zpc_probs_8x8);
vp9_copy(cpi->common.fc.pre_zpc_probs_16x16,
cpi->common.fc.zpc_probs_16x16);
vp9_copy(cpi->common.fc.pre_zpc_probs_32x32,
cpi->common.fc.zpc_probs_32x32);
#endif
vp9_copy(cpi->common.fc.pre_sb_ymode_prob, cpi->common.fc.sb_ymode_prob);
vp9_copy(cpi->common.fc.pre_ymode_prob, cpi->common.fc.ymode_prob);
vp9_copy(cpi->common.fc.pre_uv_mode_prob, cpi->common.fc.uv_mode_prob);
vp9_copy(cpi->common.fc.pre_bmode_prob, cpi->common.fc.bmode_prob);
vp9_copy(cpi->common.fc.pre_sub_mv_ref_prob, cpi->common.fc.sub_mv_ref_prob);
vp9_copy(cpi->common.fc.pre_mbsplit_prob, cpi->common.fc.mbsplit_prob);
vp9_copy(cpi->common.fc.pre_i8x8_mode_prob, cpi->common.fc.i8x8_mode_prob);
vp9_copy(cpi->common.fc.pre_partition_prob, cpi->common.fc.partition_prob);
cpi->common.fc.pre_nmvc = cpi->common.fc.nmvc;
#if CONFIG_COMP_INTERINTRA_PRED
cpi->common.fc.pre_interintra_prob = cpi->common.fc.interintra_prob;
#endif
vp9_zero(cpi->sub_mv_ref_count);
vp9_zero(cpi->mbsplit_count);
vp9_zero(cpi->common.fc.mv_ref_ct);
update_coef_probs(cpi, &header_bc);
#if CONFIG_CODE_ZEROGROUP
update_zpc_probs(cpi, &header_bc);
#endif
#ifdef ENTROPY_STATS
active_section = 2;
#endif
// TODO(jkoleszar): remove this unused bit
vp9_write_bit(&header_bc, 1);
vp9_update_skip_probs(cpi);
for (i = 0; i < MBSKIP_CONTEXTS; ++i) {
vp9_write_prob(&header_bc, pc->mbskip_pred_probs[i]);
}
if (pc->frame_type == KEY_FRAME) {
if (!pc->kf_ymode_probs_update) {
vp9_write_literal(&header_bc, pc->kf_ymode_probs_index, 3);
}
} else {
// Update the probabilities used to encode reference frame data
update_ref_probs(cpi);
#ifdef ENTROPY_STATS
active_section = 1;
#endif
if (pc->mcomp_filter_type == SWITCHABLE)
update_switchable_interp_probs(cpi, &header_bc);
#if CONFIG_COMP_INTERINTRA_PRED
if (pc->use_interintra) {
vp9_cond_prob_update(&header_bc,
&pc->fc.interintra_prob,
VP9_UPD_INTERINTRA_PROB,
cpi->interintra_count);
}
#endif
vp9_write_prob(&header_bc, pc->prob_intra_coded);
vp9_write_prob(&header_bc, pc->prob_last_coded);
vp9_write_prob(&header_bc, pc->prob_gf_coded);
{
const int comp_pred_mode = cpi->common.comp_pred_mode;
const int use_compound_pred = (comp_pred_mode != SINGLE_PREDICTION_ONLY);
const int use_hybrid_pred = (comp_pred_mode == HYBRID_PREDICTION);
vp9_write_bit(&header_bc, use_compound_pred);
if (use_compound_pred) {
vp9_write_bit(&header_bc, use_hybrid_pred);
if (use_hybrid_pred) {
for (i = 0; i < COMP_PRED_CONTEXTS; i++) {
pc->prob_comppred[i] = get_binary_prob(cpi->single_pred_count[i],
cpi->comp_pred_count[i]);
vp9_write_prob(&header_bc, pc->prob_comppred[i]);
}
}
}
}
update_mbintra_mode_probs(cpi, &header_bc);
for (i = 0; i < NUM_PARTITION_CONTEXTS; ++i) {
vp9_prob Pnew[PARTITION_TYPES - 1];
unsigned int bct[PARTITION_TYPES - 1][2];
update_mode(&header_bc, PARTITION_TYPES, vp9_partition_encodings,
vp9_partition_tree, Pnew, pc->fc.partition_prob[i], bct,
(unsigned int *)cpi->partition_count[i]);
}
vp9_write_nmv_probs(cpi, xd->allow_high_precision_mv, &header_bc);
}
/* tiling */
{
int min_log2_tiles, delta_log2_tiles, n_tile_bits, n;
vp9_get_tile_n_bits(pc, &min_log2_tiles, &delta_log2_tiles);
n_tile_bits = pc->log2_tile_columns - min_log2_tiles;
for (n = 0; n < delta_log2_tiles; n++) {
if (n_tile_bits--) {
vp9_write_bit(&header_bc, 1);
} else {
vp9_write_bit(&header_bc, 0);
break;
}
}
vp9_write_bit(&header_bc, pc->log2_tile_rows != 0);
if (pc->log2_tile_rows != 0)
vp9_write_bit(&header_bc, pc->log2_tile_rows != 1);
}
vp9_stop_encode(&header_bc);
oh.first_partition_length_in_bytes = header_bc.pos;
/* update frame tag */
{
int scaling = (pc->width != pc->display_width ||
pc->height != pc->display_height);
int v = (oh.first_partition_length_in_bytes << 8) |
(scaling << 5) |
(oh.show_frame << 4) |
(oh.version << 1) |
oh.type;
assert(oh.first_partition_length_in_bytes <= 0xffff);
dest[0] = v;
dest[1] = v >> 8;
dest[2] = v >> 16;
}
*size = VP9_HEADER_SIZE + extra_bytes_packed + header_bc.pos;
if (pc->frame_type == KEY_FRAME) {
decide_kf_ymode_entropy(cpi);
} else {
/* This is not required if the counts in cpi are consistent with the
* final packing pass */
// if (!cpi->dummy_packing) vp9_zero(cpi->NMVcount);
}
{
int tile_row, tile_col, total_size = 0;
unsigned char *data_ptr = cx_data + header_bc.pos;
TOKENEXTRA *tok[1 << 6], *tok_end;
tok[0] = cpi->tok;
for (tile_col = 1; tile_col < pc->tile_columns; tile_col++)
tok[tile_col] = tok[tile_col - 1] + cpi->tok_count[tile_col - 1];
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
tok_end = cpi->tok + cpi->tok_count[0];
for (tile_col = 0; tile_col < pc->tile_columns;
tile_col++, tok_end += cpi->tok_count[tile_col]) {
vp9_get_tile_col_offsets(pc, tile_col);
if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1)
vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
else
vp9_start_encode(&residual_bc, data_ptr + total_size);
write_modes(cpi, &residual_bc, &tok[tile_col], tok_end);
vp9_stop_encode(&residual_bc);
if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1) {
// size of this tile
write_le32(data_ptr + total_size, residual_bc.pos);
total_size += 4;
}
total_size += residual_bc.pos;
}
}
assert((unsigned int)(tok[0] - cpi->tok) == cpi->tok_count[0]);
for (tile_col = 1; tile_col < pc->tile_columns; tile_col++)
assert((unsigned int)(tok[tile_col] - tok[tile_col - 1]) ==
cpi->tok_count[tile_col]);
*size += total_size;
}
}
#ifdef ENTROPY_STATS
static void print_tree_update_for_type(FILE *f,
vp9_coeff_stats *tree_update_hist,
int block_types, const char *header) {
int i, j, k, l, m;
fprintf(f, "const vp9_coeff_prob %s = {\n", header);
for (i = 0; i < block_types; i++) {
fprintf(f, " { \n");
for (j = 0; j < REF_TYPES; j++) {
fprintf(f, " { \n");
for (k = 0; k < COEF_BANDS; k++) {
fprintf(f, " {\n");
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
fprintf(f, " {");
for (m = 0; m < ENTROPY_NODES; m++) {
fprintf(f, "%3d, ",
get_binary_prob(tree_update_hist[i][j][k][l][m][0],
tree_update_hist[i][j][k][l][m][1]));
}
fprintf(f, "},\n");
}
fprintf(f, "},\n");
}
fprintf(f, " },\n");
}
fprintf(f, " },\n");
}
fprintf(f, "};\n");
}
void print_tree_update_probs() {
FILE *f = fopen("coefupdprob.h", "w");
fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
print_tree_update_for_type(f, tree_update_hist_4x4, BLOCK_TYPES,
"vp9_coef_update_probs_4x4[BLOCK_TYPES]");
print_tree_update_for_type(f, tree_update_hist_8x8, BLOCK_TYPES,
"vp9_coef_update_probs_8x8[BLOCK_TYPES]");
print_tree_update_for_type(f, tree_update_hist_16x16, BLOCK_TYPES,
"vp9_coef_update_probs_16x16[BLOCK_TYPES]");
print_tree_update_for_type(f, tree_update_hist_32x32, BLOCK_TYPES,
"vp9_coef_update_probs_32x32[BLOCK_TYPES]");
fclose(f);
f = fopen("treeupdate.bin", "wb");
fwrite(tree_update_hist_4x4, sizeof(tree_update_hist_4x4), 1, f);
fwrite(tree_update_hist_8x8, sizeof(tree_update_hist_8x8), 1, f);
fwrite(tree_update_hist_16x16, sizeof(tree_update_hist_16x16), 1, f);
fwrite(tree_update_hist_32x32, sizeof(tree_update_hist_32x32), 1, f);
fclose(f);
}
#endif