vpx/vp9/encoder/vp9_encodemb.c

990 lines
28 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_ports/config.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/common/vp9_reconintra.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9_rtcd.h"
void vp9_subtract_b_c(BLOCK *be, BLOCKD *bd, int pitch) {
unsigned char *src_ptr = (*(be->base_src) + be->src);
short *diff_ptr = be->src_diff;
unsigned char *pred_ptr = bd->predictor;
int src_stride = be->src_stride;
int r, c;
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++) {
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
}
diff_ptr += pitch;
pred_ptr += pitch;
src_ptr += src_stride;
}
}
void vp9_subtract_4b_c(BLOCK *be, BLOCKD *bd, int pitch) {
unsigned char *src_ptr = (*(be->base_src) + be->src);
short *diff_ptr = be->src_diff;
unsigned char *pred_ptr = bd->predictor;
int src_stride = be->src_stride;
int r, c;
for (r = 0; r < 8; r++) {
for (c = 0; c < 8; c++) {
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
}
diff_ptr += pitch;
pred_ptr += pitch;
src_ptr += src_stride;
}
}
void vp9_subtract_mbuv_s_c(short *diff, const unsigned char *usrc,
const unsigned char *vsrc, int src_stride,
const unsigned char *upred,
const unsigned char *vpred, int dst_stride) {
short *udiff = diff + 256;
short *vdiff = diff + 320;
int r, c;
for (r = 0; r < 8; r++) {
for (c = 0; c < 8; c++) {
udiff[c] = usrc[c] - upred[c];
}
udiff += 8;
upred += dst_stride;
usrc += src_stride;
}
for (r = 0; r < 8; r++) {
for (c = 0; c < 8; c++) {
vdiff[c] = vsrc[c] - vpred[c];
}
vdiff += 8;
vpred += dst_stride;
vsrc += src_stride;
}
}
void vp9_subtract_mbuv_c(short *diff, unsigned char *usrc,
unsigned char *vsrc, unsigned char *pred, int stride) {
unsigned char *upred = pred + 256;
unsigned char *vpred = pred + 320;
vp9_subtract_mbuv_s_c(diff, usrc, vsrc, stride, upred, vpred, 8);
}
void vp9_subtract_mby_s_c(short *diff, const unsigned char *src, int src_stride,
const unsigned char *pred, int dst_stride) {
int r, c;
for (r = 0; r < 16; r++) {
for (c = 0; c < 16; c++) {
diff[c] = src[c] - pred[c];
}
diff += 16;
pred += dst_stride;
src += src_stride;
}
}
void vp9_subtract_mby_c(short *diff, unsigned char *src,
unsigned char *pred, int stride) {
vp9_subtract_mby_s_c(diff, src, stride, pred, 16);
}
static void subtract_mb(MACROBLOCK *x) {
BLOCK *b = &x->block[0];
vp9_subtract_mby(x->src_diff, *(b->base_src), x->e_mbd.predictor,
b->src_stride);
vp9_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer,
x->e_mbd.predictor, x->src.uv_stride);
}
static void build_dcblock_4x4(MACROBLOCK *x) {
short *src_diff_ptr = &x->src_diff[384];
int i;
for (i = 0; i < 16; i++) {
src_diff_ptr[i] = x->coeff[i * 16];
x->coeff[i * 16] = 0;
}
}
void vp9_transform_mby_4x4(MACROBLOCK *x) {
int i;
MACROBLOCKD *xd = &x->e_mbd;
int has_2nd_order = get_2nd_order_usage(xd);
for (i = 0; i < 16; i++) {
BLOCK *b = &x->block[i];
TX_TYPE tx_type = get_tx_type_4x4(xd, &xd->block[i]);
if (tx_type != DCT_DCT) {
assert(has_2nd_order == 0);
vp9_fht_c(b->src_diff, 32, b->coeff, tx_type, 4);
} else {
x->vp9_short_fdct4x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
}
if (has_2nd_order) {
// build dc block from 16 y dc values
build_dcblock_4x4(x);
// do 2nd order transform on the dc block
x->short_walsh4x4(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
} else {
vpx_memset(x->block[24].coeff, 0, 16 * sizeof(x->block[24].coeff[0]));
}
}
void vp9_transform_mbuv_4x4(MACROBLOCK *x) {
int i;
for (i = 16; i < 24; i += 2) {
x->vp9_short_fdct8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 16);
}
}
static void transform_mb_4x4(MACROBLOCK *x) {
vp9_transform_mby_4x4(x);
vp9_transform_mbuv_4x4(x);
}
static void build_dcblock_8x8(MACROBLOCK *x) {
int16_t *src_diff_ptr = x->block[24].src_diff;
int i;
for (i = 0; i < 16; i++) {
src_diff_ptr[i] = 0;
}
src_diff_ptr[0] = x->coeff[0 * 16];
src_diff_ptr[1] = x->coeff[4 * 16];
src_diff_ptr[4] = x->coeff[8 * 16];
src_diff_ptr[8] = x->coeff[12 * 16];
x->coeff[0 * 16] = 0;
x->coeff[4 * 16] = 0;
x->coeff[8 * 16] = 0;
x->coeff[12 * 16] = 0;
}
void vp9_transform_mby_8x8(MACROBLOCK *x) {
int i;
MACROBLOCKD *xd = &x->e_mbd;
TX_TYPE tx_type;
int has_2nd_order = get_2nd_order_usage(xd);
for (i = 0; i < 9; i += 8) {
BLOCK *b = &x->block[i];
tx_type = get_tx_type_8x8(xd, &xd->block[i]);
if (tx_type != DCT_DCT) {
assert(has_2nd_order == 0);
vp9_fht_c(b->src_diff, 32, b->coeff, tx_type, 8);
} else {
x->vp9_short_fdct8x8(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
}
for (i = 2; i < 11; i += 8) {
BLOCK *b = &x->block[i];
tx_type = get_tx_type_8x8(xd, &xd->block[i]);
if (tx_type != DCT_DCT) {
assert(has_2nd_order == 0);
vp9_fht_c(b->src_diff, 32, (b + 2)->coeff, tx_type, 8);
} else {
x->vp9_short_fdct8x8(&x->block[i].src_diff[0],
&x->block[i + 2].coeff[0], 32);
}
}
if (has_2nd_order) {
// build dc block from 2x2 y dc values
build_dcblock_8x8(x);
// do 2nd order transform on the dc block
x->short_fhaar2x2(&x->block[24].src_diff[0],
&x->block[24].coeff[0], 8);
} else {
vpx_memset(x->block[24].coeff, 0, 16 * sizeof(x->block[24].coeff[0]));
}
}
void vp9_transform_mbuv_8x8(MACROBLOCK *x) {
int i;
for (i = 16; i < 24; i += 4) {
x->vp9_short_fdct8x8(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 16);
}
}
void vp9_transform_mb_8x8(MACROBLOCK *x) {
vp9_transform_mby_8x8(x);
vp9_transform_mbuv_8x8(x);
}
void vp9_transform_mby_16x16(MACROBLOCK *x) {
MACROBLOCKD *xd = &x->e_mbd;
BLOCK *b = &x->block[0];
TX_TYPE tx_type = get_tx_type_16x16(xd, &xd->block[0]);
vp9_clear_system_state();
if (tx_type != DCT_DCT) {
vp9_fht_c(b->src_diff, 32, b->coeff, tx_type, 16);
} else {
x->vp9_short_fdct16x16(&x->block[0].src_diff[0],
&x->block[0].coeff[0], 32);
}
}
void vp9_transform_mb_16x16(MACROBLOCK *x) {
vp9_transform_mby_16x16(x);
vp9_transform_mbuv_8x8(x);
}
#define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
#define RDTRUNC_8x8(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
typedef struct vp9_token_state vp9_token_state;
struct vp9_token_state {
int rate;
int error;
int next;
signed char token;
short qc;
};
// TODO: experiments to find optimal multiple numbers
#define Y1_RD_MULT 4
#define UV_RD_MULT 2
#define Y2_RD_MULT 4
static const int plane_rd_mult[4] = {
Y1_RD_MULT,
Y2_RD_MULT,
UV_RD_MULT,
Y1_RD_MULT
};
#define UPDATE_RD_COST()\
{\
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\
if (rd_cost0 == rd_cost1) {\
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\
}\
}
static void optimize_b(MACROBLOCK *mb, int i, PLANE_TYPE type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int tx_size) {
BLOCK *b;
BLOCKD *d;
vp9_token_state tokens[65][2];
uint64_t best_mask[2];
const short *dequant_ptr;
const short *coeff_ptr;
short *qcoeff_ptr;
short *dqcoeff_ptr;
int eob;
int i0;
int rc;
int x;
int sz = 0;
int next;
int rdmult;
int rddiv;
int final_eob;
int64_t rd_cost0, rd_cost1;
int rate0, rate1;
int error0, error1;
int t0, t1;
int best;
int band;
int pt;
int err_mult = plane_rd_mult[type];
int default_eob;
int const *scan, *bands;
b = &mb->block[i];
d = &mb->e_mbd.block[i];
switch (tx_size) {
default:
case TX_4X4:
scan = vp9_default_zig_zag1d;
bands = vp9_coef_bands;
default_eob = 16;
// TODO: this isn't called (for intra4x4 modes), but will be left in
// since it could be used later
{
TX_TYPE tx_type = get_tx_type_4x4(&mb->e_mbd, d);
if (tx_type != DCT_DCT) {
switch (tx_type) {
case ADST_DCT:
scan = vp9_row_scan;
break;
case DCT_ADST:
scan = vp9_col_scan;
break;
default:
scan = vp9_default_zig_zag1d;
break;
}
} else {
scan = vp9_default_zig_zag1d;
}
}
break;
case TX_8X8:
scan = vp9_default_zig_zag1d_8x8;
bands = vp9_coef_bands_8x8;
default_eob = 64;
break;
}
dequant_ptr = d->dequant;
coeff_ptr = b->coeff;
qcoeff_ptr = d->qcoeff;
dqcoeff_ptr = d->dqcoeff;
i0 = (type == PLANE_TYPE_Y_NO_DC);
eob = d->eob;
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
rdmult = mb->rdmult * err_mult;
if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME)
rdmult = (rdmult * 9) >> 4;
rddiv = mb->rddiv;
best_mask[0] = best_mask[1] = 0;
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
tokens[eob][0].token = DCT_EOB_TOKEN;
tokens[eob][0].qc = 0;
*(tokens[eob] + 1) = *(tokens[eob] + 0);
next = eob;
for (i = eob; i-- > i0;) {
int base_bits;
int d2;
int dx;
rc = scan[i];
x = qcoeff_ptr[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x) {
int shortcut = 0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
t0 = (vp9_dct_value_tokens_ptr + x)->Token;
/* Consider both possible successor states. */
if (next < default_eob) {
band = bands[i + 1];
pt = vp9_prev_token_class[t0];
rate0 +=
mb->token_costs[tx_size][type][band][pt][tokens[next][0].token];
rate1 +=
mb->token_costs[tx_size][type][band][pt][tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp9_dct_value_cost_ptr + x);
dx = dqcoeff_ptr[rc] - coeff_ptr[rc];
d2 = dx * dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_mask[0] |= best << i;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc])) &&
(abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) + dequant_ptr[rc != 0]))
shortcut = 1;
else
shortcut = 0;
if (shortcut) {
sz = -(x < 0);
x -= 2 * sz + 1;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
} else {
t0 = t1 = (vp9_dct_value_tokens_ptr + x)->Token;
}
if (next < default_eob) {
band = bands[i + 1];
if (t0 != DCT_EOB_TOKEN) {
pt = vp9_prev_token_class[t0];
rate0 += mb->token_costs[tx_size][type][band][pt][
tokens[next][0].token];
}
if (t1 != DCT_EOB_TOKEN) {
pt = vp9_prev_token_class[t1];
rate1 += mb->token_costs[tx_size][type][band][pt][
tokens[next][1].token];
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp9_dct_value_cost_ptr + x);
if (shortcut) {
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
d2 = dx * dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
best_mask[1] |= best << i;
/* Finally, make this the new head of the trellis. */
next = i;
}
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
else {
band = bands[i + 1];
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != DCT_EOB_TOKEN) {
tokens[next][0].rate += mb->token_costs[tx_size][type][band][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != DCT_EOB_TOKEN) {
tokens[next][1].rate += mb->token_costs[tx_size][type][band][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = bands[i + 1];
VP9_COMBINEENTROPYCONTEXTS(pt, *a, *l);
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[tx_size][type][band][pt][t0];
rate1 += mb->token_costs[tx_size][type][band][pt][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = i0 - 1;
for (i = next; i < eob; i = next) {
x = tokens[i][best].qc;
if (x)
final_eob = i;
rc = scan[i];
qcoeff_ptr[rc] = x;
dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]);
next = tokens[i][best].next;
best = (best_mask[best] >> i) & 1;
}
final_eob++;
d->eob = final_eob;
*a = *l = (d->eob > !type);
}
/**************************************************************************
our inverse hadamard transform effectively is weighted sum of all 16 inputs
with weight either 1 or -1. It has a last stage scaling of (sum+1)>>2. And
dc only idct is (dc+16)>>5. So if all the sums are between -65 and 63 the
output after inverse wht and idct will be all zero. A sum of absolute value
smaller than 65 guarantees all 16 different (+1/-1) weighted sums in wht
fall between -65 and +65.
**************************************************************************/
#define SUM_2ND_COEFF_THRESH 65
static void check_reset_2nd_coeffs(MACROBLOCKD *xd,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
int sum = 0;
int i;
BLOCKD *bd = &xd->block[24];
if (bd->dequant[0] >= SUM_2ND_COEFF_THRESH
&& bd->dequant[1] >= SUM_2ND_COEFF_THRESH)
return;
for (i = 0; i < bd->eob; i++) {
int coef = bd->dqcoeff[vp9_default_zig_zag1d[i]];
sum += (coef >= 0) ? coef : -coef;
if (sum >= SUM_2ND_COEFF_THRESH)
return;
}
if (sum < SUM_2ND_COEFF_THRESH) {
for (i = 0; i < bd->eob; i++) {
int rc = vp9_default_zig_zag1d[i];
bd->qcoeff[rc] = 0;
bd->dqcoeff[rc] = 0;
}
bd->eob = 0;
*a = *l = (bd->eob != 0);
}
}
#define SUM_2ND_COEFF_THRESH_8X8 32
static void check_reset_8x8_2nd_coeffs(MACROBLOCKD *xd,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
int sum = 0;
BLOCKD *bd = &xd->block[24];
int coef;
coef = bd->dqcoeff[0];
sum += (coef >= 0) ? coef : -coef;
coef = bd->dqcoeff[1];
sum += (coef >= 0) ? coef : -coef;
coef = bd->dqcoeff[4];
sum += (coef >= 0) ? coef : -coef;
coef = bd->dqcoeff[8];
sum += (coef >= 0) ? coef : -coef;
if (sum < SUM_2ND_COEFF_THRESH_8X8) {
bd->qcoeff[0] = 0;
bd->dqcoeff[0] = 0;
bd->qcoeff[1] = 0;
bd->dqcoeff[1] = 0;
bd->qcoeff[4] = 0;
bd->dqcoeff[4] = 0;
bd->qcoeff[8] = 0;
bd->dqcoeff[8] = 0;
bd->eob = 0;
*a = *l = (bd->eob != 0);
}
}
void vp9_optimize_mby_4x4(MACROBLOCK *x) {
int b;
PLANE_TYPE type;
int has_2nd_order;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
has_2nd_order = get_2nd_order_usage(&x->e_mbd);
type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC;
for (b = 0; b < 16; b++) {
optimize_b(x, b, type,
ta + vp9_block2above[b], tl + vp9_block2left[b], TX_4X4);
}
if (has_2nd_order) {
b = 24;
optimize_b(x, b, PLANE_TYPE_Y2,
ta + vp9_block2above[b], tl + vp9_block2left[b], TX_4X4);
check_reset_2nd_coeffs(&x->e_mbd,
ta + vp9_block2above[b], tl + vp9_block2left[b]);
}
}
void vp9_optimize_mbuv_4x4(MACROBLOCK *x) {
int b;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 16; b < 24; b++) {
optimize_b(x, b, PLANE_TYPE_UV,
ta + vp9_block2above[b], tl + vp9_block2left[b], TX_4X4);
}
}
static void optimize_mb_4x4(MACROBLOCK *x) {
vp9_optimize_mby_4x4(x);
vp9_optimize_mbuv_4x4(x);
}
void vp9_optimize_mby_8x8(MACROBLOCK *x) {
int b;
PLANE_TYPE type;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
int has_2nd_order = get_2nd_order_usage(&x->e_mbd);
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC;
for (b = 0; b < 16; b += 4) {
optimize_b(x, b, type,
ta + vp9_block2above_8x8[b], tl + vp9_block2left_8x8[b],
TX_8X8);
ta[vp9_block2above_8x8[b] + 1] = ta[vp9_block2above_8x8[b]];
tl[vp9_block2left_8x8[b] + 1] = tl[vp9_block2left_8x8[b]];
}
// 8x8 always have 2nd roder haar block
if (has_2nd_order) {
check_reset_8x8_2nd_coeffs(&x->e_mbd,
ta + vp9_block2above_8x8[24],
tl + vp9_block2left_8x8[24]);
}
}
void vp9_optimize_mbuv_8x8(MACROBLOCK *x) {
int b;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 16; b < 24; b += 4) {
optimize_b(x, b, PLANE_TYPE_UV,
ta + vp9_block2above_8x8[b], tl + vp9_block2left_8x8[b],
TX_8X8);
ta[vp9_block2above_8x8[b] + 1] = ta[vp9_block2above_8x8[b]];
tl[vp9_block2left_8x8[b] + 1] = tl[vp9_block2left_8x8[b]];
}
}
static void optimize_mb_8x8(MACROBLOCK *x) {
vp9_optimize_mby_8x8(x);
vp9_optimize_mbuv_8x8(x);
}
static void optimize_b_16x16(MACROBLOCK *mb, int i, PLANE_TYPE type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
BLOCK *b = &mb->block[i];
BLOCKD *d = &mb->e_mbd.block[i];
vp9_token_state tokens[257][2];
unsigned best_index[257][2];
const short *dequant_ptr = d->dequant, *coeff_ptr = b->coeff;
short *qcoeff_ptr = qcoeff_ptr = d->qcoeff;
short *dqcoeff_ptr = dqcoeff_ptr = d->dqcoeff;
int eob = d->eob, final_eob, sz = 0;
int rc, x, next;
int64_t rdmult, rddiv, rd_cost0, rd_cost1;
int rate0, rate1, error0, error1, t0, t1;
int best, band, pt;
int err_mult = plane_rd_mult[type];
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
rdmult = mb->rdmult * err_mult;
if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME)
rdmult = (rdmult * 9)>>4;
rddiv = mb->rddiv;
memset(best_index, 0, sizeof(best_index));
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = 256;
tokens[eob][0].token = DCT_EOB_TOKEN;
tokens[eob][0].qc = 0;
*(tokens[eob] + 1) = *(tokens[eob] + 0);
next = eob;
for (i = eob; i-- > 0;) {
int base_bits, d2, dx;
rc = vp9_default_zig_zag1d_16x16[i];
x = qcoeff_ptr[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x) {
int shortcut = 0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
t0 = (vp9_dct_value_tokens_ptr + x)->Token;
/* Consider both possible successor states. */
if (next < 256) {
band = vp9_coef_bands_16x16[i + 1];
pt = vp9_prev_token_class[t0];
rate0 += mb->token_costs[TX_16X16][type][band][pt][tokens[next][0].token];
rate1 += mb->token_costs[TX_16X16][type][band][pt][tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp9_dct_value_cost_ptr + x);
dx = dqcoeff_ptr[rc] - coeff_ptr[rc];
d2 = dx*dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_index[i][0] = best;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if((abs(x)*dequant_ptr[rc!=0]>abs(coeff_ptr[rc])) &&
(abs(x)*dequant_ptr[rc!=0]<abs(coeff_ptr[rc])+dequant_ptr[rc!=0]))
shortcut = 1;
else
shortcut = 0;
if (shortcut) {
sz = -(x < 0);
x -= 2*sz + 1;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
}
else
t0=t1 = (vp9_dct_value_tokens_ptr + x)->Token;
if (next < 256) {
band = vp9_coef_bands_16x16[i + 1];
if (t0 != DCT_EOB_TOKEN) {
pt = vp9_prev_token_class[t0];
rate0 += mb->token_costs[TX_16X16][type][band][pt]
[tokens[next][0].token];
}
if (t1!=DCT_EOB_TOKEN) {
pt = vp9_prev_token_class[t1];
rate1 += mb->token_costs[TX_16X16][type][band][pt]
[tokens[next][1].token];
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp9_dct_value_cost_ptr + x);
if(shortcut) {
dx -= (dequant_ptr[rc!=0] + sz) ^ sz;
d2 = dx*dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
best_index[i][1] = best;
/* Finally, make this the new head of the trellis. */
next = i;
}
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
else {
band = vp9_coef_bands_16x16[i + 1];
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != DCT_EOB_TOKEN) {
tokens[next][0].rate += mb->token_costs[TX_16X16][type][band][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != DCT_EOB_TOKEN) {
tokens[next][1].rate += mb->token_costs[TX_16X16][type][band][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = vp9_coef_bands_16x16[i + 1];
VP9_COMBINEENTROPYCONTEXTS(pt, *a, *l);
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[TX_16X16][type][band][pt][t0];
rate1 += mb->token_costs[TX_16X16][type][band][pt][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = -1;
for (i = next; i < eob; i = next) {
x = tokens[i][best].qc;
if (x)
final_eob = i;
rc = vp9_default_zig_zag1d_16x16[i];
qcoeff_ptr[rc] = x;
dqcoeff_ptr[rc] = (x * dequant_ptr[rc!=0]);
next = tokens[i][best].next;
best = best_index[i][best];
}
final_eob++;
d->eob = final_eob;
*a = *l = (d->eob > !type);
}
void vp9_optimize_mby_16x16(MACROBLOCK *x) {
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta, *tl;
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
optimize_b_16x16(x, 0, PLANE_TYPE_Y_WITH_DC, ta, tl);
}
static void optimize_mb_16x16(MACROBLOCK *x) {
vp9_optimize_mby_16x16(x);
vp9_optimize_mbuv_8x8(x);
}
void vp9_fidct_mb(MACROBLOCK *x) {
MACROBLOCKD *const xd = &x->e_mbd;
TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size;
if (tx_size == TX_16X16) {
vp9_transform_mb_16x16(x);
vp9_quantize_mb_16x16(x);
if (x->optimize)
optimize_mb_16x16(x);
vp9_inverse_transform_mb_16x16(xd);
} else if (tx_size == TX_8X8) {
if (xd->mode_info_context->mbmi.mode == SPLITMV) {
assert(xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4);
vp9_transform_mby_8x8(x);
vp9_transform_mbuv_4x4(x);
vp9_quantize_mby_8x8(x);
vp9_quantize_mbuv_4x4(x);
if (x->optimize) {
vp9_optimize_mby_8x8(x);
vp9_optimize_mbuv_4x4(x);
}
vp9_inverse_transform_mby_8x8(xd);
vp9_inverse_transform_mbuv_4x4(xd);
} else {
vp9_transform_mb_8x8(x);
vp9_quantize_mb_8x8(x);
if (x->optimize)
optimize_mb_8x8(x);
vp9_inverse_transform_mb_8x8(xd);
}
} else {
transform_mb_4x4(x);
vp9_quantize_mb_4x4(x);
if (x->optimize)
optimize_mb_4x4(x);
vp9_inverse_transform_mb_4x4(xd);
}
}
void vp9_encode_inter16x16(MACROBLOCK *x) {
MACROBLOCKD *const xd = &x->e_mbd;
vp9_build_inter_predictors_mb(xd);
subtract_mb(x);
vp9_fidct_mb(x);
vp9_recon_mb(xd);
}
/* this function is used by first pass only */
void vp9_encode_inter16x16y(MACROBLOCK *x) {
MACROBLOCKD *xd = &x->e_mbd;
BLOCK *b = &x->block[0];
#if CONFIG_PRED_FILTER
// Disable the prediction filter for firstpass
xd->mode_info_context->mbmi.pred_filter_enabled = 0;
#endif
vp9_build_1st_inter16x16_predictors_mby(xd, xd->predictor, 16, 0);
vp9_subtract_mby(x->src_diff, *(b->base_src), xd->predictor, b->src_stride);
vp9_transform_mby_4x4(x);
vp9_quantize_mby_4x4(x);
vp9_inverse_transform_mby_4x4(xd);
vp9_recon_mby(xd);
}