e4234b3f8b
When the golden frame is boosted, the rate correction factor is not correlated well with other inter frames even in CBR mode. This commit changes to use GF specific rate_correction_factor when gf_cbr_boost is greater than 20%. Change-Id: I6312c1564387bcacc11f4c5e8a9cfdc781b5c3ab
1642 lines
61 KiB
C
1642 lines
61 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "vpx_mem/vpx_mem.h"
|
|
|
|
#include "vp9/common/vp9_alloccommon.h"
|
|
#include "vp9/common/vp9_common.h"
|
|
#include "vp9/common/vp9_entropymode.h"
|
|
#include "vp9/common/vp9_quant_common.h"
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
#include "vp9/common/vp9_systemdependent.h"
|
|
|
|
#include "vp9/encoder/vp9_encodemv.h"
|
|
#include "vp9/encoder/vp9_ratectrl.h"
|
|
|
|
// Max rate target for 1080P and below encodes under normal circumstances
|
|
// (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
|
|
#define MAX_MB_RATE 250
|
|
#define MAXRATE_1080P 2025000
|
|
|
|
#define DEFAULT_KF_BOOST 2000
|
|
#define DEFAULT_GF_BOOST 2000
|
|
|
|
#define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
|
|
|
|
#define MIN_BPB_FACTOR 0.005
|
|
#define MAX_BPB_FACTOR 50
|
|
|
|
#define FRAME_OVERHEAD_BITS 200
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
#define ASSIGN_MINQ_TABLE(bit_depth, name) \
|
|
do { \
|
|
switch (bit_depth) { \
|
|
case VPX_BITS_8: \
|
|
name = name##_8; \
|
|
break; \
|
|
case VPX_BITS_10: \
|
|
name = name##_10; \
|
|
break; \
|
|
case VPX_BITS_12: \
|
|
name = name##_12; \
|
|
break; \
|
|
default: \
|
|
assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10" \
|
|
" or VPX_BITS_12"); \
|
|
name = NULL; \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define ASSIGN_MINQ_TABLE(bit_depth, name) \
|
|
do { \
|
|
(void) bit_depth; \
|
|
name = name##_8; \
|
|
} while (0)
|
|
#endif
|
|
|
|
// Tables relating active max Q to active min Q
|
|
static int kf_low_motion_minq_8[QINDEX_RANGE];
|
|
static int kf_high_motion_minq_8[QINDEX_RANGE];
|
|
static int arfgf_low_motion_minq_8[QINDEX_RANGE];
|
|
static int arfgf_high_motion_minq_8[QINDEX_RANGE];
|
|
static int inter_minq_8[QINDEX_RANGE];
|
|
static int rtc_minq_8[QINDEX_RANGE];
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
static int kf_low_motion_minq_10[QINDEX_RANGE];
|
|
static int kf_high_motion_minq_10[QINDEX_RANGE];
|
|
static int arfgf_low_motion_minq_10[QINDEX_RANGE];
|
|
static int arfgf_high_motion_minq_10[QINDEX_RANGE];
|
|
static int inter_minq_10[QINDEX_RANGE];
|
|
static int rtc_minq_10[QINDEX_RANGE];
|
|
static int kf_low_motion_minq_12[QINDEX_RANGE];
|
|
static int kf_high_motion_minq_12[QINDEX_RANGE];
|
|
static int arfgf_low_motion_minq_12[QINDEX_RANGE];
|
|
static int arfgf_high_motion_minq_12[QINDEX_RANGE];
|
|
static int inter_minq_12[QINDEX_RANGE];
|
|
static int rtc_minq_12[QINDEX_RANGE];
|
|
#endif
|
|
|
|
static int gf_high = 2000;
|
|
static int gf_low = 400;
|
|
static int kf_high = 5000;
|
|
static int kf_low = 400;
|
|
|
|
// Functions to compute the active minq lookup table entries based on a
|
|
// formulaic approach to facilitate easier adjustment of the Q tables.
|
|
// The formulae were derived from computing a 3rd order polynomial best
|
|
// fit to the original data (after plotting real maxq vs minq (not q index))
|
|
static int get_minq_index(double maxq, double x3, double x2, double x1,
|
|
vpx_bit_depth_t bit_depth) {
|
|
int i;
|
|
const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq,
|
|
maxq);
|
|
|
|
// Special case handling to deal with the step from q2.0
|
|
// down to lossless mode represented by q 1.0.
|
|
if (minqtarget <= 2.0)
|
|
return 0;
|
|
|
|
for (i = 0; i < QINDEX_RANGE; i++) {
|
|
if (minqtarget <= vp9_convert_qindex_to_q(i, bit_depth))
|
|
return i;
|
|
}
|
|
|
|
return QINDEX_RANGE - 1;
|
|
}
|
|
|
|
static void init_minq_luts(int *kf_low_m, int *kf_high_m,
|
|
int *arfgf_low, int *arfgf_high,
|
|
int *inter, int *rtc, vpx_bit_depth_t bit_depth) {
|
|
int i;
|
|
for (i = 0; i < QINDEX_RANGE; i++) {
|
|
const double maxq = vp9_convert_qindex_to_q(i, bit_depth);
|
|
kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
|
|
kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
|
|
arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
|
|
arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
|
|
inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth);
|
|
rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
|
|
}
|
|
}
|
|
|
|
void vp9_rc_init_minq_luts() {
|
|
init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
|
|
arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
|
|
inter_minq_8, rtc_minq_8, VPX_BITS_8);
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
|
|
arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
|
|
inter_minq_10, rtc_minq_10, VPX_BITS_10);
|
|
init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
|
|
arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
|
|
inter_minq_12, rtc_minq_12, VPX_BITS_12);
|
|
#endif
|
|
}
|
|
|
|
// These functions use formulaic calculations to make playing with the
|
|
// quantizer tables easier. If necessary they can be replaced by lookup
|
|
// tables if and when things settle down in the experimental bitstream
|
|
double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) {
|
|
// Convert the index to a real Q value (scaled down to match old Q values)
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
switch (bit_depth) {
|
|
case VPX_BITS_8:
|
|
return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
|
|
case VPX_BITS_10:
|
|
return vp9_ac_quant(qindex, 0, bit_depth) / 16.0;
|
|
case VPX_BITS_12:
|
|
return vp9_ac_quant(qindex, 0, bit_depth) / 64.0;
|
|
default:
|
|
assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
|
|
return -1.0;
|
|
}
|
|
#else
|
|
return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
|
|
#endif
|
|
}
|
|
|
|
int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
|
|
double correction_factor,
|
|
vpx_bit_depth_t bit_depth) {
|
|
const double q = vp9_convert_qindex_to_q(qindex, bit_depth);
|
|
int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
|
|
|
|
assert(correction_factor <= MAX_BPB_FACTOR &&
|
|
correction_factor >= MIN_BPB_FACTOR);
|
|
|
|
// q based adjustment to baseline enumerator
|
|
enumerator += (int)(enumerator * q) >> 12;
|
|
return (int)(enumerator * correction_factor / q);
|
|
}
|
|
|
|
static int estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
|
|
double correction_factor,
|
|
vpx_bit_depth_t bit_depth) {
|
|
const int bpm = (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor,
|
|
bit_depth));
|
|
return MAX(FRAME_OVERHEAD_BITS,
|
|
(int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
|
|
}
|
|
|
|
int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
|
|
const RATE_CONTROL *rc = &cpi->rc;
|
|
const VP9EncoderConfig *oxcf = &cpi->oxcf;
|
|
const int min_frame_target = MAX(rc->min_frame_bandwidth,
|
|
rc->avg_frame_bandwidth >> 5);
|
|
if (target < min_frame_target)
|
|
target = min_frame_target;
|
|
if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
|
|
// If there is an active ARF at this location use the minimum
|
|
// bits on this frame even if it is a constructed arf.
|
|
// The active maximum quantizer insures that an appropriate
|
|
// number of bits will be spent if needed for constructed ARFs.
|
|
target = min_frame_target;
|
|
}
|
|
// Clip the frame target to the maximum allowed value.
|
|
if (target > rc->max_frame_bandwidth)
|
|
target = rc->max_frame_bandwidth;
|
|
if (oxcf->rc_max_inter_bitrate_pct) {
|
|
const int max_rate = rc->avg_frame_bandwidth *
|
|
oxcf->rc_max_inter_bitrate_pct / 100;
|
|
target = MIN(target, max_rate);
|
|
}
|
|
return target;
|
|
}
|
|
|
|
int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
|
|
const RATE_CONTROL *rc = &cpi->rc;
|
|
const VP9EncoderConfig *oxcf = &cpi->oxcf;
|
|
if (oxcf->rc_max_intra_bitrate_pct) {
|
|
const int max_rate = rc->avg_frame_bandwidth *
|
|
oxcf->rc_max_intra_bitrate_pct / 100;
|
|
target = MIN(target, max_rate);
|
|
}
|
|
if (target > rc->max_frame_bandwidth)
|
|
target = rc->max_frame_bandwidth;
|
|
return target;
|
|
}
|
|
|
|
|
|
// Update the buffer level for higher layers, given the encoded current layer.
|
|
static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) {
|
|
int temporal_layer = 0;
|
|
int current_temporal_layer = svc->temporal_layer_id;
|
|
for (temporal_layer = current_temporal_layer + 1;
|
|
temporal_layer < svc->number_temporal_layers; ++temporal_layer) {
|
|
LAYER_CONTEXT *lc = &svc->layer_context[temporal_layer];
|
|
RATE_CONTROL *lrc = &lc->rc;
|
|
int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate -
|
|
encoded_frame_size);
|
|
lrc->bits_off_target += bits_off_for_this_layer;
|
|
|
|
// Clip buffer level to maximum buffer size for the layer.
|
|
lrc->bits_off_target = MIN(lrc->bits_off_target, lrc->maximum_buffer_size);
|
|
lrc->buffer_level = lrc->bits_off_target;
|
|
}
|
|
}
|
|
|
|
// Update the buffer level: leaky bucket model.
|
|
static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
|
|
// Non-viewable frames are a special case and are treated as pure overhead.
|
|
if (!cm->show_frame) {
|
|
rc->bits_off_target -= encoded_frame_size;
|
|
} else {
|
|
rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
|
|
}
|
|
|
|
// Clip the buffer level to the maximum specified buffer size.
|
|
rc->bits_off_target = MIN(rc->bits_off_target, rc->maximum_buffer_size);
|
|
rc->buffer_level = rc->bits_off_target;
|
|
|
|
if (cpi->use_svc && cpi->oxcf.rc_mode == VPX_CBR) {
|
|
update_layer_buffer_level(&cpi->svc, encoded_frame_size);
|
|
}
|
|
}
|
|
|
|
void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
|
|
int i;
|
|
|
|
if (pass == 0 && oxcf->rc_mode == VPX_CBR) {
|
|
rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
|
|
rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
|
|
} else {
|
|
rc->avg_frame_qindex[KEY_FRAME] = (oxcf->worst_allowed_q +
|
|
oxcf->best_allowed_q) / 2;
|
|
rc->avg_frame_qindex[INTER_FRAME] = (oxcf->worst_allowed_q +
|
|
oxcf->best_allowed_q) / 2;
|
|
}
|
|
|
|
rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
|
|
rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
|
|
|
|
rc->buffer_level = rc->starting_buffer_level;
|
|
rc->bits_off_target = rc->starting_buffer_level;
|
|
|
|
rc->rolling_target_bits = rc->avg_frame_bandwidth;
|
|
rc->rolling_actual_bits = rc->avg_frame_bandwidth;
|
|
rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
|
|
rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
|
|
|
|
rc->total_actual_bits = 0;
|
|
rc->total_target_bits = 0;
|
|
rc->total_target_vs_actual = 0;
|
|
|
|
rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;
|
|
rc->frames_since_key = 8; // Sensible default for first frame.
|
|
rc->this_key_frame_forced = 0;
|
|
rc->next_key_frame_forced = 0;
|
|
rc->source_alt_ref_pending = 0;
|
|
rc->source_alt_ref_active = 0;
|
|
|
|
rc->frames_till_gf_update_due = 0;
|
|
rc->ni_av_qi = oxcf->worst_allowed_q;
|
|
rc->ni_tot_qi = 0;
|
|
rc->ni_frames = 0;
|
|
|
|
rc->tot_q = 0.0;
|
|
rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
|
|
|
|
for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
|
|
rc->rate_correction_factors[i] = 1.0;
|
|
}
|
|
}
|
|
|
|
int vp9_rc_drop_frame(VP9_COMP *cpi) {
|
|
const VP9EncoderConfig *oxcf = &cpi->oxcf;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
|
|
if (!oxcf->drop_frames_water_mark) {
|
|
return 0;
|
|
} else {
|
|
if (rc->buffer_level < 0) {
|
|
// Always drop if buffer is below 0.
|
|
return 1;
|
|
} else {
|
|
// If buffer is below drop_mark, for now just drop every other frame
|
|
// (starting with the next frame) until it increases back over drop_mark.
|
|
int drop_mark = (int)(oxcf->drop_frames_water_mark *
|
|
rc->optimal_buffer_level / 100);
|
|
if ((rc->buffer_level > drop_mark) &&
|
|
(rc->decimation_factor > 0)) {
|
|
--rc->decimation_factor;
|
|
} else if (rc->buffer_level <= drop_mark &&
|
|
rc->decimation_factor == 0) {
|
|
rc->decimation_factor = 1;
|
|
}
|
|
if (rc->decimation_factor > 0) {
|
|
if (rc->decimation_count > 0) {
|
|
--rc->decimation_count;
|
|
return 1;
|
|
} else {
|
|
rc->decimation_count = rc->decimation_factor;
|
|
return 0;
|
|
}
|
|
} else {
|
|
rc->decimation_count = 0;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static double get_rate_correction_factor(const VP9_COMP *cpi) {
|
|
const RATE_CONTROL *const rc = &cpi->rc;
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME) {
|
|
return rc->rate_correction_factors[KF_STD];
|
|
} else if (cpi->oxcf.pass == 2) {
|
|
RATE_FACTOR_LEVEL rf_lvl =
|
|
cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
|
|
return rc->rate_correction_factors[rf_lvl];
|
|
} else {
|
|
if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
|
|
!rc->is_src_frame_alt_ref && !cpi->use_svc &&
|
|
(cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
|
|
return rc->rate_correction_factors[GF_ARF_STD];
|
|
else
|
|
return rc->rate_correction_factors[INTER_NORMAL];
|
|
}
|
|
}
|
|
|
|
static void set_rate_correction_factor(VP9_COMP *cpi, double factor) {
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME) {
|
|
rc->rate_correction_factors[KF_STD] = factor;
|
|
} else if (cpi->oxcf.pass == 2) {
|
|
RATE_FACTOR_LEVEL rf_lvl =
|
|
cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
|
|
rc->rate_correction_factors[rf_lvl] = factor;
|
|
} else {
|
|
if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
|
|
!rc->is_src_frame_alt_ref && !cpi->use_svc &&
|
|
(cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
|
|
rc->rate_correction_factors[GF_ARF_STD] = factor;
|
|
else
|
|
rc->rate_correction_factors[INTER_NORMAL] = factor;
|
|
}
|
|
}
|
|
|
|
void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
int correction_factor = 100;
|
|
double rate_correction_factor = get_rate_correction_factor(cpi);
|
|
double adjustment_limit;
|
|
|
|
int projected_size_based_on_q = 0;
|
|
|
|
// Do not update the rate factors for arf overlay frames.
|
|
if (cpi->rc.is_src_frame_alt_ref)
|
|
return;
|
|
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp9_clear_system_state();
|
|
|
|
// Work out how big we would have expected the frame to be at this Q given
|
|
// the current correction factor.
|
|
// Stay in double to avoid int overflow when values are large
|
|
projected_size_based_on_q = estimate_bits_at_q(cm->frame_type,
|
|
cm->base_qindex, cm->MBs,
|
|
rate_correction_factor,
|
|
cm->bit_depth);
|
|
// Work out a size correction factor.
|
|
if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
|
|
correction_factor = (100 * cpi->rc.projected_frame_size) /
|
|
projected_size_based_on_q;
|
|
|
|
// More heavily damped adjustment used if we have been oscillating either side
|
|
// of target.
|
|
switch (damp_var) {
|
|
case 0:
|
|
adjustment_limit = 0.75;
|
|
break;
|
|
case 1:
|
|
adjustment_limit = 0.25 +
|
|
0.5 * MIN(1, fabs(log10(0.01 * correction_factor)));
|
|
break;
|
|
case 2:
|
|
default:
|
|
adjustment_limit = 0.25;
|
|
break;
|
|
}
|
|
|
|
cpi->rc.q_2_frame = cpi->rc.q_1_frame;
|
|
cpi->rc.q_1_frame = cm->base_qindex;
|
|
cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
|
|
if (correction_factor > 110)
|
|
cpi->rc.rc_1_frame = -1;
|
|
else if (correction_factor < 90)
|
|
cpi->rc.rc_1_frame = 1;
|
|
else
|
|
cpi->rc.rc_1_frame = 0;
|
|
|
|
if (correction_factor > 102) {
|
|
// We are not already at the worst allowable quality
|
|
correction_factor = (int)(100 + ((correction_factor - 100) *
|
|
adjustment_limit));
|
|
rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
|
|
// Keep rate_correction_factor within limits
|
|
if (rate_correction_factor > MAX_BPB_FACTOR)
|
|
rate_correction_factor = MAX_BPB_FACTOR;
|
|
} else if (correction_factor < 99) {
|
|
// We are not already at the best allowable quality
|
|
correction_factor = (int)(100 - ((100 - correction_factor) *
|
|
adjustment_limit));
|
|
rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
|
|
|
|
// Keep rate_correction_factor within limits
|
|
if (rate_correction_factor < MIN_BPB_FACTOR)
|
|
rate_correction_factor = MIN_BPB_FACTOR;
|
|
}
|
|
|
|
set_rate_correction_factor(cpi, rate_correction_factor);
|
|
}
|
|
|
|
|
|
int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
|
|
int active_best_quality, int active_worst_quality) {
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
int q = active_worst_quality;
|
|
int last_error = INT_MAX;
|
|
int i, target_bits_per_mb;
|
|
const double correction_factor = get_rate_correction_factor(cpi);
|
|
|
|
// Calculate required scaling factor based on target frame size and size of
|
|
// frame produced using previous Q.
|
|
target_bits_per_mb =
|
|
((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs;
|
|
|
|
i = active_best_quality;
|
|
|
|
do {
|
|
const int bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cm->frame_type, i,
|
|
correction_factor,
|
|
cm->bit_depth);
|
|
|
|
if (bits_per_mb_at_this_q <= target_bits_per_mb) {
|
|
if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
|
|
q = i;
|
|
else
|
|
q = i - 1;
|
|
|
|
break;
|
|
} else {
|
|
last_error = bits_per_mb_at_this_q - target_bits_per_mb;
|
|
}
|
|
} while (++i <= active_worst_quality);
|
|
|
|
// In CBR mode, this makes sure q is between oscillating Qs to prevent
|
|
// resonance.
|
|
if (cpi->oxcf.rc_mode == VPX_CBR &&
|
|
(cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
|
|
cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
|
|
q = clamp(q, MIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
|
|
MAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
|
|
}
|
|
return q;
|
|
}
|
|
|
|
static int get_active_quality(int q, int gfu_boost, int low, int high,
|
|
int *low_motion_minq, int *high_motion_minq) {
|
|
if (gfu_boost > high) {
|
|
return low_motion_minq[q];
|
|
} else if (gfu_boost < low) {
|
|
return high_motion_minq[q];
|
|
} else {
|
|
const int gap = high - low;
|
|
const int offset = high - gfu_boost;
|
|
const int qdiff = high_motion_minq[q] - low_motion_minq[q];
|
|
const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
|
|
return low_motion_minq[q] + adjustment;
|
|
}
|
|
}
|
|
|
|
static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
|
|
vpx_bit_depth_t bit_depth) {
|
|
int *kf_low_motion_minq;
|
|
int *kf_high_motion_minq;
|
|
ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
|
|
ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
|
|
return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
|
|
kf_low_motion_minq, kf_high_motion_minq);
|
|
}
|
|
|
|
static int get_gf_active_quality(const RATE_CONTROL *const rc, int q,
|
|
vpx_bit_depth_t bit_depth) {
|
|
int *arfgf_low_motion_minq;
|
|
int *arfgf_high_motion_minq;
|
|
ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
|
|
ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
|
|
return get_active_quality(q, rc->gfu_boost, gf_low, gf_high,
|
|
arfgf_low_motion_minq, arfgf_high_motion_minq);
|
|
}
|
|
|
|
static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) {
|
|
const RATE_CONTROL *const rc = &cpi->rc;
|
|
const unsigned int curr_frame = cpi->common.current_video_frame;
|
|
int active_worst_quality;
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME) {
|
|
active_worst_quality = curr_frame == 0 ? rc->worst_quality
|
|
: rc->last_q[KEY_FRAME] * 2;
|
|
} else {
|
|
if (!rc->is_src_frame_alt_ref &&
|
|
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
|
|
active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4
|
|
: rc->last_q[INTER_FRAME];
|
|
} else {
|
|
active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2
|
|
: rc->last_q[INTER_FRAME] * 2;
|
|
}
|
|
}
|
|
return MIN(active_worst_quality, rc->worst_quality);
|
|
}
|
|
|
|
// Adjust active_worst_quality level based on buffer level.
|
|
static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
|
|
// Adjust active_worst_quality: If buffer is above the optimal/target level,
|
|
// bring active_worst_quality down depending on fullness of buffer.
|
|
// If buffer is below the optimal level, let the active_worst_quality go from
|
|
// ambient Q (at buffer = optimal level) to worst_quality level
|
|
// (at buffer = critical level).
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
const RATE_CONTROL *rc = &cpi->rc;
|
|
// Buffer level below which we push active_worst to worst_quality.
|
|
int64_t critical_level = rc->optimal_buffer_level >> 3;
|
|
int64_t buff_lvl_step = 0;
|
|
int adjustment = 0;
|
|
int active_worst_quality;
|
|
int ambient_qp;
|
|
if (cm->frame_type == KEY_FRAME)
|
|
return rc->worst_quality;
|
|
// For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
|
|
// for the first few frames following key frame. These are both initialized
|
|
// to worst_quality and updated with (3/4, 1/4) average in postencode_update.
|
|
// So for first few frames following key, the qp of that key frame is weighted
|
|
// into the active_worst_quality setting.
|
|
ambient_qp = (cm->current_video_frame < 5) ?
|
|
MIN(rc->avg_frame_qindex[INTER_FRAME], rc->avg_frame_qindex[KEY_FRAME]) :
|
|
rc->avg_frame_qindex[INTER_FRAME];
|
|
active_worst_quality = MIN(rc->worst_quality,
|
|
ambient_qp * 5 / 4);
|
|
if (rc->buffer_level > rc->optimal_buffer_level) {
|
|
// Adjust down.
|
|
// Maximum limit for down adjustment, ~30%.
|
|
int max_adjustment_down = active_worst_quality / 3;
|
|
if (max_adjustment_down) {
|
|
buff_lvl_step = ((rc->maximum_buffer_size -
|
|
rc->optimal_buffer_level) / max_adjustment_down);
|
|
if (buff_lvl_step)
|
|
adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
|
|
buff_lvl_step);
|
|
active_worst_quality -= adjustment;
|
|
}
|
|
} else if (rc->buffer_level > critical_level) {
|
|
// Adjust up from ambient Q.
|
|
if (critical_level) {
|
|
buff_lvl_step = (rc->optimal_buffer_level - critical_level);
|
|
if (buff_lvl_step) {
|
|
adjustment = (int)((rc->worst_quality - ambient_qp) *
|
|
(rc->optimal_buffer_level - rc->buffer_level) /
|
|
buff_lvl_step);
|
|
}
|
|
active_worst_quality = ambient_qp + adjustment;
|
|
}
|
|
} else {
|
|
// Set to worst_quality if buffer is below critical level.
|
|
active_worst_quality = rc->worst_quality;
|
|
}
|
|
return active_worst_quality;
|
|
}
|
|
|
|
static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi,
|
|
int *bottom_index,
|
|
int *top_index) {
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
const RATE_CONTROL *const rc = &cpi->rc;
|
|
int active_best_quality;
|
|
int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
|
|
int q;
|
|
int *rtc_minq;
|
|
ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq);
|
|
|
|
if (frame_is_intra_only(cm)) {
|
|
active_best_quality = rc->best_quality;
|
|
// Handle the special case for key frames forced when we have reached
|
|
// the maximum key frame interval. Here force the Q to a range
|
|
// based on the ambient Q to reduce the risk of popping.
|
|
if (rc->this_key_frame_forced) {
|
|
int qindex = rc->last_boosted_qindex;
|
|
double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
|
|
int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
|
|
(last_boosted_q * 0.75),
|
|
cm->bit_depth);
|
|
active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
|
|
} else if (cm->current_video_frame > 0) {
|
|
// not first frame of one pass and kf_boost is set
|
|
double q_adj_factor = 1.0;
|
|
double q_val;
|
|
|
|
active_best_quality =
|
|
get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME],
|
|
cm->bit_depth);
|
|
|
|
// Allow somewhat lower kf minq with small image formats.
|
|
if ((cm->width * cm->height) <= (352 * 288)) {
|
|
q_adj_factor -= 0.25;
|
|
}
|
|
|
|
// Convert the adjustment factor to a qindex delta
|
|
// on active_best_quality.
|
|
q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
|
|
active_best_quality += vp9_compute_qdelta(rc, q_val,
|
|
q_val * q_adj_factor,
|
|
cm->bit_depth);
|
|
}
|
|
} else if (!rc->is_src_frame_alt_ref &&
|
|
!cpi->use_svc &&
|
|
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
|
|
// Use the lower of active_worst_quality and recent
|
|
// average Q as basis for GF/ARF best Q limit unless last frame was
|
|
// a key frame.
|
|
if (rc->frames_since_key > 1 &&
|
|
rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
|
|
q = rc->avg_frame_qindex[INTER_FRAME];
|
|
} else {
|
|
q = active_worst_quality;
|
|
}
|
|
active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
|
|
} else {
|
|
// Use the lower of active_worst_quality and recent/average Q.
|
|
if (cm->current_video_frame > 1) {
|
|
if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
|
|
active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
|
|
else
|
|
active_best_quality = rtc_minq[active_worst_quality];
|
|
} else {
|
|
if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
|
|
active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
|
|
else
|
|
active_best_quality = rtc_minq[active_worst_quality];
|
|
}
|
|
}
|
|
|
|
// Clip the active best and worst quality values to limits
|
|
active_best_quality = clamp(active_best_quality,
|
|
rc->best_quality, rc->worst_quality);
|
|
active_worst_quality = clamp(active_worst_quality,
|
|
active_best_quality, rc->worst_quality);
|
|
|
|
*top_index = active_worst_quality;
|
|
*bottom_index = active_best_quality;
|
|
|
|
#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
|
|
// Limit Q range for the adaptive loop.
|
|
if (cm->frame_type == KEY_FRAME &&
|
|
!rc->this_key_frame_forced &&
|
|
!(cm->current_video_frame == 0)) {
|
|
int qdelta = 0;
|
|
vp9_clear_system_state();
|
|
qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
|
|
active_worst_quality, 2.0,
|
|
cm->bit_depth);
|
|
*top_index = active_worst_quality + qdelta;
|
|
*top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
|
|
}
|
|
#endif
|
|
|
|
// Special case code to try and match quality with forced key frames
|
|
if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) {
|
|
q = rc->last_boosted_qindex;
|
|
} else {
|
|
q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
|
|
active_best_quality, active_worst_quality);
|
|
if (q > *top_index) {
|
|
// Special case when we are targeting the max allowed rate
|
|
if (rc->this_frame_target >= rc->max_frame_bandwidth)
|
|
*top_index = q;
|
|
else
|
|
q = *top_index;
|
|
}
|
|
}
|
|
assert(*top_index <= rc->worst_quality &&
|
|
*top_index >= rc->best_quality);
|
|
assert(*bottom_index <= rc->worst_quality &&
|
|
*bottom_index >= rc->best_quality);
|
|
assert(q <= rc->worst_quality && q >= rc->best_quality);
|
|
return q;
|
|
}
|
|
|
|
static int get_active_cq_level(const RATE_CONTROL *rc,
|
|
const VP9EncoderConfig *const oxcf) {
|
|
static const double cq_adjust_threshold = 0.5;
|
|
int active_cq_level = oxcf->cq_level;
|
|
if (oxcf->rc_mode == VPX_CQ &&
|
|
rc->total_target_bits > 0) {
|
|
const double x = (double)rc->total_actual_bits / rc->total_target_bits;
|
|
if (x < cq_adjust_threshold) {
|
|
active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
|
|
}
|
|
}
|
|
return active_cq_level;
|
|
}
|
|
|
|
static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
|
|
int *bottom_index,
|
|
int *top_index) {
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
const RATE_CONTROL *const rc = &cpi->rc;
|
|
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
|
|
const int cq_level = get_active_cq_level(rc, oxcf);
|
|
int active_best_quality;
|
|
int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
|
|
int q;
|
|
int *inter_minq;
|
|
ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
|
|
|
|
if (frame_is_intra_only(cm)) {
|
|
|
|
// Handle the special case for key frames forced when we have reached
|
|
// the maximum key frame interval. Here force the Q to a range
|
|
// based on the ambient Q to reduce the risk of popping.
|
|
if (rc->this_key_frame_forced) {
|
|
int qindex = rc->last_boosted_qindex;
|
|
double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
|
|
int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
|
|
last_boosted_q * 0.75,
|
|
cm->bit_depth);
|
|
active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
|
|
} else {
|
|
// not first frame of one pass and kf_boost is set
|
|
double q_adj_factor = 1.0;
|
|
double q_val;
|
|
|
|
active_best_quality =
|
|
get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME],
|
|
cm->bit_depth);
|
|
|
|
// Allow somewhat lower kf minq with small image formats.
|
|
if ((cm->width * cm->height) <= (352 * 288)) {
|
|
q_adj_factor -= 0.25;
|
|
}
|
|
|
|
// Convert the adjustment factor to a qindex delta
|
|
// on active_best_quality.
|
|
q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
|
|
active_best_quality += vp9_compute_qdelta(rc, q_val,
|
|
q_val * q_adj_factor,
|
|
cm->bit_depth);
|
|
}
|
|
} else if (!rc->is_src_frame_alt_ref &&
|
|
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
|
|
// Use the lower of active_worst_quality and recent
|
|
// average Q as basis for GF/ARF best Q limit unless last frame was
|
|
// a key frame.
|
|
if (rc->frames_since_key > 1 &&
|
|
rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
|
|
q = rc->avg_frame_qindex[INTER_FRAME];
|
|
} else {
|
|
q = rc->avg_frame_qindex[KEY_FRAME];
|
|
}
|
|
// For constrained quality dont allow Q less than the cq level
|
|
if (oxcf->rc_mode == VPX_CQ) {
|
|
if (q < cq_level)
|
|
q = cq_level;
|
|
|
|
active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
|
|
|
|
// Constrained quality use slightly lower active best.
|
|
active_best_quality = active_best_quality * 15 / 16;
|
|
|
|
} else if (oxcf->rc_mode == VPX_Q) {
|
|
if (!cpi->refresh_alt_ref_frame) {
|
|
active_best_quality = cq_level;
|
|
} else {
|
|
active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
|
|
}
|
|
} else {
|
|
active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
|
|
}
|
|
} else {
|
|
if (oxcf->rc_mode == VPX_Q) {
|
|
active_best_quality = cq_level;
|
|
} else {
|
|
// Use the lower of active_worst_quality and recent/average Q.
|
|
if (cm->current_video_frame > 1)
|
|
active_best_quality = inter_minq[rc->avg_frame_qindex[INTER_FRAME]];
|
|
else
|
|
active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
|
|
// For the constrained quality mode we don't want
|
|
// q to fall below the cq level.
|
|
if ((oxcf->rc_mode == VPX_CQ) &&
|
|
(active_best_quality < cq_level)) {
|
|
active_best_quality = cq_level;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Clip the active best and worst quality values to limits
|
|
active_best_quality = clamp(active_best_quality,
|
|
rc->best_quality, rc->worst_quality);
|
|
active_worst_quality = clamp(active_worst_quality,
|
|
active_best_quality, rc->worst_quality);
|
|
|
|
*top_index = active_worst_quality;
|
|
*bottom_index = active_best_quality;
|
|
|
|
#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
|
|
{
|
|
int qdelta = 0;
|
|
vp9_clear_system_state();
|
|
|
|
// Limit Q range for the adaptive loop.
|
|
if (cm->frame_type == KEY_FRAME &&
|
|
!rc->this_key_frame_forced &&
|
|
!(cm->current_video_frame == 0)) {
|
|
qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
|
|
active_worst_quality, 2.0,
|
|
cm->bit_depth);
|
|
} else if (!rc->is_src_frame_alt_ref &&
|
|
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
|
|
qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
|
|
active_worst_quality, 1.75,
|
|
cm->bit_depth);
|
|
}
|
|
*top_index = active_worst_quality + qdelta;
|
|
*top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
|
|
}
|
|
#endif
|
|
|
|
if (oxcf->rc_mode == VPX_Q) {
|
|
q = active_best_quality;
|
|
// Special case code to try and match quality with forced key frames
|
|
} else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
|
|
q = rc->last_boosted_qindex;
|
|
} else {
|
|
q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
|
|
active_best_quality, active_worst_quality);
|
|
if (q > *top_index) {
|
|
// Special case when we are targeting the max allowed rate
|
|
if (rc->this_frame_target >= rc->max_frame_bandwidth)
|
|
*top_index = q;
|
|
else
|
|
q = *top_index;
|
|
}
|
|
}
|
|
|
|
assert(*top_index <= rc->worst_quality &&
|
|
*top_index >= rc->best_quality);
|
|
assert(*bottom_index <= rc->worst_quality &&
|
|
*bottom_index >= rc->best_quality);
|
|
assert(q <= rc->worst_quality && q >= rc->best_quality);
|
|
return q;
|
|
}
|
|
|
|
#define STATIC_MOTION_THRESH 95
|
|
static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi,
|
|
int *bottom_index,
|
|
int *top_index) {
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
const RATE_CONTROL *const rc = &cpi->rc;
|
|
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
|
|
const int cq_level = get_active_cq_level(rc, oxcf);
|
|
int active_best_quality;
|
|
int active_worst_quality = cpi->twopass.active_worst_quality;
|
|
int q;
|
|
int *inter_minq;
|
|
ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
|
|
|
|
if (frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) {
|
|
// Handle the special case for key frames forced when we have reached
|
|
// the maximum key frame interval. Here force the Q to a range
|
|
// based on the ambient Q to reduce the risk of popping.
|
|
if (rc->this_key_frame_forced) {
|
|
double last_boosted_q;
|
|
int delta_qindex;
|
|
int qindex;
|
|
|
|
if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
|
|
qindex = MIN(rc->last_kf_qindex, rc->last_boosted_qindex);
|
|
active_best_quality = qindex;
|
|
last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
|
|
delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
|
|
last_boosted_q * 1.25,
|
|
cm->bit_depth);
|
|
active_worst_quality = MIN(qindex + delta_qindex, active_worst_quality);
|
|
|
|
} else {
|
|
qindex = rc->last_boosted_qindex;
|
|
last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
|
|
delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
|
|
last_boosted_q * 0.75,
|
|
cm->bit_depth);
|
|
active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
|
|
}
|
|
} else {
|
|
// Not forced keyframe.
|
|
double q_adj_factor = 1.0;
|
|
double q_val;
|
|
// Baseline value derived from cpi->active_worst_quality and kf boost.
|
|
active_best_quality = get_kf_active_quality(rc, active_worst_quality,
|
|
cm->bit_depth);
|
|
|
|
// Allow somewhat lower kf minq with small image formats.
|
|
if ((cm->width * cm->height) <= (352 * 288)) {
|
|
q_adj_factor -= 0.25;
|
|
}
|
|
|
|
// Make a further adjustment based on the kf zero motion measure.
|
|
q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
|
|
|
|
// Convert the adjustment factor to a qindex delta
|
|
// on active_best_quality.
|
|
q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
|
|
active_best_quality += vp9_compute_qdelta(rc, q_val,
|
|
q_val * q_adj_factor,
|
|
cm->bit_depth);
|
|
}
|
|
} else if (!rc->is_src_frame_alt_ref &&
|
|
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
|
|
// Use the lower of active_worst_quality and recent
|
|
// average Q as basis for GF/ARF best Q limit unless last frame was
|
|
// a key frame.
|
|
if (rc->frames_since_key > 1 &&
|
|
rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
|
|
q = rc->avg_frame_qindex[INTER_FRAME];
|
|
} else {
|
|
q = active_worst_quality;
|
|
}
|
|
// For constrained quality dont allow Q less than the cq level
|
|
if (oxcf->rc_mode == VPX_CQ) {
|
|
if (q < cq_level)
|
|
q = cq_level;
|
|
|
|
active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
|
|
|
|
// Constrained quality use slightly lower active best.
|
|
active_best_quality = active_best_quality * 15 / 16;
|
|
|
|
} else if (oxcf->rc_mode == VPX_Q) {
|
|
if (!cpi->refresh_alt_ref_frame) {
|
|
active_best_quality = cq_level;
|
|
} else {
|
|
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
|
|
active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
|
|
|
|
// Modify best quality for second level arfs. For mode VPX_Q this
|
|
// becomes the baseline frame q.
|
|
if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW)
|
|
active_best_quality = (active_best_quality + cq_level + 1) / 2;
|
|
}
|
|
} else {
|
|
active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
|
|
}
|
|
} else {
|
|
if (oxcf->rc_mode == VPX_Q) {
|
|
active_best_quality = cq_level;
|
|
} else {
|
|
active_best_quality = inter_minq[active_worst_quality];
|
|
|
|
// For the constrained quality mode we don't want
|
|
// q to fall below the cq level.
|
|
if ((oxcf->rc_mode == VPX_CQ) &&
|
|
(active_best_quality < cq_level)) {
|
|
active_best_quality = cq_level;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Extenstion to max or min Q if undershoot or overshoot is outside
|
|
// the permitted range.
|
|
if ((cpi->oxcf.rc_mode == VPX_VBR) &&
|
|
(cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD)) {
|
|
if (frame_is_intra_only(cm) ||
|
|
(!rc->is_src_frame_alt_ref &&
|
|
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
|
|
active_best_quality -= cpi->twopass.extend_minq;
|
|
active_worst_quality += (cpi->twopass.extend_maxq / 2);
|
|
} else {
|
|
active_best_quality -= cpi->twopass.extend_minq / 2;
|
|
active_worst_quality += cpi->twopass.extend_maxq;
|
|
}
|
|
}
|
|
|
|
#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
|
|
vp9_clear_system_state();
|
|
// Static forced key frames Q restrictions dealt with elsewhere.
|
|
if (!((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi))) ||
|
|
!rc->this_key_frame_forced ||
|
|
(cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
|
|
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
|
|
const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
|
|
1.00, // INTER_NORMAL
|
|
1.00, // INTER_HIGH
|
|
1.50, // GF_ARF_LOW
|
|
1.75, // GF_ARF_STD
|
|
2.00, // KF_STD
|
|
};
|
|
const double rate_factor =
|
|
rate_factor_deltas[gf_group->rf_level[gf_group->index]];
|
|
int qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
|
|
active_worst_quality, rate_factor,
|
|
cm->bit_depth);
|
|
active_worst_quality = active_worst_quality + qdelta;
|
|
active_worst_quality = MAX(active_worst_quality, active_best_quality);
|
|
}
|
|
#endif
|
|
|
|
// Clip the active best and worst quality values to limits.
|
|
active_best_quality = clamp(active_best_quality,
|
|
rc->best_quality, rc->worst_quality);
|
|
active_worst_quality = clamp(active_worst_quality,
|
|
active_best_quality, rc->worst_quality);
|
|
|
|
if (oxcf->rc_mode == VPX_Q) {
|
|
q = active_best_quality;
|
|
// Special case code to try and match quality with forced key frames.
|
|
} else if ((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) &&
|
|
rc->this_key_frame_forced) {
|
|
// If static since last kf use better of last boosted and last kf q.
|
|
if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
|
|
q = MIN(rc->last_kf_qindex, rc->last_boosted_qindex);
|
|
} else {
|
|
q = rc->last_boosted_qindex;
|
|
}
|
|
} else {
|
|
q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
|
|
active_best_quality, active_worst_quality);
|
|
if (q > active_worst_quality) {
|
|
// Special case when we are targeting the max allowed rate.
|
|
if (rc->this_frame_target >= rc->max_frame_bandwidth)
|
|
active_worst_quality = q;
|
|
else
|
|
q = active_worst_quality;
|
|
}
|
|
}
|
|
clamp(q, active_best_quality, active_worst_quality);
|
|
|
|
*top_index = active_worst_quality;
|
|
*bottom_index = active_best_quality;
|
|
|
|
assert(*top_index <= rc->worst_quality &&
|
|
*top_index >= rc->best_quality);
|
|
assert(*bottom_index <= rc->worst_quality &&
|
|
*bottom_index >= rc->best_quality);
|
|
assert(q <= rc->worst_quality && q >= rc->best_quality);
|
|
return q;
|
|
}
|
|
|
|
int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi,
|
|
int *bottom_index, int *top_index) {
|
|
int q;
|
|
if (cpi->oxcf.pass == 0) {
|
|
if (cpi->oxcf.rc_mode == VPX_CBR)
|
|
q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index);
|
|
else
|
|
q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index);
|
|
} else {
|
|
q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index);
|
|
}
|
|
if (cpi->sf.use_nonrd_pick_mode) {
|
|
if (cpi->sf.force_frame_boost == 1)
|
|
q -= cpi->sf.max_delta_qindex;
|
|
|
|
if (q < *bottom_index)
|
|
*bottom_index = q;
|
|
else if (q > *top_index)
|
|
*top_index = q;
|
|
}
|
|
return q;
|
|
}
|
|
|
|
void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi,
|
|
int frame_target,
|
|
int *frame_under_shoot_limit,
|
|
int *frame_over_shoot_limit) {
|
|
if (cpi->oxcf.rc_mode == VPX_Q) {
|
|
*frame_under_shoot_limit = 0;
|
|
*frame_over_shoot_limit = INT_MAX;
|
|
} else {
|
|
// For very small rate targets where the fractional adjustment
|
|
// may be tiny make sure there is at least a minimum range.
|
|
const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100;
|
|
*frame_under_shoot_limit = MAX(frame_target - tolerance - 200, 0);
|
|
*frame_over_shoot_limit = MIN(frame_target + tolerance + 200,
|
|
cpi->rc.max_frame_bandwidth);
|
|
}
|
|
}
|
|
|
|
void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) {
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
|
|
rc->this_frame_target = target;
|
|
|
|
// Target rate per SB64 (including partial SB64s.
|
|
rc->sb64_target_rate = ((int64_t)rc->this_frame_target * 64 * 64) /
|
|
(cm->width * cm->height);
|
|
}
|
|
|
|
static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
|
|
// this frame refreshes means next frames don't unless specified by user
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
rc->frames_since_golden = 0;
|
|
|
|
// Mark the alt ref as done (setting to 0 means no further alt refs pending).
|
|
rc->source_alt_ref_pending = 0;
|
|
|
|
// Set the alternate reference frame active flag
|
|
rc->source_alt_ref_active = 1;
|
|
}
|
|
|
|
static void update_golden_frame_stats(VP9_COMP *cpi) {
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
|
|
// Update the Golden frame usage counts.
|
|
if (cpi->refresh_golden_frame) {
|
|
// this frame refreshes means next frames don't unless specified by user
|
|
rc->frames_since_golden = 0;
|
|
|
|
if (cpi->oxcf.pass == 2) {
|
|
if (!rc->source_alt_ref_pending &&
|
|
cpi->twopass.gf_group.rf_level[0] == GF_ARF_STD)
|
|
rc->source_alt_ref_active = 0;
|
|
} else if (!rc->source_alt_ref_pending) {
|
|
rc->source_alt_ref_active = 0;
|
|
}
|
|
|
|
// Decrement count down till next gf
|
|
if (rc->frames_till_gf_update_due > 0)
|
|
rc->frames_till_gf_update_due--;
|
|
|
|
} else if (!cpi->refresh_alt_ref_frame) {
|
|
// Decrement count down till next gf
|
|
if (rc->frames_till_gf_update_due > 0)
|
|
rc->frames_till_gf_update_due--;
|
|
|
|
rc->frames_since_golden++;
|
|
}
|
|
}
|
|
|
|
void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
const int qindex = cm->base_qindex;
|
|
|
|
// Update rate control heuristics
|
|
rc->projected_frame_size = (int)(bytes_used << 3);
|
|
|
|
// Post encode loop adjustment of Q prediction.
|
|
vp9_rc_update_rate_correction_factors(
|
|
cpi, (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) ? 2 :
|
|
((oxcf->rc_mode == VPX_CBR) ? 1 : 0));
|
|
|
|
// Keep a record of last Q and ambient average Q.
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
rc->last_q[KEY_FRAME] = qindex;
|
|
rc->avg_frame_qindex[KEY_FRAME] =
|
|
ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
|
|
} else {
|
|
if (rc->is_src_frame_alt_ref ||
|
|
!(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) ||
|
|
(cpi->use_svc && oxcf->rc_mode == VPX_CBR)) {
|
|
rc->last_q[INTER_FRAME] = qindex;
|
|
rc->avg_frame_qindex[INTER_FRAME] =
|
|
ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
|
|
rc->ni_frames++;
|
|
rc->tot_q += vp9_convert_qindex_to_q(qindex, cm->bit_depth);
|
|
rc->avg_q = rc->tot_q / rc->ni_frames;
|
|
// Calculate the average Q for normal inter frames (not key or GFU
|
|
// frames).
|
|
rc->ni_tot_qi += qindex;
|
|
rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
|
|
}
|
|
}
|
|
|
|
// Keep record of last boosted (KF/KF/ARF) Q value.
|
|
// If the current frame is coded at a lower Q then we also update it.
|
|
// If all mbs in this group are skipped only update if the Q value is
|
|
// better than that already stored.
|
|
// This is used to help set quality in forced key frames to reduce popping
|
|
if ((qindex < rc->last_boosted_qindex) ||
|
|
(((cm->frame_type == KEY_FRAME) || cpi->refresh_alt_ref_frame ||
|
|
(cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
|
|
rc->last_boosted_qindex = qindex;
|
|
}
|
|
if (cm->frame_type == KEY_FRAME)
|
|
rc->last_kf_qindex = qindex;
|
|
|
|
update_buffer_level(cpi, rc->projected_frame_size);
|
|
|
|
// Rolling monitors of whether we are over or underspending used to help
|
|
// regulate min and Max Q in two pass.
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
rc->rolling_target_bits = ROUND_POWER_OF_TWO(
|
|
rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
|
|
rc->rolling_actual_bits = ROUND_POWER_OF_TWO(
|
|
rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
|
|
rc->long_rolling_target_bits = ROUND_POWER_OF_TWO(
|
|
rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
|
|
rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO(
|
|
rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
|
|
}
|
|
|
|
// Actual bits spent
|
|
rc->total_actual_bits += rc->projected_frame_size;
|
|
rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
|
|
|
|
rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
|
|
|
|
if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
|
|
(cm->frame_type != KEY_FRAME))
|
|
// Update the alternate reference frame stats as appropriate.
|
|
update_alt_ref_frame_stats(cpi);
|
|
else
|
|
// Update the Golden frame stats as appropriate.
|
|
update_golden_frame_stats(cpi);
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
rc->frames_since_key = 0;
|
|
if (cm->show_frame) {
|
|
rc->frames_since_key++;
|
|
rc->frames_to_key--;
|
|
}
|
|
}
|
|
|
|
void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) {
|
|
// Update buffer level with zero size, update frame counters, and return.
|
|
update_buffer_level(cpi, 0);
|
|
cpi->common.last_frame_type = cpi->common.frame_type;
|
|
cpi->rc.frames_since_key++;
|
|
cpi->rc.frames_to_key--;
|
|
cpi->rc.rc_2_frame = 0;
|
|
cpi->rc.rc_1_frame = 0;
|
|
}
|
|
|
|
// Use this macro to turn on/off use of alt-refs in one-pass mode.
|
|
#define USE_ALTREF_FOR_ONE_PASS 1
|
|
|
|
static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
|
|
static const int af_ratio = 10;
|
|
const RATE_CONTROL *const rc = &cpi->rc;
|
|
int target;
|
|
#if USE_ALTREF_FOR_ONE_PASS
|
|
target = (!rc->is_src_frame_alt_ref &&
|
|
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) ?
|
|
(rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) /
|
|
(rc->baseline_gf_interval + af_ratio - 1) :
|
|
(rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
|
|
(rc->baseline_gf_interval + af_ratio - 1);
|
|
#else
|
|
target = rc->avg_frame_bandwidth;
|
|
#endif
|
|
return vp9_rc_clamp_pframe_target_size(cpi, target);
|
|
}
|
|
|
|
static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
|
|
static const int kf_ratio = 25;
|
|
const RATE_CONTROL *rc = &cpi->rc;
|
|
const int target = rc->avg_frame_bandwidth * kf_ratio;
|
|
return vp9_rc_clamp_iframe_target_size(cpi, target);
|
|
}
|
|
|
|
void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
int target;
|
|
// TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
|
|
if (!cpi->refresh_alt_ref_frame &&
|
|
(cm->current_video_frame == 0 ||
|
|
(cpi->frame_flags & FRAMEFLAGS_KEY) ||
|
|
rc->frames_to_key == 0 ||
|
|
(cpi->oxcf.auto_key && 0))) {
|
|
cm->frame_type = KEY_FRAME;
|
|
rc->this_key_frame_forced = cm->current_video_frame != 0 &&
|
|
rc->frames_to_key == 0;
|
|
rc->frames_to_key = cpi->oxcf.key_freq;
|
|
rc->kf_boost = DEFAULT_KF_BOOST;
|
|
rc->source_alt_ref_active = 0;
|
|
} else {
|
|
cm->frame_type = INTER_FRAME;
|
|
}
|
|
if (rc->frames_till_gf_update_due == 0) {
|
|
rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;
|
|
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
|
|
// NOTE: frames_till_gf_update_due must be <= frames_to_key.
|
|
if (rc->frames_till_gf_update_due > rc->frames_to_key)
|
|
rc->frames_till_gf_update_due = rc->frames_to_key;
|
|
cpi->refresh_golden_frame = 1;
|
|
rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
|
|
rc->gfu_boost = DEFAULT_GF_BOOST;
|
|
}
|
|
if (cm->frame_type == KEY_FRAME)
|
|
target = calc_iframe_target_size_one_pass_vbr(cpi);
|
|
else
|
|
target = calc_pframe_target_size_one_pass_vbr(cpi);
|
|
vp9_rc_set_frame_target(cpi, target);
|
|
}
|
|
|
|
static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
|
|
const VP9EncoderConfig *oxcf = &cpi->oxcf;
|
|
const RATE_CONTROL *rc = &cpi->rc;
|
|
const SVC *const svc = &cpi->svc;
|
|
const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
|
|
const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
|
|
int min_frame_target = MAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
|
|
int target;
|
|
|
|
if (oxcf->gf_cbr_boost_pct) {
|
|
const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
|
|
target = cpi->refresh_golden_frame ?
|
|
(rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio_pct) /
|
|
(rc->baseline_gf_interval * 100 + af_ratio_pct - 100) :
|
|
(rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
|
|
(rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
|
|
} else {
|
|
target = rc->avg_frame_bandwidth;
|
|
}
|
|
if (svc->number_temporal_layers > 1 &&
|
|
oxcf->rc_mode == VPX_CBR) {
|
|
// Note that for layers, avg_frame_bandwidth is the cumulative
|
|
// per-frame-bandwidth. For the target size of this frame, use the
|
|
// layer average frame size (i.e., non-cumulative per-frame-bw).
|
|
int current_temporal_layer = svc->temporal_layer_id;
|
|
const LAYER_CONTEXT *lc = &svc->layer_context[current_temporal_layer];
|
|
target = lc->avg_frame_size;
|
|
min_frame_target = MAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
|
|
}
|
|
if (diff > 0) {
|
|
// Lower the target bandwidth for this frame.
|
|
const int pct_low = (int)MIN(diff / one_pct_bits, oxcf->under_shoot_pct);
|
|
target -= (target * pct_low) / 200;
|
|
} else if (diff < 0) {
|
|
// Increase the target bandwidth for this frame.
|
|
const int pct_high = (int)MIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
|
|
target += (target * pct_high) / 200;
|
|
}
|
|
if (oxcf->rc_max_inter_bitrate_pct) {
|
|
const int max_rate = rc->avg_frame_bandwidth *
|
|
oxcf->rc_max_inter_bitrate_pct / 100;
|
|
target = MIN(target, max_rate);
|
|
}
|
|
return MAX(min_frame_target, target);
|
|
}
|
|
|
|
static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
|
|
const RATE_CONTROL *rc = &cpi->rc;
|
|
const VP9EncoderConfig *oxcf = &cpi->oxcf;
|
|
const SVC *const svc = &cpi->svc;
|
|
int target;
|
|
if (cpi->common.current_video_frame == 0) {
|
|
target = ((rc->starting_buffer_level / 2) > INT_MAX)
|
|
? INT_MAX : (int)(rc->starting_buffer_level / 2);
|
|
} else {
|
|
int kf_boost = 32;
|
|
double framerate = cpi->framerate;
|
|
if (svc->number_temporal_layers > 1 &&
|
|
oxcf->rc_mode == VPX_CBR) {
|
|
// Use the layer framerate for temporal layers CBR mode.
|
|
const LAYER_CONTEXT *lc = &svc->layer_context[svc->temporal_layer_id];
|
|
framerate = lc->framerate;
|
|
}
|
|
kf_boost = MAX(kf_boost, (int)(2 * framerate - 16));
|
|
if (rc->frames_since_key < framerate / 2) {
|
|
kf_boost = (int)(kf_boost * rc->frames_since_key /
|
|
(framerate / 2));
|
|
}
|
|
target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
|
|
}
|
|
return vp9_rc_clamp_iframe_target_size(cpi, target);
|
|
}
|
|
|
|
void vp9_rc_get_svc_params(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
int target = rc->avg_frame_bandwidth;
|
|
if ((cm->current_video_frame == 0) ||
|
|
(cpi->frame_flags & FRAMEFLAGS_KEY) ||
|
|
(cpi->oxcf.auto_key && (rc->frames_since_key %
|
|
cpi->oxcf.key_freq == 0))) {
|
|
cm->frame_type = KEY_FRAME;
|
|
rc->source_alt_ref_active = 0;
|
|
|
|
if (is_two_pass_svc(cpi)) {
|
|
cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame = 1;
|
|
cpi->ref_frame_flags &=
|
|
(~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
|
|
}
|
|
|
|
if (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR) {
|
|
target = calc_iframe_target_size_one_pass_cbr(cpi);
|
|
}
|
|
} else {
|
|
cm->frame_type = INTER_FRAME;
|
|
|
|
if (is_two_pass_svc(cpi)) {
|
|
LAYER_CONTEXT *lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id];
|
|
if (cpi->svc.spatial_layer_id == 0) {
|
|
lc->is_key_frame = 0;
|
|
} else {
|
|
lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
|
|
if (lc->is_key_frame)
|
|
cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
|
|
}
|
|
cpi->ref_frame_flags &= (~VP9_ALT_FLAG);
|
|
}
|
|
|
|
if (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR) {
|
|
target = calc_pframe_target_size_one_pass_cbr(cpi);
|
|
}
|
|
}
|
|
vp9_rc_set_frame_target(cpi, target);
|
|
rc->frames_till_gf_update_due = INT_MAX;
|
|
rc->baseline_gf_interval = INT_MAX;
|
|
}
|
|
|
|
void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) {
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
int target;
|
|
// TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
|
|
if ((cm->current_video_frame == 0 ||
|
|
(cpi->frame_flags & FRAMEFLAGS_KEY) ||
|
|
rc->frames_to_key == 0 ||
|
|
(cpi->oxcf.auto_key && 0))) {
|
|
cm->frame_type = KEY_FRAME;
|
|
rc->this_key_frame_forced = cm->current_video_frame != 0 &&
|
|
rc->frames_to_key == 0;
|
|
rc->frames_to_key = cpi->oxcf.key_freq;
|
|
rc->kf_boost = DEFAULT_KF_BOOST;
|
|
rc->source_alt_ref_active = 0;
|
|
} else {
|
|
cm->frame_type = INTER_FRAME;
|
|
}
|
|
if (rc->frames_till_gf_update_due == 0) {
|
|
rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;
|
|
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
|
|
// NOTE: frames_till_gf_update_due must be <= frames_to_key.
|
|
if (rc->frames_till_gf_update_due > rc->frames_to_key)
|
|
rc->frames_till_gf_update_due = rc->frames_to_key;
|
|
cpi->refresh_golden_frame = 1;
|
|
rc->gfu_boost = DEFAULT_GF_BOOST;
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
target = calc_iframe_target_size_one_pass_cbr(cpi);
|
|
else
|
|
target = calc_pframe_target_size_one_pass_cbr(cpi);
|
|
|
|
vp9_rc_set_frame_target(cpi, target);
|
|
}
|
|
|
|
int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
|
|
vpx_bit_depth_t bit_depth) {
|
|
int start_index = rc->worst_quality;
|
|
int target_index = rc->worst_quality;
|
|
int i;
|
|
|
|
// Convert the average q value to an index.
|
|
for (i = rc->best_quality; i < rc->worst_quality; ++i) {
|
|
start_index = i;
|
|
if (vp9_convert_qindex_to_q(i, bit_depth) >= qstart)
|
|
break;
|
|
}
|
|
|
|
// Convert the q target to an index
|
|
for (i = rc->best_quality; i < rc->worst_quality; ++i) {
|
|
target_index = i;
|
|
if (vp9_convert_qindex_to_q(i, bit_depth) >= qtarget)
|
|
break;
|
|
}
|
|
|
|
return target_index - start_index;
|
|
}
|
|
|
|
int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
|
|
int qindex, double rate_target_ratio,
|
|
vpx_bit_depth_t bit_depth) {
|
|
int target_index = rc->worst_quality;
|
|
int i;
|
|
|
|
// Look up the current projected bits per block for the base index
|
|
const int base_bits_per_mb = vp9_rc_bits_per_mb(frame_type, qindex, 1.0,
|
|
bit_depth);
|
|
|
|
// Find the target bits per mb based on the base value and given ratio.
|
|
const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
|
|
|
|
// Convert the q target to an index
|
|
for (i = rc->best_quality; i < rc->worst_quality; ++i) {
|
|
target_index = i;
|
|
if (vp9_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <= target_bits_per_mb)
|
|
break;
|
|
}
|
|
|
|
return target_index - qindex;
|
|
}
|
|
|
|
void vp9_rc_set_gf_max_interval(const VP9_COMP *const cpi,
|
|
RATE_CONTROL *const rc) {
|
|
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
|
|
// Set Maximum gf/arf interval
|
|
rc->max_gf_interval = 16;
|
|
|
|
// Extended interval for genuinely static scenes
|
|
rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2;
|
|
|
|
if (is_altref_enabled(cpi)) {
|
|
if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1)
|
|
rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1;
|
|
}
|
|
|
|
if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
|
|
rc->max_gf_interval = rc->static_scene_max_gf_interval;
|
|
}
|
|
|
|
void vp9_rc_update_framerate(VP9_COMP *cpi) {
|
|
const VP9_COMMON *const cm = &cpi->common;
|
|
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
int vbr_max_bits;
|
|
|
|
rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
|
|
rc->min_frame_bandwidth = (int)(rc->avg_frame_bandwidth *
|
|
oxcf->two_pass_vbrmin_section / 100);
|
|
|
|
rc->min_frame_bandwidth = MAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
|
|
|
|
// A maximum bitrate for a frame is defined.
|
|
// The baseline for this aligns with HW implementations that
|
|
// can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
|
|
// per 16x16 MB (averaged over a frame). However this limit is extended if
|
|
// a very high rate is given on the command line or the the rate cannnot
|
|
// be acheived because of a user specificed max q (e.g. when the user
|
|
// specifies lossless encode.
|
|
vbr_max_bits = (int)(((int64_t)rc->avg_frame_bandwidth *
|
|
oxcf->two_pass_vbrmax_section) / 100);
|
|
rc->max_frame_bandwidth = MAX(MAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P),
|
|
vbr_max_bits);
|
|
|
|
vp9_rc_set_gf_max_interval(cpi, rc);
|
|
}
|
|
|
|
#define VBR_PCT_ADJUSTMENT_LIMIT 50
|
|
// For VBR...adjustment to the frame target based on error from previous frames
|
|
static void vbr_rate_correction(VP9_COMP *cpi,
|
|
int *this_frame_target,
|
|
int64_t vbr_bits_off_target) {
|
|
int max_delta;
|
|
double position_factor = 1.0;
|
|
|
|
// How far through the clip are we.
|
|
// This number is used to damp the per frame rate correction.
|
|
// Range 0 - 1.0
|
|
if (cpi->twopass.total_stats.count) {
|
|
position_factor = sqrt((double)cpi->common.current_video_frame /
|
|
cpi->twopass.total_stats.count);
|
|
}
|
|
max_delta = (int)(position_factor *
|
|
((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
|
|
|
|
// vbr_bits_off_target > 0 means we have extra bits to spend
|
|
if (vbr_bits_off_target > 0) {
|
|
*this_frame_target +=
|
|
(vbr_bits_off_target > max_delta) ? max_delta
|
|
: (int)vbr_bits_off_target;
|
|
} else {
|
|
*this_frame_target -=
|
|
(vbr_bits_off_target < -max_delta) ? max_delta
|
|
: (int)-vbr_bits_off_target;
|
|
}
|
|
}
|
|
|
|
void vp9_set_target_rate(VP9_COMP *cpi) {
|
|
RATE_CONTROL *const rc = &cpi->rc;
|
|
int target_rate = rc->base_frame_target;
|
|
|
|
// Correction to rate target based on prior over or under shoot.
|
|
if (cpi->oxcf.rc_mode == VPX_VBR)
|
|
vbr_rate_correction(cpi, &target_rate, rc->vbr_bits_off_target);
|
|
vp9_rc_set_frame_target(cpi, target_rate);
|
|
}
|