vpx/vp9/common/vp9_blockd.h
Jingning Han 78136edcdc SSE2 high precision 32x32 forward DCT
Enable SSE2 implementation of high precision 32x32 forward DCT. The
intermediate stacks are of 32-bits. The run-time goes down from
32126 cycles to 13442 cycles.

Change-Id: Ib5ccafe3176c65bd6f2dbdef790bd47bbc880e56
2013-08-12 16:52:53 -07:00

682 lines
22 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP9_COMMON_VP9_BLOCKD_H_
#define VP9_COMMON_VP9_BLOCKD_H_
#include "./vpx_config.h"
#include "vpx_ports/mem.h"
#include "vpx_scale/yv12config.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_common_data.h"
#include "vp9/common/vp9_enums.h"
#include "vp9/common/vp9_mv.h"
#include "vp9/common/vp9_scale.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_treecoder.h"
#define BLOCK_SIZE_GROUPS 4
#define MBSKIP_CONTEXTS 3
/* Segment Feature Masks */
#define MAX_MV_REF_CANDIDATES 2
#define INTRA_INTER_CONTEXTS 4
#define COMP_INTER_CONTEXTS 5
#define REF_CONTEXTS 5
typedef enum {
PLANE_TYPE_Y_WITH_DC,
PLANE_TYPE_UV,
} PLANE_TYPE;
typedef char ENTROPY_CONTEXT;
typedef char PARTITION_CONTEXT;
static INLINE int combine_entropy_contexts(ENTROPY_CONTEXT a,
ENTROPY_CONTEXT b) {
return (a != 0) + (b != 0);
}
typedef enum {
KEY_FRAME = 0,
INTER_FRAME = 1,
NUM_FRAME_TYPES,
} FRAME_TYPE;
typedef enum {
EIGHTTAP = 0,
EIGHTTAP_SMOOTH = 1,
EIGHTTAP_SHARP = 2,
BILINEAR = 3,
SWITCHABLE = 4 /* should be the last one */
} INTERPOLATIONFILTERTYPE;
typedef enum {
DC_PRED, // Average of above and left pixels
V_PRED, // Vertical
H_PRED, // Horizontal
D45_PRED, // Directional 45 deg = round(arctan(1/1) * 180/pi)
D135_PRED, // Directional 135 deg = 180 - 45
D117_PRED, // Directional 117 deg = 180 - 63
D153_PRED, // Directional 153 deg = 180 - 27
D27_PRED, // Directional 27 deg = round(arctan(1/2) * 180/pi)
D63_PRED, // Directional 63 deg = round(arctan(2/1) * 180/pi)
TM_PRED, // True-motion
NEARESTMV,
NEARMV,
ZEROMV,
NEWMV,
MB_MODE_COUNT
} MB_PREDICTION_MODE;
static INLINE int is_intra_mode(MB_PREDICTION_MODE mode) {
return mode <= TM_PRED;
}
static INLINE int is_inter_mode(MB_PREDICTION_MODE mode) {
return mode >= NEARESTMV && mode <= NEWMV;
}
#define VP9_INTRA_MODES (TM_PRED + 1)
#define VP9_INTER_MODES (1 + NEWMV - NEARESTMV)
static INLINE int inter_mode_offset(MB_PREDICTION_MODE mode) {
return (mode - NEARESTMV);
}
/* For keyframes, intra block modes are predicted by the (already decoded)
modes for the Y blocks to the left and above us; for interframes, there
is a single probability table. */
union b_mode_info {
MB_PREDICTION_MODE as_mode;
int_mv as_mv[2]; // first, second inter predictor motion vectors
};
typedef enum {
NONE = -1,
INTRA_FRAME = 0,
LAST_FRAME = 1,
GOLDEN_FRAME = 2,
ALTREF_FRAME = 3,
MAX_REF_FRAMES = 4
} MV_REFERENCE_FRAME;
static INLINE int b_width_log2(BLOCK_SIZE_TYPE sb_type) {
return b_width_log2_lookup[sb_type];
}
static INLINE int b_height_log2(BLOCK_SIZE_TYPE sb_type) {
return b_height_log2_lookup[sb_type];
}
static INLINE int mi_width_log2(BLOCK_SIZE_TYPE sb_type) {
return mi_width_log2_lookup[sb_type];
}
static INLINE int mi_height_log2(BLOCK_SIZE_TYPE sb_type) {
return mi_height_log2_lookup[sb_type];
}
typedef struct {
MB_PREDICTION_MODE mode, uv_mode;
MV_REFERENCE_FRAME ref_frame[2];
TX_SIZE txfm_size;
int_mv mv[2]; // for each reference frame used
int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES];
int_mv best_mv, best_second_mv;
uint8_t mb_mode_context[MAX_REF_FRAMES];
unsigned char mb_skip_coeff; /* does this mb has coefficients at all, 1=no coefficients, 0=need decode tokens */
unsigned char segment_id; // Segment id for current frame
// Flags used for prediction status of various bit-stream signals
unsigned char seg_id_predicted;
// Indicates if the mb is part of the image (1) vs border (0)
// This can be useful in determining whether the MB provides
// a valid predictor
unsigned char mb_in_image;
INTERPOLATIONFILTERTYPE interp_filter;
BLOCK_SIZE_TYPE sb_type;
} MB_MODE_INFO;
typedef struct {
MB_MODE_INFO mbmi;
union b_mode_info bmi[4];
} MODE_INFO;
static int is_inter_block(const MB_MODE_INFO *mbmi) {
return mbmi->ref_frame[0] > INTRA_FRAME;
}
enum mv_precision {
MV_PRECISION_Q3,
MV_PRECISION_Q4
};
#if CONFIG_ALPHA
enum { MAX_MB_PLANE = 4 };
#else
enum { MAX_MB_PLANE = 3 };
#endif
struct buf_2d {
uint8_t *buf;
int stride;
};
struct macroblockd_plane {
DECLARE_ALIGNED(16, int16_t, qcoeff[64 * 64]);
DECLARE_ALIGNED(16, int16_t, dqcoeff[64 * 64]);
DECLARE_ALIGNED(16, uint16_t, eobs[256]);
PLANE_TYPE plane_type;
int subsampling_x;
int subsampling_y;
struct buf_2d dst;
struct buf_2d pre[2];
int16_t *dequant;
ENTROPY_CONTEXT *above_context;
ENTROPY_CONTEXT *left_context;
};
#define BLOCK_OFFSET(x, i) ((x) + (i) * 16)
typedef struct macroblockd {
struct macroblockd_plane plane[MAX_MB_PLANE];
struct scale_factors scale_factor[2];
MODE_INFO *prev_mode_info_context;
MODE_INFO *mode_info_context;
int mode_info_stride;
int up_available;
int left_available;
int right_available;
struct segmentation seg;
// partition contexts
PARTITION_CONTEXT *above_seg_context;
PARTITION_CONTEXT *left_seg_context;
/* Distance of MB away from frame edges */
int mb_to_left_edge;
int mb_to_right_edge;
int mb_to_top_edge;
int mb_to_bottom_edge;
int lossless;
/* Inverse transform function pointers. */
void (*inv_txm4x4_1_add)(int16_t *input, uint8_t *dest, int stride);
void (*inv_txm4x4_add)(int16_t *input, uint8_t *dest, int stride);
void (*itxm_add)(int16_t *input, uint8_t *dest, int stride, int eob);
struct subpix_fn_table subpix;
int allow_high_precision_mv;
int corrupted;
unsigned char sb_index; // index of 32x32 block inside the 64x64 block
unsigned char mb_index; // index of 16x16 block inside the 32x32 block
unsigned char b_index; // index of 8x8 block inside the 16x16 block
unsigned char ab_index; // index of 4x4 block inside the 8x8 block
int q_index;
} MACROBLOCKD;
static INLINE unsigned char *get_sb_index(MACROBLOCKD *xd, BLOCK_SIZE_TYPE subsize) {
switch (subsize) {
case BLOCK_64X64:
case BLOCK_64X32:
case BLOCK_32X64:
case BLOCK_32X32:
return &xd->sb_index;
case BLOCK_32X16:
case BLOCK_16X32:
case BLOCK_16X16:
return &xd->mb_index;
case BLOCK_16X8:
case BLOCK_8X16:
case BLOCK_8X8:
return &xd->b_index;
case BLOCK_8X4:
case BLOCK_4X8:
case BLOCK_4X4:
return &xd->ab_index;
default:
assert(0);
return NULL;
}
}
static INLINE void update_partition_context(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE sb_type,
BLOCK_SIZE_TYPE sb_size) {
const int bsl = b_width_log2(sb_size), bs = (1 << bsl) / 2;
const int bwl = b_width_log2(sb_type);
const int bhl = b_height_log2(sb_type);
const int boffset = b_width_log2(BLOCK_64X64) - bsl;
const char pcval0 = ~(0xe << boffset);
const char pcval1 = ~(0xf << boffset);
const char pcvalue[2] = {pcval0, pcval1};
assert(MAX(bwl, bhl) <= bsl);
// update the partition context at the end notes. set partition bits
// of block sizes larger than the current one to be one, and partition
// bits of smaller block sizes to be zero.
vpx_memset(xd->above_seg_context, pcvalue[bwl == bsl], bs);
vpx_memset(xd->left_seg_context, pcvalue[bhl == bsl], bs);
}
static INLINE int partition_plane_context(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE sb_type) {
int bsl = mi_width_log2(sb_type), bs = 1 << bsl;
int above = 0, left = 0, i;
int boffset = mi_width_log2(BLOCK_64X64) - bsl;
assert(mi_width_log2(sb_type) == mi_height_log2(sb_type));
assert(bsl >= 0);
assert(boffset >= 0);
for (i = 0; i < bs; i++)
above |= (xd->above_seg_context[i] & (1 << boffset));
for (i = 0; i < bs; i++)
left |= (xd->left_seg_context[i] & (1 << boffset));
above = (above > 0);
left = (left > 0);
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
}
static BLOCK_SIZE_TYPE get_subsize(BLOCK_SIZE_TYPE bsize,
PARTITION_TYPE partition) {
const BLOCK_SIZE_TYPE subsize = subsize_lookup[partition][bsize];
assert(subsize < BLOCK_SIZES);
return subsize;
}
extern const TX_TYPE mode2txfm_map[MB_MODE_COUNT];
static INLINE TX_TYPE get_tx_type_4x4(PLANE_TYPE plane_type,
const MACROBLOCKD *xd, int ib) {
const MODE_INFO *const mi = xd->mode_info_context;
const MB_MODE_INFO *const mbmi = &mi->mbmi;
if (plane_type != PLANE_TYPE_Y_WITH_DC ||
xd->lossless ||
is_inter_block(mbmi))
return DCT_DCT;
return mode2txfm_map[mbmi->sb_type < BLOCK_8X8 ?
mi->bmi[ib].as_mode : mbmi->mode];
}
static INLINE TX_TYPE get_tx_type_8x8(PLANE_TYPE plane_type,
const MACROBLOCKD *xd) {
return plane_type == PLANE_TYPE_Y_WITH_DC ?
mode2txfm_map[xd->mode_info_context->mbmi.mode] : DCT_DCT;
}
static INLINE TX_TYPE get_tx_type_16x16(PLANE_TYPE plane_type,
const MACROBLOCKD *xd) {
return plane_type == PLANE_TYPE_Y_WITH_DC ?
mode2txfm_map[xd->mode_info_context->mbmi.mode] : DCT_DCT;
}
static void setup_block_dptrs(MACROBLOCKD *xd, int ss_x, int ss_y) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].plane_type = i ? PLANE_TYPE_UV : PLANE_TYPE_Y_WITH_DC;
xd->plane[i].subsampling_x = i ? ss_x : 0;
xd->plane[i].subsampling_y = i ? ss_y : 0;
}
#if CONFIG_ALPHA
// TODO(jkoleszar): Using the Y w/h for now
xd->plane[3].subsampling_x = 0;
xd->plane[3].subsampling_y = 0;
#endif
}
static INLINE TX_SIZE get_uv_tx_size(const MB_MODE_INFO *mbmi) {
return MIN(mbmi->txfm_size, max_uv_txsize_lookup[mbmi->sb_type]);
}
struct plane_block_idx {
int plane;
int block;
};
// TODO(jkoleszar): returning a struct so it can be used in a const context,
// expect to refactor this further later.
static INLINE struct plane_block_idx plane_block_idx(int y_blocks,
int b_idx) {
const int v_offset = y_blocks * 5 / 4;
struct plane_block_idx res;
if (b_idx < y_blocks) {
res.plane = 0;
res.block = b_idx;
} else if (b_idx < v_offset) {
res.plane = 1;
res.block = b_idx - y_blocks;
} else {
assert(b_idx < y_blocks * 3 / 2);
res.plane = 2;
res.block = b_idx - v_offset;
}
return res;
}
static BLOCK_SIZE_TYPE get_plane_block_size(BLOCK_SIZE_TYPE bsize,
struct macroblockd_plane *pd) {
BLOCK_SIZE_TYPE bs = ss_size_lookup[bsize]
[pd->subsampling_x][pd->subsampling_y];
assert(bs < BLOCK_SIZES);
return bs;
}
static INLINE int plane_block_width(BLOCK_SIZE_TYPE bsize,
const struct macroblockd_plane* plane) {
return 4 << (b_width_log2(bsize) - plane->subsampling_x);
}
static INLINE int plane_block_height(BLOCK_SIZE_TYPE bsize,
const struct macroblockd_plane* plane) {
return 4 << (b_height_log2(bsize) - plane->subsampling_y);
}
typedef void (*foreach_transformed_block_visitor)(int plane, int block,
BLOCK_SIZE_TYPE bsize,
int ss_txfrm_size,
void *arg);
static INLINE void foreach_transformed_block_in_plane(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane,
foreach_transformed_block_visitor visit, void *arg) {
const int bw = b_width_log2(bsize), bh = b_height_log2(bsize);
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// transform size varies per plane, look it up in a common way.
const MB_MODE_INFO* mbmi = &xd->mode_info_context->mbmi;
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi)
: mbmi->txfm_size;
const int block_size_b = bw + bh;
const int txfrm_size_b = tx_size * 2;
// subsampled size of the block
const int ss_sum = xd->plane[plane].subsampling_x
+ xd->plane[plane].subsampling_y;
const int ss_block_size = block_size_b - ss_sum;
const int step = 1 << txfrm_size_b;
int i;
assert(txfrm_size_b <= block_size_b);
assert(txfrm_size_b <= ss_block_size);
// If mb_to_right_edge is < 0 we are in a situation in which
// the current block size extends into the UMV and we won't
// visit the sub blocks that are wholly within the UMV.
if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0) {
int r, c;
const int sw = bw - xd->plane[plane].subsampling_x;
const int sh = bh - xd->plane[plane].subsampling_y;
int max_blocks_wide = 1 << sw;
int max_blocks_high = 1 << sh;
// xd->mb_to_right_edge is in units of pixels * 8. This converts
// it to 4x4 block sizes.
if (xd->mb_to_right_edge < 0)
max_blocks_wide +=
(xd->mb_to_right_edge >> (5 + xd->plane[plane].subsampling_x));
if (xd->mb_to_bottom_edge < 0)
max_blocks_high +=
(xd->mb_to_bottom_edge >> (5 + xd->plane[plane].subsampling_y));
i = 0;
// Unlike the normal case - in here we have to keep track of the
// row and column of the blocks we use so that we know if we are in
// the unrestricted motion border.
for (r = 0; r < (1 << sh); r += (1 << tx_size)) {
for (c = 0; c < (1 << sw); c += (1 << tx_size)) {
if (r < max_blocks_high && c < max_blocks_wide)
visit(plane, i, bsize, txfrm_size_b, arg);
i += step;
}
}
} else {
for (i = 0; i < (1 << ss_block_size); i += step) {
visit(plane, i, bsize, txfrm_size_b, arg);
}
}
}
static INLINE void foreach_transformed_block(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
foreach_transformed_block_visitor visit, void *arg) {
int plane;
for (plane = 0; plane < MAX_MB_PLANE; plane++) {
foreach_transformed_block_in_plane(xd, bsize, plane,
visit, arg);
}
}
static INLINE void foreach_transformed_block_uv(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
foreach_transformed_block_visitor visit, void *arg) {
int plane;
for (plane = 1; plane < MAX_MB_PLANE; plane++) {
foreach_transformed_block_in_plane(xd, bsize, plane,
visit, arg);
}
}
// TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could
// calculate the subsampled BLOCK_SIZE_TYPE, but that type isn't defined for
// sizes smaller than 16x16 yet.
typedef void (*foreach_predicted_block_visitor)(int plane, int block,
BLOCK_SIZE_TYPE bsize,
int pred_w, int pred_h,
void *arg);
static INLINE void foreach_predicted_block_in_plane(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane,
foreach_predicted_block_visitor visit, void *arg) {
int i, x, y;
// block sizes in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// subsampled size of the block
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
// size of the predictor to use.
int pred_w, pred_h;
if (xd->mode_info_context->mbmi.sb_type < BLOCK_8X8) {
assert(bsize == BLOCK_8X8);
pred_w = 0;
pred_h = 0;
} else {
pred_w = bwl;
pred_h = bhl;
}
assert(pred_w <= bwl);
assert(pred_h <= bhl);
// visit each subblock in raster order
i = 0;
for (y = 0; y < 1 << bhl; y += 1 << pred_h) {
for (x = 0; x < 1 << bwl; x += 1 << pred_w) {
visit(plane, i, bsize, pred_w, pred_h, arg);
i += 1 << pred_w;
}
i += (1 << (bwl + pred_h)) - (1 << bwl);
}
}
static INLINE void foreach_predicted_block(
const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize,
foreach_predicted_block_visitor visit, void *arg) {
int plane;
for (plane = 0; plane < MAX_MB_PLANE; plane++) {
foreach_predicted_block_in_plane(xd, bsize, plane, visit, arg);
}
}
static int raster_block_offset(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize,
int plane, int block, int stride) {
const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int y = 4 * (block >> bw), x = 4 * (block & ((1 << bw) - 1));
return y * stride + x;
}
static int16_t* raster_block_offset_int16(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE bsize,
int plane, int block, int16_t *base) {
const int stride = plane_block_width(bsize, &xd->plane[plane]);
return base + raster_block_offset(xd, bsize, plane, block, stride);
}
static uint8_t* raster_block_offset_uint8(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE bsize,
int plane, int block,
uint8_t *base, int stride) {
return base + raster_block_offset(xd, bsize, plane, block, stride);
}
static int txfrm_block_to_raster_block(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE bsize,
int plane, int block,
int ss_txfrm_size) {
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int txwl = ss_txfrm_size / 2;
const int tx_cols_log2 = bwl - txwl;
const int tx_cols = 1 << tx_cols_log2;
const int raster_mb = block >> ss_txfrm_size;
const int x = (raster_mb & (tx_cols - 1)) << (txwl);
const int y = raster_mb >> tx_cols_log2 << (txwl);
return x + (y << bwl);
}
static void txfrm_block_to_raster_xy(MACROBLOCKD *xd,
BLOCK_SIZE_TYPE bsize,
int plane, int block,
int ss_txfrm_size,
int *x, int *y) {
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int txwl = ss_txfrm_size / 2;
const int tx_cols_log2 = bwl - txwl;
const int tx_cols = 1 << tx_cols_log2;
const int raster_mb = block >> ss_txfrm_size;
*x = (raster_mb & (tx_cols - 1)) << (txwl);
*y = raster_mb >> tx_cols_log2 << (txwl);
}
static void extend_for_intra(MACROBLOCKD* const xd, int plane, int block,
BLOCK_SIZE_TYPE bsize, int ss_txfrm_size) {
const int bw = plane_block_width(bsize, &xd->plane[plane]);
const int bh = plane_block_height(bsize, &xd->plane[plane]);
int x, y;
txfrm_block_to_raster_xy(xd, bsize, plane, block, ss_txfrm_size, &x, &y);
x = x * 4 - 1;
y = y * 4 - 1;
// Copy a pixel into the umv if we are in a situation where the block size
// extends into the UMV.
// TODO(JBB): Should be able to do the full extend in place so we don't have
// to do this multiple times.
if (xd->mb_to_right_edge < 0) {
int umv_border_start = bw
+ (xd->mb_to_right_edge >> (3 + xd->plane[plane].subsampling_x));
if (x + bw > umv_border_start)
vpx_memset(
xd->plane[plane].dst.buf + y * xd->plane[plane].dst.stride
+ umv_border_start,
*(xd->plane[plane].dst.buf + y * xd->plane[plane].dst.stride
+ umv_border_start - 1),
bw);
}
if (xd->mb_to_bottom_edge < 0) {
int umv_border_start = bh
+ (xd->mb_to_bottom_edge >> (3 + xd->plane[plane].subsampling_y));
int i;
uint8_t c = *(xd->plane[plane].dst.buf
+ (umv_border_start - 1) * xd->plane[plane].dst.stride + x);
uint8_t *d = xd->plane[plane].dst.buf
+ umv_border_start * xd->plane[plane].dst.stride + x;
if (y + bh > umv_border_start)
for (i = 0; i < bh; i++, d += xd->plane[plane].dst.stride)
*d = c;
}
}
static void set_contexts_on_border(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize,
int plane, int tx_size_in_blocks,
int eob, int aoff, int loff,
ENTROPY_CONTEXT *A, ENTROPY_CONTEXT *L) {
struct macroblockd_plane *pd = &xd->plane[plane];
const BLOCK_SIZE_TYPE bs = get_plane_block_size(bsize, pd);
int mi_blocks_wide = num_4x4_blocks_wide_lookup[bs];
int mi_blocks_high = num_4x4_blocks_high_lookup[bs];
int above_contexts = tx_size_in_blocks;
int left_contexts = tx_size_in_blocks;
int pt;
// xd->mb_to_right_edge is in units of pixels * 8. This converts
// it to 4x4 block sizes.
if (xd->mb_to_right_edge < 0)
mi_blocks_wide += (xd->mb_to_right_edge >> (5 + pd->subsampling_x));
// this code attempts to avoid copying into contexts that are outside
// our border. Any blocks that do are set to 0...
if (above_contexts + aoff > mi_blocks_wide)
above_contexts = mi_blocks_wide - aoff;
if (xd->mb_to_bottom_edge < 0)
mi_blocks_high += (xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
if (left_contexts + loff > mi_blocks_high)
left_contexts = mi_blocks_high - loff;
for (pt = 0; pt < above_contexts; pt++)
A[pt] = eob > 0;
for (pt = above_contexts; pt < tx_size_in_blocks; pt++)
A[pt] = 0;
for (pt = 0; pt < left_contexts; pt++)
L[pt] = eob > 0;
for (pt = left_contexts; pt < tx_size_in_blocks; pt++)
L[pt] = 0;
}
#endif // VP9_COMMON_VP9_BLOCKD_H_