vpx/vp9/decoder/vp9_decodemv.c
Dmitry Kovalev 8c69c193b5 Extract setup_frame_size and update_frame_context functions.
Extracting setup_frame_size and update_frame_context functions. Introducing
vp9_read_prob function as shortcut for (vp9_prob)vp9_read_literal(r, 8).

Change-Id: Ia5c68fd725b2d1b9c5eb20f69cacb62361b5a3dd
2013-03-27 14:04:35 -07:00

1445 lines
50 KiB
C

/*
Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp9/decoder/vp9_treereader.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/common/vp9_mvref_common.h"
#if CONFIG_DEBUG
#include <assert.h>
#endif
// #define DEBUG_DEC_MV
#ifdef DEBUG_DEC_MV
int dec_mvcount = 0;
#endif
// #define DEC_DEBUG
#ifdef DEC_DEBUG
extern int dec_debug;
#endif
static B_PREDICTION_MODE read_bmode(vp9_reader *bc, const vp9_prob *p) {
B_PREDICTION_MODE m = treed_read(bc, vp9_bmode_tree, p);
#if CONFIG_NEWBINTRAMODES
if (m == B_CONTEXT_PRED - CONTEXT_PRED_REPLACEMENTS)
m = B_CONTEXT_PRED;
assert(m < B_CONTEXT_PRED - CONTEXT_PRED_REPLACEMENTS || m == B_CONTEXT_PRED);
#endif
return m;
}
static B_PREDICTION_MODE read_kf_bmode(vp9_reader *bc, const vp9_prob *p) {
return (B_PREDICTION_MODE)treed_read(bc, vp9_kf_bmode_tree, p);
}
static MB_PREDICTION_MODE read_ymode(vp9_reader *bc, const vp9_prob *p) {
return (MB_PREDICTION_MODE)treed_read(bc, vp9_ymode_tree, p);
}
static MB_PREDICTION_MODE read_sb_ymode(vp9_reader *bc, const vp9_prob *p) {
return (MB_PREDICTION_MODE)treed_read(bc, vp9_sb_ymode_tree, p);
}
static MB_PREDICTION_MODE read_kf_sb_ymode(vp9_reader *bc, const vp9_prob *p) {
return (MB_PREDICTION_MODE)treed_read(bc, vp9_uv_mode_tree, p);
}
static MB_PREDICTION_MODE read_kf_mb_ymode(vp9_reader *bc, const vp9_prob *p) {
return (MB_PREDICTION_MODE)treed_read(bc, vp9_kf_ymode_tree, p);
}
static int read_i8x8_mode(vp9_reader *bc, const vp9_prob *p) {
return treed_read(bc, vp9_i8x8_mode_tree, p);
}
static MB_PREDICTION_MODE read_uv_mode(vp9_reader *bc, const vp9_prob *p) {
return (MB_PREDICTION_MODE)treed_read(bc, vp9_uv_mode_tree, p);
}
// This function reads the current macro block's segnent id from the bitstream
// It should only be called if a segment map update is indicated.
static void read_mb_segid(vp9_reader *r, MB_MODE_INFO *mi, MACROBLOCKD *xd) {
if (xd->segmentation_enabled && xd->update_mb_segmentation_map) {
const vp9_prob *const p = xd->mb_segment_tree_probs;
mi->segment_id = vp9_read(r, p[0]) ? 2 + vp9_read(r, p[2])
: vp9_read(r, p[1]);
}
}
// This function reads the current macro block's segnent id from the bitstream
// It should only be called if a segment map update is indicated.
static void read_mb_segid_except(VP9_COMMON *cm,
vp9_reader *r, MB_MODE_INFO *mi,
MACROBLOCKD *xd, int mb_row, int mb_col) {
const int mb_index = mb_row * cm->mb_cols + mb_col;
const int pred_seg_id = vp9_get_pred_mb_segid(cm, xd, mb_index);
const vp9_prob *const p = xd->mb_segment_tree_probs;
const vp9_prob prob = xd->mb_segment_mispred_tree_probs[pred_seg_id];
if (xd->segmentation_enabled && xd->update_mb_segmentation_map) {
mi->segment_id = vp9_read(r, prob)
? 2 + (pred_seg_id < 2 ? vp9_read(r, p[2]) : (pred_seg_id == 2))
: (pred_seg_id >= 2 ? vp9_read(r, p[1]) : (pred_seg_id == 0));
}
}
#if CONFIG_NEW_MVREF
int vp9_read_mv_ref_id(vp9_reader *r, vp9_prob *ref_id_probs) {
int ref_index = 0;
if (vp9_read(r, ref_id_probs[0])) {
ref_index++;
if (vp9_read(r, ref_id_probs[1])) {
ref_index++;
if (vp9_read(r, ref_id_probs[2]))
ref_index++;
}
}
return ref_index;
}
#endif
extern const int vp9_i8x8_block[4];
static void kfread_modes(VP9D_COMP *pbi,
MODE_INFO *m,
int mb_row,
int mb_col,
BOOL_DECODER* const bc) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const int mis = pbi->common.mode_info_stride;
int map_index = mb_row * pbi->common.mb_cols + mb_col;
MB_PREDICTION_MODE y_mode;
m->mbmi.ref_frame = INTRA_FRAME;
// Read the Macroblock segmentation map if it is being updated explicitly
// this frame (reset to 0 by default).
m->mbmi.segment_id = 0;
if (pbi->mb.update_mb_segmentation_map) {
read_mb_segid(bc, &m->mbmi, &pbi->mb);
if (m->mbmi.sb_type) {
const int nmbs = 1 << m->mbmi.sb_type;
const int ymbs = MIN(cm->mb_rows - mb_row, nmbs);
const int xmbs = MIN(cm->mb_cols - mb_col, nmbs);
int x, y;
for (y = 0; y < ymbs; y++) {
for (x = 0; x < xmbs; x++) {
cm->last_frame_seg_map[map_index + x + y * cm->mb_cols] =
m->mbmi.segment_id;
}
}
} else {
cm->last_frame_seg_map[map_index] = m->mbmi.segment_id;
}
}
m->mbmi.mb_skip_coeff = 0;
if (pbi->common.mb_no_coeff_skip &&
(!vp9_segfeature_active(&pbi->mb, m->mbmi.segment_id, SEG_LVL_SKIP))) {
m->mbmi.mb_skip_coeff = vp9_read(bc, vp9_get_pred_prob(cm, &pbi->mb,
PRED_MBSKIP));
} else {
m->mbmi.mb_skip_coeff = vp9_segfeature_active(&pbi->mb, m->mbmi.segment_id,
SEG_LVL_SKIP);
}
y_mode = m->mbmi.sb_type ?
read_kf_sb_ymode(bc,
pbi->common.sb_kf_ymode_prob[pbi->common.kf_ymode_probs_index]):
read_kf_mb_ymode(bc,
pbi->common.kf_ymode_prob[pbi->common.kf_ymode_probs_index]);
m->mbmi.ref_frame = INTRA_FRAME;
if ((m->mbmi.mode = y_mode) == B_PRED) {
int i = 0;
do {
const B_PREDICTION_MODE a = above_block_mode(m, i, mis);
const B_PREDICTION_MODE l = (xd->left_available || (i & 3)) ?
left_block_mode(m, i) : B_DC_PRED;
m->bmi[i].as_mode.first = read_kf_bmode(bc,
pbi->common.kf_bmode_prob[a][l]);
} while (++i < 16);
}
if ((m->mbmi.mode = y_mode) == I8X8_PRED) {
int i;
for (i = 0; i < 4; i++) {
const int ib = vp9_i8x8_block[i];
const int mode8x8 = read_i8x8_mode(bc, pbi->common.fc.i8x8_mode_prob);
m->bmi[ib + 0].as_mode.first = mode8x8;
m->bmi[ib + 1].as_mode.first = mode8x8;
m->bmi[ib + 4].as_mode.first = mode8x8;
m->bmi[ib + 5].as_mode.first = mode8x8;
}
} else {
m->mbmi.uv_mode = read_uv_mode(bc,
pbi->common.kf_uv_mode_prob[m->mbmi.mode]);
}
if (cm->txfm_mode == TX_MODE_SELECT &&
m->mbmi.mb_skip_coeff == 0 &&
m->mbmi.mode <= I8X8_PRED) {
// FIXME(rbultje) code ternary symbol once all experiments are merged
m->mbmi.txfm_size = vp9_read(bc, cm->prob_tx[0]);
if (m->mbmi.txfm_size != TX_4X4 && m->mbmi.mode != I8X8_PRED) {
m->mbmi.txfm_size += vp9_read(bc, cm->prob_tx[1]);
if (m->mbmi.txfm_size != TX_8X8 && m->mbmi.sb_type)
m->mbmi.txfm_size += vp9_read(bc, cm->prob_tx[2]);
}
} else if (cm->txfm_mode >= ALLOW_32X32 && m->mbmi.sb_type) {
m->mbmi.txfm_size = TX_32X32;
} else if (cm->txfm_mode >= ALLOW_16X16 && m->mbmi.mode <= TM_PRED) {
m->mbmi.txfm_size = TX_16X16;
} else if (cm->txfm_mode >= ALLOW_8X8 && m->mbmi.mode != B_PRED) {
m->mbmi.txfm_size = TX_8X8;
} else {
m->mbmi.txfm_size = TX_4X4;
}
}
static int read_nmv_component(vp9_reader *r,
int rv,
const nmv_component *mvcomp) {
int mag, d;
const int sign = vp9_read(r, mvcomp->sign);
const int mv_class = treed_read(r, vp9_mv_class_tree, mvcomp->classes);
if (mv_class == MV_CLASS_0) {
d = treed_read(r, vp9_mv_class0_tree, mvcomp->class0);
} else {
int i;
int n = mv_class + CLASS0_BITS - 1; // number of bits
d = 0;
for (i = 0; i < n; ++i)
d |= vp9_read(r, mvcomp->bits[i]) << i;
}
mag = vp9_get_mv_mag(mv_class, d << 3);
return sign ? -(mag + 8) : (mag + 8);
}
static int read_nmv_component_fp(vp9_reader *r,
int v,
int rv,
const nmv_component *mvcomp,
int usehp) {
const int sign = v < 0;
int mag = ((sign ? -v : v) - 1) & ~7; // magnitude - 1
int offset;
const int mv_class = vp9_get_mv_class(mag, &offset);
const int f = mv_class == MV_CLASS_0 ?
treed_read(r, vp9_mv_fp_tree, mvcomp->class0_fp[offset >> 3]):
treed_read(r, vp9_mv_fp_tree, mvcomp->fp);
offset += f << 1;
if (usehp) {
const vp9_prob p = mv_class == MV_CLASS_0 ? mvcomp->class0_hp : mvcomp->hp;
offset += vp9_read(r, p);
} else {
offset += 1; // If hp is not used, the default value of the hp bit is 1
}
mag = vp9_get_mv_mag(mv_class, offset);
return sign ? -(mag + 1) : (mag + 1);
}
static void read_nmv(vp9_reader *r, MV *mv, const MV *ref,
const nmv_context *mvctx) {
const MV_JOINT_TYPE j = treed_read(r, vp9_mv_joint_tree, mvctx->joints);
mv->row = mv-> col = 0;
if (j == MV_JOINT_HZVNZ || j == MV_JOINT_HNZVNZ) {
mv->row = read_nmv_component(r, ref->row, &mvctx->comps[0]);
}
if (j == MV_JOINT_HNZVZ || j == MV_JOINT_HNZVNZ) {
mv->col = read_nmv_component(r, ref->col, &mvctx->comps[1]);
}
}
static void read_nmv_fp(vp9_reader *r, MV *mv, const MV *ref,
const nmv_context *mvctx, int usehp) {
const MV_JOINT_TYPE j = vp9_get_mv_joint(*mv);
usehp = usehp && vp9_use_nmv_hp(ref);
if (j == MV_JOINT_HZVNZ || j == MV_JOINT_HNZVNZ) {
mv->row = read_nmv_component_fp(r, mv->row, ref->row, &mvctx->comps[0],
usehp);
}
if (j == MV_JOINT_HNZVZ || j == MV_JOINT_HNZVNZ) {
mv->col = read_nmv_component_fp(r, mv->col, ref->col, &mvctx->comps[1],
usehp);
}
/*
printf("MV: %d %d REF: %d %d\n", mv->row + ref->row, mv->col + ref->col,
ref->row, ref->col);
*/
}
static void update_nmv(vp9_reader *bc, vp9_prob *const p,
const vp9_prob upd_p) {
if (vp9_read(bc, upd_p)) {
#ifdef LOW_PRECISION_MV_UPDATE
*p = (vp9_read_literal(bc, 7) << 1) | 1;
#else
*p = (vp9_read_literal(bc, 8));
#endif
}
}
static void read_nmvprobs(vp9_reader *bc, nmv_context *mvctx,
int usehp) {
int i, j, k;
#ifdef MV_GROUP_UPDATE
if (!vp9_read_bit(bc))
return;
#endif
for (j = 0; j < MV_JOINTS - 1; ++j)
update_nmv(bc, &mvctx->joints[j], VP9_NMV_UPDATE_PROB);
for (i = 0; i < 2; ++i) {
update_nmv(bc, &mvctx->comps[i].sign, VP9_NMV_UPDATE_PROB);
for (j = 0; j < MV_CLASSES - 1; ++j)
update_nmv(bc, &mvctx->comps[i].classes[j], VP9_NMV_UPDATE_PROB);
for (j = 0; j < CLASS0_SIZE - 1; ++j)
update_nmv(bc, &mvctx->comps[i].class0[j], VP9_NMV_UPDATE_PROB);
for (j = 0; j < MV_OFFSET_BITS; ++j)
update_nmv(bc, &mvctx->comps[i].bits[j], VP9_NMV_UPDATE_PROB);
}
for (i = 0; i < 2; ++i) {
for (j = 0; j < CLASS0_SIZE; ++j) {
for (k = 0; k < 3; ++k)
update_nmv(bc, &mvctx->comps[i].class0_fp[j][k], VP9_NMV_UPDATE_PROB);
}
for (j = 0; j < 3; ++j)
update_nmv(bc, &mvctx->comps[i].fp[j], VP9_NMV_UPDATE_PROB);
}
if (usehp) {
for (i = 0; i < 2; ++i) {
update_nmv(bc, &mvctx->comps[i].class0_hp, VP9_NMV_UPDATE_PROB);
update_nmv(bc, &mvctx->comps[i].hp, VP9_NMV_UPDATE_PROB);
}
}
}
// Read the referncence frame
static MV_REFERENCE_FRAME read_ref_frame(VP9D_COMP *pbi,
vp9_reader *const bc,
unsigned char segment_id) {
MV_REFERENCE_FRAME ref_frame;
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
int seg_ref_count = 0;
int seg_ref_active = vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME);
// If segment coding enabled does the segment allow for more than one
// possible reference frame
if (seg_ref_active) {
seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) +
vp9_check_segref(xd, segment_id, LAST_FRAME) +
vp9_check_segref(xd, segment_id, GOLDEN_FRAME) +
vp9_check_segref(xd, segment_id, ALTREF_FRAME);
}
// Segment reference frame features not available or allows for
// multiple reference frame options
if (!seg_ref_active || (seg_ref_count > 1)) {
// Values used in prediction model coding
MV_REFERENCE_FRAME pred_ref;
// Get the context probability the prediction flag
vp9_prob pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF);
// Read the prediction status flag
unsigned char prediction_flag = vp9_read(bc, pred_prob);
// Store the prediction flag.
vp9_set_pred_flag(xd, PRED_REF, prediction_flag);
// Get the predicted reference frame.
pred_ref = vp9_get_pred_ref(cm, xd);
// If correctly predicted then use the predicted value
if (prediction_flag) {
ref_frame = pred_ref;
} else {
// decode the explicitly coded value
vp9_prob mod_refprobs[PREDICTION_PROBS];
vpx_memcpy(mod_refprobs,
cm->mod_refprobs[pred_ref], sizeof(mod_refprobs));
// If segment coding enabled blank out options that cant occur by
// setting the branch probability to 0.
if (seg_ref_active) {
mod_refprobs[INTRA_FRAME] *=
vp9_check_segref(xd, segment_id, INTRA_FRAME);
mod_refprobs[LAST_FRAME] *=
vp9_check_segref(xd, segment_id, LAST_FRAME);
mod_refprobs[GOLDEN_FRAME] *=
(vp9_check_segref(xd, segment_id, GOLDEN_FRAME) *
vp9_check_segref(xd, segment_id, ALTREF_FRAME));
}
// Default to INTRA_FRAME (value 0)
ref_frame = INTRA_FRAME;
// Do we need to decode the Intra/Inter branch
if (mod_refprobs[0])
ref_frame = (MV_REFERENCE_FRAME) vp9_read(bc, mod_refprobs[0]);
else
ref_frame++;
if (ref_frame) {
// Do we need to decode the Last/Gf_Arf branch
if (mod_refprobs[1])
ref_frame += vp9_read(bc, mod_refprobs[1]);
else
ref_frame++;
if (ref_frame > 1) {
// Do we need to decode the GF/Arf branch
if (mod_refprobs[2])
ref_frame += vp9_read(bc, mod_refprobs[2]);
else {
if (seg_ref_active) {
if ((pred_ref == GOLDEN_FRAME) ||
!vp9_check_segref(xd, segment_id, GOLDEN_FRAME)) {
ref_frame = ALTREF_FRAME;
} else
ref_frame = GOLDEN_FRAME;
} else
ref_frame = (pred_ref == GOLDEN_FRAME)
? ALTREF_FRAME : GOLDEN_FRAME;
}
}
}
}
} else {
// Segment reference frame features are enabled
// The reference frame for the mb is considered as correclty predicted
// if it is signaled at the segment level for the purposes of the
// common prediction model
vp9_set_pred_flag(xd, PRED_REF, 1);
ref_frame = vp9_get_pred_ref(cm, xd);
}
return (MV_REFERENCE_FRAME)ref_frame;
}
static MB_PREDICTION_MODE read_sb_mv_ref(vp9_reader *bc, const vp9_prob *p) {
return (MB_PREDICTION_MODE) treed_read(bc, vp9_sb_mv_ref_tree, p);
}
static MB_PREDICTION_MODE read_mv_ref(vp9_reader *bc, const vp9_prob *p) {
return (MB_PREDICTION_MODE) treed_read(bc, vp9_mv_ref_tree, p);
}
static B_PREDICTION_MODE sub_mv_ref(vp9_reader *bc, const vp9_prob *p) {
return (B_PREDICTION_MODE) treed_read(bc, vp9_sub_mv_ref_tree, p);
}
#ifdef VPX_MODE_COUNT
unsigned int vp9_mv_cont_count[5][4] = {
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 }
};
#endif
static const unsigned char mbsplit_fill_count[4] = { 8, 8, 4, 1 };
static const unsigned char mbsplit_fill_offset[4][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15 },
{ 0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }
};
static void read_switchable_interp_probs(VP9D_COMP* const pbi,
BOOL_DECODER* const bc) {
VP9_COMMON *const cm = &pbi->common;
int i, j;
for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) {
for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) {
cm->fc.switchable_interp_prob[j][i] = vp9_read_prob(bc);
}
}
//printf("DECODER: %d %d\n", cm->fc.switchable_interp_prob[0],
//cm->fc.switchable_interp_prob[1]);
}
static void mb_mode_mv_init(VP9D_COMP *pbi, vp9_reader *bc) {
VP9_COMMON *const cm = &pbi->common;
nmv_context *const nmvc = &pbi->common.fc.nmvc;
MACROBLOCKD *const xd = &pbi->mb;
if (cm->frame_type == KEY_FRAME) {
if (!cm->kf_ymode_probs_update)
cm->kf_ymode_probs_index = vp9_read_literal(bc, 3);
} else {
if (cm->mcomp_filter_type == SWITCHABLE)
read_switchable_interp_probs(pbi, bc);
#if CONFIG_COMP_INTERINTRA_PRED
if (cm->use_interintra) {
if (vp9_read(bc, VP9_UPD_INTERINTRA_PROB))
cm->fc.interintra_prob = vp9_read_prob(bc);
}
#endif
// Decode the baseline probabilities for decoding reference frame
cm->prob_intra_coded = vp9_read_prob(bc);
cm->prob_last_coded = vp9_read_prob(bc);
cm->prob_gf_coded = vp9_read_prob(bc);
// Computes a modified set of probabilities for use when reference
// frame prediction fails.
vp9_compute_mod_refprobs(cm);
pbi->common.comp_pred_mode = vp9_read(bc, 128);
if (cm->comp_pred_mode)
cm->comp_pred_mode += vp9_read(bc, 128);
if (cm->comp_pred_mode == HYBRID_PREDICTION) {
int i;
for (i = 0; i < COMP_PRED_CONTEXTS; i++)
cm->prob_comppred[i] = vp9_read_prob(bc);
}
if (vp9_read_bit(bc)) {
int i = 0;
do {
cm->fc.ymode_prob[i] = vp9_read_prob(bc);
} while (++i < VP9_YMODES - 1);
}
if (vp9_read_bit(bc)) {
int i = 0;
do {
cm->fc.sb_ymode_prob[i] = vp9_read_prob(bc);
} while (++i < VP9_I32X32_MODES - 1);
}
read_nmvprobs(bc, nmvc, xd->allow_high_precision_mv);
}
}
// This function either reads the segment id for the current macroblock from
// the bitstream or if the value is temporally predicted asserts the predicted
// value
static void read_mb_segment_id(VP9D_COMP *pbi,
int mb_row, int mb_col,
BOOL_DECODER* const bc) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *mbmi = &mi->mbmi;
int mb_index = mb_row * pbi->common.mb_cols + mb_col;
if (xd->segmentation_enabled) {
if (xd->update_mb_segmentation_map) {
// Is temporal coding of the segment id for this mb enabled.
if (cm->temporal_update) {
// Get the context based probability for reading the
// prediction status flag
vp9_prob pred_prob = vp9_get_pred_prob(cm, xd, PRED_SEG_ID);
// Read the prediction status flag
unsigned char seg_pred_flag = vp9_read(bc, pred_prob);
// Store the prediction flag.
vp9_set_pred_flag(xd, PRED_SEG_ID, seg_pred_flag);
// If the value is flagged as correctly predicted
// then use the predicted value
if (seg_pred_flag) {
mbmi->segment_id = vp9_get_pred_mb_segid(cm, xd, mb_index);
} else {
// Decode it explicitly
read_mb_segid_except(cm, bc, mbmi, xd, mb_row, mb_col);
}
} else {
// Normal unpredicted coding mode
read_mb_segid(bc, mbmi, xd);
}
if (mbmi->sb_type) {
const int nmbs = 1 << mbmi->sb_type;
const int ymbs = MIN(cm->mb_rows - mb_row, nmbs);
const int xmbs = MIN(cm->mb_cols - mb_col, nmbs);
int x, y;
for (y = 0; y < ymbs; y++) {
for (x = 0; x < xmbs; x++) {
cm->last_frame_seg_map[mb_index + x + y * cm->mb_cols] =
mbmi->segment_id;
}
}
} else {
cm->last_frame_seg_map[mb_index] = mbmi->segment_id;
}
} else {
if (mbmi->sb_type) {
const int nmbs = 1 << mbmi->sb_type;
const int ymbs = MIN(cm->mb_rows - mb_row, nmbs);
const int xmbs = MIN(cm->mb_cols - mb_col, nmbs);
unsigned segment_id = -1;
int x, y;
for (y = 0; y < ymbs; y++) {
for (x = 0; x < xmbs; x++) {
segment_id = MIN(segment_id,
cm->last_frame_seg_map[mb_index + x + y * cm->mb_cols]);
}
}
mbmi->segment_id = segment_id;
} else {
mbmi->segment_id = cm->last_frame_seg_map[mb_index];
}
}
} else {
// The encoder explicitly sets the segment_id to 0
// when segmentation is disabled
mbmi->segment_id = 0;
}
}
static INLINE void assign_and_clamp_mv(int_mv *dst, const int_mv *src,
int mb_to_left_edge,
int mb_to_right_edge,
int mb_to_top_edge,
int mb_to_bottom_edge) {
dst->as_int = src->as_int;
clamp_mv(dst, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge,
mb_to_bottom_edge);
}
static INLINE void process_mv(BOOL_DECODER* bc, MV *mv, MV *ref,
nmv_context *nmvc, nmv_context_counts *mvctx,
int usehp) {
read_nmv(bc, mv, ref, nmvc);
read_nmv_fp(bc, mv, ref, nmvc, usehp);
vp9_increment_nmv(mv, ref, mvctx, usehp);
mv->row += ref->row;
mv->col += ref->col;
}
static void read_mb_modes_mv(VP9D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi,
MODE_INFO *prev_mi,
int mb_row, int mb_col,
BOOL_DECODER* const bc) {
VP9_COMMON *const cm = &pbi->common;
nmv_context *const nmvc = &pbi->common.fc.nmvc;
const int mis = pbi->common.mode_info_stride;
MACROBLOCKD *const xd = &pbi->mb;
int_mv *const mv = &mbmi->mv[0];
const int mb_size = 1 << mi->mbmi.sb_type;
const int use_prev_in_find_mv_refs = cm->width == cm->last_width &&
cm->height == cm->last_height &&
!cm->error_resilient_mode;
int mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge;
mbmi->need_to_clamp_mvs = 0;
mbmi->need_to_clamp_secondmv = 0;
mbmi->second_ref_frame = NONE;
// Make sure the MACROBLOCKD mode info pointer is pointed at the
// correct entry for the current macroblock.
xd->mode_info_context = mi;
xd->prev_mode_info_context = prev_mi;
// Distance of Mb to the various image edges.
// These specified to 8th pel as they are always compared to MV values
// that are in 1/8th pel units
set_mb_row(cm, xd, mb_row, mb_size);
set_mb_col(cm, xd, mb_col, mb_size);
mb_to_top_edge = xd->mb_to_top_edge - LEFT_TOP_MARGIN;
mb_to_bottom_edge = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;
mb_to_left_edge = xd->mb_to_left_edge - LEFT_TOP_MARGIN;
mb_to_right_edge = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;
// Read the macroblock segment id.
read_mb_segment_id(pbi, mb_row, mb_col, bc);
if (pbi->common.mb_no_coeff_skip &&
(!vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_SKIP))) {
// Read the macroblock coeff skip flag if this feature is in use,
// else default to 0
mbmi->mb_skip_coeff = vp9_read(bc, vp9_get_pred_prob(cm, xd, PRED_MBSKIP));
} else {
mbmi->mb_skip_coeff = vp9_segfeature_active(xd, mbmi->segment_id,
SEG_LVL_SKIP);
}
// Read the reference frame
mbmi->ref_frame = read_ref_frame(pbi, bc, mbmi->segment_id);
/*
if (pbi->common.current_video_frame == 1)
printf("ref frame: %d [%d %d]\n", mbmi->ref_frame, mb_row, mb_col);
*/
// If reference frame is an Inter frame
if (mbmi->ref_frame) {
int_mv nearest, nearby, best_mv;
int_mv nearest_second, nearby_second, best_mv_second;
vp9_prob mv_ref_p[VP9_MVREFS - 1];
MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame;
xd->scale_factor[0] = cm->active_ref_scale[mbmi->ref_frame - 1];
{
const int use_prev_in_find_best_ref =
xd->scale_factor[0].x_num == xd->scale_factor[0].x_den &&
xd->scale_factor[0].y_num == xd->scale_factor[0].y_den &&
!cm->error_resilient_mode &&
!cm->frame_parallel_decoding_mode;
/* Select the appropriate reference frame for this MB */
const int ref_fb_idx = cm->active_ref_idx[ref_frame - 1];
setup_pred_block(&xd->pre, &cm->yv12_fb[ref_fb_idx],
mb_row, mb_col, &xd->scale_factor[0], &xd->scale_factor_uv[0]);
#ifdef DEC_DEBUG
if (dec_debug)
printf("%d %d\n", xd->mode_info_context->mbmi.mv[0].as_mv.row,
xd->mode_info_context->mbmi.mv[0].as_mv.col);
#endif
// if (cm->current_video_frame == 1 && mb_row == 4 && mb_col == 5)
// printf("Dello\n");
vp9_find_mv_refs(cm, xd, mi, use_prev_in_find_mv_refs ? prev_mi : NULL,
ref_frame, mbmi->ref_mvs[ref_frame],
cm->ref_frame_sign_bias);
vp9_mv_ref_probs(&pbi->common, mv_ref_p,
mbmi->mb_mode_context[ref_frame]);
// If the segment level skip mode enabled
if (vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_SKIP)) {
mbmi->mode = ZEROMV;
} else {
mbmi->mode = mbmi->sb_type ? read_sb_mv_ref(bc, mv_ref_p)
: read_mv_ref(bc, mv_ref_p);
vp9_accum_mv_refs(&pbi->common, mbmi->mode,
mbmi->mb_mode_context[ref_frame]);
}
if (mbmi->mode != ZEROMV) {
vp9_find_best_ref_mvs(xd,
use_prev_in_find_best_ref ?
xd->pre.y_buffer : NULL,
xd->pre.y_stride,
mbmi->ref_mvs[ref_frame],
&nearest, &nearby);
best_mv.as_int = (mbmi->ref_mvs[ref_frame][0]).as_int;
}
#ifdef DEC_DEBUG
if (dec_debug)
printf("[D %d %d] %d %d %d %d\n", ref_frame,
mbmi->mb_mode_context[ref_frame],
mv_ref_p[0], mv_ref_p[1], mv_ref_p[2], mv_ref_p[3]);
#endif
}
if (mbmi->mode >= NEARESTMV && mbmi->mode <= SPLITMV) {
if (cm->mcomp_filter_type == SWITCHABLE) {
mbmi->interp_filter = vp9_switchable_interp[
treed_read(bc, vp9_switchable_interp_tree,
vp9_get_pred_probs(cm, xd, PRED_SWITCHABLE_INTERP))];
} else {
mbmi->interp_filter = cm->mcomp_filter_type;
}
}
if (cm->comp_pred_mode == COMP_PREDICTION_ONLY ||
(cm->comp_pred_mode == HYBRID_PREDICTION &&
vp9_read(bc, vp9_get_pred_prob(cm, xd, PRED_COMP)))) {
/* Since we have 3 reference frames, we can only have 3 unique
* combinations of combinations of 2 different reference frames
* (A-G, G-L or A-L). In the bitstream, we use this to simply
* derive the second reference frame from the first reference
* frame, by saying it's the next one in the enumerator, and
* if that's > n_refs, then the second reference frame is the
* first one in the enumerator. */
mbmi->second_ref_frame = mbmi->ref_frame + 1;
if (mbmi->second_ref_frame == 4)
mbmi->second_ref_frame = 1;
if (mbmi->second_ref_frame > 0) {
int second_ref_fb_idx;
int use_prev_in_find_best_ref;
xd->scale_factor[1] = cm->active_ref_scale[mbmi->second_ref_frame - 1];
use_prev_in_find_best_ref =
xd->scale_factor[1].x_num == xd->scale_factor[1].x_den &&
xd->scale_factor[1].y_num == xd->scale_factor[1].y_den &&
!cm->error_resilient_mode &&
!cm->frame_parallel_decoding_mode;
/* Select the appropriate reference frame for this MB */
second_ref_fb_idx = cm->active_ref_idx[mbmi->second_ref_frame - 1];
setup_pred_block(&xd->second_pre, &cm->yv12_fb[second_ref_fb_idx],
mb_row, mb_col, &xd->scale_factor[1], &xd->scale_factor_uv[1]);
vp9_find_mv_refs(cm, xd, mi, use_prev_in_find_mv_refs ? prev_mi : NULL,
mbmi->second_ref_frame,
mbmi->ref_mvs[mbmi->second_ref_frame],
cm->ref_frame_sign_bias);
if (mbmi->mode != ZEROMV) {
vp9_find_best_ref_mvs(xd,
use_prev_in_find_best_ref ?
xd->second_pre.y_buffer : NULL,
xd->second_pre.y_stride,
mbmi->ref_mvs[mbmi->second_ref_frame],
&nearest_second,
&nearby_second);
best_mv_second = mbmi->ref_mvs[mbmi->second_ref_frame][0];
}
}
} else {
#if CONFIG_COMP_INTERINTRA_PRED
if (pbi->common.use_interintra &&
mbmi->mode >= NEARESTMV && mbmi->mode < SPLITMV &&
mbmi->second_ref_frame == NONE) {
mbmi->second_ref_frame = (vp9_read(bc, pbi->common.fc.interintra_prob) ?
INTRA_FRAME : NONE);
// printf("-- %d (%d)\n", mbmi->second_ref_frame == INTRA_FRAME,
// pbi->common.fc.interintra_prob);
pbi->common.fc.interintra_counts[
mbmi->second_ref_frame == INTRA_FRAME]++;
if (mbmi->second_ref_frame == INTRA_FRAME) {
mbmi->interintra_mode = read_ymode(bc, pbi->common.fc.ymode_prob);
pbi->common.fc.ymode_counts[mbmi->interintra_mode]++;
#if SEPARATE_INTERINTRA_UV
mbmi->interintra_uv_mode = read_uv_mode(bc,
pbi->common.fc.uv_mode_prob[mbmi->interintra_mode]);
pbi->common.fc.uv_mode_counts[mbmi->interintra_mode]
[mbmi->interintra_uv_mode]++;
#else
mbmi->interintra_uv_mode = mbmi->interintra_mode;
#endif
// printf("** %d %d\n",
// mbmi->interintra_mode, mbmi->interintra_uv_mode);
}
}
#endif
}
#if CONFIG_NEW_MVREF
// if ((mbmi->mode == NEWMV) || (mbmi->mode == SPLITMV))
if (mbmi->mode == NEWMV) {
int best_index;
MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame;
// Encode the index of the choice.
best_index =
vp9_read_mv_ref_id(bc, xd->mb_mv_ref_probs[ref_frame]);
best_mv.as_int = mbmi->ref_mvs[ref_frame][best_index].as_int;
if (mbmi->second_ref_frame > 0) {
ref_frame = mbmi->second_ref_frame;
// Encode the index of the choice.
best_index =
vp9_read_mv_ref_id(bc, xd->mb_mv_ref_probs[ref_frame]);
best_mv_second.as_int = mbmi->ref_mvs[ref_frame][best_index].as_int;
}
}
#endif
mbmi->uv_mode = DC_PRED;
switch (mbmi->mode) {
case SPLITMV: {
const int s = treed_read(bc, vp9_mbsplit_tree, cm->fc.mbsplit_prob);
const int num_p = vp9_mbsplit_count[s];
int j = 0;
cm->fc.mbsplit_counts[s]++;
mbmi->need_to_clamp_mvs = 0;
mbmi->partitioning = s;
do { // for each subset j
int_mv leftmv, abovemv, second_leftmv, second_abovemv;
int_mv blockmv, secondmv;
int mv_contz;
int blockmode;
int k = vp9_mbsplit_offset[s][j]; // first block in subset j
leftmv.as_int = left_block_mv(xd, mi, k);
abovemv.as_int = above_block_mv(mi, k, mis);
second_leftmv.as_int = 0;
second_abovemv.as_int = 0;
if (mbmi->second_ref_frame > 0) {
second_leftmv.as_int = left_block_second_mv(xd, mi, k);
second_abovemv.as_int = above_block_second_mv(mi, k, mis);
}
mv_contz = vp9_mv_cont(&leftmv, &abovemv);
blockmode = sub_mv_ref(bc, cm->fc.sub_mv_ref_prob [mv_contz]);
cm->fc.sub_mv_ref_counts[mv_contz][blockmode - LEFT4X4]++;
switch (blockmode) {
case NEW4X4:
process_mv(bc, &blockmv.as_mv, &best_mv.as_mv, nmvc,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
if (mbmi->second_ref_frame > 0)
process_mv(bc, &secondmv.as_mv, &best_mv_second.as_mv, nmvc,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][3]++;
#endif
break;
case LEFT4X4:
blockmv.as_int = leftmv.as_int;
if (mbmi->second_ref_frame > 0)
secondmv.as_int = second_leftmv.as_int;
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][0]++;
#endif
break;
case ABOVE4X4:
blockmv.as_int = abovemv.as_int;
if (mbmi->second_ref_frame > 0)
secondmv.as_int = second_abovemv.as_int;
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][1]++;
#endif
break;
case ZERO4X4:
blockmv.as_int = 0;
if (mbmi->second_ref_frame > 0)
secondmv.as_int = 0;
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][2]++;
#endif
break;
default:
break;
}
/* Commenting this section out, not sure why this was needed, and
* there are mismatches with this section in rare cases since it is
* not done in the encoder at all.
mbmi->need_to_clamp_mvs |= check_mv_bounds(&blockmv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->second_ref_frame > 0) {
mbmi->need_to_clamp_mvs |= check_mv_bounds(&secondmv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
}
*/
{
/* Fill (uniform) modes, mvs of jth subset.
Must do it here because ensuing subsets can
refer back to us via "left" or "above". */
unsigned int fill_count = mbsplit_fill_count[s];
const unsigned char *fill_offset =
&mbsplit_fill_offset[s][j * fill_count];
do {
mi->bmi[*fill_offset].as_mv[0].as_int = blockmv.as_int;
if (mbmi->second_ref_frame > 0)
mi->bmi[*fill_offset].as_mv[1].as_int = secondmv.as_int;
fill_offset++;
} while (--fill_count);
}
} while (++j < num_p);
}
mv->as_int = mi->bmi[15].as_mv[0].as_int;
mbmi->mv[1].as_int = mi->bmi[15].as_mv[1].as_int;
break; /* done with SPLITMV */
case NEARMV:
// Clip "next_nearest" so that it does not extend to far out of image
assign_and_clamp_mv(mv, &nearby, mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->second_ref_frame > 0)
assign_and_clamp_mv(&mbmi->mv[1], &nearby_second, mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
break;
case NEARESTMV:
// Clip "next_nearest" so that it does not extend to far out of image
assign_and_clamp_mv(mv, &nearest, mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->second_ref_frame > 0)
assign_and_clamp_mv(&mbmi->mv[1], &nearest_second, mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
break;
case ZEROMV:
mv->as_int = 0;
if (mbmi->second_ref_frame > 0)
mbmi->mv[1].as_int = 0;
break;
case NEWMV:
process_mv(bc, &mv->as_mv, &best_mv.as_mv, nmvc, &cm->fc.NMVcount,
xd->allow_high_precision_mv);
// Don't need to check this on NEARMV and NEARESTMV modes
// since those modes clamp the MV. The NEWMV mode does not,
// so signal to the prediction stage whether special
// handling may be required.
mbmi->need_to_clamp_mvs = check_mv_bounds(mv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->second_ref_frame > 0) {
process_mv(bc, &mbmi->mv[1].as_mv, &best_mv_second.as_mv, nmvc,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
mbmi->need_to_clamp_secondmv |= check_mv_bounds(&mbmi->mv[1],
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
}
break;
default:
;
#if CONFIG_DEBUG
assert(0);
#endif
}
} else {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
if (mbmi->sb_type) {
mbmi->mode = read_sb_ymode(bc, pbi->common.fc.sb_ymode_prob);
pbi->common.fc.sb_ymode_counts[mbmi->mode]++;
} else {
mbmi->mode = read_ymode(bc, pbi->common.fc.ymode_prob);
pbi->common.fc.ymode_counts[mbmi->mode]++;
}
// If MB mode is BPRED read the block modes
if (mbmi->mode == B_PRED) {
int j = 0;
do {
int m = read_bmode(bc, pbi->common.fc.bmode_prob);
mi->bmi[j].as_mode.first = m;
#if CONFIG_NEWBINTRAMODES
if (m == B_CONTEXT_PRED) m -= CONTEXT_PRED_REPLACEMENTS;
#endif
pbi->common.fc.bmode_counts[m]++;
} while (++j < 16);
}
if (mbmi->mode == I8X8_PRED) {
int i;
for (i = 0; i < 4; i++) {
const int ib = vp9_i8x8_block[i];
const int mode8x8 = read_i8x8_mode(bc, pbi->common.fc.i8x8_mode_prob);
mi->bmi[ib + 0].as_mode.first = mode8x8;
mi->bmi[ib + 1].as_mode.first = mode8x8;
mi->bmi[ib + 4].as_mode.first = mode8x8;
mi->bmi[ib + 5].as_mode.first = mode8x8;
pbi->common.fc.i8x8_mode_counts[mode8x8]++;
}
} else {
mbmi->uv_mode = read_uv_mode(bc, pbi->common.fc.uv_mode_prob[mbmi->mode]);
pbi->common.fc.uv_mode_counts[mbmi->mode][mbmi->uv_mode]++;
}
}
/*
if (pbi->common.current_video_frame == 1)
printf("mode: %d skip: %d\n", mbmi->mode, mbmi->mb_skip_coeff);
*/
if (cm->txfm_mode == TX_MODE_SELECT && mbmi->mb_skip_coeff == 0 &&
((mbmi->ref_frame == INTRA_FRAME && mbmi->mode <= I8X8_PRED) ||
(mbmi->ref_frame != INTRA_FRAME && !(mbmi->mode == SPLITMV &&
mbmi->partitioning == PARTITIONING_4X4)))) {
// FIXME(rbultje) code ternary symbol once all experiments are merged
mbmi->txfm_size = vp9_read(bc, cm->prob_tx[0]);
if (mbmi->txfm_size != TX_4X4 && mbmi->mode != I8X8_PRED &&
mbmi->mode != SPLITMV) {
mbmi->txfm_size += vp9_read(bc, cm->prob_tx[1]);
if (mbmi->sb_type && mbmi->txfm_size != TX_8X8)
mbmi->txfm_size += vp9_read(bc, cm->prob_tx[2]);
}
} else if (mbmi->sb_type && cm->txfm_mode >= ALLOW_32X32) {
mbmi->txfm_size = TX_32X32;
} else if (cm->txfm_mode >= ALLOW_16X16 &&
((mbmi->ref_frame == INTRA_FRAME && mbmi->mode <= TM_PRED) ||
(mbmi->ref_frame != INTRA_FRAME && mbmi->mode != SPLITMV))) {
mbmi->txfm_size = TX_16X16;
} else if (cm->txfm_mode >= ALLOW_8X8 &&
(!(mbmi->ref_frame == INTRA_FRAME && mbmi->mode == B_PRED) &&
!(mbmi->ref_frame != INTRA_FRAME && mbmi->mode == SPLITMV &&
mbmi->partitioning == PARTITIONING_4X4))) {
mbmi->txfm_size = TX_8X8;
} else {
mbmi->txfm_size = TX_4X4;
}
}
void vp9_decode_mode_mvs_init(VP9D_COMP* const pbi, BOOL_DECODER* const bc) {
VP9_COMMON *cm = &pbi->common;
vpx_memset(cm->mbskip_pred_probs, 0, sizeof(cm->mbskip_pred_probs));
if (pbi->common.mb_no_coeff_skip) {
int k;
for (k = 0; k < MBSKIP_CONTEXTS; ++k) {
cm->mbskip_pred_probs[k] = vp9_read_prob(bc);
}
}
mb_mode_mv_init(pbi, bc);
}
#if CONFIG_CODE_NONZEROCOUNT
static uint16_t read_nzc(VP9_COMMON *const cm,
int nzc_context,
TX_SIZE tx_size,
int ref,
int type,
BOOL_DECODER* const bc) {
int c, e;
uint16_t nzc;
if (tx_size == TX_32X32) {
c = treed_read(bc, vp9_nzc32x32_tree,
cm->fc.nzc_probs_32x32[nzc_context][ref][type]);
cm->fc.nzc_counts_32x32[nzc_context][ref][type][c]++;
} else if (tx_size == TX_16X16) {
c = treed_read(bc, vp9_nzc16x16_tree,
cm->fc.nzc_probs_16x16[nzc_context][ref][type]);
cm->fc.nzc_counts_16x16[nzc_context][ref][type][c]++;
} else if (tx_size == TX_8X8) {
c = treed_read(bc, vp9_nzc8x8_tree,
cm->fc.nzc_probs_8x8[nzc_context][ref][type]);
cm->fc.nzc_counts_8x8[nzc_context][ref][type][c]++;
} else if (tx_size == TX_4X4) {
c = treed_read(bc, vp9_nzc4x4_tree,
cm->fc.nzc_probs_4x4[nzc_context][ref][type]);
cm->fc.nzc_counts_4x4[nzc_context][ref][type][c]++;
} else {
assert(0);
}
nzc = vp9_basenzcvalue[c];
if ((e = vp9_extranzcbits[c])) {
int x = 0;
while (e--) {
int b = vp9_read(
bc, cm->fc.nzc_pcat_probs[nzc_context][c - NZC_TOKENS_NOEXTRA][e]);
x |= (b << e);
cm->fc.nzc_pcat_counts[nzc_context][c - NZC_TOKENS_NOEXTRA][e][b]++;
}
nzc += x;
}
if (tx_size == TX_32X32)
assert(nzc <= 1024);
else if (tx_size == TX_16X16)
assert(nzc <= 256);
else if (tx_size == TX_8X8)
assert(nzc <= 64);
else if (tx_size == TX_4X4)
assert(nzc <= 16);
return nzc;
}
static void read_nzcs_sb64(VP9_COMMON *const cm,
MACROBLOCKD* xd,
int mb_row,
int mb_col,
BOOL_DECODER* const bc) {
MODE_INFO *m = xd->mode_info_context;
MB_MODE_INFO *const mi = &m->mbmi;
int j, nzc_context;
const int ref = m->mbmi.ref_frame != INTRA_FRAME;
assert(mb_col == get_mb_col(xd));
assert(mb_row == get_mb_row(xd));
vpx_memset(m->mbmi.nzcs, 0, 384 * sizeof(m->mbmi.nzcs[0]));
if (mi->mb_skip_coeff)
return;
switch (mi->txfm_size) {
case TX_32X32:
for (j = 0; j < 256; j += 64) {
nzc_context = vp9_get_nzc_context_y_sb64(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_32X32, ref, 0, bc);
}
for (j = 256; j < 384; j += 64) {
nzc_context = vp9_get_nzc_context_uv_sb64(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_32X32, ref, 1, bc);
}
break;
case TX_16X16:
for (j = 0; j < 256; j += 16) {
nzc_context = vp9_get_nzc_context_y_sb64(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_16X16, ref, 0, bc);
}
for (j = 256; j < 384; j += 16) {
nzc_context = vp9_get_nzc_context_uv_sb64(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_16X16, ref, 1, bc);
}
break;
case TX_8X8:
for (j = 0; j < 256; j += 4) {
nzc_context = vp9_get_nzc_context_y_sb64(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_8X8, ref, 0, bc);
}
for (j = 256; j < 384; j += 4) {
nzc_context = vp9_get_nzc_context_uv_sb64(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_8X8, ref, 1, bc);
}
break;
case TX_4X4:
for (j = 0; j < 256; ++j) {
nzc_context = vp9_get_nzc_context_y_sb64(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_4X4, ref, 0, bc);
}
for (j = 256; j < 384; ++j) {
nzc_context = vp9_get_nzc_context_uv_sb64(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_4X4, ref, 1, bc);
}
break;
default:
break;
}
}
static void read_nzcs_sb32(VP9_COMMON *const cm,
MACROBLOCKD* xd,
int mb_row,
int mb_col,
BOOL_DECODER* const bc) {
MODE_INFO *m = xd->mode_info_context;
MB_MODE_INFO *const mi = &m->mbmi;
int j, nzc_context;
const int ref = m->mbmi.ref_frame != INTRA_FRAME;
assert(mb_col == get_mb_col(xd));
assert(mb_row == get_mb_row(xd));
vpx_memset(m->mbmi.nzcs, 0, 384 * sizeof(m->mbmi.nzcs[0]));
if (mi->mb_skip_coeff)
return;
switch (mi->txfm_size) {
case TX_32X32:
for (j = 0; j < 64; j += 64) {
nzc_context = vp9_get_nzc_context_y_sb32(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_32X32, ref, 0, bc);
}
for (j = 64; j < 96; j += 16) {
nzc_context = vp9_get_nzc_context_uv_sb32(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_16X16, ref, 1, bc);
}
break;
case TX_16X16:
for (j = 0; j < 64; j += 16) {
nzc_context = vp9_get_nzc_context_y_sb32(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_16X16, ref, 0, bc);
}
for (j = 64; j < 96; j += 16) {
nzc_context = vp9_get_nzc_context_uv_sb32(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_16X16, ref, 1, bc);
}
break;
case TX_8X8:
for (j = 0; j < 64; j += 4) {
nzc_context = vp9_get_nzc_context_y_sb32(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_8X8, ref, 0, bc);
}
for (j = 64; j < 96; j += 4) {
nzc_context = vp9_get_nzc_context_uv_sb32(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_8X8, ref, 1, bc);
}
break;
case TX_4X4:
for (j = 0; j < 64; ++j) {
nzc_context = vp9_get_nzc_context_y_sb32(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_4X4, ref, 0, bc);
}
for (j = 64; j < 96; ++j) {
nzc_context = vp9_get_nzc_context_uv_sb32(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_4X4, ref, 1, bc);
}
break;
default:
break;
}
}
static void read_nzcs_mb16(VP9_COMMON *const cm,
MACROBLOCKD* xd,
int mb_row,
int mb_col,
BOOL_DECODER* const bc) {
MODE_INFO *m = xd->mode_info_context;
MB_MODE_INFO *const mi = &m->mbmi;
int j, nzc_context;
const int ref = m->mbmi.ref_frame != INTRA_FRAME;
assert(mb_col == get_mb_col(xd));
assert(mb_row == get_mb_row(xd));
vpx_memset(m->mbmi.nzcs, 0, 384 * sizeof(m->mbmi.nzcs[0]));
if (mi->mb_skip_coeff)
return;
switch (mi->txfm_size) {
case TX_16X16:
for (j = 0; j < 16; j += 16) {
nzc_context = vp9_get_nzc_context_y_mb16(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_16X16, ref, 0, bc);
}
for (j = 16; j < 24; j += 4) {
nzc_context = vp9_get_nzc_context_uv_mb16(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_8X8, ref, 1, bc);
}
break;
case TX_8X8:
for (j = 0; j < 16; j += 4) {
nzc_context = vp9_get_nzc_context_y_mb16(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_8X8, ref, 0, bc);
}
if (mi->mode == I8X8_PRED || mi->mode == SPLITMV) {
for (j = 16; j < 24; ++j) {
nzc_context = vp9_get_nzc_context_uv_mb16(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_4X4, ref, 1, bc);
}
} else {
for (j = 16; j < 24; j += 4) {
nzc_context = vp9_get_nzc_context_uv_mb16(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_8X8, ref, 1, bc);
}
}
break;
case TX_4X4:
for (j = 0; j < 16; ++j) {
nzc_context = vp9_get_nzc_context_y_mb16(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_4X4, ref, 0, bc);
}
for (j = 16; j < 24; ++j) {
nzc_context = vp9_get_nzc_context_uv_mb16(cm, m, mb_row, mb_col, j);
m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_4X4, ref, 1, bc);
}
break;
default:
break;
}
}
#endif // CONFIG_CODE_NONZEROCOUNT
void vp9_decode_mb_mode_mv(VP9D_COMP* const pbi,
MACROBLOCKD* const xd,
int mb_row,
int mb_col,
BOOL_DECODER* const bc) {
VP9_COMMON *const cm = &pbi->common;
MODE_INFO *mi = xd->mode_info_context;
MODE_INFO *prev_mi = xd->prev_mode_info_context;
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (pbi->common.frame_type == KEY_FRAME) {
kfread_modes(pbi, mi, mb_row, mb_col, bc);
} else {
read_mb_modes_mv(pbi, mi, &mi->mbmi, prev_mi, mb_row, mb_col, bc);
set_scale_factors(xd,
mi->mbmi.ref_frame - 1, mi->mbmi.second_ref_frame - 1,
pbi->common.active_ref_scale);
}
#if CONFIG_CODE_NONZEROCOUNT
if (mbmi->sb_type == BLOCK_SIZE_SB64X64)
read_nzcs_sb64(cm, xd, mb_row, mb_col, bc);
else if (mbmi->sb_type == BLOCK_SIZE_SB32X32)
read_nzcs_sb32(cm, xd, mb_row, mb_col, bc);
else
read_nzcs_mb16(cm, xd, mb_row, mb_col, bc);
#endif // CONFIG_CODE_NONZEROCOUNT
if (mbmi->sb_type) {
const int n_mbs = 1 << mbmi->sb_type;
const int y_mbs = MIN(n_mbs, cm->mb_rows - mb_row);
const int x_mbs = MIN(n_mbs, cm->mb_cols - mb_col);
const int mis = cm->mode_info_stride;
int x, y;
for (y = 0; y < y_mbs; y++) {
for (x = !y; x < x_mbs; x++) {
mi[y * mis + x] = *mi;
}
}
} else {
update_blockd_bmi(xd);
}
}