vpx/test/fdct4x4_test.cc
Jingning Han ab362621fe Add 8x8 dct/adst unit tests
This commit enables 8x8 DCT and hybrid transform unit tests. It
also tunes the forward hybrid transform rounding opertions for
more precise round-trip performance.

Change-Id: If05c1ce59d75d641b9c6c91527d02d3a6ef498c3
2013-06-25 09:57:01 -07:00

189 lines
5.6 KiB
C++

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/include/gtest/gtest.h"
extern "C" {
#include "vp9_rtcd.h"
}
#include "acm_random.h"
#include "vpx/vpx_integer.h"
using libvpx_test::ACMRandom;
namespace {
void fdct4x4(int16_t *in, int16_t *out, uint8_t *dst, int stride, int tx_type) {
vp9_short_fdct4x4_c(in, out, stride);
}
void idct4x4_add(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
vp9_short_idct4x4_add_c(out, dst, stride >> 1);
}
void fht4x4(int16_t *in, int16_t *out, uint8_t *dst, int stride, int tx_type) {
vp9_short_fht4x4_c(in, out, stride >> 1, tx_type);
}
void iht4x4_add(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
vp9_short_iht4x4_add_c(out, dst, stride >> 1, tx_type);
}
class FwdTrans4x4Test : public ::testing::TestWithParam<int> {
public:
FwdTrans4x4Test() { SetUpTestTxfm(); }
~FwdTrans4x4Test() {}
void SetUpTestTxfm() {
tx_type_ = GetParam();
if (tx_type_ == 0) {
fwd_txfm = fdct4x4;
inv_txfm = idct4x4_add;
} else {
fwd_txfm = fht4x4;
inv_txfm = iht4x4_add;
}
}
protected:
void RunFwdTxfm(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
(*fwd_txfm)(in, out, dst, stride, tx_type);
}
void RunInvTxfm(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
(*inv_txfm)(in, out, dst, stride, tx_type);
}
int tx_type_;
void (*fwd_txfm)(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type);
void (*inv_txfm)(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type);
};
TEST_P(FwdTrans4x4Test, SignBiasCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int16_t test_input_block[16];
int16_t test_output_block[16];
const int pitch = 8;
int count_sign_block[16][2];
const int count_test_block = 1000000;
memset(count_sign_block, 0, sizeof(count_sign_block));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 16; ++j)
test_input_block[j] = rnd.Rand8() - rnd.Rand8();
RunFwdTxfm(test_input_block, test_output_block, NULL, pitch, tx_type_);
for (int j = 0; j < 16; ++j) {
if (test_output_block[j] < 0)
++count_sign_block[j][0];
else if (test_output_block[j] > 0)
++count_sign_block[j][1];
}
}
for (int j = 0; j < 16; ++j) {
const bool bias_acceptable = (abs(count_sign_block[j][0] -
count_sign_block[j][1]) < 10000);
EXPECT_TRUE(bias_acceptable)
<< "Error: 4x4 FDCT/FHT has a sign bias > 1%"
<< " for input range [-255, 255] at index " << j
<< " tx_type " << tx_type_;
}
memset(count_sign_block, 0, sizeof(count_sign_block));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-15, 15].
for (int j = 0; j < 16; ++j)
test_input_block[j] = (rnd.Rand8() >> 4) - (rnd.Rand8() >> 4);
RunFwdTxfm(test_input_block, test_output_block, NULL, pitch, tx_type_);
for (int j = 0; j < 16; ++j) {
if (test_output_block[j] < 0)
++count_sign_block[j][0];
else if (test_output_block[j] > 0)
++count_sign_block[j][1];
}
}
for (int j = 0; j < 16; ++j) {
const bool bias_acceptable = (abs(count_sign_block[j][0] -
count_sign_block[j][1]) < 100000);
EXPECT_TRUE(bias_acceptable)
<< "Error: 4x4 FDCT/FHT has a sign bias > 10%"
<< " for input range [-15, 15] at index " << j;
}
}
TEST_P(FwdTrans4x4Test, RoundTripErrorCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int max_error = 0;
double total_error = 0;
const int count_test_block = 1000000;
for (int i = 0; i < count_test_block; ++i) {
int16_t test_input_block[16];
int16_t test_temp_block[16];
uint8_t dst[16], src[16];
for (int j = 0; j < 16; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
}
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 16; ++j)
test_input_block[j] = src[j] - dst[j];
const int pitch = 8;
RunFwdTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_);
for (int j = 0; j < 16; ++j) {
if(test_temp_block[j] > 0) {
test_temp_block[j] += 2;
test_temp_block[j] /= 4;
test_temp_block[j] *= 4;
} else {
test_temp_block[j] -= 2;
test_temp_block[j] /= 4;
test_temp_block[j] *= 4;
}
}
// inverse transform and reconstruct the pixel block
RunInvTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_);
for (int j = 0; j < 16; ++j) {
const int diff = dst[j] - src[j];
const int error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
}
}
EXPECT_GE(1, max_error)
<< "Error: FDCT/IDCT or FHT/IHT has an individual roundtrip error > 1";
EXPECT_GE(count_test_block, total_error)
<< "Error: FDCT/IDCT or FHT/IHT has average "
"roundtrip error > 1 per block";
}
INSTANTIATE_TEST_CASE_P(VP9, FwdTrans4x4Test, ::testing::Range(0, 4));
} // namespace