1158 lines
35 KiB
C
1158 lines
35 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#ifndef VP9_COMMON_VP9_BLOCKD_H_
|
|
#define VP9_COMMON_VP9_BLOCKD_H_
|
|
|
|
#include "./vpx_config.h"
|
|
#include "vpx_scale/yv12config.h"
|
|
#include "vp9/common/vp9_convolve.h"
|
|
#include "vp9/common/vp9_mv.h"
|
|
#include "vp9/common/vp9_treecoder.h"
|
|
#include "vpx_ports/mem.h"
|
|
#include "vp9/common/vp9_common.h"
|
|
#include "vp9/common/vp9_enums.h"
|
|
|
|
// #define MODE_STATS
|
|
|
|
#define MAX_MB_SEGMENTS 8
|
|
#define MB_SEG_TREE_PROBS (MAX_MB_SEGMENTS-1)
|
|
#define PREDICTION_PROBS 3
|
|
|
|
#define DEFAULT_PRED_PROB_0 120
|
|
#define DEFAULT_PRED_PROB_1 80
|
|
#define DEFAULT_PRED_PROB_2 40
|
|
|
|
#define MBSKIP_CONTEXTS 3
|
|
|
|
#define MAX_REF_LF_DELTAS 4
|
|
#define MAX_MODE_LF_DELTAS 4
|
|
|
|
/* Segment Feature Masks */
|
|
#define SEGMENT_DELTADATA 0
|
|
#define SEGMENT_ABSDATA 1
|
|
#define MAX_MV_REFS 9
|
|
#define MAX_MV_REF_CANDIDATES 2
|
|
|
|
typedef enum {
|
|
PLANE_TYPE_Y_WITH_DC,
|
|
PLANE_TYPE_UV,
|
|
} PLANE_TYPE;
|
|
|
|
typedef char ENTROPY_CONTEXT;
|
|
|
|
typedef char PARTITION_CONTEXT;
|
|
|
|
static INLINE int combine_entropy_contexts(ENTROPY_CONTEXT a,
|
|
ENTROPY_CONTEXT b) {
|
|
return (a != 0) + (b != 0);
|
|
}
|
|
|
|
typedef enum {
|
|
KEY_FRAME = 0,
|
|
INTER_FRAME = 1
|
|
} FRAME_TYPE;
|
|
|
|
typedef enum {
|
|
#if CONFIG_ENABLE_6TAP
|
|
SIXTAP,
|
|
#endif
|
|
EIGHTTAP_SMOOTH,
|
|
EIGHTTAP,
|
|
EIGHTTAP_SHARP,
|
|
BILINEAR,
|
|
SWITCHABLE /* should be the last one */
|
|
} INTERPOLATIONFILTERTYPE;
|
|
|
|
typedef enum {
|
|
DC_PRED, /* average of above and left pixels */
|
|
V_PRED, /* vertical prediction */
|
|
H_PRED, /* horizontal prediction */
|
|
D45_PRED, /* Directional 45 deg prediction [anti-clockwise from 0 deg hor] */
|
|
D135_PRED, /* Directional 135 deg prediction [anti-clockwise from 0 deg hor] */
|
|
D117_PRED, /* Directional 112 deg prediction [anti-clockwise from 0 deg hor] */
|
|
D153_PRED, /* Directional 157 deg prediction [anti-clockwise from 0 deg hor] */
|
|
D27_PRED, /* Directional 22 deg prediction [anti-clockwise from 0 deg hor] */
|
|
D63_PRED, /* Directional 67 deg prediction [anti-clockwise from 0 deg hor] */
|
|
TM_PRED, /* Truemotion prediction */
|
|
#if !CONFIG_SB8X8
|
|
I8X8_PRED, /* 8x8 based prediction, each 8x8 has its own mode */
|
|
#endif
|
|
I4X4_PRED, /* 4x4 based prediction, each 4x4 has its own mode */
|
|
NEARESTMV,
|
|
NEARMV,
|
|
ZEROMV,
|
|
NEWMV,
|
|
SPLITMV,
|
|
MB_MODE_COUNT
|
|
} MB_PREDICTION_MODE;
|
|
|
|
static INLINE int is_inter_mode(MB_PREDICTION_MODE mode) {
|
|
return mode >= NEARESTMV && mode <= SPLITMV;
|
|
}
|
|
|
|
|
|
// Segment level features.
|
|
typedef enum {
|
|
SEG_LVL_ALT_Q = 0, // Use alternate Quantizer ....
|
|
SEG_LVL_ALT_LF = 1, // Use alternate loop filter value...
|
|
SEG_LVL_REF_FRAME = 2, // Optional Segment reference frame
|
|
SEG_LVL_SKIP = 3, // Optional Segment (0,0) + skip mode
|
|
SEG_LVL_MAX = 4 // Number of MB level features supported
|
|
} SEG_LVL_FEATURES;
|
|
|
|
// Segment level features.
|
|
typedef enum {
|
|
TX_4X4 = 0, // 4x4 dct transform
|
|
TX_8X8 = 1, // 8x8 dct transform
|
|
TX_16X16 = 2, // 16x16 dct transform
|
|
TX_SIZE_MAX_MB = 3, // Number of different transforms available
|
|
TX_32X32 = TX_SIZE_MAX_MB, // 32x32 dct transform
|
|
TX_SIZE_MAX_SB, // Number of transforms available to SBs
|
|
} TX_SIZE;
|
|
|
|
typedef enum {
|
|
DCT_DCT = 0, // DCT in both horizontal and vertical
|
|
ADST_DCT = 1, // ADST in vertical, DCT in horizontal
|
|
DCT_ADST = 2, // DCT in vertical, ADST in horizontal
|
|
ADST_ADST = 3 // ADST in both directions
|
|
} TX_TYPE;
|
|
|
|
#define VP9_YMODES (I4X4_PRED + 1)
|
|
#define VP9_UV_MODES (TM_PRED + 1)
|
|
#if !CONFIG_SB8X8
|
|
#define VP9_I8X8_MODES (TM_PRED + 1)
|
|
#endif
|
|
#define VP9_I32X32_MODES (TM_PRED + 1)
|
|
|
|
#define VP9_MVREFS (1 + SPLITMV - NEARESTMV)
|
|
|
|
#define WHT_UPSCALE_FACTOR 2
|
|
|
|
typedef enum {
|
|
B_DC_PRED, /* average of above and left pixels */
|
|
B_V_PRED, /* vertical prediction */
|
|
B_H_PRED, /* horizontal prediction */
|
|
B_D45_PRED,
|
|
B_D135_PRED,
|
|
B_D117_PRED,
|
|
B_D153_PRED,
|
|
B_D27_PRED,
|
|
B_D63_PRED,
|
|
B_TM_PRED,
|
|
#if CONFIG_NEWBINTRAMODES
|
|
B_CONTEXT_PRED,
|
|
#endif
|
|
|
|
LEFT4X4,
|
|
ABOVE4X4,
|
|
ZERO4X4,
|
|
NEW4X4,
|
|
|
|
B_MODE_COUNT
|
|
} B_PREDICTION_MODE;
|
|
|
|
#define VP9_BINTRAMODES (LEFT4X4)
|
|
#define VP9_SUBMVREFS (1 + NEW4X4 - LEFT4X4)
|
|
|
|
#if CONFIG_NEWBINTRAMODES
|
|
/* The number of I4X4_PRED intra modes that are replaced by B_CONTEXT_PRED */
|
|
#define CONTEXT_PRED_REPLACEMENTS 0
|
|
#define VP9_KF_BINTRAMODES (VP9_BINTRAMODES - 1)
|
|
#define VP9_NKF_BINTRAMODES (VP9_BINTRAMODES - CONTEXT_PRED_REPLACEMENTS)
|
|
#else
|
|
#define VP9_KF_BINTRAMODES (VP9_BINTRAMODES) /* 10 */
|
|
#define VP9_NKF_BINTRAMODES (VP9_BINTRAMODES) /* 10 */
|
|
#endif
|
|
|
|
#if !CONFIG_SB8X8
|
|
typedef enum {
|
|
PARTITIONING_16X8 = 0,
|
|
PARTITIONING_8X16,
|
|
PARTITIONING_8X8,
|
|
PARTITIONING_4X4,
|
|
NB_PARTITIONINGS,
|
|
} SPLITMV_PARTITIONING_TYPE;
|
|
#endif
|
|
|
|
/* For keyframes, intra block modes are predicted by the (already decoded)
|
|
modes for the Y blocks to the left and above us; for interframes, there
|
|
is a single probability table. */
|
|
|
|
union b_mode_info {
|
|
struct {
|
|
B_PREDICTION_MODE first;
|
|
#if CONFIG_NEWBINTRAMODES
|
|
B_PREDICTION_MODE context;
|
|
#endif
|
|
} as_mode;
|
|
int_mv as_mv[2]; // first, second inter predictor motion vectors
|
|
};
|
|
|
|
typedef enum {
|
|
NONE = -1,
|
|
INTRA_FRAME = 0,
|
|
LAST_FRAME = 1,
|
|
GOLDEN_FRAME = 2,
|
|
ALTREF_FRAME = 3,
|
|
MAX_REF_FRAMES = 4
|
|
} MV_REFERENCE_FRAME;
|
|
|
|
static INLINE int b_width_log2(BLOCK_SIZE_TYPE sb_type) {
|
|
switch (sb_type) {
|
|
case BLOCK_SIZE_AB4X4: return 0;
|
|
#if CONFIG_SB8X8
|
|
case BLOCK_SIZE_SB8X8:
|
|
case BLOCK_SIZE_SB8X16: return 1;
|
|
case BLOCK_SIZE_SB16X8:
|
|
#endif
|
|
case BLOCK_SIZE_MB16X16:
|
|
case BLOCK_SIZE_SB16X32: return 2;
|
|
case BLOCK_SIZE_SB32X16:
|
|
case BLOCK_SIZE_SB32X32:
|
|
case BLOCK_SIZE_SB32X64: return 3;
|
|
case BLOCK_SIZE_SB64X32:
|
|
case BLOCK_SIZE_SB64X64: return 4;
|
|
default: assert(0);
|
|
}
|
|
}
|
|
|
|
static INLINE int b_height_log2(BLOCK_SIZE_TYPE sb_type) {
|
|
switch (sb_type) {
|
|
case BLOCK_SIZE_AB4X4: return 0;
|
|
#if CONFIG_SB8X8
|
|
case BLOCK_SIZE_SB8X8:
|
|
case BLOCK_SIZE_SB16X8: return 1;
|
|
case BLOCK_SIZE_SB8X16:
|
|
#endif
|
|
case BLOCK_SIZE_MB16X16:
|
|
case BLOCK_SIZE_SB32X16: return 2;
|
|
case BLOCK_SIZE_SB16X32:
|
|
case BLOCK_SIZE_SB32X32:
|
|
case BLOCK_SIZE_SB64X32: return 3;
|
|
case BLOCK_SIZE_SB32X64:
|
|
case BLOCK_SIZE_SB64X64: return 4;
|
|
default: assert(0);
|
|
}
|
|
}
|
|
|
|
static INLINE int mi_width_log2(BLOCK_SIZE_TYPE sb_type) {
|
|
#if CONFIG_SB8X8
|
|
int a = b_width_log2(sb_type) - 1;
|
|
#else
|
|
int a = b_width_log2(sb_type) - 2;
|
|
#endif
|
|
assert(a >= 0);
|
|
return a;
|
|
}
|
|
|
|
static INLINE int mi_height_log2(BLOCK_SIZE_TYPE sb_type) {
|
|
#if CONFIG_SB8X8
|
|
int a = b_height_log2(sb_type) - 1;
|
|
#else
|
|
int a = b_height_log2(sb_type) - 2;
|
|
#endif
|
|
assert(a >= 0);
|
|
return a;
|
|
}
|
|
|
|
typedef struct {
|
|
MB_PREDICTION_MODE mode, uv_mode;
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
MB_PREDICTION_MODE interintra_mode, interintra_uv_mode;
|
|
#endif
|
|
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
|
|
TX_SIZE txfm_size;
|
|
int_mv mv[2]; // for each reference frame used
|
|
int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES];
|
|
int_mv best_mv, best_second_mv;
|
|
|
|
int mb_mode_context[MAX_REF_FRAMES];
|
|
|
|
#if !CONFIG_SB8X8
|
|
SPLITMV_PARTITIONING_TYPE partitioning;
|
|
#endif
|
|
unsigned char mb_skip_coeff; /* does this mb has coefficients at all, 1=no coefficients, 0=need decode tokens */
|
|
unsigned char need_to_clamp_mvs;
|
|
unsigned char need_to_clamp_secondmv;
|
|
unsigned char segment_id; // Segment id for current frame
|
|
|
|
// Flags used for prediction status of various bistream signals
|
|
unsigned char seg_id_predicted;
|
|
unsigned char ref_predicted;
|
|
|
|
// Indicates if the mb is part of the image (1) vs border (0)
|
|
// This can be useful in determining whether the MB provides
|
|
// a valid predictor
|
|
unsigned char mb_in_image;
|
|
|
|
INTERPOLATIONFILTERTYPE interp_filter;
|
|
|
|
BLOCK_SIZE_TYPE sb_type;
|
|
} MB_MODE_INFO;
|
|
|
|
typedef struct {
|
|
MB_MODE_INFO mbmi;
|
|
union b_mode_info bmi[16 >> (CONFIG_SB8X8 * 2)];
|
|
} MODE_INFO;
|
|
|
|
struct scale_factors {
|
|
int x_num;
|
|
int x_den;
|
|
int x_offset_q4;
|
|
int x_step_q4;
|
|
int y_num;
|
|
int y_den;
|
|
int y_offset_q4;
|
|
int y_step_q4;
|
|
|
|
int (*scale_value_x)(int val, const struct scale_factors *scale);
|
|
int (*scale_value_y)(int val, const struct scale_factors *scale);
|
|
void (*set_scaled_offsets)(struct scale_factors *scale, int row, int col);
|
|
int_mv32 (*scale_motion_vector_q3_to_q4)(const int_mv *src_mv,
|
|
const struct scale_factors *scale);
|
|
int32_t (*scale_motion_vector_component_q4)(int mv_q4,
|
|
int num,
|
|
int den,
|
|
int offset_q4);
|
|
|
|
convolve_fn_t predict[2][2][2]; // horiz, vert, avg
|
|
};
|
|
|
|
enum { MAX_MB_PLANE = 3 };
|
|
|
|
struct buf_2d {
|
|
uint8_t *buf;
|
|
int stride;
|
|
};
|
|
|
|
struct macroblockd_plane {
|
|
DECLARE_ALIGNED(16, int16_t, qcoeff[64 * 64]);
|
|
DECLARE_ALIGNED(16, int16_t, dqcoeff[64 * 64]);
|
|
DECLARE_ALIGNED(16, uint16_t, eobs[256]);
|
|
DECLARE_ALIGNED(16, int16_t, diff[64 * 64]);
|
|
PLANE_TYPE plane_type;
|
|
int subsampling_x;
|
|
int subsampling_y;
|
|
struct buf_2d dst;
|
|
struct buf_2d pre[2];
|
|
int16_t *dequant;
|
|
ENTROPY_CONTEXT *above_context;
|
|
ENTROPY_CONTEXT *left_context;
|
|
};
|
|
|
|
#define BLOCK_OFFSET(x, i, n) ((x) + (i) * (n))
|
|
|
|
#define MB_SUBBLOCK_FIELD(x, field, i) (\
|
|
((i) < 16) ? BLOCK_OFFSET((x)->plane[0].field, (i), 16) : \
|
|
((i) < 20) ? BLOCK_OFFSET((x)->plane[1].field, ((i) - 16), 16) : \
|
|
BLOCK_OFFSET((x)->plane[2].field, ((i) - 20), 16))
|
|
|
|
typedef struct macroblockd {
|
|
struct macroblockd_plane plane[MAX_MB_PLANE];
|
|
|
|
struct scale_factors scale_factor[2];
|
|
struct scale_factors scale_factor_uv[2];
|
|
|
|
MODE_INFO *prev_mode_info_context;
|
|
MODE_INFO *mode_info_context;
|
|
int mode_info_stride;
|
|
|
|
FRAME_TYPE frame_type;
|
|
|
|
int up_available;
|
|
int left_available;
|
|
int right_available;
|
|
|
|
// partition contexts
|
|
PARTITION_CONTEXT *above_seg_context;
|
|
PARTITION_CONTEXT *left_seg_context;
|
|
|
|
/* 0 (disable) 1 (enable) segmentation */
|
|
unsigned char segmentation_enabled;
|
|
|
|
/* 0 (do not update) 1 (update) the macroblock segmentation map. */
|
|
unsigned char update_mb_segmentation_map;
|
|
|
|
#if CONFIG_IMPLICIT_SEGMENTATION
|
|
unsigned char allow_implicit_segment_update;
|
|
#endif
|
|
|
|
/* 0 (do not update) 1 (update) the macroblock segmentation feature data. */
|
|
unsigned char update_mb_segmentation_data;
|
|
|
|
/* 0 (do not update) 1 (update) the macroblock segmentation feature data. */
|
|
unsigned char mb_segment_abs_delta;
|
|
|
|
/* Per frame flags that define which MB level features (such as quantizer or loop filter level) */
|
|
/* are enabled and when enabled the proabilities used to decode the per MB flags in MB_MODE_INFO */
|
|
|
|
// Probability Tree used to code Segment number
|
|
vp9_prob mb_segment_tree_probs[MB_SEG_TREE_PROBS];
|
|
|
|
// Segment features
|
|
signed char segment_feature_data[MAX_MB_SEGMENTS][SEG_LVL_MAX];
|
|
unsigned int segment_feature_mask[MAX_MB_SEGMENTS];
|
|
|
|
/* mode_based Loop filter adjustment */
|
|
unsigned char mode_ref_lf_delta_enabled;
|
|
unsigned char mode_ref_lf_delta_update;
|
|
|
|
/* Delta values have the range +/- MAX_LOOP_FILTER */
|
|
/* 0 = Intra, Last, GF, ARF */
|
|
signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS];
|
|
/* 0 = Intra, Last, GF, ARF */
|
|
signed char ref_lf_deltas[MAX_REF_LF_DELTAS];
|
|
/* 0 = I4X4_PRED, ZERO_MV, MV, SPLIT */
|
|
signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS];
|
|
/* 0 = I4X4_PRED, ZERO_MV, MV, SPLIT */
|
|
signed char mode_lf_deltas[MAX_MODE_LF_DELTAS];
|
|
|
|
/* Distance of MB away from frame edges */
|
|
int mb_to_left_edge;
|
|
int mb_to_right_edge;
|
|
int mb_to_top_edge;
|
|
int mb_to_bottom_edge;
|
|
|
|
unsigned int frames_since_golden;
|
|
unsigned int frames_till_alt_ref_frame;
|
|
|
|
int lossless;
|
|
/* Inverse transform function pointers. */
|
|
void (*inv_txm4x4_1)(int16_t *input, int16_t *output, int pitch);
|
|
void (*inv_txm4x4)(int16_t *input, int16_t *output, int pitch);
|
|
void (*itxm_add)(int16_t *input, uint8_t *dest, int stride, int eob);
|
|
void (*itxm_add_y_block)(int16_t *q, uint8_t *dst, int stride,
|
|
struct macroblockd *xd);
|
|
void (*itxm_add_uv_block)(int16_t *q, uint8_t *dst, int stride,
|
|
uint16_t *eobs);
|
|
|
|
struct subpix_fn_table subpix;
|
|
|
|
int allow_high_precision_mv;
|
|
|
|
int corrupted;
|
|
|
|
int sb_index; // index of 32x32 block inside the 64x64 block
|
|
int mb_index; // index of 16x16 block inside the 32x32 block
|
|
#if CONFIG_SB8X8
|
|
int b_index; // index of 8x8 block inside the 16x16 block
|
|
#endif
|
|
int q_index;
|
|
|
|
} MACROBLOCKD;
|
|
|
|
static INLINE void update_partition_context(MACROBLOCKD *xd,
|
|
BLOCK_SIZE_TYPE sb_type,
|
|
BLOCK_SIZE_TYPE sb_size) {
|
|
int bsl = mi_width_log2(sb_size), bs;
|
|
int bwl = mi_width_log2(sb_type);
|
|
int bhl = mi_height_log2(sb_type);
|
|
int boffset = mi_width_log2(BLOCK_SIZE_SB64X64) - bsl;
|
|
int i;
|
|
// skip macroblock partition
|
|
if (bsl == 0)
|
|
return;
|
|
|
|
#if CONFIG_SB8X8
|
|
bs = 1 << (bsl - 1);
|
|
#else
|
|
bs = 1 << bsl;
|
|
#endif
|
|
|
|
// update the partition context at the end notes. set partition bits
|
|
// of block sizes larger than the current one to be one, and partition
|
|
// bits of smaller block sizes to be zero.
|
|
if ((bwl == bsl) && (bhl == bsl)) {
|
|
for (i = 0; i < bs; i++)
|
|
xd->left_seg_context[i] = ~(0xf << boffset);
|
|
for (i = 0; i < bs; i++)
|
|
xd->above_seg_context[i] = ~(0xf << boffset);
|
|
} else if ((bwl == bsl) && (bhl < bsl)) {
|
|
for (i = 0; i < bs; i++)
|
|
xd->left_seg_context[i] = ~(0xe << boffset);
|
|
for (i = 0; i < bs; i++)
|
|
xd->above_seg_context[i] = ~(0xf << boffset);
|
|
} else if ((bwl < bsl) && (bhl == bsl)) {
|
|
for (i = 0; i < bs; i++)
|
|
xd->left_seg_context[i] = ~(0xf << boffset);
|
|
for (i = 0; i < bs; i++)
|
|
xd->above_seg_context[i] = ~(0xe << boffset);
|
|
} else if ((bwl < bsl) && (bhl < bsl)) {
|
|
for (i = 0; i < bs; i++)
|
|
xd->left_seg_context[i] = ~(0xe << boffset);
|
|
for (i = 0; i < bs; i++)
|
|
xd->above_seg_context[i] = ~(0xe << boffset);
|
|
} else {
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
static INLINE int partition_plane_context(MACROBLOCKD *xd,
|
|
BLOCK_SIZE_TYPE sb_type) {
|
|
int bsl = mi_width_log2(sb_type), bs;
|
|
int above = 0, left = 0, i;
|
|
int boffset = mi_width_log2(BLOCK_SIZE_SB64X64) - bsl;
|
|
|
|
#if CONFIG_SB8X8
|
|
bs = 1 << (bsl - 1);
|
|
#else
|
|
bs = 1 << bsl;
|
|
#endif
|
|
|
|
assert(mi_width_log2(sb_type) == mi_height_log2(sb_type));
|
|
assert(bsl >= 0);
|
|
assert(boffset >= 0);
|
|
|
|
#if CONFIG_SB8X8
|
|
bs = 1 << (bsl - 1);
|
|
#else
|
|
bs = 1 << bsl;
|
|
#endif
|
|
|
|
for (i = 0; i < bs; i++)
|
|
above |= (xd->above_seg_context[i] & (1 << boffset));
|
|
for (i = 0; i < bs; i++)
|
|
left |= (xd->left_seg_context[i] & (1 << boffset));
|
|
|
|
above = (above > 0);
|
|
left = (left > 0);
|
|
|
|
return (left * 2 + above) + (bsl - 1) * PARTITION_PLOFFSET;
|
|
}
|
|
|
|
static BLOCK_SIZE_TYPE get_subsize(BLOCK_SIZE_TYPE bsize,
|
|
PARTITION_TYPE partition) {
|
|
BLOCK_SIZE_TYPE subsize;
|
|
switch (partition) {
|
|
case PARTITION_NONE:
|
|
subsize = bsize;
|
|
break;
|
|
case PARTITION_HORZ:
|
|
if (bsize == BLOCK_SIZE_SB64X64)
|
|
subsize = BLOCK_SIZE_SB64X32;
|
|
else if (bsize == BLOCK_SIZE_SB32X32)
|
|
subsize = BLOCK_SIZE_SB32X16;
|
|
#if CONFIG_SB8X8
|
|
else if (bsize == BLOCK_SIZE_MB16X16)
|
|
subsize = BLOCK_SIZE_SB16X8;
|
|
#endif
|
|
else
|
|
assert(0);
|
|
break;
|
|
case PARTITION_VERT:
|
|
if (bsize == BLOCK_SIZE_SB64X64)
|
|
subsize = BLOCK_SIZE_SB32X64;
|
|
else if (bsize == BLOCK_SIZE_SB32X32)
|
|
subsize = BLOCK_SIZE_SB16X32;
|
|
#if CONFIG_SB8X8
|
|
else if (bsize == BLOCK_SIZE_MB16X16)
|
|
subsize = BLOCK_SIZE_SB8X16;
|
|
#endif
|
|
else
|
|
assert(0);
|
|
break;
|
|
case PARTITION_SPLIT:
|
|
if (bsize == BLOCK_SIZE_SB64X64)
|
|
subsize = BLOCK_SIZE_SB32X32;
|
|
else if (bsize == BLOCK_SIZE_SB32X32)
|
|
subsize = BLOCK_SIZE_MB16X16;
|
|
#if CONFIG_SB8X8
|
|
else if (bsize == BLOCK_SIZE_MB16X16)
|
|
subsize = BLOCK_SIZE_SB8X8;
|
|
#endif
|
|
else
|
|
assert(0);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
return subsize;
|
|
}
|
|
|
|
#define ACTIVE_HT 110 // quantization stepsize threshold
|
|
|
|
#define ACTIVE_HT8 300
|
|
|
|
#define ACTIVE_HT16 300
|
|
|
|
// convert MB_PREDICTION_MODE to B_PREDICTION_MODE
|
|
static B_PREDICTION_MODE pred_mode_conv(MB_PREDICTION_MODE mode) {
|
|
switch (mode) {
|
|
case DC_PRED: return B_DC_PRED;
|
|
case V_PRED: return B_V_PRED;
|
|
case H_PRED: return B_H_PRED;
|
|
case TM_PRED: return B_TM_PRED;
|
|
case D45_PRED: return B_D45_PRED;
|
|
case D135_PRED: return B_D135_PRED;
|
|
case D117_PRED: return B_D117_PRED;
|
|
case D153_PRED: return B_D153_PRED;
|
|
case D27_PRED: return B_D27_PRED;
|
|
case D63_PRED: return B_D63_PRED;
|
|
default:
|
|
assert(0);
|
|
return B_MODE_COUNT; // Dummy value
|
|
}
|
|
}
|
|
|
|
// transform mapping
|
|
static TX_TYPE txfm_map(B_PREDICTION_MODE bmode) {
|
|
switch (bmode) {
|
|
case B_TM_PRED :
|
|
case B_D135_PRED :
|
|
return ADST_ADST;
|
|
|
|
case B_V_PRED :
|
|
case B_D117_PRED :
|
|
return ADST_DCT;
|
|
|
|
case B_H_PRED :
|
|
case B_D153_PRED :
|
|
case B_D27_PRED :
|
|
return DCT_ADST;
|
|
|
|
#if CONFIG_NEWBINTRAMODES
|
|
case B_CONTEXT_PRED:
|
|
assert(0);
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
return DCT_DCT;
|
|
}
|
|
}
|
|
|
|
#define USE_ADST_FOR_I16X16_8X8 1
|
|
#define USE_ADST_FOR_I16X16_4X4 1
|
|
#define USE_ADST_FOR_I8X8_4X4 1
|
|
#define USE_ADST_PERIPHERY_ONLY 1
|
|
#define USE_ADST_FOR_SB 1
|
|
#define USE_ADST_FOR_REMOTE_EDGE 0
|
|
|
|
static TX_TYPE get_tx_type_4x4(const MACROBLOCKD *xd, int ib) {
|
|
// TODO(debargha): explore different patterns for ADST usage when blocksize
|
|
// is smaller than the prediction size
|
|
TX_TYPE tx_type = DCT_DCT;
|
|
const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
|
|
const int wb = b_width_log2(sb_type), hb = b_height_log2(sb_type);
|
|
#if !USE_ADST_FOR_SB
|
|
if (sb_type > BLOCK_SIZE_MB16X16)
|
|
return tx_type;
|
|
#endif
|
|
if (ib >= (1 << (wb + hb))) // no chroma adst
|
|
return tx_type;
|
|
if (xd->lossless)
|
|
return DCT_DCT;
|
|
if (xd->mode_info_context->mbmi.mode == I4X4_PRED &&
|
|
xd->q_index < ACTIVE_HT) {
|
|
tx_type = txfm_map(
|
|
#if CONFIG_NEWBINTRAMODES
|
|
xd->mode_info_context->bmi[ib].as_mode.first == B_CONTEXT_PRED ?
|
|
xd->mode_info_context->bmi[ib].as_mode.context :
|
|
#endif
|
|
xd->mode_info_context->bmi[ib].as_mode.first);
|
|
#if !CONFIG_SB8X8
|
|
} else if (xd->mode_info_context->mbmi.mode == I8X8_PRED &&
|
|
xd->q_index < ACTIVE_HT) {
|
|
const int ic = (ib & 10);
|
|
#if USE_ADST_FOR_I8X8_4X4
|
|
#if USE_ADST_PERIPHERY_ONLY
|
|
// Use ADST for periphery blocks only
|
|
const int inner = ib & 5;
|
|
tx_type = txfm_map(pred_mode_conv(
|
|
(MB_PREDICTION_MODE)xd->mode_info_context->bmi[ic].as_mode.first));
|
|
|
|
#if USE_ADST_FOR_REMOTE_EDGE
|
|
if (inner == 5)
|
|
tx_type = DCT_DCT;
|
|
#else
|
|
if (inner == 1) {
|
|
if (tx_type == ADST_ADST) tx_type = ADST_DCT;
|
|
else if (tx_type == DCT_ADST) tx_type = DCT_DCT;
|
|
} else if (inner == 4) {
|
|
if (tx_type == ADST_ADST) tx_type = DCT_ADST;
|
|
else if (tx_type == ADST_DCT) tx_type = DCT_DCT;
|
|
} else if (inner == 5) {
|
|
tx_type = DCT_DCT;
|
|
}
|
|
#endif
|
|
#else
|
|
// Use ADST
|
|
b += ic - ib;
|
|
tx_type = txfm_map(pred_mode_conv(
|
|
(MB_PREDICTION_MODE)b->bmi.as_mode.first));
|
|
#endif
|
|
#else
|
|
// Use 2D DCT
|
|
tx_type = DCT_DCT;
|
|
#endif
|
|
#endif // !CONFIG_SB8X8
|
|
} else if (xd->mode_info_context->mbmi.mode <= TM_PRED &&
|
|
xd->q_index < ACTIVE_HT) {
|
|
#if USE_ADST_FOR_I16X16_4X4
|
|
#if USE_ADST_PERIPHERY_ONLY
|
|
const int hmax = 1 << wb;
|
|
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
|
|
#if USE_ADST_FOR_REMOTE_EDGE
|
|
if ((ib & (hmax - 1)) != 0 && ib >= hmax)
|
|
tx_type = DCT_DCT;
|
|
#else
|
|
if (ib >= 1 && ib < hmax) {
|
|
if (tx_type == ADST_ADST) tx_type = ADST_DCT;
|
|
else if (tx_type == DCT_ADST) tx_type = DCT_DCT;
|
|
} else if (ib >= 1 && (ib & (hmax - 1)) == 0) {
|
|
if (tx_type == ADST_ADST) tx_type = DCT_ADST;
|
|
else if (tx_type == ADST_DCT) tx_type = DCT_DCT;
|
|
} else if (ib != 0) {
|
|
tx_type = DCT_DCT;
|
|
}
|
|
#endif
|
|
#else
|
|
// Use ADST
|
|
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
|
|
#endif
|
|
#else
|
|
// Use 2D DCT
|
|
tx_type = DCT_DCT;
|
|
#endif
|
|
}
|
|
return tx_type;
|
|
}
|
|
|
|
static TX_TYPE get_tx_type_8x8(const MACROBLOCKD *xd, int ib) {
|
|
// TODO(debargha): explore different patterns for ADST usage when blocksize
|
|
// is smaller than the prediction size
|
|
TX_TYPE tx_type = DCT_DCT;
|
|
const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
|
|
const int wb = b_width_log2(sb_type), hb = b_height_log2(sb_type);
|
|
#if !USE_ADST_FOR_SB
|
|
if (sb_type > BLOCK_SIZE_MB16X16)
|
|
return tx_type;
|
|
#endif
|
|
if (ib >= (1 << (wb + hb))) // no chroma adst
|
|
return tx_type;
|
|
#if !CONFIG_SB8X8
|
|
if (xd->mode_info_context->mbmi.mode == I8X8_PRED &&
|
|
xd->q_index < ACTIVE_HT8) {
|
|
// TODO(rbultje): MB_PREDICTION_MODE / B_PREDICTION_MODE should be merged
|
|
// or the relationship otherwise modified to address this type conversion.
|
|
tx_type = txfm_map(pred_mode_conv(
|
|
(MB_PREDICTION_MODE)xd->mode_info_context->bmi[ib].as_mode.first));
|
|
} else
|
|
#endif // CONFIG_SB8X8
|
|
if (xd->mode_info_context->mbmi.mode <= TM_PRED &&
|
|
xd->q_index < ACTIVE_HT8) {
|
|
#if USE_ADST_FOR_I16X16_8X8
|
|
#if USE_ADST_PERIPHERY_ONLY
|
|
const int hmax = 1 << wb;
|
|
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
|
|
#if USE_ADST_FOR_REMOTE_EDGE
|
|
if ((ib & (hmax - 1)) != 0 && ib >= hmax)
|
|
tx_type = DCT_DCT;
|
|
#else
|
|
if (ib >= 1 && ib < hmax) {
|
|
if (tx_type == ADST_ADST) tx_type = ADST_DCT;
|
|
else if (tx_type == DCT_ADST) tx_type = DCT_DCT;
|
|
} else if (ib >= 1 && (ib & (hmax - 1)) == 0) {
|
|
if (tx_type == ADST_ADST) tx_type = DCT_ADST;
|
|
else if (tx_type == ADST_DCT) tx_type = DCT_DCT;
|
|
} else if (ib != 0) {
|
|
tx_type = DCT_DCT;
|
|
}
|
|
#endif
|
|
#else
|
|
// Use ADST
|
|
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
|
|
#endif
|
|
#else
|
|
// Use 2D DCT
|
|
tx_type = DCT_DCT;
|
|
#endif
|
|
}
|
|
return tx_type;
|
|
}
|
|
|
|
static TX_TYPE get_tx_type_16x16(const MACROBLOCKD *xd, int ib) {
|
|
TX_TYPE tx_type = DCT_DCT;
|
|
const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type;
|
|
const int wb = b_width_log2(sb_type), hb = b_height_log2(sb_type);
|
|
#if !USE_ADST_FOR_SB
|
|
if (sb_type > BLOCK_SIZE_MB16X16)
|
|
return tx_type;
|
|
#endif
|
|
if (ib >= (1 << (wb + hb)))
|
|
return tx_type;
|
|
if (xd->mode_info_context->mbmi.mode <= TM_PRED &&
|
|
xd->q_index < ACTIVE_HT16) {
|
|
tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode));
|
|
#if USE_ADST_PERIPHERY_ONLY
|
|
if (sb_type > BLOCK_SIZE_MB16X16) {
|
|
const int hmax = 1 << wb;
|
|
#if USE_ADST_FOR_REMOTE_EDGE
|
|
if ((ib & (hmax - 1)) != 0 && ib >= hmax)
|
|
tx_type = DCT_DCT;
|
|
#else
|
|
if (ib >= 1 && ib < hmax) {
|
|
if (tx_type == ADST_ADST) tx_type = ADST_DCT;
|
|
else if (tx_type == DCT_ADST) tx_type = DCT_DCT;
|
|
} else if (ib >= 1 && (ib & (hmax - 1)) == 0) {
|
|
if (tx_type == ADST_ADST) tx_type = DCT_ADST;
|
|
else if (tx_type == ADST_DCT) tx_type = DCT_DCT;
|
|
} else if (ib != 0) {
|
|
tx_type = DCT_DCT;
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
return tx_type;
|
|
}
|
|
|
|
void vp9_setup_block_dptrs(MACROBLOCKD *xd);
|
|
|
|
static TX_SIZE get_uv_tx_size(const MACROBLOCKD *xd) {
|
|
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
|
|
const TX_SIZE size = mbmi->txfm_size;
|
|
#if !CONFIG_SB8X8
|
|
const MB_PREDICTION_MODE mode = mbmi->mode;
|
|
#endif // !CONFIG_SB8X8
|
|
|
|
switch (mbmi->sb_type) {
|
|
case BLOCK_SIZE_SB64X64:
|
|
return size;
|
|
case BLOCK_SIZE_SB64X32:
|
|
case BLOCK_SIZE_SB32X64:
|
|
case BLOCK_SIZE_SB32X32:
|
|
if (size == TX_32X32)
|
|
return TX_16X16;
|
|
else
|
|
return size;
|
|
#if CONFIG_SB8X8
|
|
case BLOCK_SIZE_SB32X16:
|
|
case BLOCK_SIZE_SB16X32:
|
|
case BLOCK_SIZE_MB16X16:
|
|
if (size == TX_16X16)
|
|
return TX_8X8;
|
|
else
|
|
return size;
|
|
default:
|
|
return TX_4X4;
|
|
#else // CONFIG_SB8X8
|
|
default:
|
|
if (size == TX_16X16)
|
|
return TX_8X8;
|
|
else if (size == TX_8X8 && (mode == I8X8_PRED || mode == SPLITMV))
|
|
return TX_4X4;
|
|
else
|
|
return size;
|
|
#endif // CONFIG_SB8X8
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
struct plane_block_idx {
|
|
int plane;
|
|
int block;
|
|
};
|
|
|
|
// TODO(jkoleszar): returning a struct so it can be used in a const context,
|
|
// expect to refactor this further later.
|
|
static INLINE struct plane_block_idx plane_block_idx(int y_blocks,
|
|
int b_idx) {
|
|
const int v_offset = y_blocks * 5 / 4;
|
|
struct plane_block_idx res;
|
|
|
|
if (b_idx < y_blocks) {
|
|
res.plane = 0;
|
|
res.block = b_idx;
|
|
} else if (b_idx < v_offset) {
|
|
res.plane = 1;
|
|
res.block = b_idx - y_blocks;
|
|
} else {
|
|
assert(b_idx < y_blocks * 3 / 2);
|
|
res.plane = 2;
|
|
res.block = b_idx - v_offset;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* TODO(jkoleszar): Probably best to remove instances that require this,
|
|
* as the data likely becomes per-plane and stored in the per-plane structures.
|
|
* This is a stub to work with the existing code.
|
|
*/
|
|
static INLINE int old_block_idx_4x4(MACROBLOCKD* const xd, int block_size_b,
|
|
int plane, int i) {
|
|
const int luma_blocks = 1 << block_size_b;
|
|
assert(xd->plane[0].subsampling_x == 0);
|
|
assert(xd->plane[0].subsampling_y == 0);
|
|
assert(xd->plane[1].subsampling_x == 1);
|
|
assert(xd->plane[1].subsampling_y == 1);
|
|
assert(xd->plane[2].subsampling_x == 1);
|
|
assert(xd->plane[2].subsampling_y == 1);
|
|
return plane == 0 ? i :
|
|
plane == 1 ? luma_blocks + i :
|
|
luma_blocks * 5 / 4 + i;
|
|
}
|
|
|
|
typedef void (*foreach_transformed_block_visitor)(int plane, int block,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int ss_txfrm_size,
|
|
void *arg);
|
|
static INLINE void foreach_transformed_block_in_plane(
|
|
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane,
|
|
#if !CONFIG_SB8X8
|
|
int is_split,
|
|
#endif // !CONFIG_SB8X8
|
|
foreach_transformed_block_visitor visit, void *arg) {
|
|
const int bw = b_width_log2(bsize), bh = b_height_log2(bsize);
|
|
|
|
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
|
|
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
|
|
const TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size;
|
|
const int block_size_b = bw + bh;
|
|
const int txfrm_size_b = tx_size * 2;
|
|
|
|
// subsampled size of the block
|
|
const int ss_sum = xd->plane[plane].subsampling_x +
|
|
xd->plane[plane].subsampling_y;
|
|
const int ss_block_size = block_size_b - ss_sum;
|
|
|
|
// size of the transform to use. scale the transform down if it's larger
|
|
// than the size of the subsampled data, or forced externally by the mb mode.
|
|
const int ss_max = MAX(xd->plane[plane].subsampling_x,
|
|
xd->plane[plane].subsampling_y);
|
|
const int ss_txfrm_size = txfrm_size_b > ss_block_size
|
|
#if !CONFIG_SB8X8
|
|
|| is_split
|
|
#endif // !CONFIG_SB8X8
|
|
? txfrm_size_b - ss_max * 2
|
|
: txfrm_size_b;
|
|
const int step = 1 << ss_txfrm_size;
|
|
|
|
int i;
|
|
|
|
assert(txfrm_size_b <= block_size_b);
|
|
assert(ss_txfrm_size <= ss_block_size);
|
|
for (i = 0; i < (1 << ss_block_size); i += step) {
|
|
visit(plane, i, bsize, ss_txfrm_size, arg);
|
|
}
|
|
}
|
|
|
|
static INLINE void foreach_transformed_block(
|
|
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
|
|
foreach_transformed_block_visitor visit, void *arg) {
|
|
#if !CONFIG_SB8X8
|
|
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
|
|
const int is_split =
|
|
xd->mode_info_context->mbmi.txfm_size == TX_8X8 &&
|
|
(mode == I8X8_PRED || mode == SPLITMV);
|
|
#endif // !CONFIG_SB8X8
|
|
int plane;
|
|
|
|
for (plane = 0; plane < MAX_MB_PLANE; plane++) {
|
|
#if !CONFIG_SB8X8
|
|
const int is_split_chroma = is_split &&
|
|
xd->plane[plane].plane_type == PLANE_TYPE_UV;
|
|
#endif // !CONFIG_SB8X8
|
|
|
|
foreach_transformed_block_in_plane(xd, bsize, plane,
|
|
#if !CONFIG_SB8X8
|
|
is_split_chroma,
|
|
#endif // !CONFIG_SB8X8
|
|
visit, arg);
|
|
}
|
|
}
|
|
|
|
static INLINE void foreach_transformed_block_uv(
|
|
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
|
|
foreach_transformed_block_visitor visit, void *arg) {
|
|
#if !CONFIG_SB8X8
|
|
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
|
|
const int is_split =
|
|
xd->mode_info_context->mbmi.txfm_size == TX_8X8 &&
|
|
(mode == I8X8_PRED || mode == SPLITMV);
|
|
#endif // !CONFIG_SB8X8
|
|
int plane;
|
|
|
|
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
|
|
foreach_transformed_block_in_plane(xd, bsize, plane,
|
|
#if !CONFIG_SB8X8
|
|
is_split,
|
|
#endif // !CONFIG_SB8X8
|
|
visit, arg);
|
|
}
|
|
}
|
|
|
|
// TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could
|
|
// calculate the subsampled BLOCK_SIZE_TYPE, but that type isn't defined for
|
|
// sizes smaller than 16x16 yet.
|
|
typedef void (*foreach_predicted_block_visitor)(int plane, int block,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int pred_w, int pred_h,
|
|
void *arg);
|
|
static INLINE void foreach_predicted_block_in_plane(
|
|
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane,
|
|
foreach_predicted_block_visitor visit, void *arg) {
|
|
int i, x, y;
|
|
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
|
|
|
|
// block sizes in number of 4x4 blocks log 2 ("*_b")
|
|
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
|
|
// subsampled size of the block
|
|
const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
|
|
const int bh = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
|
|
|
|
// size of the predictor to use.
|
|
int pred_w, pred_h;
|
|
|
|
if (mode == SPLITMV) {
|
|
#if CONFIG_SB8X8
|
|
pred_w = 0;
|
|
pred_h = 0;
|
|
#else
|
|
// 4x4 or 8x8
|
|
const int is_4x4 =
|
|
(xd->mode_info_context->mbmi.partitioning == PARTITIONING_4X4);
|
|
pred_w = is_4x4 ? 0 : 1 >> xd->plane[plane].subsampling_x;
|
|
pred_h = is_4x4 ? 0 : 1 >> xd->plane[plane].subsampling_y;
|
|
#endif
|
|
} else {
|
|
pred_w = bw;
|
|
pred_h = bh;
|
|
}
|
|
assert(pred_w <= bw);
|
|
assert(pred_h <= bh);
|
|
|
|
// visit each subblock in raster order
|
|
i = 0;
|
|
for (y = 0; y < 1 << bh; y += 1 << pred_h) {
|
|
for (x = 0; x < 1 << bw; x += 1 << pred_w) {
|
|
visit(plane, i, bsize, pred_w, pred_h, arg);
|
|
i += 1 << pred_w;
|
|
}
|
|
i -= 1 << bw;
|
|
i += 1 << (bw + pred_h);
|
|
}
|
|
}
|
|
static INLINE void foreach_predicted_block(
|
|
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
|
|
foreach_predicted_block_visitor visit, void *arg) {
|
|
int plane;
|
|
|
|
for (plane = 0; plane < MAX_MB_PLANE; plane++) {
|
|
foreach_predicted_block_in_plane(xd, bsize, plane, visit, arg);
|
|
}
|
|
}
|
|
static INLINE void foreach_predicted_block_uv(
|
|
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
|
|
foreach_predicted_block_visitor visit, void *arg) {
|
|
int plane;
|
|
|
|
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
|
|
foreach_predicted_block_in_plane(xd, bsize, plane, visit, arg);
|
|
}
|
|
}
|
|
static int raster_block_offset(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize,
|
|
int plane, int block, int stride) {
|
|
const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
|
|
const int y = 4 * (block >> bw), x = 4 * (block & ((1 << bw) - 1));
|
|
return y * stride + x;
|
|
}
|
|
static int16_t* raster_block_offset_int16(MACROBLOCKD *xd,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int plane, int block, int16_t *base) {
|
|
const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
|
|
const int stride = 4 << bw;
|
|
return base + raster_block_offset(xd, bsize, plane, block, stride);
|
|
}
|
|
static uint8_t* raster_block_offset_uint8(MACROBLOCKD *xd,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int plane, int block,
|
|
uint8_t *base, int stride) {
|
|
return base + raster_block_offset(xd, bsize, plane, block, stride);
|
|
}
|
|
|
|
static int txfrm_block_to_raster_block(MACROBLOCKD *xd,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int plane, int block,
|
|
int ss_txfrm_size) {
|
|
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
|
|
const int txwl = ss_txfrm_size / 2;
|
|
const int tx_cols_lg2 = bwl - txwl;
|
|
const int tx_cols = 1 << tx_cols_lg2;
|
|
const int raster_mb = block >> ss_txfrm_size;
|
|
const int x = (raster_mb & (tx_cols - 1)) << (txwl);
|
|
const int y = raster_mb >> tx_cols_lg2 << (txwl);
|
|
return x + (y << bwl);
|
|
}
|
|
|
|
static void txfrm_block_to_raster_xy(MACROBLOCKD *xd,
|
|
BLOCK_SIZE_TYPE bsize,
|
|
int plane, int block,
|
|
int ss_txfrm_size,
|
|
int *x, int *y) {
|
|
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
|
|
const int txwl = ss_txfrm_size / 2;
|
|
const int tx_cols_lg2 = bwl - txwl;
|
|
const int tx_cols = 1 << tx_cols_lg2;
|
|
const int raster_mb = block >> ss_txfrm_size;
|
|
*x = (raster_mb & (tx_cols - 1)) << (txwl);
|
|
*y = raster_mb >> tx_cols_lg2 << (txwl);
|
|
}
|
|
|
|
static TX_SIZE tx_size_for_plane(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize,
|
|
int plane) {
|
|
// TODO(jkoleszar): This duplicates a ton of code, but we're going to be
|
|
// moving this to a per-plane lookup shortly, and this will go away then.
|
|
if (!plane) {
|
|
return xd->mode_info_context->mbmi.txfm_size;
|
|
} else {
|
|
const int bw = b_width_log2(bsize), bh = b_height_log2(bsize);
|
|
#if !CONFIG_SB8X8
|
|
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
|
|
const int is_split =
|
|
xd->mode_info_context->mbmi.txfm_size == TX_8X8 &&
|
|
(mode == I8X8_PRED || mode == SPLITMV);
|
|
#endif
|
|
|
|
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
|
|
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
|
|
const TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size;
|
|
const int block_size_b = bw + bh;
|
|
const int txfrm_size_b = tx_size * 2;
|
|
|
|
// subsampled size of the block
|
|
const int ss_sum = xd->plane[plane].subsampling_x +
|
|
xd->plane[plane].subsampling_y;
|
|
const int ss_block_size = block_size_b - ss_sum;
|
|
|
|
// size of the transform to use. scale the transform down if it's larger
|
|
// than the size of the subsampled data, or forced externally by the mb mode
|
|
const int ss_max = MAX(xd->plane[plane].subsampling_x,
|
|
xd->plane[plane].subsampling_y);
|
|
const int ss_txfrm_size = txfrm_size_b > ss_block_size
|
|
#if !CONFIG_SB8X8
|
|
|| is_split
|
|
#endif // !CONFIG_SB8X8
|
|
? txfrm_size_b - ss_max * 2
|
|
: txfrm_size_b;
|
|
return (TX_SIZE)(ss_txfrm_size / 2);
|
|
}
|
|
}
|
|
|
|
#if CONFIG_CODE_ZEROGROUP
|
|
static int get_zpc_used(TX_SIZE tx_size) {
|
|
return (tx_size >= TX_16X16);
|
|
}
|
|
#endif
|
|
#endif // VP9_COMMON_VP9_BLOCKD_H_
|