vpx/vp9/encoder/vp9_bitstream.c
Ronald S. Bultje 5cac66078e Remove splitmv.
Also do per-partition motion vector referencing in <sb8x8 partitions,
and adjust mvref finding for sub8x8 partitions.

Change-Id: Id3ed1ed4d2a8910d11d327db6cc63b8eb79f941f
2013-05-26 14:40:49 -07:00

1938 lines
62 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "vpx/vpx_encoder.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_pragmas.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_treecoder.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_bitstream.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_write_bit_buffer.h"
#if defined(SECTIONBITS_OUTPUT)
unsigned __int64 Sectionbits[500];
#endif
#ifdef ENTROPY_STATS
int intra_mode_stats[VP9_KF_BINTRAMODES]
[VP9_KF_BINTRAMODES]
[VP9_KF_BINTRAMODES];
vp9_coeff_stats tree_update_hist_4x4[BLOCK_TYPES];
vp9_coeff_stats tree_update_hist_8x8[BLOCK_TYPES];
vp9_coeff_stats tree_update_hist_16x16[BLOCK_TYPES];
vp9_coeff_stats tree_update_hist_32x32[BLOCK_TYPES];
extern unsigned int active_section;
#endif
#define vp9_cost_upd ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd)) >> 8)
#define vp9_cost_upd256 ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd)))
static int update_bits[255];
static INLINE void write_le16(uint8_t *p, int value) {
p[0] = value;
p[1] = value >> 8;
}
static INLINE void write_le32(uint8_t *p, int value) {
p[0] = value;
p[1] = value >> 8;
p[2] = value >> 16;
p[3] = value >> 24;
}
void vp9_encode_unsigned_max(vp9_writer *br, int data, int max) {
assert(data <= max);
while (max) {
vp9_write_bit(br, data & 1);
data >>= 1;
max >>= 1;
}
}
int recenter_nonneg(int v, int m) {
if (v > (m << 1))
return v;
else if (v >= m)
return ((v - m) << 1);
else
return ((m - v) << 1) - 1;
}
static int get_unsigned_bits(unsigned num_values) {
int cat = 0;
if ((num_values--) <= 1) return 0;
while (num_values > 0) {
cat++;
num_values >>= 1;
}
return cat;
}
void encode_uniform(vp9_writer *w, int v, int n) {
int l = get_unsigned_bits(n);
int m;
if (l == 0)
return;
m = (1 << l) - n;
if (v < m) {
vp9_write_literal(w, v, l - 1);
} else {
vp9_write_literal(w, m + ((v - m) >> 1), l - 1);
vp9_write_literal(w, (v - m) & 1, 1);
}
}
int count_uniform(int v, int n) {
int l = get_unsigned_bits(n);
int m;
if (l == 0) return 0;
m = (1 << l) - n;
if (v < m)
return l - 1;
else
return l;
}
void encode_term_subexp(vp9_writer *w, int word, int k, int num_syms) {
int i = 0;
int mk = 0;
while (1) {
int b = (i ? k + i - 1 : k);
int a = (1 << b);
if (num_syms <= mk + 3 * a) {
encode_uniform(w, word - mk, num_syms - mk);
break;
} else {
int t = (word >= mk + a);
vp9_write_literal(w, t, 1);
if (t) {
i = i + 1;
mk += a;
} else {
vp9_write_literal(w, word - mk, b);
break;
}
}
}
}
int count_term_subexp(int word, int k, int num_syms) {
int count = 0;
int i = 0;
int mk = 0;
while (1) {
int b = (i ? k + i - 1 : k);
int a = (1 << b);
if (num_syms <= mk + 3 * a) {
count += count_uniform(word - mk, num_syms - mk);
break;
} else {
int t = (word >= mk + a);
count++;
if (t) {
i = i + 1;
mk += a;
} else {
count += b;
break;
}
}
}
return count;
}
static void compute_update_table() {
int i;
for (i = 0; i < 255; i++)
update_bits[i] = count_term_subexp(i, SUBEXP_PARAM, 255);
}
static int split_index(int i, int n, int modulus) {
int max1 = (n - 1 - modulus / 2) / modulus + 1;
if (i % modulus == modulus / 2) i = i / modulus;
else i = max1 + i - (i + modulus - modulus / 2) / modulus;
return i;
}
static int remap_prob(int v, int m) {
const int n = 256;
const int modulus = MODULUS_PARAM;
int i;
if ((m << 1) <= n)
i = recenter_nonneg(v, m) - 1;
else
i = recenter_nonneg(n - 1 - v, n - 1 - m) - 1;
i = split_index(i, n - 1, modulus);
return i;
}
static void write_prob_diff_update(vp9_writer *w,
vp9_prob newp, vp9_prob oldp) {
int delp = remap_prob(newp, oldp);
encode_term_subexp(w, delp, SUBEXP_PARAM, 255);
}
static int prob_diff_update_cost(vp9_prob newp, vp9_prob oldp) {
int delp = remap_prob(newp, oldp);
return update_bits[delp] * 256;
}
static void update_mode(
vp9_writer *w,
int n,
const struct vp9_token tok[/* n */],
vp9_tree tree,
vp9_prob Pnew [/* n-1 */],
vp9_prob Pcur [/* n-1 */],
unsigned int bct [/* n-1 */] [2],
const unsigned int num_events[/* n */]
) {
unsigned int new_b = 0, old_b = 0;
int i = 0;
vp9_tree_probs_from_distribution(tree, Pnew, bct, num_events, 0);
n--;
do {
new_b += cost_branch(bct[i], Pnew[i]);
old_b += cost_branch(bct[i], Pcur[i]);
} while (++i < n);
if (new_b + (n << 8) < old_b) {
int i = 0;
vp9_write_bit(w, 1);
do {
const vp9_prob p = Pnew[i];
vp9_write_literal(w, Pcur[i] = p ? p : 1, 8);
} while (++i < n);
} else
vp9_write_bit(w, 0);
}
static void update_mbintra_mode_probs(VP9_COMP* const cpi,
vp9_writer* const bc) {
VP9_COMMON *const cm = &cpi->common;
vp9_prob pnew[VP9_YMODES - 1];
unsigned int bct[VP9_YMODES - 1][2];
update_mode(bc, VP9_YMODES, vp9_ymode_encodings, vp9_ymode_tree, pnew,
cm->fc.ymode_prob, bct, (unsigned int *)cpi->ymode_count);
update_mode(bc, VP9_I32X32_MODES, vp9_sb_ymode_encodings,
vp9_sb_ymode_tree, pnew, cm->fc.sb_ymode_prob, bct,
(unsigned int *)cpi->sb_ymode_count);
}
void vp9_update_skip_probs(VP9_COMP *cpi) {
VP9_COMMON *const pc = &cpi->common;
int k;
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
pc->mbskip_pred_probs[k] = get_binary_prob(cpi->skip_false_count[k],
cpi->skip_true_count[k]);
}
static void update_switchable_interp_probs(VP9_COMP *cpi,
vp9_writer* const bc) {
VP9_COMMON *const pc = &cpi->common;
unsigned int branch_ct[32][2];
int i, j;
for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) {
vp9_tree_probs_from_distribution(
vp9_switchable_interp_tree,
pc->fc.switchable_interp_prob[j], branch_ct,
cpi->switchable_interp_count[j], 0);
for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) {
if (pc->fc.switchable_interp_prob[j][i] < 1)
pc->fc.switchable_interp_prob[j][i] = 1;
vp9_write_prob(bc, pc->fc.switchable_interp_prob[j][i]);
}
}
}
// This function updates the reference frame prediction stats
static void update_refpred_stats(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int i;
vp9_prob new_pred_probs[PREDICTION_PROBS];
int old_cost, new_cost;
// Set the prediction probability structures to defaults
if (cm->frame_type != KEY_FRAME) {
// From the prediction counts set the probabilities for each context
for (i = 0; i < PREDICTION_PROBS; i++) {
const int c0 = cpi->ref_pred_count[i][0];
const int c1 = cpi->ref_pred_count[i][1];
new_pred_probs[i] = get_binary_prob(c0, c1);
// Decide whether or not to update the reference frame probs.
// Returned costs are in 1/256 bit units.
old_cost = c0 * vp9_cost_zero(cm->ref_pred_probs[i]) +
c1 * vp9_cost_one(cm->ref_pred_probs[i]);
new_cost = c0 * vp9_cost_zero(new_pred_probs[i]) +
c1 * vp9_cost_one(new_pred_probs[i]);
// Cost saving must be >= 8 bits (2048 in these units)
if ((old_cost - new_cost) >= 2048) {
cpi->ref_pred_probs_update[i] = 1;
cm->ref_pred_probs[i] = new_pred_probs[i];
} else
cpi->ref_pred_probs_update[i] = 0;
}
}
}
// This function is called to update the mode probability context used to encode
// inter modes. It assumes the branch counts table has already been populated
// prior to the actual packing of the bitstream (in rd stage or dummy pack)
//
// The branch counts table is re-populated during the actual pack stage and in
// the decoder to facilitate backwards update of the context.
static void update_inter_mode_probs(VP9_COMMON *cm,
int mode_context[INTER_MODE_CONTEXTS][4]) {
int i, j;
unsigned int (*mv_ref_ct)[4][2] = cm->fc.mv_ref_ct;
vpx_memcpy(mode_context, cm->fc.vp9_mode_contexts,
sizeof(cm->fc.vp9_mode_contexts));
for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
for (j = 0; j < 4; j++) {
int new_prob, old_cost, new_cost;
// Work out cost of coding branches with the old and optimal probability
old_cost = cost_branch256(mv_ref_ct[i][j], mode_context[i][j]);
new_prob = get_binary_prob(mv_ref_ct[i][j][0], mv_ref_ct[i][j][1]);
new_cost = cost_branch256(mv_ref_ct[i][j], new_prob);
// If cost saving is >= 14 bits then update the mode probability.
// This is the approximate net cost of updating one probability given
// that the no update case ismuch more common than the update case.
if (new_cost <= (old_cost - (14 << 8))) {
mode_context[i][j] = new_prob;
}
}
}
}
static void write_ymode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_ymode_tree, p, vp9_ymode_encodings + m);
}
static void kfwrite_ymode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_kf_ymode_tree, p, vp9_kf_ymode_encodings + m);
}
static void write_sb_ymode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_sb_ymode_tree, p, vp9_sb_ymode_encodings + m);
}
static void sb_kfwrite_ymode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_uv_mode_tree, p, vp9_sb_kf_ymode_encodings + m);
}
static void write_uv_mode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_uv_mode_tree, p, vp9_uv_mode_encodings + m);
}
static void write_kf_bmode(vp9_writer *bc, int m, const vp9_prob *p) {
write_token(bc, vp9_kf_bmode_tree, p, vp9_kf_bmode_encodings + m);
}
static int prob_update_savings(const unsigned int *ct,
const vp9_prob oldp, const vp9_prob newp,
const vp9_prob upd) {
const int old_b = cost_branch256(ct, oldp);
const int new_b = cost_branch256(ct, newp);
const int update_b = 2048 + vp9_cost_upd256;
return old_b - new_b - update_b;
}
static int prob_diff_update_savings_search(const unsigned int *ct,
const vp9_prob oldp, vp9_prob *bestp,
const vp9_prob upd) {
const int old_b = cost_branch256(ct, oldp);
int new_b, update_b, savings, bestsavings, step;
vp9_prob newp, bestnewp;
bestsavings = 0;
bestnewp = oldp;
step = (*bestp > oldp ? -1 : 1);
for (newp = *bestp; newp != oldp; newp += step) {
new_b = cost_branch256(ct, newp);
update_b = prob_diff_update_cost(newp, oldp) + vp9_cost_upd256;
savings = old_b - new_b - update_b;
if (savings > bestsavings) {
bestsavings = savings;
bestnewp = newp;
}
}
*bestp = bestnewp;
return bestsavings;
}
static int prob_diff_update_savings_search_model(const unsigned int *ct,
const vp9_prob *oldp,
vp9_prob *bestp,
const vp9_prob upd,
int b, int r) {
int i, old_b, new_b, update_b, savings, bestsavings, step;
int newp;
vp9_prob bestnewp, newplist[ENTROPY_NODES], oldplist[ENTROPY_NODES];
vp9_model_to_full_probs(oldp, oldplist);
vpx_memcpy(newplist, oldp, sizeof(vp9_prob) * UNCONSTRAINED_NODES);
for (i = UNCONSTRAINED_NODES, old_b = 0; i < ENTROPY_NODES; ++i)
old_b += cost_branch256(ct + 2 * i, oldplist[i]);
old_b += cost_branch256(ct + 2 * PIVOT_NODE, oldplist[PIVOT_NODE]);
bestsavings = 0;
bestnewp = oldp[PIVOT_NODE];
step = (*bestp > oldp[PIVOT_NODE] ? -1 : 1);
newp = *bestp;
for (; newp != oldp[PIVOT_NODE]; newp += step) {
if (newp < 1 || newp > 255) continue;
newplist[PIVOT_NODE] = newp;
vp9_model_to_full_probs(newplist, newplist);
for (i = UNCONSTRAINED_NODES, new_b = 0; i < ENTROPY_NODES; ++i)
new_b += cost_branch256(ct + 2 * i, newplist[i]);
new_b += cost_branch256(ct + 2 * PIVOT_NODE, newplist[PIVOT_NODE]);
update_b = prob_diff_update_cost(newp, oldp[PIVOT_NODE]) +
vp9_cost_upd256;
savings = old_b - new_b - update_b;
if (savings > bestsavings) {
bestsavings = savings;
bestnewp = newp;
}
}
*bestp = bestnewp;
return bestsavings;
}
static void vp9_cond_prob_update(vp9_writer *bc, vp9_prob *oldp, vp9_prob upd,
unsigned int *ct) {
vp9_prob newp;
int savings;
newp = get_binary_prob(ct[0], ct[1]);
savings = prob_update_savings(ct, *oldp, newp, upd);
if (savings > 0) {
vp9_write(bc, 1, upd);
vp9_write_prob(bc, newp);
*oldp = newp;
} else {
vp9_write(bc, 0, upd);
}
}
static void pack_mb_tokens(vp9_writer* const bc,
TOKENEXTRA **tp,
const TOKENEXTRA *const stop) {
TOKENEXTRA *p = *tp;
while (p < stop) {
const int t = p->token;
const struct vp9_token *const a = vp9_coef_encodings + t;
const vp9_extra_bit *const b = vp9_extra_bits + t;
int i = 0;
const vp9_prob *pp;
int v = a->value;
int n = a->len;
int ncount = n;
vp9_prob probs[ENTROPY_NODES];
if (t == EOSB_TOKEN) {
++p;
break;
}
if (t >= TWO_TOKEN) {
vp9_model_to_full_probs(p->context_tree, probs);
pp = probs;
} else {
pp = p->context_tree;
}
assert(pp != 0);
/* skip one or two nodes */
if (p->skip_eob_node) {
n -= p->skip_eob_node;
i = 2 * p->skip_eob_node;
ncount -= p->skip_eob_node;
}
do {
const int bb = (v >> --n) & 1;
vp9_write(bc, bb, pp[i >> 1]);
i = vp9_coef_tree[i + bb];
ncount--;
} while (n && ncount);
if (b->base_val) {
const int e = p->extra, l = b->len;
if (l) {
const unsigned char *pb = b->prob;
int v = e >> 1;
int n = l; /* number of bits in v, assumed nonzero */
int i = 0;
do {
const int bb = (v >> --n) & 1;
vp9_write(bc, bb, pb[i >> 1]);
i = b->tree[i + bb];
} while (n);
}
vp9_write_bit(bc, e & 1);
}
++p;
}
*tp = p;
}
static void write_mv_ref(vp9_writer *bc, MB_PREDICTION_MODE m,
const vp9_prob *p) {
#if CONFIG_DEBUG
assert(NEARESTMV <= m && m <= SPLITMV);
#endif
write_token(bc, vp9_mv_ref_tree, p,
vp9_mv_ref_encoding_array - NEARESTMV + m);
}
static void write_sb_mv_ref(vp9_writer *bc, MB_PREDICTION_MODE m,
const vp9_prob *p) {
#if CONFIG_DEBUG
assert(NEARESTMV <= m && m < SPLITMV);
#endif
write_token(bc, vp9_sb_mv_ref_tree, p,
vp9_sb_mv_ref_encoding_array - NEARESTMV + m);
}
// This function writes the current macro block's segnment id to the bitstream
// It should only be called if a segment map update is indicated.
static void write_mb_segid(vp9_writer *bc,
const MB_MODE_INFO *mi, const MACROBLOCKD *xd) {
if (xd->segmentation_enabled && xd->update_mb_segmentation_map)
treed_write(bc, vp9_segment_tree, xd->mb_segment_tree_probs,
mi->segment_id, 3);
}
// This function encodes the reference frame
static void encode_ref_frame(vp9_writer *const bc,
VP9_COMMON *const cm,
MACROBLOCKD *xd,
int segment_id,
MV_REFERENCE_FRAME rf) {
int seg_ref_active;
int seg_ref_count = 0;
seg_ref_active = vp9_segfeature_active(xd,
segment_id,
SEG_LVL_REF_FRAME);
if (seg_ref_active) {
seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) +
vp9_check_segref(xd, segment_id, LAST_FRAME) +
vp9_check_segref(xd, segment_id, GOLDEN_FRAME) +
vp9_check_segref(xd, segment_id, ALTREF_FRAME);
}
// If segment level coding of this signal is disabled...
// or the segment allows multiple reference frame options
if (!seg_ref_active || (seg_ref_count > 1)) {
// Values used in prediction model coding
unsigned char prediction_flag;
vp9_prob pred_prob;
MV_REFERENCE_FRAME pred_rf;
// Get the context probability the prediction flag
pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF);
// Get the predicted value.
pred_rf = vp9_get_pred_ref(cm, xd);
// Did the chosen reference frame match its predicted value.
prediction_flag =
(xd->mode_info_context->mbmi.ref_frame == pred_rf);
vp9_set_pred_flag(xd, PRED_REF, prediction_flag);
vp9_write(bc, prediction_flag, pred_prob);
// If not predicted correctly then code value explicitly
if (!prediction_flag) {
vp9_prob mod_refprobs[PREDICTION_PROBS];
vpx_memcpy(mod_refprobs,
cm->mod_refprobs[pred_rf], sizeof(mod_refprobs));
// If segment coding enabled blank out options that cant occur by
// setting the branch probability to 0.
if (seg_ref_active) {
mod_refprobs[INTRA_FRAME] *=
vp9_check_segref(xd, segment_id, INTRA_FRAME);
mod_refprobs[LAST_FRAME] *=
vp9_check_segref(xd, segment_id, LAST_FRAME);
mod_refprobs[GOLDEN_FRAME] *=
(vp9_check_segref(xd, segment_id, GOLDEN_FRAME) *
vp9_check_segref(xd, segment_id, ALTREF_FRAME));
}
if (mod_refprobs[0]) {
vp9_write(bc, (rf != INTRA_FRAME), mod_refprobs[0]);
}
// Inter coded
if (rf != INTRA_FRAME) {
if (mod_refprobs[1]) {
vp9_write(bc, (rf != LAST_FRAME), mod_refprobs[1]);
}
if (rf != LAST_FRAME) {
if (mod_refprobs[2]) {
vp9_write(bc, (rf != GOLDEN_FRAME), mod_refprobs[2]);
}
}
}
}
}
// if using the prediction mdoel we have nothing further to do because
// the reference frame is fully coded by the segment
}
// Update the probabilities used to encode reference frame data
static void update_ref_probs(VP9_COMP *const cpi) {
VP9_COMMON *const cm = &cpi->common;
const int *const rfct = cpi->count_mb_ref_frame_usage;
const int rf_intra = rfct[INTRA_FRAME];
const int rf_inter = rfct[LAST_FRAME] +
rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
cm->prob_intra_coded = get_binary_prob(rf_intra, rf_inter);
cm->prob_last_coded = get_prob(rfct[LAST_FRAME], rf_inter);
cm->prob_gf_coded = get_binary_prob(rfct[GOLDEN_FRAME], rfct[ALTREF_FRAME]);
// Compute a modified set of probabilities to use when prediction of the
// reference frame fails
vp9_compute_mod_refprobs(cm);
}
static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m,
vp9_writer *bc, int mi_row, int mi_col) {
VP9_COMMON *const pc = &cpi->common;
const nmv_context *nmvc = &pc->fc.nmvc;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = &m->mbmi;
const MV_REFERENCE_FRAME rf = mi->ref_frame;
const MB_PREDICTION_MODE mode = mi->mode;
const int segment_id = mi->segment_id;
int skip_coeff;
xd->prev_mode_info_context = pc->prev_mi + (m - pc->mi);
x->partition_info = x->pi + (m - pc->mi);
#ifdef ENTROPY_STATS
active_section = 9;
#endif
if (cpi->mb.e_mbd.update_mb_segmentation_map) {
// Is temporal coding of the segment map enabled
if (pc->temporal_update) {
unsigned char prediction_flag = vp9_get_pred_flag(xd, PRED_SEG_ID);
vp9_prob pred_prob = vp9_get_pred_prob(pc, xd, PRED_SEG_ID);
// Code the segment id prediction flag for this mb
vp9_write(bc, prediction_flag, pred_prob);
// If the mb segment id wasn't predicted code explicitly
if (!prediction_flag)
write_mb_segid(bc, mi, &cpi->mb.e_mbd);
} else {
// Normal unpredicted coding
write_mb_segid(bc, mi, &cpi->mb.e_mbd);
}
}
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
skip_coeff = 1;
} else {
skip_coeff = m->mbmi.mb_skip_coeff;
vp9_write(bc, skip_coeff,
vp9_get_pred_prob(pc, xd, PRED_MBSKIP));
}
// Encode the reference frame.
encode_ref_frame(bc, pc, xd, segment_id, rf);
if (rf == INTRA_FRAME) {
#ifdef ENTROPY_STATS
active_section = 6;
#endif
if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8)
write_sb_ymode(bc, mode, pc->fc.sb_ymode_prob);
if (m->mbmi.sb_type < BLOCK_SIZE_SB8X8) {
int idx, idy;
int bw = 1 << b_width_log2(mi->sb_type);
int bh = 1 << b_height_log2(mi->sb_type);
for (idy = 0; idy < 2; idy += bh)
for (idx = 0; idx < 2; idx += bw)
write_sb_ymode(bc, m->bmi[idy * 2 + idx].as_mode.first,
pc->fc.sb_ymode_prob);
}
write_uv_mode(bc, mi->uv_mode,
pc->fc.uv_mode_prob[mode]);
} else {
vp9_prob mv_ref_p[VP9_MVREFS - 1];
vp9_mv_ref_probs(&cpi->common, mv_ref_p, mi->mb_mode_context[rf]);
#ifdef ENTROPY_STATS
active_section = 3;
#endif
// If segment skip is not enabled code the mode.
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
if (mi->sb_type >= BLOCK_SIZE_SB8X8)
write_sb_mv_ref(bc, mode, mv_ref_p);
vp9_accum_mv_refs(&cpi->common, mode, mi->mb_mode_context[rf]);
}
if (is_inter_mode(mode)) {
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
write_token(bc, vp9_switchable_interp_tree,
vp9_get_pred_probs(&cpi->common, xd,
PRED_SWITCHABLE_INTERP),
vp9_switchable_interp_encodings +
vp9_switchable_interp_map[mi->interp_filter]);
} else {
assert(mi->interp_filter == cpi->common.mcomp_filter_type);
}
}
// does the feature use compound prediction or not
// (if not specified at the frame/segment level)
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
vp9_write(bc, mi->second_ref_frame > INTRA_FRAME,
vp9_get_pred_prob(pc, xd, PRED_COMP));
}
switch (mode) { /* new, split require MVs */
case NEWMV:
#ifdef ENTROPY_STATS
active_section = 5;
#endif
vp9_encode_mv(bc,
&mi->mv[0].as_mv, &mi->best_mv.as_mv,
nmvc, xd->allow_high_precision_mv);
if (mi->second_ref_frame > 0)
vp9_encode_mv(bc,
&mi->mv[1].as_mv, &mi->best_second_mv.as_mv,
nmvc, xd->allow_high_precision_mv);
break;
case SPLITMV: {
int j;
MB_PREDICTION_MODE blockmode;
int_mv blockmv;
int bwl = b_width_log2(mi->sb_type), bw = 1 << bwl;
int bhl = b_height_log2(mi->sb_type), bh = 1 << bhl;
int idx, idy;
for (idy = 0; idy < 2; idy += bh) {
for (idx = 0; idx < 2; idx += bw) {
j = idy * 2 + idx;
blockmode = cpi->mb.partition_info->bmi[j].mode;
blockmv = cpi->mb.partition_info->bmi[j].mv;
write_sb_mv_ref(bc, blockmode, mv_ref_p);
vp9_accum_mv_refs(&cpi->common, blockmode, mi->mb_mode_context[rf]);
if (blockmode == NEWMV) {
#ifdef ENTROPY_STATS
active_section = 11;
#endif
vp9_encode_mv(bc, &blockmv.as_mv, &mi->best_mv.as_mv,
nmvc, xd->allow_high_precision_mv);
if (mi->second_ref_frame > 0)
vp9_encode_mv(bc,
&cpi->mb.partition_info->bmi[j].second_mv.as_mv,
&mi->best_second_mv.as_mv,
nmvc, xd->allow_high_precision_mv);
}
}
}
#ifdef MODE_STATS
++count_mb_seg[mi->partitioning];
#endif
break;
}
default:
break;
}
}
if (mi->sb_type >= BLOCK_SIZE_SB8X8 && pc->txfm_mode == TX_MODE_SELECT &&
!(rf != INTRA_FRAME &&
(skip_coeff || vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)))) {
TX_SIZE sz = mi->txfm_size;
// FIXME(rbultje) code ternary symbol once all experiments are merged
vp9_write(bc, sz != TX_4X4, pc->prob_tx[0]);
if (mi->sb_type >= BLOCK_SIZE_MB16X16 && sz != TX_4X4) {
vp9_write(bc, sz != TX_8X8, pc->prob_tx[1]);
if (mi->sb_type >= BLOCK_SIZE_SB32X32 && sz != TX_8X8)
vp9_write(bc, sz != TX_16X16, pc->prob_tx[2]);
}
}
}
static void write_mb_modes_kf(const VP9_COMP *cpi,
MODE_INFO *m,
vp9_writer *bc, int mi_row, int mi_col) {
const VP9_COMMON *const c = &cpi->common;
const MACROBLOCKD *const xd = &cpi->mb.e_mbd;
const int ym = m->mbmi.mode;
const int mis = c->mode_info_stride;
const int segment_id = m->mbmi.segment_id;
int skip_coeff;
if (xd->update_mb_segmentation_map)
write_mb_segid(bc, &m->mbmi, xd);
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
skip_coeff = 1;
} else {
skip_coeff = m->mbmi.mb_skip_coeff;
vp9_write(bc, skip_coeff, vp9_get_pred_prob(c, xd, PRED_MBSKIP));
}
if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) {
const B_PREDICTION_MODE A = above_block_mode(m, 0, mis);
const B_PREDICTION_MODE L = xd->left_available ?
left_block_mode(m, 0) : DC_PRED;
write_kf_bmode(bc, ym, c->kf_bmode_prob[A][L]);
}
if (m->mbmi.sb_type < BLOCK_SIZE_SB8X8) {
int idx, idy;
int bw = 1 << b_width_log2(m->mbmi.sb_type);
int bh = 1 << b_height_log2(m->mbmi.sb_type);
for (idy = 0; idy < 2; idy += bh) {
for (idx = 0; idx < 2; idx += bw) {
int i = idy * 2 + idx;
const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
const B_PREDICTION_MODE L = (xd->left_available || idx) ?
left_block_mode(m, i) : DC_PRED;
write_kf_bmode(bc, m->bmi[i].as_mode.first,
c->kf_bmode_prob[A][L]);
}
}
}
write_uv_mode(bc, m->mbmi.uv_mode, c->kf_uv_mode_prob[ym]);
if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8 && c->txfm_mode == TX_MODE_SELECT) {
TX_SIZE sz = m->mbmi.txfm_size;
// FIXME(rbultje) code ternary symbol once all experiments are merged
vp9_write(bc, sz != TX_4X4, c->prob_tx[0]);
if (m->mbmi.sb_type >= BLOCK_SIZE_MB16X16 && sz != TX_4X4) {
vp9_write(bc, sz != TX_8X8, c->prob_tx[1]);
if (m->mbmi.sb_type >= BLOCK_SIZE_SB32X32 && sz != TX_8X8)
vp9_write(bc, sz != TX_16X16, c->prob_tx[2]);
}
}
}
static void write_modes_b(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc,
TOKENEXTRA **tok, TOKENEXTRA *tok_end,
int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
if (m->mbmi.sb_type < BLOCK_SIZE_SB8X8)
if (xd->ab_index > 0)
return;
xd->mode_info_context = m;
set_mi_row_col(&cpi->common, xd, mi_row,
1 << mi_height_log2(m->mbmi.sb_type),
mi_col, 1 << mi_width_log2(m->mbmi.sb_type));
if (cm->frame_type == KEY_FRAME) {
write_mb_modes_kf(cpi, m, bc, mi_row, mi_col);
#ifdef ENTROPY_STATS
active_section = 8;
#endif
} else {
pack_inter_mode_mvs(cpi, m, bc, mi_row, mi_col);
#ifdef ENTROPY_STATS
active_section = 1;
#endif
}
assert(*tok < tok_end);
pack_mb_tokens(bc, tok, tok_end);
}
static void write_modes_sb(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc,
TOKENEXTRA **tok, TOKENEXTRA *tok_end,
int mi_row, int mi_col,
BLOCK_SIZE_TYPE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
const int mis = cm->mode_info_stride;
int bwl, bhl;
int bsl = b_width_log2(bsize);
int bs = (1 << bsl) / 4; // mode_info step for subsize
int n;
PARTITION_TYPE partition;
BLOCK_SIZE_TYPE subsize;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
bwl = b_width_log2(m->mbmi.sb_type);
bhl = b_height_log2(m->mbmi.sb_type);
// parse the partition type
if ((bwl == bsl) && (bhl == bsl))
partition = PARTITION_NONE;
else if ((bwl == bsl) && (bhl < bsl))
partition = PARTITION_HORZ;
else if ((bwl < bsl) && (bhl == bsl))
partition = PARTITION_VERT;
else if ((bwl < bsl) && (bhl < bsl))
partition = PARTITION_SPLIT;
else
assert(0);
if (bsize < BLOCK_SIZE_SB8X8)
if (xd->ab_index > 0)
return;
if (bsize >= BLOCK_SIZE_SB8X8) {
int pl;
xd->left_seg_context = cm->left_seg_context + (mi_row & MI_MASK);
xd->above_seg_context = cm->above_seg_context + mi_col;
pl = partition_plane_context(xd, bsize);
// encode the partition information
write_token(bc, vp9_partition_tree, cm->fc.partition_prob[pl],
vp9_partition_encodings + partition);
}
subsize = get_subsize(bsize, partition);
*(get_sb_index(xd, subsize)) = 0;
switch (partition) {
case PARTITION_NONE:
write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col);
break;
case PARTITION_HORZ:
write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col);
*(get_sb_index(xd, subsize)) = 1;
if ((mi_row + bs) < cm->mi_rows)
write_modes_b(cpi, m + bs * mis, bc, tok, tok_end, mi_row + bs, mi_col);
break;
case PARTITION_VERT:
write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col);
*(get_sb_index(xd, subsize)) = 1;
if ((mi_col + bs) < cm->mi_cols)
write_modes_b(cpi, m + bs, bc, tok, tok_end, mi_row, mi_col + bs);
break;
case PARTITION_SPLIT:
for (n = 0; n < 4; n++) {
int j = n >> 1, i = n & 0x01;
*(get_sb_index(xd, subsize)) = n;
write_modes_sb(cpi, m + j * bs * mis + i * bs, bc, tok, tok_end,
mi_row + j * bs, mi_col + i * bs, subsize);
}
break;
default:
assert(0);
}
// update partition context
if (bsize >= BLOCK_SIZE_SB8X8 &&
(bsize == BLOCK_SIZE_SB8X8 || partition != PARTITION_SPLIT)) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
update_partition_context(xd, subsize, bsize);
}
}
static void write_modes(VP9_COMP *cpi, vp9_writer* const bc,
TOKENEXTRA **tok, TOKENEXTRA *tok_end) {
VP9_COMMON *const c = &cpi->common;
const int mis = c->mode_info_stride;
MODE_INFO *m, *m_ptr = c->mi;
int mi_row, mi_col;
m_ptr += c->cur_tile_mi_col_start + c->cur_tile_mi_row_start * mis;
vpx_memset(c->above_seg_context, 0, sizeof(PARTITION_CONTEXT) *
mi_cols_aligned_to_sb(c));
for (mi_row = c->cur_tile_mi_row_start;
mi_row < c->cur_tile_mi_row_end;
mi_row += 8, m_ptr += 8 * mis) {
m = m_ptr;
vpx_memset(c->left_seg_context, 0, sizeof(c->left_seg_context));
for (mi_col = c->cur_tile_mi_col_start;
mi_col < c->cur_tile_mi_col_end;
mi_col += 64 / MI_SIZE, m += 64 / MI_SIZE)
write_modes_sb(cpi, m, bc, tok, tok_end, mi_row, mi_col,
BLOCK_SIZE_SB64X64);
}
}
/* This function is used for debugging probability trees. */
static void print_prob_tree(vp9_coeff_probs *coef_probs, int block_types) {
/* print coef probability tree */
int i, j, k, l, m;
FILE *f = fopen("enc_tree_probs.txt", "a");
fprintf(f, "{\n");
for (i = 0; i < block_types; i++) {
fprintf(f, " {\n");
for (j = 0; j < REF_TYPES; ++j) {
fprintf(f, " {\n");
for (k = 0; k < COEF_BANDS; k++) {
fprintf(f, " {\n");
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
fprintf(f, " {");
for (m = 0; m < ENTROPY_NODES; m++) {
fprintf(f, "%3u, ",
(unsigned int)(coef_probs[i][j][k][l][m]));
}
}
fprintf(f, " }\n");
}
fprintf(f, " }\n");
}
fprintf(f, " }\n");
}
fprintf(f, "}\n");
fclose(f);
}
static void build_tree_distribution(vp9_coeff_probs *coef_probs,
vp9_coeff_count *coef_counts,
unsigned int (*eob_branch_ct)[REF_TYPES]
[COEF_BANDS]
[PREV_COEF_CONTEXTS],
#ifdef ENTROPY_STATS
VP9_COMP *cpi,
vp9_coeff_accum *context_counters,
#endif
vp9_coeff_stats *coef_branch_ct,
int block_types) {
int i, j, k, l;
#ifdef ENTROPY_STATS
int t = 0;
#endif
for (i = 0; i < block_types; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
if (l >= 3 && k == 0)
continue;
vp9_tree_probs_from_distribution(vp9_coef_tree,
coef_probs[i][j][k][l],
coef_branch_ct[i][j][k][l],
coef_counts[i][j][k][l], 0);
coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
coef_branch_ct[i][j][k][l][0][0];
coef_probs[i][j][k][l][0] =
get_binary_prob(coef_branch_ct[i][j][k][l][0][0],
coef_branch_ct[i][j][k][l][0][1]);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing) {
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
context_counters[i][j][k][l][t] += coef_counts[i][j][k][l][t];
context_counters[i][j][k][l][MAX_ENTROPY_TOKENS] +=
eob_branch_ct[i][j][k][l];
}
#endif
}
}
}
}
}
static void build_coeff_contexts(VP9_COMP *cpi) {
build_tree_distribution(cpi->frame_coef_probs_4x4,
cpi->coef_counts_4x4,
cpi->common.fc.eob_branch_counts[TX_4X4],
#ifdef ENTROPY_STATS
cpi, context_counters_4x4,
#endif
cpi->frame_branch_ct_4x4, BLOCK_TYPES);
build_tree_distribution(cpi->frame_coef_probs_8x8,
cpi->coef_counts_8x8,
cpi->common.fc.eob_branch_counts[TX_8X8],
#ifdef ENTROPY_STATS
cpi, context_counters_8x8,
#endif
cpi->frame_branch_ct_8x8, BLOCK_TYPES);
build_tree_distribution(cpi->frame_coef_probs_16x16,
cpi->coef_counts_16x16,
cpi->common.fc.eob_branch_counts[TX_16X16],
#ifdef ENTROPY_STATS
cpi, context_counters_16x16,
#endif
cpi->frame_branch_ct_16x16, BLOCK_TYPES);
build_tree_distribution(cpi->frame_coef_probs_32x32,
cpi->coef_counts_32x32,
cpi->common.fc.eob_branch_counts[TX_32X32],
#ifdef ENTROPY_STATS
cpi, context_counters_32x32,
#endif
cpi->frame_branch_ct_32x32, BLOCK_TYPES);
}
static void update_coef_probs_common(
vp9_writer* const bc,
VP9_COMP *cpi,
#ifdef ENTROPY_STATS
vp9_coeff_stats *tree_update_hist,
#endif
vp9_coeff_probs *new_frame_coef_probs,
vp9_coeff_probs_model *old_frame_coef_probs,
vp9_coeff_stats *frame_branch_ct,
TX_SIZE tx_size) {
int i, j, k, l, t;
int update[2] = {0, 0};
int savings;
const int entropy_nodes_update = UNCONSTRAINED_NODES;
// vp9_prob bestupd = find_coef_update_prob(cpi);
const int tstart = 0;
/* dry run to see if there is any udpate at all needed */
savings = 0;
for (i = 0; i < BLOCK_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
// int prev_coef_savings[ENTROPY_NODES] = {0};
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
for (t = tstart; t < entropy_nodes_update; ++t) {
vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t];
const vp9_prob upd = vp9_coef_update_prob[t];
int s; // = prev_coef_savings[t];
int u = 0;
if (l >= 3 && k == 0)
continue;
if (t == PIVOT_NODE)
s = prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
else
s = prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
if (s > 0 && newp != oldp)
u = 1;
if (u)
savings += s - (int)(vp9_cost_zero(upd));
else
savings -= (int)(vp9_cost_zero(upd));
update[u]++;
}
}
}
}
}
// printf("Update %d %d, savings %d\n", update[0], update[1], savings);
/* Is coef updated at all */
if (update[1] == 0 || savings < 0) {
vp9_write_bit(bc, 0);
return;
}
vp9_write_bit(bc, 1);
for (i = 0; i < BLOCK_TYPES; ++i) {
for (j = 0; j < REF_TYPES; ++j) {
for (k = 0; k < COEF_BANDS; ++k) {
// int prev_coef_savings[ENTROPY_NODES] = {0};
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
// calc probs and branch cts for this frame only
for (t = tstart; t < entropy_nodes_update; ++t) {
vp9_prob newp = new_frame_coef_probs[i][j][k][l][t];
vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t;
const vp9_prob upd = vp9_coef_update_prob[t];
int s; // = prev_coef_savings[t];
int u = 0;
if (l >= 3 && k == 0)
continue;
if (t == PIVOT_NODE)
s = prob_diff_update_savings_search_model(
frame_branch_ct[i][j][k][l][0],
old_frame_coef_probs[i][j][k][l], &newp, upd, i, j);
else
s = prob_diff_update_savings_search(
frame_branch_ct[i][j][k][l][t],
*oldp, &newp, upd);
if (s > 0 && newp != *oldp)
u = 1;
vp9_write(bc, u, upd);
#ifdef ENTROPY_STATS
if (!cpi->dummy_packing)
++tree_update_hist[i][j][k][l][t][u];
#endif
if (u) {
/* send/use new probability */
write_prob_diff_update(bc, newp, *oldp);
*oldp = newp;
}
}
}
}
}
}
}
static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) {
vp9_clear_system_state();
// Build the cofficient contexts based on counts collected in encode loop
build_coeff_contexts(cpi);
update_coef_probs_common(bc,
cpi,
#ifdef ENTROPY_STATS
tree_update_hist_4x4,
#endif
cpi->frame_coef_probs_4x4,
cpi->common.fc.coef_probs_4x4,
cpi->frame_branch_ct_4x4,
TX_4X4);
/* do not do this if not even allowed */
if (cpi->common.txfm_mode != ONLY_4X4) {
update_coef_probs_common(bc,
cpi,
#ifdef ENTROPY_STATS
tree_update_hist_8x8,
#endif
cpi->frame_coef_probs_8x8,
cpi->common.fc.coef_probs_8x8,
cpi->frame_branch_ct_8x8,
TX_8X8);
}
if (cpi->common.txfm_mode > ALLOW_8X8) {
update_coef_probs_common(bc,
cpi,
#ifdef ENTROPY_STATS
tree_update_hist_16x16,
#endif
cpi->frame_coef_probs_16x16,
cpi->common.fc.coef_probs_16x16,
cpi->frame_branch_ct_16x16,
TX_16X16);
}
if (cpi->common.txfm_mode > ALLOW_16X16) {
update_coef_probs_common(bc,
cpi,
#ifdef ENTROPY_STATS
tree_update_hist_32x32,
#endif
cpi->frame_coef_probs_32x32,
cpi->common.fc.coef_probs_32x32,
cpi->frame_branch_ct_32x32,
TX_32X32);
}
}
static void decide_kf_ymode_entropy(VP9_COMP *cpi) {
int mode_cost[MB_MODE_COUNT];
int bestcost = INT_MAX;
int bestindex = 0;
int i, j;
for (i = 0; i < 8; i++) {
int cost = 0;
vp9_cost_tokens(mode_cost, cpi->common.kf_ymode_prob[i], vp9_kf_ymode_tree);
for (j = 0; j < VP9_YMODES; j++)
cost += mode_cost[j] * cpi->ymode_count[j];
vp9_cost_tokens(mode_cost, cpi->common.sb_kf_ymode_prob[i],
vp9_sb_ymode_tree);
for (j = 0; j < VP9_I32X32_MODES; j++)
cost += mode_cost[j] * cpi->sb_ymode_count[j];
if (cost < bestcost) {
bestindex = i;
bestcost = cost;
}
}
cpi->common.kf_ymode_probs_index = bestindex;
}
static void segment_reference_frames(VP9_COMP *cpi) {
VP9_COMMON *oci = &cpi->common;
MODE_INFO *mi = oci->mi;
int ref[MAX_MB_SEGMENTS] = {0};
int i, j;
int mb_index = 0;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
for (i = 0; i < oci->mb_rows; i++) {
for (j = 0; j < oci->mb_cols; j++, mb_index++)
ref[mi[mb_index].mbmi.segment_id] |= (1 << mi[mb_index].mbmi.ref_frame);
mb_index++;
}
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
vp9_enable_segfeature(xd, i, SEG_LVL_REF_FRAME);
vp9_set_segdata(xd, i, SEG_LVL_REF_FRAME, ref[i]);
}
}
static void encode_loopfilter(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_writer *w) {
int i;
// Encode the loop filter level and type
vp9_write_literal(w, pc->filter_level, 6);
vp9_write_literal(w, pc->sharpness_level, 3);
#if CONFIG_LOOP_DERING
if (pc->dering_enabled) {
vp9_write_bit(w, 1);
vp9_write_literal(w, pc->dering_enabled - 1, 4);
} else {
vp9_write_bit(w, 0);
}
#endif
// Write out loop filter deltas applied at the MB level based on mode or
// ref frame (if they are enabled).
vp9_write_bit(w, xd->mode_ref_lf_delta_enabled);
if (xd->mode_ref_lf_delta_enabled) {
// Do the deltas need to be updated
vp9_write_bit(w, xd->mode_ref_lf_delta_update);
if (xd->mode_ref_lf_delta_update) {
// Send update
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
const int delta = xd->ref_lf_deltas[i];
// Frame level data
if (delta != xd->last_ref_lf_deltas[i]) {
xd->last_ref_lf_deltas[i] = delta;
vp9_write_bit(w, 1);
if (delta > 0) {
vp9_write_literal(w, delta & 0x3F, 6);
vp9_write_bit(w, 0); // sign
} else {
assert(delta < 0);
vp9_write_literal(w, (-delta) & 0x3F, 6);
vp9_write_bit(w, 1); // sign
}
} else {
vp9_write_bit(w, 0);
}
}
// Send update
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
const int delta = xd->mode_lf_deltas[i];
if (delta != xd->last_mode_lf_deltas[i]) {
xd->last_mode_lf_deltas[i] = delta;
vp9_write_bit(w, 1);
if (delta > 0) {
vp9_write_literal(w, delta & 0x3F, 6);
vp9_write_bit(w, 0); // sign
} else {
assert(delta < 0);
vp9_write_literal(w, (-delta) & 0x3F, 6);
vp9_write_bit(w, 1); // sign
}
} else {
vp9_write_bit(w, 0);
}
}
}
}
}
static void put_delta_q(vp9_writer *bc, int delta_q) {
if (delta_q != 0) {
vp9_write_bit(bc, 1);
vp9_write_literal(bc, abs(delta_q), 4);
vp9_write_bit(bc, delta_q < 0);
} else {
vp9_write_bit(bc, 0);
}
}
static void encode_quantization(VP9_COMMON *pc, vp9_writer *w) {
vp9_write_literal(w, pc->base_qindex, QINDEX_BITS);
put_delta_q(w, pc->y_dc_delta_q);
put_delta_q(w, pc->uv_dc_delta_q);
put_delta_q(w, pc->uv_ac_delta_q);
}
static void encode_segmentation(VP9_COMP *cpi, vp9_writer *w) {
int i, j;
VP9_COMMON *const pc = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
vp9_write_bit(w, xd->segmentation_enabled);
if (!xd->segmentation_enabled)
return;
// Segmentation map
vp9_write_bit(w, xd->update_mb_segmentation_map);
#if CONFIG_IMPLICIT_SEGMENTATION
vp9_write_bit(w, xd->allow_implicit_segment_update);
#endif
if (xd->update_mb_segmentation_map) {
// Select the coding strategy (temporal or spatial)
vp9_choose_segmap_coding_method(cpi);
// Write out probabilities used to decode unpredicted macro-block segments
for (i = 0; i < MB_SEG_TREE_PROBS; i++) {
const int prob = xd->mb_segment_tree_probs[i];
if (prob != MAX_PROB) {
vp9_write_bit(w, 1);
vp9_write_prob(w, prob);
} else {
vp9_write_bit(w, 0);
}
}
// Write out the chosen coding method.
vp9_write_bit(w, pc->temporal_update);
if (pc->temporal_update) {
for (i = 0; i < PREDICTION_PROBS; i++) {
const int prob = pc->segment_pred_probs[i];
if (prob != MAX_PROB) {
vp9_write_bit(w, 1);
vp9_write_prob(w, prob);
} else {
vp9_write_bit(w, 0);
}
}
}
}
// Segmentation data
vp9_write_bit(w, xd->update_mb_segmentation_data);
// segment_reference_frames(cpi);
if (xd->update_mb_segmentation_data) {
vp9_write_bit(w, xd->mb_segment_abs_delta);
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
const int data = vp9_get_segdata(xd, i, j);
const int data_max = vp9_seg_feature_data_max(j);
if (vp9_segfeature_active(xd, i, j)) {
vp9_write_bit(w, 1);
if (vp9_is_segfeature_signed(j)) {
if (data < 0) {
vp9_encode_unsigned_max(w, -data, data_max);
vp9_write_bit(w, 1);
} else {
vp9_encode_unsigned_max(w, data, data_max);
vp9_write_bit(w, 0);
}
} else {
vp9_encode_unsigned_max(w, data, data_max);
}
} else {
vp9_write_bit(w, 0);
}
}
}
}
}
void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, unsigned long *size) {
int i;
VP9_COMMON *const pc = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
vp9_writer header_bc, residual_bc;
int extra_bytes_packed = 0;
uint8_t *cx_data = dest;
cx_data += HEADER_SIZE_IN_BYTES;
#if defined(SECTIONBITS_OUTPUT)
Sectionbits[active_section = 1] += HEADER_SIZE_IN_BYTES * 8 * 256;
#endif
compute_update_table();
if (pc->frame_type == KEY_FRAME) {
// Start / synch code
cx_data[0] = 0x49;
cx_data[1] = 0x83;
cx_data[2] = 0x42;
extra_bytes_packed += 3;
cx_data += 3;
}
if (pc->width != pc->display_width || pc->height != pc->display_height) {
write_le16(cx_data, pc->display_width);
write_le16(cx_data + 2, pc->display_height);
extra_bytes_packed += 4;
cx_data += 4;
}
write_le16(cx_data, pc->width);
write_le16(cx_data + 2, pc->height);
extra_bytes_packed += 4;
cx_data += 4;
vp9_start_encode(&header_bc, cx_data);
encode_loopfilter(pc, xd, &header_bc);
encode_quantization(pc, &header_bc);
// When there is a key frame all reference buffers are updated using the new key frame
if (pc->frame_type != KEY_FRAME) {
int refresh_mask;
// Should the GF or ARF be updated using the transmitted frame or buffer
#if CONFIG_MULTIPLE_ARF
if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
!cpi->refresh_alt_ref_frame) {
#else
if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) {
#endif
/* Preserve the previously existing golden frame and update the frame in
* the alt ref slot instead. This is highly specific to the use of
* alt-ref as a forward reference, and this needs to be generalized as
* other uses are implemented (like RTC/temporal scaling)
*
* gld_fb_idx and alt_fb_idx need to be swapped for future frames, but
* that happens in vp9_onyx_if.c:update_reference_frames() so that it can
* be done outside of the recode loop.
*/
refresh_mask = (cpi->refresh_last_frame << cpi->lst_fb_idx) |
(cpi->refresh_golden_frame << cpi->alt_fb_idx);
} else {
int arf_idx = cpi->alt_fb_idx;
#if CONFIG_MULTIPLE_ARF
// Determine which ARF buffer to use to encode this ARF frame.
if (cpi->multi_arf_enabled) {
int sn = cpi->sequence_number;
arf_idx = (cpi->frame_coding_order[sn] < 0) ?
cpi->arf_buffer_idx[sn + 1] :
cpi->arf_buffer_idx[sn];
}
#endif
refresh_mask = (cpi->refresh_last_frame << cpi->lst_fb_idx) |
(cpi->refresh_golden_frame << cpi->gld_fb_idx) |
(cpi->refresh_alt_ref_frame << arf_idx);
}
vp9_write_literal(&header_bc, refresh_mask, NUM_REF_FRAMES);
vp9_write_literal(&header_bc, cpi->lst_fb_idx, NUM_REF_FRAMES_LG2);
vp9_write_literal(&header_bc, cpi->gld_fb_idx, NUM_REF_FRAMES_LG2);
vp9_write_literal(&header_bc, cpi->alt_fb_idx, NUM_REF_FRAMES_LG2);
// Indicate the sign bias for each reference frame buffer.
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i)
vp9_write_bit(&header_bc, pc->ref_frame_sign_bias[LAST_FRAME + i]);
// Signal whether to allow high MV precision
vp9_write_bit(&header_bc, (xd->allow_high_precision_mv) ? 1 : 0);
if (pc->mcomp_filter_type == SWITCHABLE) {
/* Check to see if only one of the filters is actually used */
int count[VP9_SWITCHABLE_FILTERS];
int i, j, c = 0;
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
count[i] = 0;
for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j)
count[i] += cpi->switchable_interp_count[j][i];
c += (count[i] > 0);
}
if (c == 1) {
/* Only one filter is used. So set the filter at frame level */
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
if (count[i]) {
pc->mcomp_filter_type = vp9_switchable_interp[i];
break;
}
}
}
}
// Signal the type of subpel filter to use
vp9_write_bit(&header_bc, (pc->mcomp_filter_type == SWITCHABLE));
if (pc->mcomp_filter_type != SWITCHABLE)
vp9_write_literal(&header_bc, (pc->mcomp_filter_type), 2);
}
vp9_write_literal(&header_bc, pc->frame_context_idx,
NUM_FRAME_CONTEXTS_LG2);
#ifdef ENTROPY_STATS
if (pc->frame_type == INTER_FRAME)
active_section = 0;
else
active_section = 7;
#endif
encode_segmentation(cpi, &header_bc);
// Encode the common prediction model status flag probability updates for
// the reference frame
update_refpred_stats(cpi);
if (pc->frame_type != KEY_FRAME) {
for (i = 0; i < PREDICTION_PROBS; i++) {
if (cpi->ref_pred_probs_update[i]) {
vp9_write_bit(&header_bc, 1);
vp9_write_prob(&header_bc, pc->ref_pred_probs[i]);
} else {
vp9_write_bit(&header_bc, 0);
}
}
}
if (cpi->mb.e_mbd.lossless) {
pc->txfm_mode = ONLY_4X4;
} else {
if (pc->txfm_mode == TX_MODE_SELECT) {
pc->prob_tx[0] = get_prob(cpi->txfm_count_32x32p[TX_4X4] +
cpi->txfm_count_16x16p[TX_4X4] +
cpi->txfm_count_8x8p[TX_4X4],
cpi->txfm_count_32x32p[TX_4X4] +
cpi->txfm_count_32x32p[TX_8X8] +
cpi->txfm_count_32x32p[TX_16X16] +
cpi->txfm_count_32x32p[TX_32X32] +
cpi->txfm_count_16x16p[TX_4X4] +
cpi->txfm_count_16x16p[TX_8X8] +
cpi->txfm_count_16x16p[TX_16X16] +
cpi->txfm_count_8x8p[TX_4X4] +
cpi->txfm_count_8x8p[TX_8X8]);
pc->prob_tx[1] = get_prob(cpi->txfm_count_32x32p[TX_8X8] +
cpi->txfm_count_16x16p[TX_8X8],
cpi->txfm_count_32x32p[TX_8X8] +
cpi->txfm_count_32x32p[TX_16X16] +
cpi->txfm_count_32x32p[TX_32X32] +
cpi->txfm_count_16x16p[TX_8X8] +
cpi->txfm_count_16x16p[TX_16X16]);
pc->prob_tx[2] = get_prob(cpi->txfm_count_32x32p[TX_16X16],
cpi->txfm_count_32x32p[TX_16X16] +
cpi->txfm_count_32x32p[TX_32X32]);
} else {
pc->prob_tx[0] = 128;
pc->prob_tx[1] = 128;
pc->prob_tx[2] = 128;
}
vp9_write_literal(&header_bc, pc->txfm_mode <= 3 ? pc->txfm_mode : 3, 2);
if (pc->txfm_mode > ALLOW_16X16) {
vp9_write_bit(&header_bc, pc->txfm_mode == TX_MODE_SELECT);
}
if (pc->txfm_mode == TX_MODE_SELECT) {
vp9_write_prob(&header_bc, pc->prob_tx[0]);
vp9_write_prob(&header_bc, pc->prob_tx[1]);
vp9_write_prob(&header_bc, pc->prob_tx[2]);
}
}
// If appropriate update the inter mode probability context and code the
// changes in the bitstream.
if (pc->frame_type != KEY_FRAME) {
int i, j;
int new_context[INTER_MODE_CONTEXTS][4];
if (!cpi->dummy_packing) {
update_inter_mode_probs(pc, new_context);
} else {
// In dummy pack assume context unchanged.
vpx_memcpy(new_context, pc->fc.vp9_mode_contexts,
sizeof(pc->fc.vp9_mode_contexts));
}
for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
for (j = 0; j < 4; j++) {
if (new_context[i][j] != pc->fc.vp9_mode_contexts[i][j]) {
vp9_write(&header_bc, 1, 252);
vp9_write_prob(&header_bc, new_context[i][j]);
// Only update the persistent copy if this is the "real pack"
if (!cpi->dummy_packing) {
pc->fc.vp9_mode_contexts[i][j] = new_context[i][j];
}
} else {
vp9_write(&header_bc, 0, 252);
}
}
}
}
vp9_clear_system_state(); // __asm emms;
vp9_copy(cpi->common.fc.pre_coef_probs_4x4,
cpi->common.fc.coef_probs_4x4);
vp9_copy(cpi->common.fc.pre_coef_probs_8x8,
cpi->common.fc.coef_probs_8x8);
vp9_copy(cpi->common.fc.pre_coef_probs_16x16,
cpi->common.fc.coef_probs_16x16);
vp9_copy(cpi->common.fc.pre_coef_probs_32x32,
cpi->common.fc.coef_probs_32x32);
vp9_copy(cpi->common.fc.pre_sb_ymode_prob, cpi->common.fc.sb_ymode_prob);
vp9_copy(cpi->common.fc.pre_ymode_prob, cpi->common.fc.ymode_prob);
vp9_copy(cpi->common.fc.pre_uv_mode_prob, cpi->common.fc.uv_mode_prob);
vp9_copy(cpi->common.fc.pre_bmode_prob, cpi->common.fc.bmode_prob);
vp9_copy(cpi->common.fc.pre_partition_prob, cpi->common.fc.partition_prob);
cpi->common.fc.pre_nmvc = cpi->common.fc.nmvc;
vp9_zero(cpi->common.fc.mv_ref_ct);
update_coef_probs(cpi, &header_bc);
#ifdef ENTROPY_STATS
active_section = 2;
#endif
vp9_update_skip_probs(cpi);
for (i = 0; i < MBSKIP_CONTEXTS; ++i) {
vp9_write_prob(&header_bc, pc->mbskip_pred_probs[i]);
}
if (pc->frame_type == KEY_FRAME) {
if (!pc->kf_ymode_probs_update) {
vp9_write_literal(&header_bc, pc->kf_ymode_probs_index, 3);
}
} else {
// Update the probabilities used to encode reference frame data
update_ref_probs(cpi);
#ifdef ENTROPY_STATS
active_section = 1;
#endif
if (pc->mcomp_filter_type == SWITCHABLE)
update_switchable_interp_probs(cpi, &header_bc);
vp9_write_prob(&header_bc, pc->prob_intra_coded);
vp9_write_prob(&header_bc, pc->prob_last_coded);
vp9_write_prob(&header_bc, pc->prob_gf_coded);
{
const int comp_pred_mode = cpi->common.comp_pred_mode;
const int use_compound_pred = (comp_pred_mode != SINGLE_PREDICTION_ONLY);
const int use_hybrid_pred = (comp_pred_mode == HYBRID_PREDICTION);
vp9_write_bit(&header_bc, use_compound_pred);
if (use_compound_pred) {
vp9_write_bit(&header_bc, use_hybrid_pred);
if (use_hybrid_pred) {
for (i = 0; i < COMP_PRED_CONTEXTS; i++) {
pc->prob_comppred[i] = get_binary_prob(cpi->single_pred_count[i],
cpi->comp_pred_count[i]);
vp9_write_prob(&header_bc, pc->prob_comppred[i]);
}
}
}
}
update_mbintra_mode_probs(cpi, &header_bc);
for (i = 0; i < NUM_PARTITION_CONTEXTS; ++i) {
vp9_prob Pnew[PARTITION_TYPES - 1];
unsigned int bct[PARTITION_TYPES - 1][2];
update_mode(&header_bc, PARTITION_TYPES, vp9_partition_encodings,
vp9_partition_tree, Pnew, pc->fc.partition_prob[i], bct,
(unsigned int *)cpi->partition_count[i]);
}
vp9_write_nmv_probs(cpi, xd->allow_high_precision_mv, &header_bc);
}
/* tiling */
{
int min_log2_tiles, delta_log2_tiles, n_tile_bits, n;
vp9_get_tile_n_bits(pc, &min_log2_tiles, &delta_log2_tiles);
n_tile_bits = pc->log2_tile_columns - min_log2_tiles;
for (n = 0; n < delta_log2_tiles; n++) {
if (n_tile_bits--) {
vp9_write_bit(&header_bc, 1);
} else {
vp9_write_bit(&header_bc, 0);
break;
}
}
vp9_write_bit(&header_bc, pc->log2_tile_rows != 0);
if (pc->log2_tile_rows != 0)
vp9_write_bit(&header_bc, pc->log2_tile_rows != 1);
}
vp9_stop_encode(&header_bc);
/* update frame tag */
{
const int first_partition_length_in_bytes = header_bc.pos;
int scaling = (pc->width != pc->display_width ||
pc->height != pc->display_height);
struct vp9_write_bit_buffer wb = {dest, 0};
assert(first_partition_length_in_bytes <= 0xffff);
vp9_wb_write_bit(&wb, pc->frame_type);
vp9_wb_write_literal(&wb, pc->version, 3);
vp9_wb_write_bit(&wb, pc->show_frame);
vp9_wb_write_bit(&wb, scaling);
vp9_wb_write_bit(&wb, pc->subsampling_x);
vp9_wb_write_bit(&wb, pc->subsampling_y);
vp9_wb_write_bit(&wb, pc->clr_type);
vp9_wb_write_bit(&wb, pc->error_resilient_mode);
if (!pc->error_resilient_mode) {
vp9_wb_write_bit(&wb, pc->refresh_frame_context);
vp9_wb_write_bit(&wb, pc->frame_parallel_decoding_mode);
}
vp9_wb_write_literal(&wb, first_partition_length_in_bytes, 16);
}
*size = HEADER_SIZE_IN_BYTES + extra_bytes_packed + header_bc.pos;
if (pc->frame_type == KEY_FRAME) {
decide_kf_ymode_entropy(cpi);
} else {
/* This is not required if the counts in cpi are consistent with the
* final packing pass */
// if (!cpi->dummy_packing) vp9_zero(cpi->NMVcount);
}
{
int tile_row, tile_col, total_size = 0;
unsigned char *data_ptr = cx_data + header_bc.pos;
TOKENEXTRA *tok[1 << 6], *tok_end;
tok[0] = cpi->tok;
for (tile_col = 1; tile_col < pc->tile_columns; tile_col++)
tok[tile_col] = tok[tile_col - 1] + cpi->tok_count[tile_col - 1];
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
tok_end = cpi->tok + cpi->tok_count[0];
for (tile_col = 0; tile_col < pc->tile_columns;
tile_col++, tok_end += cpi->tok_count[tile_col]) {
vp9_get_tile_col_offsets(pc, tile_col);
if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1)
vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
else
vp9_start_encode(&residual_bc, data_ptr + total_size);
write_modes(cpi, &residual_bc, &tok[tile_col], tok_end);
vp9_stop_encode(&residual_bc);
if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1) {
// size of this tile
write_le32(data_ptr + total_size, residual_bc.pos);
total_size += 4;
}
total_size += residual_bc.pos;
}
}
assert((unsigned int)(tok[0] - cpi->tok) == cpi->tok_count[0]);
for (tile_col = 1; tile_col < pc->tile_columns; tile_col++)
assert((unsigned int)(tok[tile_col] - tok[tile_col - 1]) ==
cpi->tok_count[tile_col]);
*size += total_size;
}
}
#ifdef ENTROPY_STATS
static void print_tree_update_for_type(FILE *f,
vp9_coeff_stats *tree_update_hist,
int block_types, const char *header) {
int i, j, k, l, m;
fprintf(f, "const vp9_coeff_prob %s = {\n", header);
for (i = 0; i < block_types; i++) {
fprintf(f, " { \n");
for (j = 0; j < REF_TYPES; j++) {
fprintf(f, " { \n");
for (k = 0; k < COEF_BANDS; k++) {
fprintf(f, " {\n");
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
fprintf(f, " {");
for (m = 0; m < ENTROPY_NODES; m++) {
fprintf(f, "%3d, ",
get_binary_prob(tree_update_hist[i][j][k][l][m][0],
tree_update_hist[i][j][k][l][m][1]));
}
fprintf(f, "},\n");
}
fprintf(f, "},\n");
}
fprintf(f, " },\n");
}
fprintf(f, " },\n");
}
fprintf(f, "};\n");
}
void print_tree_update_probs() {
FILE *f = fopen("coefupdprob.h", "w");
fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
print_tree_update_for_type(f, tree_update_hist_4x4, BLOCK_TYPES,
"vp9_coef_update_probs_4x4[BLOCK_TYPES]");
print_tree_update_for_type(f, tree_update_hist_8x8, BLOCK_TYPES,
"vp9_coef_update_probs_8x8[BLOCK_TYPES]");
print_tree_update_for_type(f, tree_update_hist_16x16, BLOCK_TYPES,
"vp9_coef_update_probs_16x16[BLOCK_TYPES]");
print_tree_update_for_type(f, tree_update_hist_32x32, BLOCK_TYPES,
"vp9_coef_update_probs_32x32[BLOCK_TYPES]");
fclose(f);
f = fopen("treeupdate.bin", "wb");
fwrite(tree_update_hist_4x4, sizeof(tree_update_hist_4x4), 1, f);
fwrite(tree_update_hist_8x8, sizeof(tree_update_hist_8x8), 1, f);
fwrite(tree_update_hist_16x16, sizeof(tree_update_hist_16x16), 1, f);
fwrite(tree_update_hist_32x32, sizeof(tree_update_hist_32x32), 1, f);
fclose(f);
}
#endif