vpx/vp9/encoder/vp9_onyx_if.c
Deb Mukherjee b7a93578e5 Small tweak in the constant quality parameter
Improves results a little.

Change-Id: I7bcac02dbb65b43a993445cf557c520197114e5c
2013-09-24 09:09:35 -07:00

4190 lines
133 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_firstpass.h"
#include "vp9/encoder/vp9_psnr.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "./vp9_rtcd.h"
#include "./vpx_scale_rtcd.h"
#if CONFIG_VP9_POSTPROC
#include "vp9/common/vp9_postproc.h"
#endif
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/vpx_timer.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/encoder/vp9_mbgraph.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_bitstream.h"
#include "vp9/encoder/vp9_picklpf.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/encoder/vp9_temporal_filter.h"
#include <math.h>
#include <stdio.h>
#include <limits.h>
extern void print_tree_update_probs();
static void set_default_lf_deltas(struct loopfilter *lf);
#define DEFAULT_INTERP_FILTER SWITCHABLE
#define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */
#define ALTREF_HIGH_PRECISION_MV 1 /* whether to use high precision mv
for altref computation */
#define HIGH_PRECISION_MV_QTHRESH 200 /* Q threshold for use of high precision
mv. Choose a very high value for
now so that HIGH_PRECISION is always
chosen */
#if CONFIG_INTERNAL_STATS
#include "math.h"
extern double vp9_calc_ssim(YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest, int lumamask,
double *weight);
extern double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest, double *ssim_y,
double *ssim_u, double *ssim_v);
#endif
// #define OUTPUT_YUV_REC
#ifdef OUTPUT_YUV_SRC
FILE *yuv_file;
#endif
#ifdef OUTPUT_YUV_REC
FILE *yuv_rec_file;
#endif
#if 0
FILE *framepsnr;
FILE *kf_list;
FILE *keyfile;
#endif
#ifdef ENTROPY_STATS
extern int intra_mode_stats[INTRA_MODES]
[INTRA_MODES]
[INTRA_MODES];
#endif
#ifdef MODE_STATS
extern void init_tx_count_stats();
extern void write_tx_count_stats();
extern void init_switchable_interp_stats();
extern void write_switchable_interp_stats();
#endif
#ifdef SPEEDSTATS
unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
#endif
#if defined(SECTIONBITS_OUTPUT)
extern unsigned __int64 Sectionbits[500];
#endif
extern void vp9_init_quantizer(VP9_COMP *cpi);
// Tables relating active max Q to active min Q
static int kf_low_motion_minq[QINDEX_RANGE];
static int kf_high_motion_minq[QINDEX_RANGE];
static int gf_low_motion_minq[QINDEX_RANGE];
static int gf_high_motion_minq[QINDEX_RANGE];
static int inter_minq[QINDEX_RANGE];
static int afq_low_motion_minq[QINDEX_RANGE];
static int afq_high_motion_minq[QINDEX_RANGE];
static INLINE void Scale2Ratio(int mode, int *hr, int *hs) {
switch (mode) {
case NORMAL:
*hr = 1;
*hs = 1;
break;
case FOURFIVE:
*hr = 4;
*hs = 5;
break;
case THREEFIVE:
*hr = 3;
*hs = 5;
break;
case ONETWO:
*hr = 1;
*hs = 2;
break;
default:
*hr = 1;
*hs = 1;
assert(0);
break;
}
}
// Functions to compute the active minq lookup table entries based on a
// formulaic approach to facilitate easier adjustment of the Q tables.
// The formulae were derived from computing a 3rd order polynomial best
// fit to the original data (after plotting real maxq vs minq (not q index))
static int calculate_minq_index(double maxq,
double x3, double x2, double x1, double c) {
int i;
const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq + c,
maxq);
// Special case handling to deal with the step from q2.0
// down to lossless mode represented by q 1.0.
if (minqtarget <= 2.0)
return 0;
for (i = 0; i < QINDEX_RANGE; i++) {
if (minqtarget <= vp9_convert_qindex_to_q(i))
return i;
}
return QINDEX_RANGE - 1;
}
static void init_minq_luts(void) {
int i;
for (i = 0; i < QINDEX_RANGE; i++) {
const double maxq = vp9_convert_qindex_to_q(i);
kf_low_motion_minq[i] = calculate_minq_index(maxq,
0.000001,
-0.0004,
0.15,
0.0);
kf_high_motion_minq[i] = calculate_minq_index(maxq,
0.000002,
-0.0012,
0.5,
0.0);
gf_low_motion_minq[i] = calculate_minq_index(maxq,
0.0000015,
-0.0009,
0.33,
0.0);
gf_high_motion_minq[i] = calculate_minq_index(maxq,
0.0000021,
-0.00125,
0.45,
0.0);
inter_minq[i] = calculate_minq_index(maxq,
0.00000271,
-0.00113,
0.697,
0.0);
afq_low_motion_minq[i] = calculate_minq_index(maxq,
0.0000015,
-0.0009,
0.33,
0.0);
afq_high_motion_minq[i] = calculate_minq_index(maxq,
0.0000021,
-0.00125,
0.55,
0.0);
}
}
static void set_mvcost(MACROBLOCK *mb) {
if (mb->e_mbd.allow_high_precision_mv) {
mb->mvcost = mb->nmvcost_hp;
mb->mvsadcost = mb->nmvsadcost_hp;
} else {
mb->mvcost = mb->nmvcost;
mb->mvsadcost = mb->nmvsadcost;
}
}
void vp9_initialize_enc() {
static int init_done = 0;
if (!init_done) {
vp9_initialize_common();
vp9_tokenize_initialize();
vp9_init_quant_tables();
vp9_init_me_luts();
init_minq_luts();
// init_base_skip_probs();
init_done = 1;
}
}
static void setup_features(VP9_COMMON *cm) {
struct loopfilter *const lf = &cm->lf;
struct segmentation *const seg = &cm->seg;
// Set up default state for MB feature flags
seg->enabled = 0;
seg->update_map = 0;
seg->update_data = 0;
vpx_memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
vp9_clearall_segfeatures(seg);
lf->mode_ref_delta_enabled = 0;
lf->mode_ref_delta_update = 0;
vp9_zero(lf->ref_deltas);
vp9_zero(lf->mode_deltas);
vp9_zero(lf->last_ref_deltas);
vp9_zero(lf->last_mode_deltas);
set_default_lf_deltas(lf);
}
static void dealloc_compressor_data(VP9_COMP *cpi) {
// Delete sementation map
vpx_free(cpi->segmentation_map);
cpi->segmentation_map = 0;
vpx_free(cpi->common.last_frame_seg_map);
cpi->common.last_frame_seg_map = 0;
vpx_free(cpi->coding_context.last_frame_seg_map_copy);
cpi->coding_context.last_frame_seg_map_copy = 0;
vpx_free(cpi->active_map);
cpi->active_map = 0;
vp9_free_frame_buffers(&cpi->common);
vp9_free_frame_buffer(&cpi->last_frame_uf);
vp9_free_frame_buffer(&cpi->scaled_source);
vp9_free_frame_buffer(&cpi->alt_ref_buffer);
vp9_lookahead_destroy(cpi->lookahead);
vpx_free(cpi->tok);
cpi->tok = 0;
// Activity mask based per mb zbin adjustments
vpx_free(cpi->mb_activity_map);
cpi->mb_activity_map = 0;
vpx_free(cpi->mb_norm_activity_map);
cpi->mb_norm_activity_map = 0;
vpx_free(cpi->mb.pip);
cpi->mb.pip = 0;
}
// Computes a q delta (in "q index" terms) to get from a starting q value
// to a target value
// target q value
static int compute_qdelta(VP9_COMP *cpi, double qstart, double qtarget) {
int i;
int start_index = cpi->worst_quality;
int target_index = cpi->worst_quality;
// Convert the average q value to an index.
for (i = cpi->best_quality; i < cpi->worst_quality; i++) {
start_index = i;
if (vp9_convert_qindex_to_q(i) >= qstart)
break;
}
// Convert the q target to an index
for (i = cpi->best_quality; i < cpi->worst_quality; i++) {
target_index = i;
if (vp9_convert_qindex_to_q(i) >= qtarget)
break;
}
return target_index - start_index;
}
static void configure_static_seg_features(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
struct segmentation *seg = &cm->seg;
int high_q = (int)(cpi->avg_q > 48.0);
int qi_delta;
// Disable and clear down for KF
if (cm->frame_type == KEY_FRAME) {
// Clear down the global segmentation map
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation
vp9_disable_segmentation((VP9_PTR)cpi);
// Clear down the segment features.
vp9_clearall_segfeatures(seg);
} else if (cpi->refresh_alt_ref_frame) {
// If this is an alt ref frame
// Clear down the global segmentation map
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation and individual segment features by default
vp9_disable_segmentation((VP9_PTR)cpi);
vp9_clearall_segfeatures(seg);
// Scan frames from current to arf frame.
// This function re-enables segmentation if appropriate.
vp9_update_mbgraph_stats(cpi);
// If segmentation was enabled set those features needed for the
// arf itself.
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
qi_delta = compute_qdelta(cpi, cpi->avg_q, (cpi->avg_q * 0.875));
vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, (qi_delta - 2));
vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
// Where relevant assume segment data is delta data
seg->abs_delta = SEGMENT_DELTADATA;
}
} else if (seg->enabled) {
// All other frames if segmentation has been enabled
// First normal frame in a valid gf or alt ref group
if (cpi->frames_since_golden == 0) {
// Set up segment features for normal frames in an arf group
if (cpi->source_alt_ref_active) {
seg->update_map = 0;
seg->update_data = 1;
seg->abs_delta = SEGMENT_DELTADATA;
qi_delta = compute_qdelta(cpi, cpi->avg_q,
(cpi->avg_q * 1.125));
vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, (qi_delta + 2));
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q);
vp9_set_segdata(seg, 1, SEG_LVL_ALT_LF, -2);
vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_LF);
// Segment coding disabled for compred testing
if (high_q || (cpi->static_mb_pct == 100)) {
vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
} else {
// Disable segmentation and clear down features if alt ref
// is not active for this group
vp9_disable_segmentation((VP9_PTR)cpi);
vpx_memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols);
seg->update_map = 0;
seg->update_data = 0;
vp9_clearall_segfeatures(seg);
}
} else if (cpi->is_src_frame_alt_ref) {
// Special case where we are coding over the top of a previous
// alt ref frame.
// Segment coding disabled for compred testing
// Enable ref frame features for segment 0 as well
vp9_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME);
vp9_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME);
// All mbs should use ALTREF_FRAME
vp9_clear_segdata(seg, 0, SEG_LVL_REF_FRAME);
vp9_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME);
vp9_clear_segdata(seg, 1, SEG_LVL_REF_FRAME);
vp9_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME);
// Skip all MBs if high Q (0,0 mv and skip coeffs)
if (high_q) {
vp9_enable_segfeature(seg, 0, SEG_LVL_SKIP);
vp9_enable_segfeature(seg, 1, SEG_LVL_SKIP);
}
// Enable data update
seg->update_data = 1;
} else {
// All other frames.
// No updates.. leave things as they are.
seg->update_map = 0;
seg->update_data = 0;
}
}
}
#ifdef ENTROPY_STATS
void vp9_update_mode_context_stats(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
int i, j;
unsigned int (*inter_mode_counts)[INTER_MODES - 1][2] =
cm->fc.inter_mode_counts;
int64_t (*mv_ref_stats)[INTER_MODES - 1][2] = cpi->mv_ref_stats;
FILE *f;
// Read the past stats counters
f = fopen("mode_context.bin", "rb");
if (!f) {
vpx_memset(cpi->mv_ref_stats, 0, sizeof(cpi->mv_ref_stats));
} else {
fread(cpi->mv_ref_stats, sizeof(cpi->mv_ref_stats), 1, f);
fclose(f);
}
// Add in the values for this frame
for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
for (j = 0; j < INTER_MODES - 1; j++) {
mv_ref_stats[i][j][0] += (int64_t)inter_mode_counts[i][j][0];
mv_ref_stats[i][j][1] += (int64_t)inter_mode_counts[i][j][1];
}
}
// Write back the accumulated stats
f = fopen("mode_context.bin", "wb");
fwrite(cpi->mv_ref_stats, sizeof(cpi->mv_ref_stats), 1, f);
fclose(f);
}
void print_mode_context(VP9_COMP *cpi) {
FILE *f = fopen("vp9_modecont.c", "a");
int i, j;
fprintf(f, "#include \"vp9_entropy.h\"\n");
fprintf(
f,
"const int inter_mode_probs[INTER_MODE_CONTEXTS][INTER_MODES - 1] =");
fprintf(f, "{\n");
for (j = 0; j < INTER_MODE_CONTEXTS; j++) {
fprintf(f, " {/* %d */ ", j);
fprintf(f, " ");
for (i = 0; i < INTER_MODES - 1; i++) {
int this_prob;
int64_t count = cpi->mv_ref_stats[j][i][0] + cpi->mv_ref_stats[j][i][1];
if (count)
this_prob = ((cpi->mv_ref_stats[j][i][0] * 256) + (count >> 1)) / count;
else
this_prob = 128;
// context probs
fprintf(f, "%5d, ", this_prob);
}
fprintf(f, " },\n");
}
fprintf(f, "};\n");
fclose(f);
}
#endif // ENTROPY_STATS
// DEBUG: Print out the segment id of each MB in the current frame.
static void print_seg_map(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
int row, col;
int map_index = 0;
FILE *statsfile = fopen("segmap.stt", "a");
fprintf(statsfile, "%10d\n", cm->current_video_frame);
for (row = 0; row < cpi->common.mi_rows; row++) {
for (col = 0; col < cpi->common.mi_cols; col++) {
fprintf(statsfile, "%10d", cpi->segmentation_map[map_index]);
map_index++;
}
fprintf(statsfile, "\n");
}
fprintf(statsfile, "\n");
fclose(statsfile);
}
static void update_reference_segmentation_map(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int row, col;
MODE_INFO **mi_8x8, **mi_8x8_ptr = cm->mi_grid_visible;
uint8_t *cache_ptr = cm->last_frame_seg_map, *cache;
for (row = 0; row < cm->mi_rows; row++) {
mi_8x8 = mi_8x8_ptr;
cache = cache_ptr;
for (col = 0; col < cm->mi_cols; col++, mi_8x8++, cache++)
cache[0] = mi_8x8[0]->mbmi.segment_id;
mi_8x8_ptr += cm->mode_info_stride;
cache_ptr += cm->mi_cols;
}
}
static void set_default_lf_deltas(struct loopfilter *lf) {
lf->mode_ref_delta_enabled = 1;
lf->mode_ref_delta_update = 1;
vp9_zero(lf->ref_deltas);
vp9_zero(lf->mode_deltas);
// Test of ref frame deltas
lf->ref_deltas[INTRA_FRAME] = 2;
lf->ref_deltas[LAST_FRAME] = 0;
lf->ref_deltas[GOLDEN_FRAME] = -2;
lf->ref_deltas[ALTREF_FRAME] = -2;
lf->mode_deltas[0] = 0; // Zero
lf->mode_deltas[1] = 0; // New mv
}
static void set_rd_speed_thresholds(VP9_COMP *cpi, int mode) {
SPEED_FEATURES *sf = &cpi->sf;
int i;
// Set baseline threshold values
for (i = 0; i < MAX_MODES; ++i)
sf->thresh_mult[i] = mode == 0 ? -500 : 0;
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_NEARESTG] = 0;
sf->thresh_mult[THR_NEARESTA] = 0;
sf->thresh_mult[THR_DC] += 1000;
sf->thresh_mult[THR_NEWMV] += 1000;
sf->thresh_mult[THR_NEWA] += 1000;
sf->thresh_mult[THR_NEWG] += 1000;
sf->thresh_mult[THR_NEARMV] += 1000;
sf->thresh_mult[THR_NEARA] += 1000;
sf->thresh_mult[THR_COMP_NEARESTLA] += 1000;
sf->thresh_mult[THR_COMP_NEARESTGA] += 1000;
sf->thresh_mult[THR_TM] += 1000;
sf->thresh_mult[THR_COMP_NEARLA] += 1500;
sf->thresh_mult[THR_COMP_NEWLA] += 2000;
sf->thresh_mult[THR_NEARG] += 1000;
sf->thresh_mult[THR_COMP_NEARGA] += 1500;
sf->thresh_mult[THR_COMP_NEWGA] += 2000;
sf->thresh_mult[THR_SPLITMV] += 2500;
sf->thresh_mult[THR_SPLITG] += 2500;
sf->thresh_mult[THR_SPLITA] += 2500;
sf->thresh_mult[THR_COMP_SPLITLA] += 4500;
sf->thresh_mult[THR_COMP_SPLITGA] += 4500;
sf->thresh_mult[THR_ZEROMV] += 2000;
sf->thresh_mult[THR_ZEROG] += 2000;
sf->thresh_mult[THR_ZEROA] += 2000;
sf->thresh_mult[THR_COMP_ZEROLA] += 2500;
sf->thresh_mult[THR_COMP_ZEROGA] += 2500;
sf->thresh_mult[THR_B_PRED] += 2500;
sf->thresh_mult[THR_H_PRED] += 2000;
sf->thresh_mult[THR_V_PRED] += 2000;
sf->thresh_mult[THR_D45_PRED ] += 2500;
sf->thresh_mult[THR_D135_PRED] += 2500;
sf->thresh_mult[THR_D117_PRED] += 2500;
sf->thresh_mult[THR_D153_PRED] += 2500;
sf->thresh_mult[THR_D207_PRED] += 2500;
sf->thresh_mult[THR_D63_PRED] += 2500;
/* disable frame modes if flags not set */
if (!(cpi->ref_frame_flags & VP9_LAST_FLAG)) {
sf->thresh_mult[THR_NEWMV ] = INT_MAX;
sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
sf->thresh_mult[THR_NEARMV ] = INT_MAX;
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
sf->thresh_mult[THR_ZEROG ] = INT_MAX;
sf->thresh_mult[THR_NEARG ] = INT_MAX;
sf->thresh_mult[THR_NEWG ] = INT_MAX;
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP9_ALT_FLAG)) {
sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
sf->thresh_mult[THR_ZEROA ] = INT_MAX;
sf->thresh_mult[THR_NEARA ] = INT_MAX;
sf->thresh_mult[THR_NEWA ] = INT_MAX;
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
}
if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_ALT_FLAG)) !=
(VP9_LAST_FLAG | VP9_ALT_FLAG)) {
sf->thresh_mult[THR_COMP_ZEROLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARESTLA] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEWLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITLA ] = INT_MAX;
}
if ((cpi->ref_frame_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) !=
(VP9_GOLD_FLAG | VP9_ALT_FLAG)) {
sf->thresh_mult[THR_COMP_ZEROGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARESTGA] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEWGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITGA ] = INT_MAX;
}
if (sf->disable_splitmv == 1) {
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITGA ] = INT_MAX;
}
}
void vp9_set_speed_features(VP9_COMP *cpi) {
SPEED_FEATURES *sf = &cpi->sf;
int mode = cpi->compressor_speed;
int speed = cpi->speed;
int i;
// Only modes 0 and 1 supported for now in experimental code basae
if (mode > 1)
mode = 1;
// Initialise default mode frequency sampling variables
for (i = 0; i < MAX_MODES; i ++) {
cpi->mode_check_freq[i] = 0;
cpi->mode_test_hit_counts[i] = 0;
cpi->mode_chosen_counts[i] = 0;
}
// best quality defaults
sf->RD = 1;
sf->search_method = NSTEP;
sf->auto_filter = 1;
sf->recode_loop = 1;
sf->subpel_search_method = SUBPEL_TREE;
sf->subpel_iters_per_step = 2;
sf->optimize_coefficients = !cpi->oxcf.lossless;
sf->reduce_first_step_size = 0;
sf->auto_mv_step_size = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
sf->comp_inter_joint_search_thresh = BLOCK_4X4;
sf->adaptive_rd_thresh = 0;
sf->use_lastframe_partitioning = 0;
sf->tx_size_search_method = USE_FULL_RD;
sf->use_lp32x32fdct = 0;
sf->adaptive_motion_search = 0;
sf->use_avoid_tested_higherror = 0;
sf->reference_masking = 0;
sf->partition_by_variance = 0;
sf->use_one_partition_size_always = 0;
sf->less_rectangular_check = 0;
sf->use_square_partition_only = 0;
sf->auto_min_max_partition_size = 0;
sf->auto_min_max_partition_interval = 0;
sf->auto_min_max_partition_count = 0;
sf->max_partition_size = BLOCK_64X64;
sf->min_partition_size = BLOCK_4X4;
sf->adjust_partitioning_from_last_frame = 0;
sf->last_partitioning_redo_frequency = 4;
sf->disable_splitmv = 0;
sf->mode_search_skip_flags = 0;
sf->disable_split_var_thresh = 0;
sf->disable_filter_search_var_thresh = 0;
sf->intra_y_mode_mask = ALL_INTRA_MODES;
sf->intra_uv_mode_mask = ALL_INTRA_MODES;
sf->use_rd_breakout = 0;
sf->skip_encode_sb = 0;
sf->use_uv_intra_rd_estimate = 0;
sf->use_fast_lpf_pick = 0;
sf->use_fast_coef_updates = 0;
sf->using_small_partition_info = 0;
sf->mode_skip_start = MAX_MODES; // Mode index at which mode skip mask set
#if CONFIG_MULTIPLE_ARF
// Switch segmentation off.
sf->static_segmentation = 0;
#else
sf->static_segmentation = 0;
#endif
switch (mode) {
case 0: // best quality mode
break;
case 1:
#if CONFIG_MULTIPLE_ARF
// Switch segmentation off.
sf->static_segmentation = 0;
#else
sf->static_segmentation = 0;
#endif
sf->use_avoid_tested_higherror = 1;
sf->adaptive_rd_thresh = MIN((speed + 1), 4);
if (speed == 1) {
sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
sf->less_rectangular_check = 1;
sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
cpi->common.intra_only ||
cpi->common.show_frame == 0) ?
USE_FULL_RD :
USE_LARGESTALL);
sf->use_square_partition_only = !(cpi->common.frame_type == KEY_FRAME ||
cpi->common.intra_only ||
cpi->common.show_frame == 0);
sf->disable_splitmv =
(MIN(cpi->common.width, cpi->common.height) >= 720)? 1 : 0;
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
FLAG_SKIP_INTRA_BESTINTER |
FLAG_SKIP_COMP_BESTINTRA |
FLAG_SKIP_INTRA_LOWVAR;
sf->use_uv_intra_rd_estimate = 1;
sf->use_rd_breakout = 1;
sf->skip_encode_sb = 1;
sf->use_lp32x32fdct = 1;
sf->adaptive_motion_search = 1;
sf->auto_mv_step_size = 1;
sf->auto_min_max_partition_size = 1;
sf->auto_min_max_partition_interval = 1;
// FIXME(jingning): temporarily turn off disable_split_var_thresh
// during refactoring process. will get this back after finishing
// the main framework of partition search type.
sf->disable_split_var_thresh = 0;
sf->disable_filter_search_var_thresh = 16;
sf->intra_y_mode_mask = INTRA_DC_TM_H_V;
sf->intra_uv_mode_mask = INTRA_DC_TM_H_V;
sf->use_fast_coef_updates = 1;
sf->mode_skip_start = 11;
}
if (speed == 2) {
sf->less_rectangular_check = 1;
sf->use_square_partition_only = 1;
sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
sf->use_lastframe_partitioning = 1;
sf->adjust_partitioning_from_last_frame = 1;
sf->last_partitioning_redo_frequency = 3;
sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
cpi->common.intra_only ||
cpi->common.show_frame == 0) ?
USE_FULL_RD :
USE_LARGESTALL);
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
FLAG_SKIP_INTRA_BESTINTER |
FLAG_SKIP_COMP_BESTINTRA |
FLAG_SKIP_COMP_REFMISMATCH |
FLAG_SKIP_INTRA_LOWVAR |
FLAG_EARLY_TERMINATE;
sf->intra_y_mode_mask = INTRA_DC_TM;
sf->intra_uv_mode_mask = INTRA_DC_TM;
sf->use_uv_intra_rd_estimate = 1;
sf->use_rd_breakout = 1;
sf->skip_encode_sb = 1;
sf->use_lp32x32fdct = 1;
sf->adaptive_motion_search = 1;
sf->using_small_partition_info = 0;
sf->disable_splitmv =
(MIN(cpi->common.width, cpi->common.height) >= 720)? 1 : 0;
sf->auto_mv_step_size = 1;
sf->search_method = SQUARE;
sf->subpel_iters_per_step = 1;
sf->use_fast_lpf_pick = 1;
sf->auto_min_max_partition_size = 1;
sf->auto_min_max_partition_interval = 2;
sf->disable_split_var_thresh = 32;
sf->disable_filter_search_var_thresh = 32;
sf->use_fast_coef_updates = 2;
sf->mode_skip_start = 6;
}
if (speed == 3) {
sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
sf->partition_by_variance = 1;
sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
cpi->common.intra_only ||
cpi->common.show_frame == 0) ?
USE_FULL_RD :
USE_LARGESTALL);
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
FLAG_SKIP_INTRA_BESTINTER |
FLAG_SKIP_COMP_BESTINTRA |
FLAG_SKIP_COMP_REFMISMATCH |
FLAG_SKIP_INTRA_LOWVAR |
FLAG_EARLY_TERMINATE;
sf->use_rd_breakout = 1;
sf->skip_encode_sb = 1;
sf->use_lp32x32fdct = 1;
sf->disable_splitmv = 1;
sf->auto_mv_step_size = 1;
sf->search_method = BIGDIA;
sf->subpel_iters_per_step = 1;
sf->disable_split_var_thresh = 64;
sf->disable_filter_search_var_thresh = 64;
sf->intra_y_mode_mask = INTRA_DC_ONLY;
sf->intra_uv_mode_mask = INTRA_DC_ONLY;
sf->use_fast_coef_updates = 2;
sf->mode_skip_start = 6;
}
if (speed == 4) {
sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
sf->use_one_partition_size_always = 1;
sf->always_this_block_size = BLOCK_16X16;
sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
cpi->common.intra_only ||
cpi->common.show_frame == 0) ?
USE_FULL_RD :
USE_LARGESTALL);
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
FLAG_SKIP_INTRA_BESTINTER |
FLAG_SKIP_COMP_BESTINTRA |
FLAG_SKIP_COMP_REFMISMATCH |
FLAG_SKIP_INTRA_LOWVAR |
FLAG_EARLY_TERMINATE;
sf->use_rd_breakout = 1;
sf->use_lp32x32fdct = 1;
sf->optimize_coefficients = 0;
sf->auto_mv_step_size = 1;
// sf->reduce_first_step_size = 1;
// sf->reference_masking = 1;
sf->disable_splitmv = 1;
sf->search_method = HEX;
sf->subpel_iters_per_step = 1;
sf->disable_split_var_thresh = 64;
sf->disable_filter_search_var_thresh = 96;
sf->intra_y_mode_mask = INTRA_DC_ONLY;
sf->intra_uv_mode_mask = INTRA_DC_ONLY;
sf->use_fast_coef_updates = 2;
sf->mode_skip_start = 6;
}
break;
}; /* switch */
// Set rd thresholds based on mode and speed setting
set_rd_speed_thresholds(cpi, mode);
// Slow quant, dct and trellis not worthwhile for first pass
// so make sure they are always turned off.
if (cpi->pass == 1) {
sf->optimize_coefficients = 0;
}
cpi->mb.fwd_txm16x16 = vp9_short_fdct16x16;
cpi->mb.fwd_txm8x8 = vp9_short_fdct8x8;
cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4;
cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4;
if (cpi->oxcf.lossless || cpi->mb.e_mbd.lossless) {
cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4;
cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4;
}
cpi->mb.quantize_b_4x4 = vp9_regular_quantize_b_4x4;
if (cpi->sf.subpel_search_method == SUBPEL_ITERATIVE) {
cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_iterative;
cpi->find_fractional_mv_step_comp = vp9_find_best_sub_pixel_comp_iterative;
} else if (cpi->sf.subpel_search_method == SUBPEL_TREE) {
cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_tree;
cpi->find_fractional_mv_step_comp = vp9_find_best_sub_pixel_comp_tree;
}
cpi->mb.optimize = cpi->sf.optimize_coefficients == 1 && cpi->pass != 1;
#ifdef SPEEDSTATS
frames_at_speed[cpi->speed]++;
#endif
}
static void alloc_raw_frame_buffers(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
cpi->lookahead = vp9_lookahead_init(cpi->oxcf.width, cpi->oxcf.height,
cm->subsampling_x, cm->subsampling_y,
cpi->oxcf.lag_in_frames);
if (!cpi->lookahead)
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
if (vp9_realloc_frame_buffer(&cpi->alt_ref_buffer,
cpi->oxcf.width, cpi->oxcf.height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
}
static int alloc_partition_data(VP9_COMP *cpi) {
vpx_free(cpi->mb.pip);
cpi->mb.pip = vpx_calloc(cpi->common.mode_info_stride *
(cpi->common.mi_rows + MI_BLOCK_SIZE),
sizeof(PARTITION_INFO));
if (!cpi->mb.pip)
return 1;
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
return 0;
}
void vp9_alloc_compressor_data(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
if (vp9_alloc_frame_buffers(cm, cm->width, cm->height))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
if (alloc_partition_data(cpi))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate partition data");
if (vp9_alloc_frame_buffer(&cpi->last_frame_uf,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
if (vp9_alloc_frame_buffer(&cpi->scaled_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
vpx_free(cpi->tok);
{
unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
CHECK_MEM_ERROR(cm, cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
}
// Data used for real time vc mode to see if gf needs refreshing
cpi->inter_zz_count = 0;
cpi->gf_bad_count = 0;
cpi->gf_update_recommended = 0;
vpx_free(cpi->mb_activity_map);
CHECK_MEM_ERROR(cm, cpi->mb_activity_map,
vpx_calloc(sizeof(unsigned int),
cm->mb_rows * cm->mb_cols));
vpx_free(cpi->mb_norm_activity_map);
CHECK_MEM_ERROR(cm, cpi->mb_norm_activity_map,
vpx_calloc(sizeof(unsigned int),
cm->mb_rows * cm->mb_cols));
}
static void update_frame_size(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
vp9_update_frame_size(cm);
// Update size of buffers local to this frame
if (vp9_realloc_frame_buffer(&cpi->last_frame_uf,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to reallocate last frame buffer");
if (vp9_realloc_frame_buffer(&cpi->scaled_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to reallocate scaled source buffer");
{
int y_stride = cpi->scaled_source.y_stride;
if (cpi->sf.search_method == NSTEP) {
vp9_init3smotion_compensation(&cpi->mb, y_stride);
} else if (cpi->sf.search_method == DIAMOND) {
vp9_init_dsmotion_compensation(&cpi->mb, y_stride);
}
}
}
// TODO perhaps change number of steps expose to outside world when setting
// max and min limits. Also this will likely want refining for the extended Q
// range.
//
// Table that converts 0-63 Q range values passed in outside to the Qindex
// range used internally.
static const int q_trans[] = {
0, 4, 8, 12, 16, 20, 24, 28,
32, 36, 40, 44, 48, 52, 56, 60,
64, 68, 72, 76, 80, 84, 88, 92,
96, 100, 104, 108, 112, 116, 120, 124,
128, 132, 136, 140, 144, 148, 152, 156,
160, 164, 168, 172, 176, 180, 184, 188,
192, 196, 200, 204, 208, 212, 216, 220,
224, 228, 232, 236, 240, 244, 249, 255,
};
int vp9_reverse_trans(int x) {
int i;
for (i = 0; i < 64; i++)
if (q_trans[i] >= x)
return i;
return 63;
};
void vp9_new_framerate(VP9_COMP *cpi, double framerate) {
if (framerate < 0.1)
framerate = 30;
cpi->oxcf.framerate = framerate;
cpi->output_framerate = cpi->oxcf.framerate;
cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_framerate);
cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_framerate);
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
cpi->min_frame_bandwidth = MAX(cpi->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
// Set Maximum gf/arf interval
cpi->max_gf_interval = 16;
// Extended interval for genuinely static scenes
cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
// Special conditions when alt ref frame enabled in lagged compress mode
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) {
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
}
if (cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval)
cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
}
static int64_t rescale(int val, int64_t num, int denom) {
int64_t llnum = num;
int64_t llden = denom;
int64_t llval = val;
return (llval * llnum / llden);
}
static void set_tile_limits(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int min_log2_tile_cols, max_log2_tile_cols;
vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
cm->log2_tile_cols = clamp(cpi->oxcf.tile_columns,
min_log2_tile_cols, max_log2_tile_cols);
cm->log2_tile_rows = cpi->oxcf.tile_rows;
}
static void init_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *const cm = &cpi->common;
int i;
cpi->oxcf = *oxcf;
cpi->goldfreq = 7;
cm->version = oxcf->version;
cm->width = oxcf->width;
cm->height = oxcf->height;
cm->subsampling_x = 0;
cm->subsampling_y = 0;
vp9_alloc_compressor_data(cpi);
// change includes all joint functionality
vp9_change_config(ptr, oxcf);
// Initialize active best and worst q and average q values.
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
// Initialise the starting buffer levels
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->total_actual_bits = 0;
cpi->total_target_vs_actual = 0;
cpi->static_mb_pct = 0;
cpi->lst_fb_idx = 0;
cpi->gld_fb_idx = 1;
cpi->alt_fb_idx = 2;
cpi->current_layer = 0;
cpi->use_svc = 0;
set_tile_limits(cpi);
cpi->fixed_divide[0] = 0;
for (i = 1; i < 512; i++)
cpi->fixed_divide[i] = 0x80000 / i;
}
void vp9_change_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *const cm = &cpi->common;
if (!cpi || !oxcf)
return;
if (cm->version != oxcf->version) {
cm->version = oxcf->version;
}
cpi->oxcf = *oxcf;
switch (cpi->oxcf.Mode) {
// Real time and one pass deprecated in test code base
case MODE_FIRSTPASS:
cpi->pass = 1;
cpi->compressor_speed = 1;
break;
case MODE_SECONDPASS:
cpi->pass = 2;
cpi->compressor_speed = 1;
cpi->oxcf.cpu_used = clamp(cpi->oxcf.cpu_used, -5, 5);
break;
case MODE_SECONDPASS_BEST:
cpi->pass = 2;
cpi->compressor_speed = 0;
break;
}
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
cpi->oxcf.lossless = oxcf->lossless;
if (cpi->oxcf.lossless) {
cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_iwalsh4x4_1_add;
cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_iwalsh4x4_add;
} else {
cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_idct4x4_1_add;
cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_idct4x4_add;
}
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
// cpi->use_golden_frame_only = 0;
// cpi->use_last_frame_only = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 1;
cm->refresh_frame_context = 1;
cm->reset_frame_context = 0;
setup_features(cm);
cpi->mb.e_mbd.allow_high_precision_mv = 0; // Default mv precision adaptation
set_mvcost(&cpi->mb);
{
int i;
for (i = 0; i < MAX_SEGMENTS; i++)
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
// At the moment the first order values may not be > MAXQ
cpi->oxcf.fixed_q = MIN(cpi->oxcf.fixed_q, MAXQ);
// local file playback mode == really big buffer
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) {
cpi->oxcf.starting_buffer_level = 60000;
cpi->oxcf.optimal_buffer_level = 60000;
cpi->oxcf.maximum_buffer_size = 240000;
}
// Convert target bandwidth from Kbit/s to Bit/s
cpi->oxcf.target_bandwidth *= 1000;
cpi->oxcf.starting_buffer_level = rescale(cpi->oxcf.starting_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
// Set or reset optimal and maximum buffer levels.
if (cpi->oxcf.optimal_buffer_level == 0)
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.optimal_buffer_level = rescale(cpi->oxcf.optimal_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
if (cpi->oxcf.maximum_buffer_size == 0)
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.maximum_buffer_size = rescale(cpi->oxcf.maximum_buffer_size,
cpi->oxcf.target_bandwidth, 1000);
// Set up frame rate and related parameters rate control values.
vp9_new_framerate(cpi, cpi->oxcf.framerate);
// Set absolute upper and lower quality limits
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
cpi->best_quality = cpi->oxcf.best_allowed_q;
// active values should only be modified if out of new range
cpi->active_worst_quality = clamp(cpi->active_worst_quality,
cpi->oxcf.best_allowed_q,
cpi->oxcf.worst_allowed_q);
cpi->active_best_quality = clamp(cpi->active_best_quality,
cpi->oxcf.best_allowed_q,
cpi->oxcf.worst_allowed_q);
cpi->buffered_mode = cpi->oxcf.optimal_buffer_level > 0;
cpi->cq_target_quality = cpi->oxcf.cq_level;
cm->mcomp_filter_type = DEFAULT_INTERP_FILTER;
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
cm->display_width = cpi->oxcf.width;
cm->display_height = cpi->oxcf.height;
// VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs)
cpi->oxcf.Sharpness = MIN(7, cpi->oxcf.Sharpness);
cpi->common.lf.sharpness_level = cpi->oxcf.Sharpness;
if (cpi->initial_width) {
// Increasing the size of the frame beyond the first seen frame, or some
// otherwise signalled maximum size, is not supported.
// TODO(jkoleszar): exit gracefully.
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
}
update_frame_size(cpi);
if (cpi->oxcf.fixed_q >= 0) {
cpi->last_q[0] = cpi->oxcf.fixed_q;
cpi->last_q[1] = cpi->oxcf.fixed_q;
cpi->last_boosted_qindex = cpi->oxcf.fixed_q;
}
cpi->speed = cpi->oxcf.cpu_used;
if (cpi->oxcf.lag_in_frames == 0) {
// force to allowlag to 0 if lag_in_frames is 0;
cpi->oxcf.allow_lag = 0;
} else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) {
// Limit on lag buffers as these are not currently dynamically allocated
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
}
// YX Temp
#if CONFIG_MULTIPLE_ARF
vp9_zero(cpi->alt_ref_source);
#else
cpi->alt_ref_source = NULL;
#endif
cpi->is_src_frame_alt_ref = 0;
#if 0
// Experimental RD Code
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
set_tile_limits(cpi);
}
#define M_LOG2_E 0.693147180559945309417
#define log2f(x) (log (x) / (float) M_LOG2_E)
static void cal_nmvjointsadcost(int *mvjointsadcost) {
mvjointsadcost[0] = 600;
mvjointsadcost[1] = 300;
mvjointsadcost[2] = 300;
mvjointsadcost[0] = 300;
}
static void cal_nmvsadcosts(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 0;
mvsadcost[1][0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= MV_MAX);
}
VP9_PTR vp9_create_compressor(VP9_CONFIG *oxcf) {
int i, j;
volatile union {
VP9_COMP *cpi;
VP9_PTR ptr;
} ctx;
VP9_COMP *cpi;
VP9_COMMON *cm;
cpi = ctx.cpi = vpx_memalign(32, sizeof(VP9_COMP));
// Check that the CPI instance is valid
if (!cpi)
return 0;
cm = &cpi->common;
vp9_zero(*cpi);
if (setjmp(cm->error.jmp)) {
VP9_PTR ptr = ctx.ptr;
ctx.cpi->common.error.setjmp = 0;
vp9_remove_compressor(&ptr);
return 0;
}
cm->error.setjmp = 1;
CHECK_MEM_ERROR(cm, cpi->mb.ss, vpx_calloc(sizeof(search_site),
(MAX_MVSEARCH_STEPS * 8) + 1));
vp9_create_common(cm);
init_config((VP9_PTR)cpi, oxcf);
cm->current_video_frame = 0;
cpi->kf_overspend_bits = 0;
cpi->kf_bitrate_adjustment = 0;
cpi->frames_till_gf_update_due = 0;
cpi->gf_overspend_bits = 0;
cpi->non_gf_bitrate_adjustment = 0;
// Set reference frame sign bias for ALTREF frame to 1 (for now)
cm->ref_frame_sign_bias[ALTREF_FRAME] = 1;
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->gold_is_last = 0;
cpi->alt_is_last = 0;
cpi->gold_is_alt = 0;
// Spatial scalability
cpi->number_spatial_layers = oxcf->ss_number_layers;
// Create the encoder segmentation map and set all entries to 0
CHECK_MEM_ERROR(cm, cpi->segmentation_map,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
// And a place holder structure is the coding context
// for use if we want to save and restore it
CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
CHECK_MEM_ERROR(cm, cpi->active_map, vpx_calloc(cm->MBs, 1));
vpx_memset(cpi->active_map, 1, cm->MBs);
cpi->active_map_enabled = 0;
for (i = 0; i < (sizeof(cpi->mbgraph_stats) /
sizeof(cpi->mbgraph_stats[0])); i++) {
CHECK_MEM_ERROR(cm, cpi->mbgraph_stats[i].mb_stats,
vpx_calloc(cm->MBs *
sizeof(*cpi->mbgraph_stats[i].mb_stats), 1));
}
#ifdef ENTROPY_STATS
if (cpi->pass != 1)
init_context_counters();
#endif
#ifdef MODE_STATS
init_tx_count_stats();
init_switchable_interp_stats();
#endif
/*Initialize the feed-forward activity masking.*/
cpi->activity_avg = 90 << 12;
cpi->frames_since_key = 8; // Give a sensible default for the first frame.
cpi->key_frame_frequency = cpi->oxcf.key_freq;
cpi->this_key_frame_forced = 0;
cpi->next_key_frame_forced = 0;
cpi->source_alt_ref_pending = 0;
cpi->source_alt_ref_active = 0;
cpi->refresh_alt_ref_frame = 0;
#if CONFIG_MULTIPLE_ARF
// Turn multiple ARF usage on/off. This is a quick hack for the initial test
// version. It should eventually be set via the codec API.
cpi->multi_arf_enabled = 1;
if (cpi->multi_arf_enabled) {
cpi->sequence_number = 0;
cpi->frame_coding_order_period = 0;
vp9_zero(cpi->frame_coding_order);
vp9_zero(cpi->arf_buffer_idx);
}
#endif
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
cpi->b_calculate_ssimg = 0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr) {
cpi->total_sq_error = 0.0;
cpi->total_sq_error2 = 0.0;
cpi->total_y = 0.0;
cpi->total_u = 0.0;
cpi->total_v = 0.0;
cpi->total = 0.0;
cpi->totalp_y = 0.0;
cpi->totalp_u = 0.0;
cpi->totalp_v = 0.0;
cpi->totalp = 0.0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
cpi->summedp_quality = 0;
cpi->summedp_weights = 0;
}
if (cpi->b_calculate_ssimg) {
cpi->total_ssimg_y = 0;
cpi->total_ssimg_u = 0;
cpi->total_ssimg_v = 0;
cpi->total_ssimg_all = 0;
}
#endif
cpi->first_time_stamp_ever = INT64_MAX;
cpi->frames_till_gf_update_due = 0;
cpi->key_frame_count = 1;
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
cpi->ni_tot_qi = 0;
cpi->ni_frames = 0;
cpi->tot_q = 0.0;
cpi->avg_q = vp9_convert_qindex_to_q(cpi->oxcf.worst_allowed_q);
cpi->total_byte_count = 0;
cpi->rate_correction_factor = 1.0;
cpi->key_frame_rate_correction_factor = 1.0;
cpi->gf_rate_correction_factor = 1.0;
cpi->twopass.est_max_qcorrection_factor = 1.0;
cal_nmvjointsadcost(cpi->mb.nmvjointsadcost);
cpi->mb.nmvcost[0] = &cpi->mb.nmvcosts[0][MV_MAX];
cpi->mb.nmvcost[1] = &cpi->mb.nmvcosts[1][MV_MAX];
cpi->mb.nmvsadcost[0] = &cpi->mb.nmvsadcosts[0][MV_MAX];
cpi->mb.nmvsadcost[1] = &cpi->mb.nmvsadcosts[1][MV_MAX];
cal_nmvsadcosts(cpi->mb.nmvsadcost);
cpi->mb.nmvcost_hp[0] = &cpi->mb.nmvcosts_hp[0][MV_MAX];
cpi->mb.nmvcost_hp[1] = &cpi->mb.nmvcosts_hp[1][MV_MAX];
cpi->mb.nmvsadcost_hp[0] = &cpi->mb.nmvsadcosts_hp[0][MV_MAX];
cpi->mb.nmvsadcost_hp[1] = &cpi->mb.nmvsadcosts_hp[1][MV_MAX];
cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp);
for (i = 0; i < KEY_FRAME_CONTEXT; i++)
cpi->prior_key_frame_distance[i] = (int)cpi->output_framerate;
#ifdef OUTPUT_YUV_SRC
yuv_file = fopen("bd.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_REC
yuv_rec_file = fopen("rec.yuv", "wb");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
#endif
cpi->output_pkt_list = oxcf->output_pkt_list;
cpi->enable_encode_breakout = 1;
if (cpi->pass == 1) {
vp9_init_first_pass(cpi);
} else if (cpi->pass == 2) {
size_t packet_sz = sizeof(FIRSTPASS_STATS);
int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = (void *)((char *)cpi->twopass.stats_in
+ (packets - 1) * packet_sz);
vp9_init_second_pass(cpi);
}
vp9_set_speed_features(cpi);
// Default rd threshold factors for mode selection
for (i = 0; i < BLOCK_SIZES; ++i)
for (j = 0; j < MAX_MODES; ++j)
cpi->rd_thresh_freq_fact[i][j] = 32;
#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SVFHH, SVFHV, SVFHHV, \
SDX3F, SDX8F, SDX4DF)\
cpi->fn_ptr[BT].sdf = SDF; \
cpi->fn_ptr[BT].sdaf = SDAF; \
cpi->fn_ptr[BT].vf = VF; \
cpi->fn_ptr[BT].svf = SVF; \
cpi->fn_ptr[BT].svaf = SVAF; \
cpi->fn_ptr[BT].svf_halfpix_h = SVFHH; \
cpi->fn_ptr[BT].svf_halfpix_v = SVFHV; \
cpi->fn_ptr[BT].svf_halfpix_hv = SVFHHV; \
cpi->fn_ptr[BT].sdx3f = SDX3F; \
cpi->fn_ptr[BT].sdx8f = SDX8F; \
cpi->fn_ptr[BT].sdx4df = SDX4DF;
BFP(BLOCK_32X16, vp9_sad32x16, vp9_sad32x16_avg,
vp9_variance32x16, vp9_sub_pixel_variance32x16,
vp9_sub_pixel_avg_variance32x16, NULL, NULL,
NULL, NULL, NULL,
vp9_sad32x16x4d)
BFP(BLOCK_16X32, vp9_sad16x32, vp9_sad16x32_avg,
vp9_variance16x32, vp9_sub_pixel_variance16x32,
vp9_sub_pixel_avg_variance16x32, NULL, NULL,
NULL, NULL, NULL,
vp9_sad16x32x4d)
BFP(BLOCK_64X32, vp9_sad64x32, vp9_sad64x32_avg,
vp9_variance64x32, vp9_sub_pixel_variance64x32,
vp9_sub_pixel_avg_variance64x32, NULL, NULL,
NULL, NULL, NULL,
vp9_sad64x32x4d)
BFP(BLOCK_32X64, vp9_sad32x64, vp9_sad32x64_avg,
vp9_variance32x64, vp9_sub_pixel_variance32x64,
vp9_sub_pixel_avg_variance32x64, NULL, NULL,
NULL, NULL, NULL,
vp9_sad32x64x4d)
BFP(BLOCK_32X32, vp9_sad32x32, vp9_sad32x32_avg,
vp9_variance32x32, vp9_sub_pixel_variance32x32,
vp9_sub_pixel_avg_variance32x32, vp9_variance_halfpixvar32x32_h,
vp9_variance_halfpixvar32x32_v,
vp9_variance_halfpixvar32x32_hv, vp9_sad32x32x3, vp9_sad32x32x8,
vp9_sad32x32x4d)
BFP(BLOCK_64X64, vp9_sad64x64, vp9_sad64x64_avg,
vp9_variance64x64, vp9_sub_pixel_variance64x64,
vp9_sub_pixel_avg_variance64x64, vp9_variance_halfpixvar64x64_h,
vp9_variance_halfpixvar64x64_v,
vp9_variance_halfpixvar64x64_hv, vp9_sad64x64x3, vp9_sad64x64x8,
vp9_sad64x64x4d)
BFP(BLOCK_16X16, vp9_sad16x16, vp9_sad16x16_avg,
vp9_variance16x16, vp9_sub_pixel_variance16x16,
vp9_sub_pixel_avg_variance16x16, vp9_variance_halfpixvar16x16_h,
vp9_variance_halfpixvar16x16_v,
vp9_variance_halfpixvar16x16_hv, vp9_sad16x16x3, vp9_sad16x16x8,
vp9_sad16x16x4d)
BFP(BLOCK_16X8, vp9_sad16x8, vp9_sad16x8_avg,
vp9_variance16x8, vp9_sub_pixel_variance16x8,
vp9_sub_pixel_avg_variance16x8, NULL, NULL, NULL,
vp9_sad16x8x3, vp9_sad16x8x8, vp9_sad16x8x4d)
BFP(BLOCK_8X16, vp9_sad8x16, vp9_sad8x16_avg,
vp9_variance8x16, vp9_sub_pixel_variance8x16,
vp9_sub_pixel_avg_variance8x16, NULL, NULL, NULL,
vp9_sad8x16x3, vp9_sad8x16x8, vp9_sad8x16x4d)
BFP(BLOCK_8X8, vp9_sad8x8, vp9_sad8x8_avg,
vp9_variance8x8, vp9_sub_pixel_variance8x8,
vp9_sub_pixel_avg_variance8x8, NULL, NULL, NULL,
vp9_sad8x8x3, vp9_sad8x8x8, vp9_sad8x8x4d)
BFP(BLOCK_8X4, vp9_sad8x4, vp9_sad8x4_avg,
vp9_variance8x4, vp9_sub_pixel_variance8x4,
vp9_sub_pixel_avg_variance8x4, NULL, NULL,
NULL, NULL, vp9_sad8x4x8,
vp9_sad8x4x4d)
BFP(BLOCK_4X8, vp9_sad4x8, vp9_sad4x8_avg,
vp9_variance4x8, vp9_sub_pixel_variance4x8,
vp9_sub_pixel_avg_variance4x8, NULL, NULL,
NULL, NULL, vp9_sad4x8x8,
vp9_sad4x8x4d)
BFP(BLOCK_4X4, vp9_sad4x4, vp9_sad4x4_avg,
vp9_variance4x4, vp9_sub_pixel_variance4x4,
vp9_sub_pixel_avg_variance4x4, NULL, NULL, NULL,
vp9_sad4x4x3, vp9_sad4x4x8, vp9_sad4x4x4d)
cpi->full_search_sad = vp9_full_search_sad;
cpi->diamond_search_sad = vp9_diamond_search_sad;
cpi->refining_search_sad = vp9_refining_search_sad;
// make sure frame 1 is okay
cpi->error_bins[0] = cpi->common.MBs;
/* vp9_init_quantizer() is first called here. Add check in
* vp9_frame_init_quantizer() so that vp9_init_quantizer is only
* called later when needed. This will avoid unnecessary calls of
* vp9_init_quantizer() for every frame.
*/
vp9_init_quantizer(cpi);
vp9_loop_filter_init(cm);
cpi->common.error.setjmp = 0;
vp9_zero(cpi->y_uv_mode_count)
#ifdef MODE_TEST_HIT_STATS
vp9_zero(cpi->mode_test_hits)
#endif
return (VP9_PTR) cpi;
}
void vp9_remove_compressor(VP9_PTR *ptr) {
VP9_COMP *cpi = (VP9_COMP *)(*ptr);
int i;
if (!cpi)
return;
if (cpi && (cpi->common.current_video_frame > 0)) {
if (cpi->pass == 2) {
vp9_end_second_pass(cpi);
}
#ifdef ENTROPY_STATS
if (cpi->pass != 1) {
print_context_counters();
print_tree_update_probs();
print_mode_context(cpi);
}
#endif
#ifdef MODE_STATS
if (cpi->pass != 1) {
write_tx_count_stats();
write_switchable_interp_stats();
}
#endif
#if CONFIG_INTERNAL_STATS
vp9_clear_system_state();
// printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count);
if (cpi->pass != 1) {
FILE *f = fopen("opsnr.stt", "a");
double time_encoded = (cpi->last_end_time_stamp_seen
- cpi->first_time_stamp_ever) / 10000000.000;
double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded;
if (cpi->b_calculate_psnr) {
YV12_BUFFER_CONFIG *lst_yv12 =
&cpi->common.yv12_fb[cpi->common.ref_frame_map[cpi->lst_fb_idx]];
double samples = 3.0 / 2 * cpi->count *
lst_yv12->y_width * lst_yv12->y_height;
double total_psnr = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error);
double total_psnr2 = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error2);
double total_ssim = 100 * pow(cpi->summed_quality /
cpi->summed_weights, 8.0);
double total_ssimp = 100 * pow(cpi->summedp_quality /
cpi->summedp_weights, 8.0);
fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t"
"VPXSSIM\tVPSSIMP\t Time(ms)\n");
fprintf(f, "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n",
dr, cpi->total / cpi->count, total_psnr,
cpi->totalp / cpi->count, total_psnr2, total_ssim, total_ssimp,
total_encode_time);
// fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f %10ld\n",
// dr, cpi->total / cpi->count, total_psnr,
// cpi->totalp / cpi->count, total_psnr2, total_ssim,
// total_encode_time, cpi->tot_recode_hits);
}
if (cpi->b_calculate_ssimg) {
fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(ms)\n");
fprintf(f, "%7.2f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time);
// fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f %10ld\n", dr,
// cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
// cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time, cpi->tot_recode_hits);
}
fclose(f);
}
#endif
#ifdef MODE_TEST_HIT_STATS
if (cpi->pass != 1) {
double norm_per_pixel_mode_tests = 0;
double norm_counts[BLOCK_SIZES];
int i;
int sb64_per_frame;
int norm_factors[BLOCK_SIZES] =
{256, 128, 128, 64, 32, 32, 16, 8, 8, 4, 2, 2, 1};
FILE *f = fopen("mode_hit_stats.stt", "a");
// On average, how many mode tests do we do
for (i = 0; i < BLOCK_SIZES; ++i) {
norm_counts[i] = (double)cpi->mode_test_hits[i] /
(double)norm_factors[i];
norm_per_pixel_mode_tests += norm_counts[i];
}
// Convert to a number per 64x64 and per frame
sb64_per_frame = ((cpi->common.height + 63) / 64) *
((cpi->common.width + 63) / 64);
norm_per_pixel_mode_tests =
norm_per_pixel_mode_tests /
(double)(cpi->common.current_video_frame * sb64_per_frame);
fprintf(f, "%6.4f\n", norm_per_pixel_mode_tests);
fclose(f);
}
#endif
#ifdef ENTROPY_STATS
{
int i, j, k;
FILE *fmode = fopen("vp9_modecontext.c", "w");
fprintf(fmode, "\n#include \"vp9_entropymode.h\"\n\n");
fprintf(fmode, "const unsigned int vp9_kf_default_bmode_counts ");
fprintf(fmode, "[INTRA_MODES][INTRA_MODES]"
"[INTRA_MODES] =\n{\n");
for (i = 0; i < INTRA_MODES; i++) {
fprintf(fmode, " { // Above Mode : %d\n", i);
for (j = 0; j < INTRA_MODES; j++) {
fprintf(fmode, " {");
for (k = 0; k < INTRA_MODES; k++) {
if (!intra_mode_stats[i][j][k])
fprintf(fmode, " %5d, ", 1);
else
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
}
fprintf(fmode, "}, // left_mode %d\n", j);
}
fprintf(fmode, " },\n");
}
fprintf(fmode, "};\n");
fclose(fmode);
}
#endif
#if defined(SECTIONBITS_OUTPUT)
if (0) {
int i;
FILE *f = fopen("tokenbits.stt", "a");
for (i = 0; i < 28; i++)
fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
fprintf(f, "\n");
fclose(f);
}
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame,
cpi->time_receive_data / 1000, cpi->time_encode_sb_row / 1000,
cpi->time_compress_data / 1000,
(cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
#endif
}
dealloc_compressor_data(cpi);
vpx_free(cpi->mb.ss);
vpx_free(cpi->tok);
for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); i++) {
vpx_free(cpi->mbgraph_stats[i].mb_stats);
}
vp9_remove_common(&cpi->common);
vpx_free(cpi);
*ptr = 0;
#ifdef OUTPUT_YUV_SRC
fclose(yuv_file);
#endif
#ifdef OUTPUT_YUV_REC
fclose(yuv_rec_file);
#endif
#if 0
if (keyfile)
fclose(keyfile);
if (framepsnr)
fclose(framepsnr);
if (kf_list)
fclose(kf_list);
#endif
}
static uint64_t calc_plane_error(uint8_t *orig, int orig_stride,
uint8_t *recon, int recon_stride,
unsigned int cols, unsigned int rows) {
unsigned int row, col;
uint64_t total_sse = 0;
int diff;
for (row = 0; row + 16 <= rows; row += 16) {
for (col = 0; col + 16 <= cols; col += 16) {
unsigned int sse;
vp9_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse);
total_sse += sse;
}
/* Handle odd-sized width */
if (col < cols) {
unsigned int border_row, border_col;
uint8_t *border_orig = orig;
uint8_t *border_recon = recon;
for (border_row = 0; border_row < 16; border_row++) {
for (border_col = col; border_col < cols; border_col++) {
diff = border_orig[border_col] - border_recon[border_col];
total_sse += diff * diff;
}
border_orig += orig_stride;
border_recon += recon_stride;
}
}
orig += orig_stride * 16;
recon += recon_stride * 16;
}
/* Handle odd-sized height */
for (; row < rows; row++) {
for (col = 0; col < cols; col++) {
diff = orig[col] - recon[col];
total_sse += diff * diff;
}
orig += orig_stride;
recon += recon_stride;
}
return total_sse;
}
static void generate_psnr_packet(VP9_COMP *cpi) {
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
struct vpx_codec_cx_pkt pkt;
uint64_t sse;
int i;
unsigned int width = orig->y_crop_width;
unsigned int height = orig->y_crop_height;
pkt.kind = VPX_CODEC_PSNR_PKT;
sse = calc_plane_error(orig->y_buffer, orig->y_stride,
recon->y_buffer, recon->y_stride,
width, height);
pkt.data.psnr.sse[0] = sse;
pkt.data.psnr.sse[1] = sse;
pkt.data.psnr.samples[0] = width * height;
pkt.data.psnr.samples[1] = width * height;
width = orig->uv_crop_width;
height = orig->uv_crop_height;
sse = calc_plane_error(orig->u_buffer, orig->uv_stride,
recon->u_buffer, recon->uv_stride,
width, height);
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[2] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[2] = width * height;
sse = calc_plane_error(orig->v_buffer, orig->uv_stride,
recon->v_buffer, recon->uv_stride,
width, height);
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[3] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[3] = width * height;
for (i = 0; i < 4; i++)
pkt.data.psnr.psnr[i] = vp9_mse2psnr(pkt.data.psnr.samples[i], 255.0,
(double)pkt.data.psnr.sse[i]);
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int vp9_use_as_reference(VP9_PTR ptr, int ref_frame_flags) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
if (ref_frame_flags > 7)
return -1;
cpi->ref_frame_flags = ref_frame_flags;
return 0;
}
int vp9_update_reference(VP9_PTR ptr, int ref_frame_flags) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
if (ref_frame_flags > 7)
return -1;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
cpi->refresh_last_frame = 0;
if (ref_frame_flags & VP9_LAST_FLAG)
cpi->refresh_last_frame = 1;
if (ref_frame_flags & VP9_GOLD_FLAG)
cpi->refresh_golden_frame = 1;
if (ref_frame_flags & VP9_ALT_FLAG)
cpi->refresh_alt_ref_frame = 1;
return 0;
}
int vp9_copy_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP9_LAST_FLAG)
ref_fb_idx = cm->ref_frame_map[cpi->lst_fb_idx];
else if (ref_frame_flag == VP9_GOLD_FLAG)
ref_fb_idx = cm->ref_frame_map[cpi->gld_fb_idx];
else if (ref_frame_flag == VP9_ALT_FLAG)
ref_fb_idx = cm->ref_frame_map[cpi->alt_fb_idx];
else
return -1;
vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd);
return 0;
}
int vp9_get_reference_enc(VP9_PTR ptr, int index, YV12_BUFFER_CONFIG **fb) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *cm = &cpi->common;
if (index < 0 || index >= NUM_REF_FRAMES)
return -1;
*fb = &cm->yv12_fb[cm->ref_frame_map[index]];
return 0;
}
int vp9_set_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP9_LAST_FLAG)
ref_fb_idx = cm->ref_frame_map[cpi->lst_fb_idx];
else if (ref_frame_flag == VP9_GOLD_FLAG)
ref_fb_idx = cm->ref_frame_map[cpi->gld_fb_idx];
else if (ref_frame_flag == VP9_ALT_FLAG)
ref_fb_idx = cm->ref_frame_map[cpi->alt_fb_idx];
else
return -1;
vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]);
return 0;
}
int vp9_update_entropy(VP9_PTR comp, int update) {
((VP9_COMP *)comp)->common.refresh_frame_context = update;
return 0;
}
#ifdef OUTPUT_YUV_SRC
void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s) {
uint8_t *src = s->y_buffer;
int h = s->y_height;
do {
fwrite(src, s->y_width, 1, yuv_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
} while (--h);
}
#endif
#ifdef OUTPUT_YUV_REC
void vp9_write_yuv_rec_frame(VP9_COMMON *cm) {
YV12_BUFFER_CONFIG *s = cm->frame_to_show;
uint8_t *src = s->y_buffer;
int h = cm->height;
do {
fwrite(src, s->y_width, 1, yuv_rec_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
#if CONFIG_ALPHA
if (s->alpha_buffer) {
src = s->alpha_buffer;
h = s->alpha_height;
do {
fwrite(src, s->alpha_width, 1, yuv_rec_file);
src += s->alpha_stride;
} while (--h);
}
#endif
fflush(yuv_rec_file);
}
#endif
static void scale_and_extend_frame(YV12_BUFFER_CONFIG *src_fb,
YV12_BUFFER_CONFIG *dst_fb) {
const int in_w = src_fb->y_crop_width;
const int in_h = src_fb->y_crop_height;
const int out_w = dst_fb->y_crop_width;
const int out_h = dst_fb->y_crop_height;
int x, y, i;
uint8_t *srcs[4] = {src_fb->y_buffer, src_fb->u_buffer, src_fb->v_buffer,
src_fb->alpha_buffer};
int src_strides[4] = {src_fb->y_stride, src_fb->uv_stride, src_fb->uv_stride,
src_fb->alpha_stride};
uint8_t *dsts[4] = {dst_fb->y_buffer, dst_fb->u_buffer, dst_fb->v_buffer,
dst_fb->alpha_buffer};
int dst_strides[4] = {dst_fb->y_stride, dst_fb->uv_stride, dst_fb->uv_stride,
dst_fb->alpha_stride};
for (y = 0; y < out_h; y += 16) {
for (x = 0; x < out_w; x += 16) {
for (i = 0; i < MAX_MB_PLANE; ++i) {
const int factor = i == 0 ? 1 : 2;
const int x_q4 = x * (16 / factor) * in_w / out_w;
const int y_q4 = y * (16 / factor) * in_h / out_h;
const int src_stride = src_strides[i];
const int dst_stride = dst_strides[i];
uint8_t *src = srcs[i] + y / factor * in_h / out_h * src_stride +
x / factor * in_w / out_w;
uint8_t *dst = dsts[i] + y / factor * dst_stride + x / factor;
vp9_convolve8(src, src_stride, dst, dst_stride,
vp9_sub_pel_filters_8[x_q4 & 0xf], 16 * in_w / out_w,
vp9_sub_pel_filters_8[y_q4 & 0xf], 16 * in_h / out_h,
16 / factor, 16 / factor);
}
}
}
vp8_yv12_extend_frame_borders(dst_fb);
}
static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
// this frame refreshes means next frames don't unless specified by user
cpi->frames_since_golden = 0;
#if CONFIG_MULTIPLE_ARF
if (!cpi->multi_arf_enabled)
#endif
// Clear the alternate reference update pending flag.
cpi->source_alt_ref_pending = 0;
// Set the alternate reference frame active flag
cpi->source_alt_ref_active = 1;
}
static void update_golden_frame_stats(VP9_COMP *cpi) {
// Update the Golden frame usage counts.
if (cpi->refresh_golden_frame) {
// this frame refreshes means next frames don't unless specified by user
cpi->refresh_golden_frame = 0;
cpi->frames_since_golden = 0;
// ******** Fixed Q test code only ************
// If we are going to use the ALT reference for the next group of frames set a flag to say so.
if (cpi->oxcf.fixed_q >= 0 &&
cpi->oxcf.play_alternate && !cpi->refresh_alt_ref_frame) {
cpi->source_alt_ref_pending = 1;
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
// TODO(ivan): for SVC encoder, GF automatic update is disabled by using a
// large GF_interval
if (cpi->use_svc) {
cpi->frames_till_gf_update_due = INT_MAX;
}
}
if (!cpi->source_alt_ref_pending)
cpi->source_alt_ref_active = 0;
// Decrement count down till next gf
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
} else if (!cpi->refresh_alt_ref_frame) {
// Decrement count down till next gf
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
if (cpi->frames_till_alt_ref_frame)
cpi->frames_till_alt_ref_frame--;
cpi->frames_since_golden++;
}
}
static int find_fp_qindex() {
int i;
for (i = 0; i < QINDEX_RANGE; i++) {
if (vp9_convert_qindex_to_q(i) >= 30.0) {
break;
}
}
if (i == QINDEX_RANGE)
i--;
return i;
}
static void Pass1Encode(VP9_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) {
(void) size;
(void) dest;
(void) frame_flags;
vp9_set_quantizer(cpi, find_fp_qindex());
vp9_first_pass(cpi);
}
#define WRITE_RECON_BUFFER 0
#if WRITE_RECON_BUFFER
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) {
// write the frame
FILE *yframe;
int i;
char filename[255];
sprintf(filename, "cx\\y%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->y_height; i++)
fwrite(frame->y_buffer + i * frame->y_stride,
frame->y_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\u%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->u_buffer + i * frame->uv_stride,
frame->uv_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\v%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->v_buffer + i * frame->uv_stride,
frame->uv_width, 1, yframe);
fclose(yframe);
}
#endif
static double compute_edge_pixel_proportion(YV12_BUFFER_CONFIG *frame) {
#define EDGE_THRESH 128
int i, j;
int num_edge_pels = 0;
int num_pels = (frame->y_height - 2) * (frame->y_width - 2);
uint8_t *prev = frame->y_buffer + 1;
uint8_t *curr = frame->y_buffer + 1 + frame->y_stride;
uint8_t *next = frame->y_buffer + 1 + 2 * frame->y_stride;
for (i = 1; i < frame->y_height - 1; i++) {
for (j = 1; j < frame->y_width - 1; j++) {
/* Sobel hor and ver gradients */
int v = 2 * (curr[1] - curr[-1]) + (prev[1] - prev[-1]) + (next[1] - next[-1]);
int h = 2 * (prev[0] - next[0]) + (prev[1] - next[1]) + (prev[-1] - next[-1]);
h = (h < 0 ? -h : h);
v = (v < 0 ? -v : v);
if (h > EDGE_THRESH || v > EDGE_THRESH)
num_edge_pels++;
curr++;
prev++;
next++;
}
curr += frame->y_stride - frame->y_width + 2;
prev += frame->y_stride - frame->y_width + 2;
next += frame->y_stride - frame->y_width + 2;
}
return (double)num_edge_pels / num_pels;
}
// Function to test for conditions that indicate we should loop
// back and recode a frame.
static int recode_loop_test(VP9_COMP *cpi,
int high_limit, int low_limit,
int q, int maxq, int minq) {
int force_recode = 0;
VP9_COMMON *cm = &cpi->common;
// Is frame recode allowed at all
// Yes if either recode mode 1 is selected or mode two is selected
// and the frame is a key frame. golden frame or alt_ref_frame
if ((cpi->sf.recode_loop == 1) ||
((cpi->sf.recode_loop == 2) &&
((cm->frame_type == KEY_FRAME) ||
cpi->refresh_golden_frame ||
cpi->refresh_alt_ref_frame))) {
// General over and under shoot tests
if (((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
((cpi->projected_frame_size < low_limit) && (q > minq))) {
force_recode = 1;
}
// Special Constrained quality tests
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
// Undershoot and below auto cq level
if (q > cpi->cq_target_quality &&
cpi->projected_frame_size < ((cpi->this_frame_target * 7) >> 3)) {
force_recode = 1;
} else if (q > cpi->oxcf.cq_level &&
cpi->projected_frame_size < cpi->min_frame_bandwidth &&
cpi->active_best_quality > cpi->oxcf.cq_level) {
// Severe undershoot and between auto and user cq level
force_recode = 1;
cpi->active_best_quality = cpi->oxcf.cq_level;
}
}
}
return force_recode;
}
static void update_reference_frames(VP9_COMP * const cpi) {
VP9_COMMON * const cm = &cpi->common;
// At this point the new frame has been encoded.
// If any buffer copy / swapping is signaled it should be done here.
if (cm->frame_type == KEY_FRAME) {
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
}
#if CONFIG_MULTIPLE_ARF
else if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
!cpi->refresh_alt_ref_frame) {
#else
else if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame &&
!cpi->use_svc) {
#endif
/* Preserve the previously existing golden frame and update the frame in
* the alt ref slot instead. This is highly specific to the current use of
* alt-ref as a forward reference, and this needs to be generalized as
* other uses are implemented (like RTC/temporal scaling)
*
* The update to the buffer in the alt ref slot was signaled in
* vp9_pack_bitstream(), now swap the buffer pointers so that it's treated
* as the golden frame next time.
*/
int tmp;
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
tmp = cpi->alt_fb_idx;
cpi->alt_fb_idx = cpi->gld_fb_idx;
cpi->gld_fb_idx = tmp;
} else { /* For non key/golden frames */
if (cpi->refresh_alt_ref_frame) {
int arf_idx = cpi->alt_fb_idx;
#if CONFIG_MULTIPLE_ARF
if (cpi->multi_arf_enabled) {
arf_idx = cpi->arf_buffer_idx[cpi->sequence_number + 1];
}
#endif
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->ref_frame_map[arf_idx], cm->new_fb_idx);
}
if (cpi->refresh_golden_frame) {
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
}
}
if (cpi->refresh_last_frame) {
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx);
}
}
static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
struct loopfilter *lf = &cm->lf;
if (xd->lossless) {
lf->filter_level = 0;
} else {
struct vpx_usec_timer timer;
vp9_clear_system_state();
vpx_usec_timer_start(&timer);
vp9_pick_filter_level(cpi->Source, cpi, cpi->sf.use_fast_lpf_pick);
vpx_usec_timer_mark(&timer);
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
}
if (lf->filter_level > 0) {
vp9_set_alt_lf_level(cpi, lf->filter_level);
vp9_loop_filter_frame(cm, xd, lf->filter_level, 0, 0);
}
vp9_extend_frame_inner_borders(cm->frame_to_show,
cm->subsampling_x, cm->subsampling_y);
}
static void scale_references(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
int i;
int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx,
cpi->alt_fb_idx};
for (i = 0; i < 3; i++) {
YV12_BUFFER_CONFIG *ref = &cm->yv12_fb[cm->ref_frame_map[refs[i]]];
if (ref->y_crop_width != cm->width ||
ref->y_crop_height != cm->height) {
int new_fb = get_free_fb(cm);
vp9_realloc_frame_buffer(&cm->yv12_fb[new_fb],
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS);
scale_and_extend_frame(ref, &cm->yv12_fb[new_fb]);
cpi->scaled_ref_idx[i] = new_fb;
} else {
cpi->scaled_ref_idx[i] = cm->ref_frame_map[refs[i]];
cm->fb_idx_ref_cnt[cm->ref_frame_map[refs[i]]]++;
}
}
}
static void release_scaled_references(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
int i;
for (i = 0; i < 3; i++)
cm->fb_idx_ref_cnt[cpi->scaled_ref_idx[i]]--;
}
static void full_to_model_count(unsigned int *model_count,
unsigned int *full_count) {
int n;
model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
for (n = THREE_TOKEN; n < DCT_EOB_TOKEN; ++n)
model_count[TWO_TOKEN] += full_count[n];
model_count[DCT_EOB_MODEL_TOKEN] = full_count[DCT_EOB_TOKEN];
}
static void full_to_model_counts(
vp9_coeff_count_model *model_count, vp9_coeff_count *full_count) {
int i, j, k, l;
for (i = 0; i < BLOCK_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
if (l >= 3 && k == 0)
continue;
full_to_model_count(model_count[i][j][k][l], full_count[i][j][k][l]);
}
}
static void encode_frame_to_data_rate(VP9_COMP *cpi,
unsigned long *size,
unsigned char *dest,
unsigned int *frame_flags) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
TX_SIZE t;
int q;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
int loop = 0;
int loop_count;
int q_low;
int q_high;
int top_index;
int bottom_index;
int active_worst_qchanged = 0;
int overshoot_seen = 0;
int undershoot_seen = 0;
SPEED_FEATURES *sf = &cpi->sf;
unsigned int max_mv_def = MIN(cpi->common.width, cpi->common.height);
struct segmentation *seg = &cm->seg;
/* Scale the source buffer, if required */
if (cm->mi_cols * 8 != cpi->un_scaled_source->y_width ||
cm->mi_rows * 8 != cpi->un_scaled_source->y_height) {
scale_and_extend_frame(cpi->un_scaled_source, &cpi->scaled_source);
cpi->Source = &cpi->scaled_source;
} else {
cpi->Source = cpi->un_scaled_source;
}
scale_references(cpi);
// Clear down mmx registers to allow floating point in what follows
vp9_clear_system_state();
// For an alt ref frame in 2 pass we skip the call to the second
// pass function that sets the target bandwidth so must set it here
if (cpi->refresh_alt_ref_frame) {
// Per frame bit target for the alt ref frame
cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
// per second target bitrate
cpi->target_bandwidth = (int)(cpi->twopass.gf_bits *
cpi->output_framerate);
}
// Clear zbin over-quant value and mode boost values.
cpi->zbin_mode_boost = 0;
// Enable or disable mode based tweaking of the zbin
// For 2 Pass Only used where GF/ARF prediction quality
// is above a threshold
cpi->zbin_mode_boost = 0;
// if (cpi->oxcf.lossless)
cpi->zbin_mode_boost_enabled = 0;
// else
// cpi->zbin_mode_boost_enabled = 1;
// Current default encoder behaviour for the altref sign bias
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = cpi->source_alt_ref_active;
// Check to see if a key frame is signaled
// For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass.
if ((cm->current_video_frame == 0) ||
(cm->frame_flags & FRAMEFLAGS_KEY) ||
(cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0))) {
// Key frame from VFW/auto-keyframe/first frame
cm->frame_type = KEY_FRAME;
}
// Set default state for segment based loop filter update flags
cm->lf.mode_ref_delta_update = 0;
// Initialize cpi->mv_step_param to default based on max resolution
cpi->mv_step_param = vp9_init_search_range(cpi, max_mv_def);
// Initialize cpi->max_mv_magnitude and cpi->mv_step_param if appropriate.
if (sf->auto_mv_step_size) {
if ((cpi->common.frame_type == KEY_FRAME) || cpi->common.intra_only) {
// initialize max_mv_magnitude for use in the first INTER frame
// after a key/intra-only frame
cpi->max_mv_magnitude = max_mv_def;
} else {
if (cm->show_frame)
// allow mv_steps to correspond to twice the max mv magnitude found
// in the previous frame, capped by the default max_mv_magnitude based
// on resolution
cpi->mv_step_param = vp9_init_search_range(
cpi, MIN(max_mv_def, 2 * cpi->max_mv_magnitude));
cpi->max_mv_magnitude = 0;
}
}
// Set various flags etc to special state if it is a key frame
if (cm->frame_type == KEY_FRAME) {
// Reset the loop filter deltas and segmentation map
setup_features(cm);
// If segmentation is enabled force a map update for key frames
if (seg->enabled) {
seg->update_map = 1;
seg->update_data = 1;
}
// The alternate reference frame cannot be active for a key frame
cpi->source_alt_ref_active = 0;
cm->error_resilient_mode = (cpi->oxcf.error_resilient_mode != 0);
cm->frame_parallel_decoding_mode =
(cpi->oxcf.frame_parallel_decoding_mode != 0);
if (cm->error_resilient_mode) {
cm->frame_parallel_decoding_mode = 1;
cm->reset_frame_context = 0;
cm->refresh_frame_context = 0;
}
}
// Configure experimental use of segmentation for enhanced coding of
// static regions if indicated.
// Only allowed for now in second pass of two pass (as requires lagged coding)
// and if the relevant speed feature flag is set.
if ((cpi->pass == 2) && (cpi->sf.static_segmentation)) {
configure_static_seg_features(cpi);
}
// Decide how big to make the frame
vp9_pick_frame_size(cpi);
vp9_clear_system_state();
// Set an active best quality and if necessary active worst quality
q = cpi->active_worst_quality;
if (cm->frame_type == KEY_FRAME) {
#if !CONFIG_MULTIPLE_ARF
// Special case for key frames forced because we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping
if (cpi->this_key_frame_forced) {
int delta_qindex;
int qindex = cpi->last_boosted_qindex;
double last_boosted_q = vp9_convert_qindex_to_q(qindex);
delta_qindex = compute_qdelta(cpi, last_boosted_q,
(last_boosted_q * 0.75));
cpi->active_best_quality = MAX(qindex + delta_qindex,
cpi->best_quality);
} else {
int high = 5000;
int low = 400;
double q_adj_factor = 1.0;
double q_val;
// Baseline value derived from cpi->active_worst_quality and kf boost
if (cpi->kf_boost > high) {
cpi->active_best_quality = kf_low_motion_minq[q];
} else if (cpi->kf_boost < low) {
cpi->active_best_quality = kf_high_motion_minq[q];
} else {
const int gap = high - low;
const int offset = high - cpi->kf_boost;
const int qdiff = kf_high_motion_minq[q] - kf_low_motion_minq[q];
const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
cpi->active_best_quality = kf_low_motion_minq[q] + adjustment;
}
// Allow somewhat lower kf minq with small image formats.
if ((cm->width * cm->height) <= (352 * 288)) {
q_adj_factor -= 0.25;
}
// Make a further adjustment based on the kf zero motion measure.
q_adj_factor += 0.05 - (0.001 * (double)cpi->kf_zeromotion_pct);
// Convert the adjustment factor to a qindex delta
// on active_best_quality.
q_val = vp9_convert_qindex_to_q(cpi->active_best_quality);
cpi->active_best_quality +=
compute_qdelta(cpi, q_val, (q_val * q_adj_factor));
}
#else
double current_q;
// Force the KF quantizer to be 30% of the active_worst_quality.
current_q = vp9_convert_qindex_to_q(cpi->active_worst_quality);
cpi->active_best_quality = cpi->active_worst_quality
+ compute_qdelta(cpi, current_q, current_q * 0.3);
#endif
} else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
int high = 2000;
int low = 400;
// Use the lower of cpi->active_worst_quality and recent
// average Q as basis for GF/ARF Q limit unless last frame was
// a key frame.
if (cpi->frames_since_key > 1 &&
cpi->avg_frame_qindex < cpi->active_worst_quality) {
q = cpi->avg_frame_qindex;
}
// For constrained quality dont allow Q less than the cq level
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY &&
q < cpi->cq_target_quality) {
q = cpi->cq_target_quality;
}
if (cpi->gfu_boost > high) {
cpi->active_best_quality = gf_low_motion_minq[q];
} else if (cpi->gfu_boost < low) {
cpi->active_best_quality = gf_high_motion_minq[q];
} else {
const int gap = high - low;
const int offset = high - cpi->gfu_boost;
const int qdiff = gf_high_motion_minq[q] - gf_low_motion_minq[q];
const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
cpi->active_best_quality = gf_low_motion_minq[q] + adjustment;
}
// Constrained quality use slightly lower active best.
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
cpi->active_best_quality = cpi->active_best_quality * 15 / 16;
// TODO(debargha): Refine the logic below
if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
if (!cpi->refresh_alt_ref_frame) {
cpi->active_best_quality = cpi->cq_target_quality;
} else {
if (cpi->frames_since_key > 1) {
if (cpi->gfu_boost > high) {
cpi->active_best_quality = afq_low_motion_minq[q];
} else if (cpi->gfu_boost < low) {
cpi->active_best_quality = afq_high_motion_minq[q];
} else {
const int gap = high - low;
const int offset = high - cpi->gfu_boost;
const int qdiff = afq_high_motion_minq[q] - afq_low_motion_minq[q];
const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
cpi->active_best_quality = afq_low_motion_minq[q] + adjustment;
}
}
}
}
} else {
if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
cpi->active_best_quality = cpi->cq_target_quality;
} else {
#ifdef ONE_SHOT_Q_ESTIMATE
#ifdef STRICT_ONE_SHOT_Q
cpi->active_best_quality = q;
#else
cpi->active_best_quality = inter_minq[q];
#endif
#else
cpi->active_best_quality = inter_minq[q];
#endif
// For the constant/constrained quality mode we don't want
// q to fall below the cq level.
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(cpi->active_best_quality < cpi->cq_target_quality)) {
// If we are strongly undershooting the target rate in the last
// frames then use the user passed in cq value not the auto
// cq value.
if (cpi->rolling_actual_bits < cpi->min_frame_bandwidth)
cpi->active_best_quality = cpi->oxcf.cq_level;
else
cpi->active_best_quality = cpi->cq_target_quality;
}
}
}
// Clip the active best and worst quality values to limits
if (cpi->active_worst_quality > cpi->worst_quality)
cpi->active_worst_quality = cpi->worst_quality;
if (cpi->active_best_quality < cpi->best_quality)
cpi->active_best_quality = cpi->best_quality;
if (cpi->active_best_quality > cpi->worst_quality)
cpi->active_best_quality = cpi->worst_quality;
if (cpi->active_worst_quality < cpi->active_best_quality)
cpi->active_worst_quality = cpi->active_best_quality;
// Special case code to try and match quality with forced key frames
if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
q = cpi->active_best_quality;
} else if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
q = cpi->last_boosted_qindex;
} else {
// Determine initial Q to try
q = vp9_regulate_q(cpi, cpi->this_frame_target);
}
vp9_compute_frame_size_bounds(cpi, &frame_under_shoot_limit,
&frame_over_shoot_limit);
#if CONFIG_MULTIPLE_ARF
// Force the quantizer determined by the coding order pattern.
if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
cpi->oxcf.end_usage != USAGE_CONSTANT_QUALITY) {
double new_q;
double current_q = vp9_convert_qindex_to_q(cpi->active_worst_quality);
int level = cpi->this_frame_weight;
assert(level >= 0);
// Set quantizer steps at 10% increments.
new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level)));
q = cpi->active_worst_quality + compute_qdelta(cpi, current_q, new_q);
bottom_index = q;
top_index = q;
q_low = q;
q_high = q;
printf("frame:%d q:%d\n", cm->current_video_frame, q);
} else {
#endif
// Limit Q range for the adaptive loop.
bottom_index = cpi->active_best_quality;
top_index = cpi->active_worst_quality;
q_low = cpi->active_best_quality;
q_high = cpi->active_worst_quality;
#if CONFIG_MULTIPLE_ARF
}
#endif
loop_count = 0;
vp9_zero(cpi->rd_tx_select_threshes);
if (cm->frame_type != KEY_FRAME) {
cm->mcomp_filter_type = DEFAULT_INTERP_FILTER;
/* TODO: Decide this more intelligently */
xd->allow_high_precision_mv = q < HIGH_PRECISION_MV_QTHRESH;
set_mvcost(&cpi->mb);
}
#if CONFIG_VP9_POSTPROC
if (cpi->oxcf.noise_sensitivity > 0) {
int l = 0;
switch (cpi->oxcf.noise_sensitivity) {
case 1:
l = 20;
break;
case 2:
l = 40;
break;
case 3:
l = 60;
break;
case 4:
case 5:
l = 100;
break;
case 6:
l = 150;
break;
}
vp9_denoise(cpi->Source, cpi->Source, l);
}
#endif
#ifdef OUTPUT_YUV_SRC
vp9_write_yuv_frame(cpi->Source);
#endif
do {
vp9_clear_system_state(); // __asm emms;
vp9_set_quantizer(cpi, q);
if (loop_count == 0) {
// Set up entropy depending on frame type.
if (cm->frame_type == KEY_FRAME) {
/* Choose which entropy context to use. When using a forward reference
* frame, it immediately follows the keyframe, and thus benefits from
* using the same entropy context established by the keyframe.
* Otherwise, use the default context 0.
*/
cm->frame_context_idx = cpi->oxcf.play_alternate;
vp9_setup_key_frame(cpi);
} else {
/* Choose which entropy context to use. Currently there are only two
* contexts used, one for normal frames and one for alt ref frames.
*/
cpi->common.frame_context_idx = cpi->refresh_alt_ref_frame;
vp9_setup_inter_frame(cpi);
}
}
// transform / motion compensation build reconstruction frame
vp9_encode_frame(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
// update_base_skip_probs(cpi);
vp9_clear_system_state(); // __asm emms;
// Dummy pack of the bitstream using up to date stats to get an
// accurate estimate of output frame size to determine if we need
// to recode.
vp9_save_coding_context(cpi);
cpi->dummy_packing = 1;
vp9_pack_bitstream(cpi, dest, size);
cpi->projected_frame_size = (*size) << 3;
vp9_restore_coding_context(cpi);
if (frame_over_shoot_limit == 0)
frame_over_shoot_limit = 1;
active_worst_qchanged = 0;
// Special case handling for forced key frames
if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
loop = 0;
} else {
if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
int last_q = q;
int kf_err = vp9_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx]);
int high_err_target = cpi->ambient_err;
int low_err_target = cpi->ambient_err >> 1;
// Prevent possible divide by zero error below for perfect KF
kf_err += !kf_err;
// The key frame is not good enough or we can afford
// to make it better without undue risk of popping.
if ((kf_err > high_err_target &&
cpi->projected_frame_size <= frame_over_shoot_limit) ||
(kf_err > low_err_target &&
cpi->projected_frame_size <= frame_under_shoot_limit)) {
// Lower q_high
q_high = q > q_low ? q - 1 : q_low;
// Adjust Q
q = (q * high_err_target) / kf_err;
q = MIN(q, (q_high + q_low) >> 1);
} else if (kf_err < low_err_target &&
cpi->projected_frame_size >= frame_under_shoot_limit) {
// The key frame is much better than the previous frame
// Raise q_low
q_low = q < q_high ? q + 1 : q_high;
// Adjust Q
q = (q * low_err_target) / kf_err;
q = MIN(q, (q_high + q_low + 1) >> 1);
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = q != last_q;
} else if (recode_loop_test(
cpi, frame_over_shoot_limit, frame_under_shoot_limit,
q, top_index, bottom_index)) {
// Is the projected frame size out of range and are we allowed
// to attempt to recode.
int last_q = q;
int retries = 0;
// Frame size out of permitted range:
// Update correction factor & compute new Q to try...
// Frame is too large
if (cpi->projected_frame_size > cpi->this_frame_target) {
// Raise Qlow as to at least the current value
q_low = q < q_high ? q + 1 : q_high;
if (undershoot_seen || loop_count > 1) {
// Update rate_correction_factor unless
// cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp9_update_rate_correction_factors(cpi, 1);
q = (q_high + q_low + 1) / 2;
} else {
// Update rate_correction_factor unless
// cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp9_update_rate_correction_factors(cpi, 0);
q = vp9_regulate_q(cpi, cpi->this_frame_target);
while (q < q_low && retries < 10) {
vp9_update_rate_correction_factors(cpi, 0);
q = vp9_regulate_q(cpi, cpi->this_frame_target);
retries++;
}
}
overshoot_seen = 1;
} else {
// Frame is too small
q_high = q > q_low ? q - 1 : q_low;
if (overshoot_seen || loop_count > 1) {
// Update rate_correction_factor unless
// cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp9_update_rate_correction_factors(cpi, 1);
q = (q_high + q_low) / 2;
} else {
// Update rate_correction_factor unless
// cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp9_update_rate_correction_factors(cpi, 0);
q = vp9_regulate_q(cpi, cpi->this_frame_target);
// Special case reset for qlow for constrained quality.
// This should only trigger where there is very substantial
// undershoot on a frame and the auto cq level is above
// the user passsed in value.
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && q < q_low) {
q_low = q;
}
while (q > q_high && retries < 10) {
vp9_update_rate_correction_factors(cpi, 0);
q = vp9_regulate_q(cpi, cpi->this_frame_target);
retries++;
}
}
undershoot_seen = 1;
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
loop = q != last_q;
} else {
loop = 0;
}
}
if (cpi->is_src_frame_alt_ref)
loop = 0;
if (loop) {
loop_count++;
#if CONFIG_INTERNAL_STATS
cpi->tot_recode_hits++;
#endif
}
} while (loop);
// Special case code to reduce pulsing when key frames are forced at a
// fixed interval. Note the reconstruction error if it is the frame before
// the force key frame
if (cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0)) {
cpi->ambient_err = vp9_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx]);
}
if (cm->frame_type == KEY_FRAME)
cpi->refresh_last_frame = 1;
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
#if WRITE_RECON_BUFFER
if (cm->show_frame)
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame);
else
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame + 1000);
#endif
// Pick the loop filter level for the frame.
loopfilter_frame(cpi, cm);
#if WRITE_RECON_BUFFER
if (cm->show_frame)
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame + 2000);
else
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame + 3000);
#endif
// build the bitstream
cpi->dummy_packing = 0;
vp9_pack_bitstream(cpi, dest, size);
if (cm->seg.update_map)
update_reference_segmentation_map(cpi);
release_scaled_references(cpi);
update_reference_frames(cpi);
for (t = TX_4X4; t <= TX_32X32; t++)
full_to_model_counts(cpi->common.counts.coef[t],
cpi->coef_counts[t]);
if (!cpi->common.error_resilient_mode &&
!cpi->common.frame_parallel_decoding_mode) {
vp9_adapt_coef_probs(&cpi->common);
}
if (cpi->common.frame_type != KEY_FRAME) {
FRAME_COUNTS *counts = &cpi->common.counts;
vp9_copy(counts->y_mode, cpi->y_mode_count);
vp9_copy(counts->uv_mode, cpi->y_uv_mode_count);
vp9_copy(counts->partition, cpi->partition_count);
vp9_copy(counts->intra_inter, cpi->intra_inter_count);
vp9_copy(counts->comp_inter, cpi->comp_inter_count);
vp9_copy(counts->single_ref, cpi->single_ref_count);
vp9_copy(counts->comp_ref, cpi->comp_ref_count);
counts->mv = cpi->NMVcount;
if (!cpi->common.error_resilient_mode &&
!cpi->common.frame_parallel_decoding_mode) {
vp9_adapt_mode_probs(&cpi->common);
vp9_adapt_mv_probs(&cpi->common, cpi->mb.e_mbd.allow_high_precision_mv);
}
}
#ifdef ENTROPY_STATS
vp9_update_mode_context_stats(cpi);
#endif
/* Move storing frame_type out of the above loop since it is also
* needed in motion search besides loopfilter */
cm->last_frame_type = cm->frame_type;
// Update rate control heuristics
cpi->total_byte_count += (*size);
cpi->projected_frame_size = (*size) << 3;
if (!active_worst_qchanged)
vp9_update_rate_correction_factors(cpi, 2);
cpi->last_q[cm->frame_type] = cm->base_qindex;
// Keep record of last boosted (KF/KF/ARF) Q value.
// If the current frame is coded at a lower Q then we also update it.
// If all mbs in this group are skipped only update if the Q value is
// better than that already stored.
// This is used to help set quality in forced key frames to reduce popping
if ((cm->base_qindex < cpi->last_boosted_qindex) ||
((cpi->static_mb_pct < 100) &&
((cm->frame_type == KEY_FRAME) ||
cpi->refresh_alt_ref_frame ||
(cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) {
cpi->last_boosted_qindex = cm->base_qindex;
}
if (cm->frame_type == KEY_FRAME) {
vp9_adjust_key_frame_context(cpi);
}
// Keep a record of ambient average Q.
if (cm->frame_type != KEY_FRAME)
cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
// Keep a record from which we can calculate the average Q excluding GF updates and key frames
if (cm->frame_type != KEY_FRAME &&
!cpi->refresh_golden_frame &&
!cpi->refresh_alt_ref_frame) {
cpi->ni_frames++;
cpi->tot_q += vp9_convert_qindex_to_q(q);
cpi->avg_q = cpi->tot_q / (double)cpi->ni_frames;
// Calculate the average Q for normal inter frames (not key or GFU frames).
cpi->ni_tot_qi += q;
cpi->ni_av_qi = cpi->ni_tot_qi / cpi->ni_frames;
}
// Update the buffer level variable.
// Non-viewable frames are a special case and are treated as pure overhead.
if (!cm->show_frame)
cpi->bits_off_target -= cpi->projected_frame_size;
else
cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
// Clip the buffer level at the maximum buffer size
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size)
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
// Rolling monitors of whether we are over or underspending used to help
// regulate min and Max Q in two pass.
if (cm->frame_type != KEY_FRAME) {
cpi->rolling_target_bits =
((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
cpi->rolling_actual_bits =
((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
cpi->long_rolling_target_bits =
((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
cpi->long_rolling_actual_bits =
((cpi->long_rolling_actual_bits * 31) +
cpi->projected_frame_size + 16) / 32;
}
// Actual bits spent
cpi->total_actual_bits += cpi->projected_frame_size;
// Debug stats
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
cpi->buffer_level = cpi->bits_off_target;
// Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames
if (cm->frame_type == KEY_FRAME) {
cpi->twopass.kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
} else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
cpi->twopass.gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
}
// Update the skip mb flag probabilities based on the distribution seen
// in this frame.
// update_base_skip_probs(cpi);
#if 0 // CONFIG_INTERNAL_STATS
{
FILE *f = fopen("tmp.stt", cm->current_video_frame ? "a" : "w");
int recon_err;
vp9_clear_system_state(); // __asm emms;
recon_err = vp9_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx]);
if (cpi->twopass.total_left_stats.coded_error != 0.0)
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %10d"
"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f"
"%6d %6d %5d %5d %5d %8.2f %10d %10.3f"
"%10.3f %8d %10d %10d %10d\n",
cpi->common.current_video_frame, cpi->this_frame_target,
cpi->projected_frame_size, 0, //loop_size_estimate,
(cpi->projected_frame_size - cpi->this_frame_target),
(int)cpi->total_target_vs_actual,
(int)(cpi->oxcf.starting_buffer_level - cpi->bits_off_target),
(int)cpi->total_actual_bits,
cm->base_qindex,
vp9_convert_qindex_to_q(cm->base_qindex),
(double)vp9_dc_quant(cm->base_qindex, 0) / 4.0,
vp9_convert_qindex_to_q(cpi->active_best_quality),
vp9_convert_qindex_to_q(cpi->active_worst_quality),
cpi->avg_q,
vp9_convert_qindex_to_q(cpi->ni_av_qi),
vp9_convert_qindex_to_q(cpi->cq_target_quality),
cpi->refresh_last_frame,
cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
(int)cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
(double)cpi->twopass.bits_left /
cpi->twopass.total_left_stats.coded_error,
cpi->tot_recode_hits, recon_err, cpi->kf_boost,
cpi->kf_zeromotion_pct);
else
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %10d"
"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f"
"%5d %5d %5d %8d %8d %8.2f %10d %10.3f"
"%8d %10d %10d %10d\n",
cpi->common.current_video_frame,
cpi->this_frame_target, cpi->projected_frame_size,
0, //loop_size_estimate,
(cpi->projected_frame_size - cpi->this_frame_target),
(int)cpi->total_target_vs_actual,
(int)(cpi->oxcf.starting_buffer_level - cpi->bits_off_target),
(int)cpi->total_actual_bits,
cm->base_qindex,
vp9_convert_qindex_to_q(cm->base_qindex),
(double)vp9_dc_quant(cm->base_qindex, 0) / 4.0,
vp9_convert_qindex_to_q(cpi->active_best_quality),
vp9_convert_qindex_to_q(cpi->active_worst_quality),
cpi->avg_q,
vp9_convert_qindex_to_q(cpi->ni_av_qi),
vp9_convert_qindex_to_q(cpi->cq_target_quality),
cpi->refresh_last_frame,
cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
(int)cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
cpi->tot_recode_hits, recon_err, cpi->kf_boost,
cpi->kf_zeromotion_pct);
fclose(f);
if (0) {
FILE *fmodes = fopen("Modes.stt", "a");
int i;
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
cpi->common.current_video_frame,
cm->frame_type, cpi->refresh_golden_frame,
cpi->refresh_alt_ref_frame);
for (i = 0; i < MAX_MODES; i++)
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
fprintf(fmodes, "\n");
fclose(fmodes);
}
}
#endif
#if 0
// Debug stats for segment feature experiments.
print_seg_map(cpi);
#endif
// If this was a kf or Gf note the Q
if ((cm->frame_type == KEY_FRAME)
|| cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
cm->last_kf_gf_q = cm->base_qindex;
if (cpi->refresh_golden_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN;
if (cpi->refresh_alt_ref_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF;
if (cpi->refresh_last_frame & cpi->refresh_golden_frame)
cpi->gold_is_last = 1;
else if (cpi->refresh_last_frame ^ cpi->refresh_golden_frame)
cpi->gold_is_last = 0;
if (cpi->refresh_last_frame & cpi->refresh_alt_ref_frame)
cpi->alt_is_last = 1;
else if (cpi->refresh_last_frame ^ cpi->refresh_alt_ref_frame)
cpi->alt_is_last = 0;
if (cpi->refresh_alt_ref_frame & cpi->refresh_golden_frame)
cpi->gold_is_alt = 1;
else if (cpi->refresh_alt_ref_frame ^ cpi->refresh_golden_frame)
cpi->gold_is_alt = 0;
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
if (cpi->gold_is_last)
cpi->ref_frame_flags &= ~VP9_GOLD_FLAG;
if (cpi->alt_is_last)
cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
if (cpi->gold_is_alt)
cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
if (cpi->oxcf.play_alternate && cpi->refresh_alt_ref_frame
&& (cm->frame_type != KEY_FRAME))
// Update the alternate reference frame stats as appropriate.
update_alt_ref_frame_stats(cpi);
else
// Update the Golden frame stats as appropriate.
update_golden_frame_stats(cpi);
if (cm->frame_type == KEY_FRAME) {
// Tell the caller that the frame was coded as a key frame
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
#if CONFIG_MULTIPLE_ARF
// Reset the sequence number.
if (cpi->multi_arf_enabled) {
cpi->sequence_number = 0;
cpi->frame_coding_order_period = cpi->new_frame_coding_order_period;
cpi->new_frame_coding_order_period = -1;
}
#endif
// As this frame is a key frame the next defaults to an inter frame.
cm->frame_type = INTER_FRAME;
} else {
*frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY;
#if CONFIG_MULTIPLE_ARF
/* Increment position in the coded frame sequence. */
if (cpi->multi_arf_enabled) {
++cpi->sequence_number;
if (cpi->sequence_number >= cpi->frame_coding_order_period) {
cpi->sequence_number = 0;
cpi->frame_coding_order_period = cpi->new_frame_coding_order_period;
cpi->new_frame_coding_order_period = -1;
}
cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number];
assert(cpi->this_frame_weight >= 0);
}
#endif
}
// Clear the one shot update flags for segmentation map and mode/ref loop filter deltas.
cm->seg.update_map = 0;
cm->seg.update_data = 0;
cm->lf.mode_ref_delta_update = 0;
// keep track of the last coded dimensions
cm->last_width = cm->width;
cm->last_height = cm->height;
// reset to normal state now that we are done.
cm->last_show_frame = cm->show_frame;
if (cm->show_frame) {
// current mip will be the prev_mip for the next frame
MODE_INFO *temp = cm->prev_mip;
MODE_INFO **temp2 = cm->prev_mi_grid_base;
cm->prev_mip = cm->mip;
cm->mip = temp;
cm->prev_mi_grid_base = cm->mi_grid_base;
cm->mi_grid_base = temp2;
// update the upper left visible macroblock ptrs
cm->mi = cm->mip + cm->mode_info_stride + 1;
cm->mi_grid_visible = cm->mi_grid_base + cm->mode_info_stride + 1;
// Don't increment frame counters if this was an altref buffer
// update not a real frame
++cm->current_video_frame;
++cpi->frames_since_key;
}
// restore prev_mi
cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1;
cm->prev_mi_grid_visible = cm->prev_mi_grid_base + cm->mode_info_stride + 1;
#if 0
{
char filename[512];
FILE *recon_file;
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
recon_file = fopen(filename, "wb");
fwrite(cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]].buffer_alloc,
cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]].frame_size,
1, recon_file);
fclose(recon_file);
}
#endif
#ifdef OUTPUT_YUV_REC
vp9_write_yuv_rec_frame(cm);
#endif
}
static void Pass2Encode(VP9_COMP *cpi, unsigned long *size,
unsigned char *dest, unsigned int *frame_flags) {
cpi->enable_encode_breakout = 1;
if (!cpi->refresh_alt_ref_frame)
vp9_second_pass(cpi);
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
// vp9_print_modes_and_motion_vectors(&cpi->common, "encode.stt");
#ifdef DISABLE_RC_LONG_TERM_MEM
cpi->twopass.bits_left -= cpi->this_frame_target;
#else
cpi->twopass.bits_left -= 8 * *size;
#endif
if (!cpi->refresh_alt_ref_frame) {
double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.framerate;
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
* cpi->oxcf.two_pass_vbrmin_section / 100);
if (two_pass_min_rate < lower_bounds_min_rate)
two_pass_min_rate = lower_bounds_min_rate;
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->oxcf.framerate);
}
}
static void check_initial_width(VP9_COMP *cpi, YV12_BUFFER_CONFIG *sd) {
VP9_COMMON *cm = &cpi->common;
if (!cpi->initial_width) {
// TODO(jkoleszar): Support 1/4 subsampling?
cm->subsampling_x = (sd != NULL) && sd->uv_width < sd->y_width;
cm->subsampling_y = (sd != NULL) && sd->uv_height < sd->y_height;
alloc_raw_frame_buffers(cpi);
cpi->initial_width = cm->width;
cpi->initial_height = cm->height;
}
}
int vp9_receive_raw_frame(VP9_PTR ptr, unsigned int frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time) {
VP9_COMP *cpi = (VP9_COMP *) ptr;
struct vpx_usec_timer timer;
int res = 0;
check_initial_width(cpi, sd);
vpx_usec_timer_start(&timer);
if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags,
cpi->active_map_enabled ? cpi->active_map : NULL))
res = -1;
vpx_usec_timer_mark(&timer);
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
return res;
}
static int frame_is_reference(const VP9_COMP *cpi) {
const VP9_COMMON *cm = &cpi->common;
return cm->frame_type == KEY_FRAME ||
cpi->refresh_last_frame ||
cpi->refresh_golden_frame ||
cpi->refresh_alt_ref_frame ||
cm->refresh_frame_context ||
cm->lf.mode_ref_delta_update ||
cm->seg.update_map ||
cm->seg.update_data;
}
#if CONFIG_MULTIPLE_ARF
int is_next_frame_arf(VP9_COMP *cpi) {
// Negative entry in frame_coding_order indicates an ARF at this position.
return cpi->frame_coding_order[cpi->sequence_number + 1] < 0 ? 1 : 0;
}
#endif
int vp9_get_compressed_data(VP9_PTR ptr, unsigned int *frame_flags,
unsigned long *size, unsigned char *dest,
int64_t *time_stamp, int64_t *time_end, int flush) {
VP9_COMP *cpi = (VP9_COMP *) ptr;
VP9_COMMON *cm = &cpi->common;
struct vpx_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
int i;
// FILE *fp_out = fopen("enc_frame_type.txt", "a");
if (!cpi)
return -1;
vpx_usec_timer_start(&cmptimer);
cpi->source = NULL;
cpi->mb.e_mbd.allow_high_precision_mv = ALTREF_HIGH_PRECISION_MV;
set_mvcost(&cpi->mb);
// Should we code an alternate reference frame.
if (cpi->oxcf.play_alternate && cpi->source_alt_ref_pending) {
int frames_to_arf;
#if CONFIG_MULTIPLE_ARF
assert(!cpi->multi_arf_enabled ||
cpi->frame_coding_order[cpi->sequence_number] < 0);
if (cpi->multi_arf_enabled && (cpi->pass == 2))
frames_to_arf = (-cpi->frame_coding_order[cpi->sequence_number])
- cpi->next_frame_in_order;
else
#endif
frames_to_arf = cpi->frames_till_gf_update_due;
assert(frames_to_arf < cpi->twopass.frames_to_key);
if ((cpi->source = vp9_lookahead_peek(cpi->lookahead, frames_to_arf))) {
#if CONFIG_MULTIPLE_ARF
cpi->alt_ref_source[cpi->arf_buffered] = cpi->source;
#else
cpi->alt_ref_source = cpi->source;
#endif
if (cpi->oxcf.arnr_max_frames > 0) {
// Produce the filtered ARF frame.
// TODO(agrange) merge these two functions.
configure_arnr_filter(cpi, cm->current_video_frame + frames_to_arf,
cpi->gfu_boost);
vp9_temporal_filter_prepare(cpi, frames_to_arf);
vp9_extend_frame_borders(&cpi->alt_ref_buffer,
cm->subsampling_x, cm->subsampling_y);
force_src_buffer = &cpi->alt_ref_buffer;
}
cm->show_frame = 0;
cm->intra_only = 0;
cpi->refresh_alt_ref_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 0;
cpi->is_src_frame_alt_ref = 0;
// TODO(agrange) This needs to vary depending on where the next ARF is.
cpi->frames_till_alt_ref_frame = frames_to_arf;
#if CONFIG_MULTIPLE_ARF
if (!cpi->multi_arf_enabled)
#endif
cpi->source_alt_ref_pending = 0; // Clear Pending altf Ref flag.
}
}
if (!cpi->source) {
#if CONFIG_MULTIPLE_ARF
int i;
#endif
if ((cpi->source = vp9_lookahead_pop(cpi->lookahead, flush))) {
cm->show_frame = 1;
#if CONFIG_MULTIPLE_ARF
// Is this frame the ARF overlay.
cpi->is_src_frame_alt_ref = 0;
for (i = 0; i < cpi->arf_buffered; ++i) {
if (cpi->source == cpi->alt_ref_source[i]) {
cpi->is_src_frame_alt_ref = 1;
cpi->refresh_golden_frame = 1;
break;
}
}
#else
cpi->is_src_frame_alt_ref = cpi->alt_ref_source
&& (cpi->source == cpi->alt_ref_source);
#endif
if (cpi->is_src_frame_alt_ref) {
// Current frame is an ARF overlay frame.
#if CONFIG_MULTIPLE_ARF
cpi->alt_ref_source[i] = NULL;
#else
cpi->alt_ref_source = NULL;
#endif
// Don't refresh the last buffer for an ARF overlay frame. It will
// become the GF so preserve last as an alternative prediction option.
cpi->refresh_last_frame = 0;
}
#if CONFIG_MULTIPLE_ARF
++cpi->next_frame_in_order;
#endif
}
}
if (cpi->source) {
cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer
: &cpi->source->img;
*time_stamp = cpi->source->ts_start;
*time_end = cpi->source->ts_end;
*frame_flags = cpi->source->flags;
// fprintf(fp_out, " Frame:%d", cm->current_video_frame);
#if CONFIG_MULTIPLE_ARF
if (cpi->multi_arf_enabled) {
// fprintf(fp_out, " seq_no:%d this_frame_weight:%d",
// cpi->sequence_number, cpi->this_frame_weight);
} else {
// fprintf(fp_out, "\n");
}
#else
// fprintf(fp_out, "\n");
#endif
#if CONFIG_MULTIPLE_ARF
if ((cm->frame_type != KEY_FRAME) && (cpi->pass == 2))
cpi->source_alt_ref_pending = is_next_frame_arf(cpi);
#endif
} else {
*size = 0;
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) {
vp9_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
}
// fclose(fp_out);
return -1;
}
if (cpi->source->ts_start < cpi->first_time_stamp_ever) {
cpi->first_time_stamp_ever = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
}
// adjust frame rates based on timestamps given
if (!cpi->refresh_alt_ref_frame) {
int64_t this_duration;
int step = 0;
if (cpi->source->ts_start == cpi->first_time_stamp_ever) {
this_duration = cpi->source->ts_end - cpi->source->ts_start;
step = 1;
} else {
int64_t last_duration = cpi->last_end_time_stamp_seen
- cpi->last_time_stamp_seen;
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
// do a step update if the duration changes by 10%
if (last_duration)
step = (int)((this_duration - last_duration) * 10 / last_duration);
}
if (this_duration) {
if (step) {
vp9_new_framerate(cpi, 10000000.0 / this_duration);
} else {
// Average this frame's rate into the last second's average
// frame rate. If we haven't seen 1 second yet, then average
// over the whole interval seen.
const double interval = MIN((double)(cpi->source->ts_end
- cpi->first_time_stamp_ever), 10000000.0);
double avg_duration = 10000000.0 / cpi->oxcf.framerate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
vp9_new_framerate(cpi, 10000000.0 / avg_duration);
}
}
cpi->last_time_stamp_seen = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
}
// start with a 0 size frame
*size = 0;
// Clear down mmx registers
vp9_clear_system_state(); // __asm emms;
/* find a free buffer for the new frame, releasing the reference previously
* held.
*/
cm->fb_idx_ref_cnt[cm->new_fb_idx]--;
cm->new_fb_idx = get_free_fb(cm);
#if CONFIG_MULTIPLE_ARF
/* Set up the correct ARF frame. */
if (cpi->refresh_alt_ref_frame) {
++cpi->arf_buffered;
}
if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
(cpi->pass == 2)) {
cpi->alt_fb_idx = cpi->arf_buffer_idx[cpi->sequence_number];
}
#endif
/* Get the mapping of L/G/A to the reference buffer pool */
cm->active_ref_idx[0] = cm->ref_frame_map[cpi->lst_fb_idx];
cm->active_ref_idx[1] = cm->ref_frame_map[cpi->gld_fb_idx];
cm->active_ref_idx[2] = cm->ref_frame_map[cpi->alt_fb_idx];
#if 0 // CONFIG_MULTIPLE_ARF
if (cpi->multi_arf_enabled) {
fprintf(fp_out, " idx(%d, %d, %d, %d) active(%d, %d, %d)",
cpi->lst_fb_idx, cpi->gld_fb_idx, cpi->alt_fb_idx, cm->new_fb_idx,
cm->active_ref_idx[0], cm->active_ref_idx[1], cm->active_ref_idx[2]);
if (cpi->refresh_alt_ref_frame)
fprintf(fp_out, " type:ARF");
if (cpi->is_src_frame_alt_ref)
fprintf(fp_out, " type:OVERLAY[%d]", cpi->alt_fb_idx);
fprintf(fp_out, "\n");
}
#endif
cm->frame_type = INTER_FRAME;
cm->frame_flags = *frame_flags;
// Reset the frame pointers to the current frame size
vp9_realloc_frame_buffer(&cm->yv12_fb[cm->new_fb_idx],
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9BORDERINPIXELS);
// Calculate scaling factors for each of the 3 available references
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i)
vp9_setup_scale_factors(cm, i);
vp9_setup_interp_filters(&cpi->mb.e_mbd, DEFAULT_INTERP_FILTER, cm);
if (cpi->pass == 1) {
Pass1Encode(cpi, size, dest, frame_flags);
} else if (cpi->pass == 2) {
Pass2Encode(cpi, size, dest, frame_flags);
} else {
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
}
if (cm->refresh_frame_context)
cm->frame_contexts[cm->frame_context_idx] = cm->fc;
if (*size > 0) {
// if its a dropped frame honor the requests on subsequent frames
cpi->droppable = !frame_is_reference(cpi);
// return to normal state
cm->reset_frame_context = 0;
cm->refresh_frame_context = 1;
cpi->refresh_alt_ref_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 1;
cm->frame_type = INTER_FRAME;
}
vpx_usec_timer_mark(&cmptimer);
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame)
generate_psnr_packet(cpi);
#if CONFIG_INTERNAL_STATS
if (cpi->pass != 1) {
cpi->bytes += *size;
if (cm->show_frame) {
cpi->count++;
if (cpi->b_calculate_psnr) {
double ye, ue, ve;
double frame_psnr;
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
int y_samples = orig->y_height * orig->y_width;
int uv_samples = orig->uv_height * orig->uv_width;
int t_samples = y_samples + 2 * uv_samples;
double sq_error;
ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride,
recon->y_buffer, recon->y_stride,
orig->y_crop_width, orig->y_crop_height);
ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride,
recon->u_buffer, recon->uv_stride,
orig->uv_crop_width, orig->uv_crop_height);
ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride,
recon->v_buffer, recon->uv_stride,
orig->uv_crop_width, orig->uv_crop_height);
sq_error = ye + ue + ve;
frame_psnr = vp9_mse2psnr(t_samples, 255.0, sq_error);
cpi->total_y += vp9_mse2psnr(y_samples, 255.0, ye);
cpi->total_u += vp9_mse2psnr(uv_samples, 255.0, ue);
cpi->total_v += vp9_mse2psnr(uv_samples, 255.0, ve);
cpi->total_sq_error += sq_error;
cpi->total += frame_psnr;
{
double frame_psnr2, frame_ssim2 = 0;
double weight = 0;
#if CONFIG_VP9_POSTPROC
vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer,
cm->lf.filter_level * 10 / 6);
#endif
vp9_clear_system_state();
ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride,
pp->y_buffer, pp->y_stride,
orig->y_crop_width, orig->y_crop_height);
ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride,
pp->u_buffer, pp->uv_stride,
orig->uv_crop_width, orig->uv_crop_height);
ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride,
pp->v_buffer, pp->uv_stride,
orig->uv_crop_width, orig->uv_crop_height);
sq_error = ye + ue + ve;
frame_psnr2 = vp9_mse2psnr(t_samples, 255.0, sq_error);
cpi->totalp_y += vp9_mse2psnr(y_samples, 255.0, ye);
cpi->totalp_u += vp9_mse2psnr(uv_samples, 255.0, ue);
cpi->totalp_v += vp9_mse2psnr(uv_samples, 255.0, ve);
cpi->total_sq_error2 += sq_error;
cpi->totalp += frame_psnr2;
frame_ssim2 = vp9_calc_ssim(cpi->Source,
recon, 1, &weight);
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
frame_ssim2 = vp9_calc_ssim(cpi->Source,
&cm->post_proc_buffer, 1, &weight);
cpi->summedp_quality += frame_ssim2 * weight;
cpi->summedp_weights += weight;
#if 0
{
FILE *f = fopen("q_used.stt", "a");
fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
cpi->common.current_video_frame, y2, u2, v2,
frame_psnr2, frame_ssim2);
fclose(f);
}
#endif
}
}
if (cpi->b_calculate_ssimg) {
double y, u, v, frame_all;
frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show,
&y, &u, &v);
cpi->total_ssimg_y += y;
cpi->total_ssimg_u += u;
cpi->total_ssimg_v += v;
cpi->total_ssimg_all += frame_all;
}
}
}
#endif
// fclose(fp_out);
return 0;
}
int vp9_get_preview_raw_frame(VP9_PTR comp, YV12_BUFFER_CONFIG *dest,
vp9_ppflags_t *flags) {
VP9_COMP *cpi = (VP9_COMP *) comp;
if (!cpi->common.show_frame)
return -1;
else {
int ret;
#if CONFIG_VP9_POSTPROC
ret = vp9_post_proc_frame(&cpi->common, dest, flags);
#else
if (cpi->common.frame_to_show) {
*dest = *cpi->common.frame_to_show;
dest->y_width = cpi->common.width;
dest->y_height = cpi->common.height;
dest->uv_height = cpi->common.height / 2;
ret = 0;
} else {
ret = -1;
}
#endif // !CONFIG_VP9_POSTPROC
vp9_clear_system_state();
return ret;
}
}
int vp9_set_roimap(VP9_PTR comp, unsigned char *map, unsigned int rows,
unsigned int cols, int delta_q[MAX_SEGMENTS],
int delta_lf[MAX_SEGMENTS],
unsigned int threshold[MAX_SEGMENTS]) {
VP9_COMP *cpi = (VP9_COMP *) comp;
signed char feature_data[SEG_LVL_MAX][MAX_SEGMENTS];
struct segmentation *seg = &cpi->common.seg;
int i;
if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols)
return -1;
if (!map) {
vp9_disable_segmentation((VP9_PTR)cpi);
return 0;
}
// Set the segmentation Map
vp9_set_segmentation_map((VP9_PTR)cpi, map);
// Activate segmentation.
vp9_enable_segmentation((VP9_PTR)cpi);
// Set up the quant, LF and breakout threshold segment data
for (i = 0; i < MAX_SEGMENTS; i++) {
feature_data[SEG_LVL_ALT_Q][i] = delta_q[i];
feature_data[SEG_LVL_ALT_LF][i] = delta_lf[i];
cpi->segment_encode_breakout[i] = threshold[i];
}
// Enable the loop and quant changes in the feature mask
for (i = 0; i < MAX_SEGMENTS; i++) {
if (delta_q[i])
vp9_enable_segfeature(seg, i, SEG_LVL_ALT_Q);
else
vp9_disable_segfeature(seg, i, SEG_LVL_ALT_Q);
if (delta_lf[i])
vp9_enable_segfeature(seg, i, SEG_LVL_ALT_LF);
else
vp9_disable_segfeature(seg, i, SEG_LVL_ALT_LF);
}
// Initialize the feature data structure
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
vp9_set_segment_data((VP9_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA);
return 0;
}
int vp9_set_active_map(VP9_PTR comp, unsigned char *map,
unsigned int rows, unsigned int cols) {
VP9_COMP *cpi = (VP9_COMP *) comp;
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
if (map) {
vpx_memcpy(cpi->active_map, map, rows * cols);
cpi->active_map_enabled = 1;
} else {
cpi->active_map_enabled = 0;
}
return 0;
} else {
// cpi->active_map_enabled = 0;
return -1;
}
}
int vp9_set_internal_size(VP9_PTR comp,
VPX_SCALING horiz_mode, VPX_SCALING vert_mode) {
VP9_COMP *cpi = (VP9_COMP *) comp;
VP9_COMMON *cm = &cpi->common;
int hr = 0, hs = 0, vr = 0, vs = 0;
if (horiz_mode > ONETWO || vert_mode > ONETWO)
return -1;
Scale2Ratio(horiz_mode, &hr, &hs);
Scale2Ratio(vert_mode, &vr, &vs);
// always go to the next whole number
cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs;
cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs;
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
update_frame_size(cpi);
return 0;
}
int vp9_set_size_literal(VP9_PTR comp, unsigned int width,
unsigned int height) {
VP9_COMP *cpi = (VP9_COMP *)comp;
VP9_COMMON *cm = &cpi->common;
check_initial_width(cpi, NULL);
if (width) {
cm->width = width;
if (cm->width * 5 < cpi->initial_width) {
cm->width = cpi->initial_width / 5 + 1;
printf("Warning: Desired width too small, changed to %d \n", cm->width);
}
if (cm->width > cpi->initial_width) {
cm->width = cpi->initial_width;
printf("Warning: Desired width too large, changed to %d \n", cm->width);
}
}
if (height) {
cm->height = height;
if (cm->height * 5 < cpi->initial_height) {
cm->height = cpi->initial_height / 5 + 1;
printf("Warning: Desired height too small, changed to %d \n", cm->height);
}
if (cm->height > cpi->initial_height) {
cm->height = cpi->initial_height;
printf("Warning: Desired height too large, changed to %d \n", cm->height);
}
}
assert(cm->width <= cpi->initial_width);
assert(cm->height <= cpi->initial_height);
update_frame_size(cpi);
return 0;
}
int vp9_switch_layer(VP9_PTR comp, int layer) {
VP9_COMP *cpi = (VP9_COMP *)comp;
if (cpi->use_svc) {
cpi->current_layer = layer;
// Use buffer i for layer i LST
cpi->lst_fb_idx = layer;
// Use buffer i-1 for layer i Alt (Inter-layer prediction)
if (layer != 0) cpi->alt_fb_idx = layer - 1;
// Use the rest for Golden
if (layer < 2 * cpi->number_spatial_layers - NUM_REF_FRAMES)
cpi->gld_fb_idx = cpi->lst_fb_idx;
else
cpi->gld_fb_idx = 2 * cpi->number_spatial_layers - 1 - layer;
printf("Switching to layer %d:\n", layer);
printf("Using references: LST/GLD/ALT [%d|%d|%d]\n", cpi->lst_fb_idx,
cpi->gld_fb_idx, cpi->alt_fb_idx);
} else {
printf("Switching layer not supported. Enable SVC first \n");
}
return 0;
}
void vp9_set_svc(VP9_PTR comp, int use_svc) {
VP9_COMP *cpi = (VP9_COMP *)comp;
cpi->use_svc = use_svc;
if (cpi->use_svc) printf("Enabled SVC encoder \n");
return;
}
int vp9_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest) {
int i, j;
int total = 0;
uint8_t *src = source->y_buffer;
uint8_t *dst = dest->y_buffer;
// Loop through the Y plane raw and reconstruction data summing
// (square differences)
for (i = 0; i < source->y_height; i += 16) {
for (j = 0; j < source->y_width; j += 16) {
unsigned int sse;
total += vp9_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride,
&sse);
}
src += 16 * source->y_stride;
dst += 16 * dest->y_stride;
}
return total;
}
int vp9_get_quantizer(VP9_PTR c) {
return ((VP9_COMP *)c)->common.base_qindex;
}