vpx/vp8/encoder/x86/quantize_sse2.c
James Zern fd3658b0e4 replace DECLARE_ALIGNED_ARRAY w/DECLARE_ALIGNED
this macro was used inconsistently and only differs in behavior from
DECLARE_ALIGNED when an alignment attribute is unavailable. this macro
is used with calls to assembly, while generic c-code doesn't rely on it,
so in a c-only build without an alignment attribute the code will
function as expected.

Change-Id: Ie9d06d4028c0de17c63b3a27e6c1b0491cc4ea79
2015-05-07 11:55:08 -07:00

229 lines
7.1 KiB
C

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "vp8_rtcd.h"
#include "vpx_ports/x86.h"
#include "vpx_mem/vpx_mem.h"
#include "vp8/encoder/block.h"
#include "vp8/common/entropy.h" /* vp8_default_inv_zig_zag */
#include <mmintrin.h> /* MMX */
#include <xmmintrin.h> /* SSE */
#include <emmintrin.h> /* SSE2 */
#define SELECT_EOB(i, z) \
do { \
short boost = *zbin_boost_ptr; \
int cmp = (x[z] < boost) | (y[z] == 0); \
zbin_boost_ptr++; \
if (cmp) \
break; \
qcoeff_ptr[z] = y[z]; \
eob = i; \
zbin_boost_ptr = b->zrun_zbin_boost; \
} while (0)
void vp8_regular_quantize_b_sse2(BLOCK *b, BLOCKD *d)
{
char eob = 0;
short *zbin_boost_ptr;
short *qcoeff_ptr = d->qcoeff;
DECLARE_ALIGNED(16, short, x[16]);
DECLARE_ALIGNED(16, short, y[16]);
__m128i sz0, x0, sz1, x1, y0, y1, x_minus_zbin0, x_minus_zbin1;
__m128i quant_shift0 = _mm_load_si128((__m128i *)(b->quant_shift));
__m128i quant_shift1 = _mm_load_si128((__m128i *)(b->quant_shift + 8));
__m128i z0 = _mm_load_si128((__m128i *)(b->coeff));
__m128i z1 = _mm_load_si128((__m128i *)(b->coeff+8));
__m128i zbin_extra = _mm_cvtsi32_si128(b->zbin_extra);
__m128i zbin0 = _mm_load_si128((__m128i *)(b->zbin));
__m128i zbin1 = _mm_load_si128((__m128i *)(b->zbin + 8));
__m128i round0 = _mm_load_si128((__m128i *)(b->round));
__m128i round1 = _mm_load_si128((__m128i *)(b->round + 8));
__m128i quant0 = _mm_load_si128((__m128i *)(b->quant));
__m128i quant1 = _mm_load_si128((__m128i *)(b->quant + 8));
__m128i dequant0 = _mm_load_si128((__m128i *)(d->dequant));
__m128i dequant1 = _mm_load_si128((__m128i *)(d->dequant + 8));
memset(qcoeff_ptr, 0, 32);
/* Duplicate to all lanes. */
zbin_extra = _mm_shufflelo_epi16(zbin_extra, 0);
zbin_extra = _mm_unpacklo_epi16(zbin_extra, zbin_extra);
/* Sign of z: z >> 15 */
sz0 = _mm_srai_epi16(z0, 15);
sz1 = _mm_srai_epi16(z1, 15);
/* x = abs(z): (z ^ sz) - sz */
x0 = _mm_xor_si128(z0, sz0);
x1 = _mm_xor_si128(z1, sz1);
x0 = _mm_sub_epi16(x0, sz0);
x1 = _mm_sub_epi16(x1, sz1);
/* zbin[] + zbin_extra */
zbin0 = _mm_add_epi16(zbin0, zbin_extra);
zbin1 = _mm_add_epi16(zbin1, zbin_extra);
/* In C x is compared to zbin where zbin = zbin[] + boost + extra. Rebalance
* the equation because boost is the only value which can change:
* x - (zbin[] + extra) >= boost */
x_minus_zbin0 = _mm_sub_epi16(x0, zbin0);
x_minus_zbin1 = _mm_sub_epi16(x1, zbin1);
_mm_store_si128((__m128i *)(x), x_minus_zbin0);
_mm_store_si128((__m128i *)(x + 8), x_minus_zbin1);
/* All the remaining calculations are valid whether they are done now with
* simd or later inside the loop one at a time. */
x0 = _mm_add_epi16(x0, round0);
x1 = _mm_add_epi16(x1, round1);
y0 = _mm_mulhi_epi16(x0, quant0);
y1 = _mm_mulhi_epi16(x1, quant1);
y0 = _mm_add_epi16(y0, x0);
y1 = _mm_add_epi16(y1, x1);
/* Instead of shifting each value independently we convert the scaling
* factor with 1 << (16 - shift) so we can use multiply/return high half. */
y0 = _mm_mulhi_epi16(y0, quant_shift0);
y1 = _mm_mulhi_epi16(y1, quant_shift1);
/* Return the sign: (y ^ sz) - sz */
y0 = _mm_xor_si128(y0, sz0);
y1 = _mm_xor_si128(y1, sz1);
y0 = _mm_sub_epi16(y0, sz0);
y1 = _mm_sub_epi16(y1, sz1);
_mm_store_si128((__m128i *)(y), y0);
_mm_store_si128((__m128i *)(y + 8), y1);
zbin_boost_ptr = b->zrun_zbin_boost;
/* The loop gets unrolled anyway. Avoid the vp8_default_zig_zag1d lookup. */
SELECT_EOB(1, 0);
SELECT_EOB(2, 1);
SELECT_EOB(3, 4);
SELECT_EOB(4, 8);
SELECT_EOB(5, 5);
SELECT_EOB(6, 2);
SELECT_EOB(7, 3);
SELECT_EOB(8, 6);
SELECT_EOB(9, 9);
SELECT_EOB(10, 12);
SELECT_EOB(11, 13);
SELECT_EOB(12, 10);
SELECT_EOB(13, 7);
SELECT_EOB(14, 11);
SELECT_EOB(15, 14);
SELECT_EOB(16, 15);
y0 = _mm_load_si128((__m128i *)(d->qcoeff));
y1 = _mm_load_si128((__m128i *)(d->qcoeff + 8));
/* dqcoeff = qcoeff * dequant */
y0 = _mm_mullo_epi16(y0, dequant0);
y1 = _mm_mullo_epi16(y1, dequant1);
_mm_store_si128((__m128i *)(d->dqcoeff), y0);
_mm_store_si128((__m128i *)(d->dqcoeff + 8), y1);
*d->eob = eob;
}
void vp8_fast_quantize_b_sse2(BLOCK *b, BLOCKD *d)
{
__m128i z0 = _mm_load_si128((__m128i *)(b->coeff));
__m128i z1 = _mm_load_si128((__m128i *)(b->coeff + 8));
__m128i round0 = _mm_load_si128((__m128i *)(b->round));
__m128i round1 = _mm_load_si128((__m128i *)(b->round + 8));
__m128i quant_fast0 = _mm_load_si128((__m128i *)(b->quant_fast));
__m128i quant_fast1 = _mm_load_si128((__m128i *)(b->quant_fast + 8));
__m128i dequant0 = _mm_load_si128((__m128i *)(d->dequant));
__m128i dequant1 = _mm_load_si128((__m128i *)(d->dequant + 8));
__m128i inv_zig_zag0 = _mm_load_si128((const __m128i *)(vp8_default_inv_zig_zag));
__m128i inv_zig_zag1 = _mm_load_si128((const __m128i *)(vp8_default_inv_zig_zag + 8));
__m128i sz0, sz1, x0, x1, y0, y1, xdq0, xdq1, zeros, ones;
/* sign of z: z >> 15 */
sz0 = _mm_srai_epi16(z0, 15);
sz1 = _mm_srai_epi16(z1, 15);
/* x = abs(z): (z ^ sz) - sz */
x0 = _mm_xor_si128(z0, sz0);
x1 = _mm_xor_si128(z1, sz1);
x0 = _mm_sub_epi16(x0, sz0);
x1 = _mm_sub_epi16(x1, sz1);
/* x += round */
x0 = _mm_add_epi16(x0, round0);
x1 = _mm_add_epi16(x1, round1);
/* y = (x * quant) >> 16 */
y0 = _mm_mulhi_epi16(x0, quant_fast0);
y1 = _mm_mulhi_epi16(x1, quant_fast1);
/* x = abs(y) = (y ^ sz) - sz */
y0 = _mm_xor_si128(y0, sz0);
y1 = _mm_xor_si128(y1, sz1);
x0 = _mm_sub_epi16(y0, sz0);
x1 = _mm_sub_epi16(y1, sz1);
/* qcoeff = x */
_mm_store_si128((__m128i *)(d->qcoeff), x0);
_mm_store_si128((__m128i *)(d->qcoeff + 8), x1);
/* x * dequant */
xdq0 = _mm_mullo_epi16(x0, dequant0);
xdq1 = _mm_mullo_epi16(x1, dequant1);
/* dqcoeff = x * dequant */
_mm_store_si128((__m128i *)(d->dqcoeff), xdq0);
_mm_store_si128((__m128i *)(d->dqcoeff + 8), xdq1);
/* build a mask for the zig zag */
zeros = _mm_setzero_si128();
x0 = _mm_cmpeq_epi16(x0, zeros);
x1 = _mm_cmpeq_epi16(x1, zeros);
ones = _mm_cmpeq_epi16(zeros, zeros);
x0 = _mm_xor_si128(x0, ones);
x1 = _mm_xor_si128(x1, ones);
x0 = _mm_and_si128(x0, inv_zig_zag0);
x1 = _mm_and_si128(x1, inv_zig_zag1);
x0 = _mm_max_epi16(x0, x1);
/* now down to 8 */
x1 = _mm_shuffle_epi32(x0, 0xE); // 0b00001110
x0 = _mm_max_epi16(x0, x1);
/* only 4 left */
x1 = _mm_shufflelo_epi16(x0, 0xE); // 0b00001110
x0 = _mm_max_epi16(x0, x1);
/* okay, just 2! */
x1 = _mm_shufflelo_epi16(x0, 0x1); // 0b00000001
x0 = _mm_max_epi16(x0, x1);
*d->eob = 0xFF & _mm_cvtsi128_si32(x0);
}