vpx/vp8/decoder/decodframe.c
Adrian Grange 9daf3154db Superblock encoding order
This is the first patch to add superblock (32x32) coding
order capabilities. It does not yet do any mode selection
at the SB level, that will follow in a further patch.

This patch encodes rows of SBs rather than
MBs, each SB contains 2x2 MBs.

Two intra prediction modes have been disabled since they
require reconstructed data for the above-right MB which
may not have been encoded yet (e.g. for the bottom right
MB in each SB).

Results on the one test clip I have tried (720p GIPS clip)
suggest that it is somewhere around 0.2dB worse than the
baseline version, so there may be bugs.

It has been tested with no experiments enabled and with
the following 3 experiments enabled:
  --enable-enhanced_interp
  --enable-high_precision_mv
  --enable-sixteenth_subpel_uv
in each case the decode buffer matches the recon buffer
(using "cmp" to compare the dumped/decoded frames).
Note: Testing these experiments individually created
errors.

Some problems were found with other experiments but it
is unclear what state these experiments are in:
  --enable-comp_intra_pred
  --enable-newentropy
  --enable-uvintra

This code has not been extensively tested yet, so there
is every likelihood that further bugs remain. I also
intend to do some code cleanup & refactoring in tandem
with the next patch that adds the 32x32 modes.

Change-Id: I1eba7f740a70b3510df58db53464535ef881b4d9
2012-04-11 10:40:57 +01:00

1319 lines
45 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "onyxd_int.h"
#include "vp8/common/header.h"
#include "vp8/common/reconintra.h"
#include "vp8/common/reconintra4x4.h"
#include "vp8/common/recon.h"
#include "vp8/common/reconinter.h"
#include "dequantize.h"
#include "detokenize.h"
#include "vp8/common/invtrans.h"
#include "vp8/common/alloccommon.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/quant_common.h"
#include "vpx_scale/vpxscale.h"
#include "vpx_scale/yv12extend.h"
#include "vp8/common/setupintrarecon.h"
#include "decodemv.h"
#include "vp8/common/extend.h"
#include "vp8/common/modecont.h"
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/idct.h"
#include "dequantize.h"
#include "dboolhuff.h"
#include "vp8/common/seg_common.h"
#include <assert.h>
#include <stdio.h>
#ifdef DEC_DEBUG
int dec_debug = 0;
#endif
void vp8cx_init_de_quantizer(VP8D_COMP *pbi)
{
int i;
int Q;
VP8_COMMON *const pc = & pbi->common;
for (Q = 0; Q < QINDEX_RANGE; Q++)
{
pc->Y1dequant[Q][0] = (short)vp8_dc_quant(Q, pc->y1dc_delta_q);
pc->Y2dequant[Q][0] = (short)vp8_dc2quant(Q, pc->y2dc_delta_q);
pc->UVdequant[Q][0] = (short)vp8_dc_uv_quant(Q, pc->uvdc_delta_q);
/* all the ac values = ; */
for (i = 1; i < 16; i++)
{
int rc = vp8_default_zig_zag1d[i];
pc->Y1dequant[Q][rc] = (short)vp8_ac_yquant(Q);
pc->Y2dequant[Q][rc] = (short)vp8_ac2quant(Q, pc->y2ac_delta_q);
pc->UVdequant[Q][rc] = (short)vp8_ac_uv_quant(Q, pc->uvac_delta_q);
}
}
}
void mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd)
{
int i;
int QIndex;
VP8_COMMON *const pc = & pbi->common;
int segment_id = xd->mode_info_context->mbmi.segment_id;
// Set the Q baseline allowing for any segment level adjustment
if ( segfeature_active( xd, segment_id, SEG_LVL_ALT_Q ) )
{
/* Abs Value */
if (xd->mb_segment_abs_delta == SEGMENT_ABSDATA)
QIndex = get_segdata( xd, segment_id, SEG_LVL_ALT_Q );
/* Delta Value */
else
{
QIndex = pc->base_qindex +
get_segdata( xd, segment_id, SEG_LVL_ALT_Q );
QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; /* Clamp to valid range */
}
}
else
QIndex = pc->base_qindex;
/* Set up the block level dequant pointers */
for (i = 0; i < 16; i++)
{
xd->block[i].dequant = pc->Y1dequant[QIndex];
}
for (i = 16; i < 24; i++)
{
xd->block[i].dequant = pc->UVdequant[QIndex];
}
xd->block[24].dequant = pc->Y2dequant[QIndex];
}
#if CONFIG_RUNTIME_CPU_DETECT
#define RTCD_VTABLE(x) (&(pbi)->common.rtcd.x)
#else
#define RTCD_VTABLE(x) NULL
#endif
/* skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it
* to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy.
*/
static void skip_recon_mb(VP8D_COMP *pbi, MACROBLOCKD *xd)
{
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME)
{
RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mbuv_s)(xd);
RECON_INVOKE(&pbi->common.rtcd.recon,
build_intra_predictors_mby_s)(xd);
}
else
{
vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
if (xd->mode_info_context->mbmi.second_ref_frame)
{
vp8_build_2nd_inter16x16_predictors_mb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
}
}
#ifdef DEC_DEBUG
if (dec_debug) {
int i, j;
printf("Generating predictors\n");
for (i=0;i<16;i++) {
for (j=0;j<16;j++) printf("%3d ", xd->dst.y_buffer[i*xd->dst.y_stride+j]);
printf("\n");
}
}
#endif
}
extern const int vp8_i8x8_block[4];
static void decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd,
unsigned int mb_idx)
{
int eobtotal = 0;
MB_PREDICTION_MODE mode;
int i;
int tx_type;
if(pbi->common.frame_type == KEY_FRAME)
{
if( pbi->common.txfm_mode==ALLOW_8X8 &&
(xd->mode_info_context->mbmi.mode == DC_PRED
||xd->mode_info_context->mbmi.mode == TM_PRED))
xd->mode_info_context->mbmi.txfm_size = TX_8X8;
else
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
}
else
{
if( pbi->common.txfm_mode==ONLY_4X4 )
{
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
}
else if( pbi->common.txfm_mode == ALLOW_8X8 )
{
if( xd->mode_info_context->mbmi.mode ==B_PRED
||xd->mode_info_context->mbmi.mode ==I8X8_PRED
||xd->mode_info_context->mbmi.mode ==SPLITMV)
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
else
xd->mode_info_context->mbmi.txfm_size = TX_8X8;
}
}
tx_type = xd->mode_info_context->mbmi.txfm_size;
if (xd->mode_info_context->mbmi.mb_skip_coeff)
{
vp8_reset_mb_tokens_context(xd);
}
else if (!vp8dx_bool_error(xd->current_bc))
{
for(i = 0; i < 25; i++)
{
xd->block[i].eob = 0;
xd->eobs[i] = 0;
}
if ( tx_type == TX_8X8 )
eobtotal = vp8_decode_mb_tokens_8x8(pbi, xd);
else
eobtotal = vp8_decode_mb_tokens(pbi, xd);
#ifdef DEC_DEBUG
if (dec_debug) {
printf("\nTokens (%d)\n", eobtotal);
for (i =0; i<400; i++) {
printf("%3d ", xd->qcoeff[i]);
if (i%16 == 15) printf("\n");
}
printf("\n");
}
#endif
}
mode = xd->mode_info_context->mbmi.mode;
if (eobtotal == 0 && mode != B_PRED && mode != SPLITMV
&& mode != I8X8_PRED
&&!vp8dx_bool_error(xd->current_bc)
)
{
/* Special case: Force the loopfilter to skip when eobtotal and
* mb_skip_coeff are zero.
* */
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
skip_recon_mb(pbi, xd);
return;
}
#ifdef DEC_DEBUG
if (dec_debug) {
int i, j;
printf("Generating predictors\n");
for (i=0;i<16;i++) {
for (j=0;j<16;j++) printf("%3d ", xd->dst.y_buffer[i*xd->dst.y_stride+j]);
printf("\n");
}
}
#endif
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
/* do prediction */
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME)
{
if(mode != I8X8_PRED)
{
RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mbuv)(xd);
if (mode != B_PRED)
{
RECON_INVOKE(&pbi->common.rtcd.recon,
build_intra_predictors_mby)(xd);
}
#if 0
// Intra-modes requiring recon data from top-right
// MB have been temporarily disabled.
else
{
vp8_intra_prediction_down_copy(xd);
}
#endif
}
}
else
{
vp8_build_inter_predictors_mb(xd);
}
/* dequantization and idct */
if (mode == I8X8_PRED)
{
for (i = 0; i < 4; i++)
{
int ib = vp8_i8x8_block[i];
const int iblock[4]={0,1,4,5};
int j;
int i8x8mode;
BLOCKD *b;
b = &xd->block[ib];
i8x8mode= b->bmi.as_mode.first;
RECON_INVOKE(RTCD_VTABLE(recon), intra8x8_predict)
(b, i8x8mode, b->predictor);
for(j = 0; j < 4; j++)
{
b = &xd->block[ib+iblock[j]];
if (xd->eobs[ib+iblock[j]] > 1)
{
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add)
(b->qcoeff[0] * b->dequant[0], b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
((int *)b->qcoeff)[0] = 0;
}
}
b = &xd->block[16+i];
RECON_INVOKE(RTCD_VTABLE(recon), intra_uv4x4_predict)
(b, i8x8mode, b->predictor);
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride);
b = &xd->block[20+i];
RECON_INVOKE(RTCD_VTABLE(recon), intra_uv4x4_predict)
(b, i8x8mode, b->predictor);
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride);
}
}
else if (mode == B_PRED)
{
for (i = 0; i < 16; i++)
{
BLOCKD *b = &xd->block[i];
int b_mode = xd->mode_info_context->bmi[i].as_mode.first;
#if CONFIG_COMP_INTRA_PRED
int b_mode2 = xd->mode_info_context->bmi[i].as_mode.second;
if (b_mode2 == (B_PREDICTION_MODE) (B_DC_PRED - 1))
{
#endif
RECON_INVOKE(RTCD_VTABLE(recon), intra4x4_predict)
(b, b_mode, b->predictor);
#if CONFIG_COMP_INTRA_PRED
}
else
{
RECON_INVOKE(RTCD_VTABLE(recon), comp_intra4x4_predict)
(b, b_mode, b_mode2, b->predictor);
}
#endif
if (xd->eobs[i] > 1)
{
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add)
(b->qcoeff[0] * b->dequant[0], b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
((int *)b->qcoeff)[0] = 0;
}
}
}
else if (mode == SPLITMV)
{
DEQUANT_INVOKE (&pbi->dequant, idct_add_y_block)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs);
}
else
{
BLOCKD *b = &xd->block[24];
if( tx_type == TX_8X8 )
{
DEQUANT_INVOKE(&pbi->dequant, block_2x2)(b);
#ifdef DEC_DEBUG
if (dec_debug)
{
int j;
printf("DQcoeff Haar\n");
for (j=0;j<16;j++) {
printf("%d ", b->dqcoeff[j]);
}
printf("\n");
}
#endif
IDCT_INVOKE(RTCD_VTABLE(idct), ihaar2)(&b->dqcoeff[0], b->diff, 8);
((int *)b->qcoeff)[0] = 0;//2nd order block are set to 0 after inverse transform
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
DEQUANT_INVOKE (&pbi->dequant, dc_idct_add_y_block_8x8)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd);
}
else
{
DEQUANT_INVOKE(&pbi->dequant, block)(b);
if (xd->eobs[24] > 1)
{
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
}
DEQUANT_INVOKE (&pbi->dequant, dc_idct_add_y_block)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs, xd->block[24].diff);
}
}
if( tx_type == TX_8X8 )
DEQUANT_INVOKE (&pbi->dequant, idct_add_uv_block_8x8)//
(xd->qcoeff+16*16, xd->block[16].dequant,
xd->predictor+16*16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs+16, xd);//
else if(xd->mode_info_context->mbmi.mode!=I8X8_PRED)
DEQUANT_INVOKE (&pbi->dequant, idct_add_uv_block)
(xd->qcoeff+16*16, xd->block[16].dequant,
xd->predictor+16*16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs+16);
}
static int get_delta_q(vp8_reader *bc, int prev, int *q_update)
{
int ret_val = 0;
if (vp8_read_bit(bc))
{
ret_val = vp8_read_literal(bc, 4);
if (vp8_read_bit(bc))
ret_val = -ret_val;
}
/* Trigger a quantizer update if the delta-q value has changed */
if (ret_val != prev)
*q_update = 1;
return ret_val;
}
#ifdef PACKET_TESTING
#include <stdio.h>
FILE *vpxlog = 0;
#endif
/* Decode a row of Superblocks (2x2 region of MBs) */
static void
decode_sb_row(VP8D_COMP *pbi, VP8_COMMON *pc, int mbrow, MACROBLOCKD *xd)
{
int i;
int sb_col;
int mb_row, mb_col;
int recon_yoffset, recon_uvoffset;
int ref_fb_idx = pc->lst_fb_idx;
int dst_fb_idx = pc->new_fb_idx;
int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride;
int row_delta[4] = { 0, +1, 0, -1};
int col_delta[4] = {+1, -1, +1, +1};
int sb_cols = (pc->mb_cols + 1)>>1;
ENTROPY_CONTEXT_PLANES left_context[2];
// For a SB there are 2 left contexts, each pertaining to a MB row within
vpx_memset(left_context, 0, sizeof(left_context));
mb_row = mbrow;
mb_col = 0;
for (sb_col=0; sb_col<sb_cols; sb_col++)
{
// Process the 4 MBs within the SB in the order:
// top-left, top-right, bottom-left, bottom-right
for ( i=0; i<4; i++ )
{
int dy = row_delta[i];
int dx = col_delta[i];
int offset_extended = dy * xd->mode_info_stride + dx;
if ((mb_row >= pc->mb_rows) || (mb_col >= pc->mb_cols))
{
// MB lies outside frame, skip on to next
mb_row += dy;
mb_col += dx;
xd->mode_info_context += offset_extended;
continue;
}
#ifdef DEC_DEBUG
dec_debug = (pc->current_video_frame==0 && mb_row==0 && mb_col==0);
#endif
// Copy in the appropriate left context for this MB row
vpx_memcpy (&pc->left_context,
&left_context[i>>1],
sizeof(ENTROPY_CONTEXT_PLANES));
// Set above context pointer
xd->above_context = pc->above_context + mb_col;
/* Distance of Mb to the various image edges.
* These are specified to 8th pel as they are always compared to
* values that are in 1/8th pel units
*/
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
xd->up_available = (mb_row != 0);
xd->left_available = (mb_col != 0);
update_blockd_bmi(xd);
recon_yoffset = (mb_row * recon_y_stride * 16) + (mb_col * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8) + (mb_col * 8);
xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
/* Select the appropriate reference frame for this MB */
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = pc->gld_fb_idx;
else
ref_fb_idx = pc->alt_fb_idx;
xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer +recon_yoffset;
xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer +recon_uvoffset;
xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer +recon_uvoffset;
if (xd->mode_info_context->mbmi.second_ref_frame)
{
int second_ref_fb_idx;
/* Select the appropriate reference frame for this MB */
if (xd->mode_info_context->mbmi.second_ref_frame == LAST_FRAME)
second_ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.second_ref_frame ==
GOLDEN_FRAME)
second_ref_fb_idx = pc->gld_fb_idx;
else
second_ref_fb_idx = pc->alt_fb_idx;
xd->second_pre.y_buffer =
pc->yv12_fb[second_ref_fb_idx].y_buffer + recon_yoffset;
xd->second_pre.u_buffer =
pc->yv12_fb[second_ref_fb_idx].u_buffer + recon_uvoffset;
xd->second_pre.v_buffer =
pc->yv12_fb[second_ref_fb_idx].v_buffer + recon_uvoffset;
}
if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME)
{
/* propagate errors from reference frames */
xd->corrupted |= pc->yv12_fb[ref_fb_idx].corrupted;
}
decode_macroblock(pbi, xd, mb_row * pc->mb_cols + mb_col);
/* check if the boolean decoder has suffered an error */
xd->corrupted |= vp8dx_bool_error(xd->current_bc);
// Store the modified left context for the MB row locally
vpx_memcpy (&left_context[i>>1],
&pc->left_context,
sizeof(ENTROPY_CONTEXT_PLANES));
// skip to next MB
xd->mode_info_context += offset_extended;
mb_row += dy;
mb_col += dx;
}
}
/* skip prediction column */
xd->mode_info_context += 1 - (pc->mb_cols & 0x1) + xd->mode_info_stride;
}
static unsigned int read_partition_size(const unsigned char *cx_size)
{
const unsigned int size =
cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16);
return size;
}
static int read_is_valid(const unsigned char *start,
size_t len,
const unsigned char *end)
{
return (start + len > start && start + len <= end);
}
static void setup_token_decoder(VP8D_COMP *pbi,
const unsigned char *cx_data)
{
VP8_COMMON *pc = &pbi->common;
const unsigned char *user_data_end = pbi->Source + pbi->source_sz;
vp8_reader *bool_decoder;
const unsigned char *partition;
ptrdiff_t partition_size;
ptrdiff_t bytes_left;
// Dummy read for now
vp8_read_literal(&pbi->bc, 2);
// Set up pointers to token partition
partition = cx_data;
bool_decoder = &pbi->bc2;
bytes_left = user_data_end - partition;
partition_size = bytes_left;
/* Validate the calculated partition length. If the buffer
* described by the partition can't be fully read, then restrict
* it to the portion that can be (for EC mode) or throw an error.
*/
if (!read_is_valid(partition, partition_size, user_data_end))
{
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", 1);
}
if (vp8dx_start_decode(bool_decoder, partition, partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
static void init_frame(VP8D_COMP *pbi)
{
VP8_COMMON *const pc = & pbi->common;
MACROBLOCKD *const xd = & pbi->mb;
if (pc->frame_type == KEY_FRAME)
{
/* Various keyframe initializations */
vpx_memcpy(pc->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
#if CONFIG_HIGH_PRECISION_MV
vpx_memcpy(pc->fc.mvc_hp, vp8_default_mv_context_hp,
sizeof(vp8_default_mv_context_hp));
#endif
vp8_init_mbmode_probs(pc);
vp8_default_coef_probs(pc);
vp8_kf_default_bmode_probs(pc->kf_bmode_prob);
// Reset the segment feature data to the default stats:
// Features disabled, 0, with delta coding (Default state).
clearall_segfeatures( xd );
xd->mb_segment_abs_delta = SEGMENT_DELTADATA;
/* reset the mode ref deltasa for loop filter */
vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
/* All buffers are implicitly updated on key frames. */
pc->refresh_golden_frame = 1;
pc->refresh_alt_ref_frame = 1;
pc->copy_buffer_to_gf = 0;
pc->copy_buffer_to_arf = 0;
/* Note that Golden and Altref modes cannot be used on a key frame so
* ref_frame_sign_bias[] is undefined and meaningless
*/
pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0;
pc->ref_frame_sign_bias[ALTREF_FRAME] = 0;
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
vpx_memcpy(&pc->lfc_a, &pc->fc, sizeof(pc->fc));
vp8_init_mode_contexts(&pbi->common);
vpx_memcpy( pbi->common.vp8_mode_contexts,
pbi->common.mode_context,
sizeof(pbi->common.mode_context));
}
else
{
if (!pc->use_bilinear_mc_filter)
#if CONFIG_ENHANCED_INTERP
pc->mcomp_filter_type = EIGHTTAP;
#else
pc->mcomp_filter_type = SIXTAP;
#endif
else
pc->mcomp_filter_type = BILINEAR;
/* To enable choice of different interploation filters */
if (pc->mcomp_filter_type == SIXTAP)
{
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap16x16);
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap_avg8x8);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap_avg16x16);
}
#if CONFIG_ENHANCED_INTERP
else if (pc->mcomp_filter_type == EIGHTTAP)
{
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap16x16);
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(
RTCD_VTABLE(subpix), eighttap_avg8x8);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(
RTCD_VTABLE(subpix), eighttap_avg16x16);
}
else if (pc->mcomp_filter_type == EIGHTTAP_SHARP)
{
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap4x4_sharp);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x4_sharp);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x8_sharp);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap16x16_sharp);
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(
RTCD_VTABLE(subpix), eighttap_avg8x8_sharp);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(
RTCD_VTABLE(subpix), eighttap_avg16x16_sharp);
}
#endif
else
{
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear16x16);
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear_avg8x8);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear_avg16x16);
}
}
xd->left_context = &pc->left_context;
xd->mode_info_context = pc->mi;
xd->frame_type = pc->frame_type;
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_stride = pc->mode_info_stride;
xd->corrupted = 0; /* init without corruption */
xd->fullpixel_mask = 0xffffffff;
if(pc->full_pixel)
xd->fullpixel_mask = 0xfffffff8;
}
int vp8_decode_frame(VP8D_COMP *pbi)
{
vp8_reader *const bc = & pbi->bc;
VP8_COMMON *const pc = & pbi->common;
MACROBLOCKD *const xd = & pbi->mb;
const unsigned char *data = (const unsigned char *)pbi->Source;
const unsigned char *data_end = data + pbi->source_sz;
ptrdiff_t first_partition_length_in_bytes;
int mb_row;
int i, j, k, l;
int corrupt_tokens = 0;
/* start with no corruption of current frame */
xd->corrupted = 0;
pc->yv12_fb[pc->new_fb_idx].corrupted = 0;
if (data_end - data < 3)
{
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet");
}
else
{
pc->frame_type = (FRAME_TYPE)(data[0] & 1);
pc->version = (data[0] >> 1) & 7;
pc->show_frame = (data[0] >> 4) & 1;
first_partition_length_in_bytes =
(data[0] | (data[1] << 8) | (data[2] << 16)) >> 5;
if ((data + first_partition_length_in_bytes > data_end
|| data + first_partition_length_in_bytes < data))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
data += 3;
vp8_setup_version(pc);
if (pc->frame_type == KEY_FRAME)
{
const int Width = pc->Width;
const int Height = pc->Height;
/* vet via sync code */
/* When error concealment is enabled we should only check the sync
* code if we have enough bits available
*/
if (data + 3 < data_end)
{
if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a)
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
}
/* If error concealment is enabled we should only parse the new size
* if we have enough data. Otherwise we will end up with the wrong
* size.
*/
if (data + 6 < data_end)
{
pc->Width = (data[3] | (data[4] << 8)) & 0x3fff;
pc->horiz_scale = data[4] >> 6;
pc->Height = (data[5] | (data[6] << 8)) & 0x3fff;
pc->vert_scale = data[6] >> 6;
}
data += 7;
if (Width != pc->Width || Height != pc->Height)
{
if (pc->Width <= 0)
{
pc->Width = Width;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame width");
}
if (pc->Height <= 0)
{
pc->Height = Height;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame height");
}
if (vp8_alloc_frame_buffers(pc, pc->Width, pc->Height))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
}
}
}
if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) ||
pc->Width == 0 || pc->Height == 0)
{
return -1;
}
init_frame(pbi);
if (vp8dx_start_decode(bc, data, data_end - data))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
if (pc->frame_type == KEY_FRAME) {
pc->clr_type = (YUV_TYPE)vp8_read_bit(bc);
pc->clamp_type = (CLAMP_TYPE)vp8_read_bit(bc);
}
/* Is segmentation enabled */
xd->segmentation_enabled = (unsigned char)vp8_read_bit(bc);
if (xd->segmentation_enabled)
{
// Read whether or not the segmentation map is being explicitly
// updated this frame.
xd->update_mb_segmentation_map = (unsigned char)vp8_read_bit(bc);
// If so what method will be used.
if ( xd->update_mb_segmentation_map )
pc->temporal_update = (unsigned char)vp8_read_bit(bc);
// Is the segment data being updated
xd->update_mb_segmentation_data = (unsigned char)vp8_read_bit(bc);
if (xd->update_mb_segmentation_data)
{
int data;
xd->mb_segment_abs_delta = (unsigned char)vp8_read_bit(bc);
clearall_segfeatures( xd );
// For each segmentation...
for (i = 0; i < MAX_MB_SEGMENTS; i++)
{
// For each of the segments features...
for (j = 0; j < SEG_LVL_MAX; j++)
{
#if CONFIG_FEATUREUPDATES
// feature updated?
if (vp8_read_bit(bc))
{
int active=1;
if ( segfeature_active( xd, i, j ))
active=vp8_read_bit(bc);
// Is the feature enabled
if (active)
{
// Update the feature data and mask
enable_segfeature(xd, i, j);
data = (signed char)vp8_read_literal(
bc, seg_feature_data_bits(j));
// Is the segment data signed..
if ( is_segfeature_signed(j) )
{
if (vp8_read_bit(bc))
data = - data;
}
}
else
data = 0;
set_segdata(xd, i, j, data);
}
#else
// Is the feature enabled
if (vp8_read_bit(bc))
{
// Update the feature data and mask
enable_segfeature(xd, i, j);
data = (signed char)vp8_read_literal(
bc, seg_feature_data_bits(j));
// Is the segment data signed..
if ( is_segfeature_signed(j) )
{
if (vp8_read_bit(bc))
data = - data;
}
}
else
data = 0;
set_segdata(xd, i, j, data);
#endif
}
}
}
if (xd->update_mb_segmentation_map)
{
// Which macro block level features are enabled
vpx_memset(xd->mb_segment_tree_probs, 255,
sizeof(xd->mb_segment_tree_probs));
vpx_memset(pc->segment_pred_probs, 255,
sizeof(pc->segment_pred_probs));
// Read the probs used to decode the segment id for each macro
// block.
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
{
// If not explicitly set value is defaulted to 255 by
//memset above
if (vp8_read_bit(bc))
xd->mb_segment_tree_probs[i] =
(vp8_prob)vp8_read_literal(bc, 8);
}
// If predictive coding of segment map is enabled read the
// prediction probabilities.
if ( pc->temporal_update )
{
// Read the prediction probs needed to decode the segment id
// when predictive coding enabled
for (i = 0; i < PREDICTION_PROBS; i++)
{
// If not explicitly set value is defaulted to 255 by
// memset above
if (vp8_read_bit(bc))
pc->segment_pred_probs[i] =
(vp8_prob)vp8_read_literal(bc, 8);
}
}
}
}
// Read common prediction model status flag probability updates for the
// reference frame
if ( pc->frame_type == KEY_FRAME )
{
// Set the prediction probabilities to defaults
pc->ref_pred_probs[0] = 120;
pc->ref_pred_probs[1] = 80;
pc->ref_pred_probs[2] = 40;
}
else
{
for (i = 0; i < PREDICTION_PROBS; i++)
{
if ( vp8_read_bit(bc) )
pc->ref_pred_probs[i] = (vp8_prob)vp8_read_literal(bc, 8);
}
}
/* Read the loop filter level and type */
pc->txfm_mode = (TXFM_MODE) vp8_read_bit(bc);
pc->filter_type = (LOOPFILTERTYPE) vp8_read_bit(bc);
pc->filter_level = vp8_read_literal(bc, 6);
pc->sharpness_level = vp8_read_literal(bc, 3);
/* Read in loop filter deltas applied at the MB level based on mode or ref frame. */
xd->mode_ref_lf_delta_update = 0;
xd->mode_ref_lf_delta_enabled = (unsigned char)vp8_read_bit(bc);
if (xd->mode_ref_lf_delta_enabled)
{
/* Do the deltas need to be updated */
xd->mode_ref_lf_delta_update = (unsigned char)vp8_read_bit(bc);
if (xd->mode_ref_lf_delta_update)
{
/* Send update */
for (i = 0; i < MAX_REF_LF_DELTAS; i++)
{
if (vp8_read_bit(bc))
{
/*sign = vp8_read_bit( bc );*/
xd->ref_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6);
if (vp8_read_bit(bc)) /* Apply sign */
xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1;
}
}
/* Send update */
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
{
if (vp8_read_bit(bc))
{
/*sign = vp8_read_bit( bc );*/
xd->mode_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6);
if (vp8_read_bit(bc)) /* Apply sign */
xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1;
}
}
}
}
setup_token_decoder(pbi, data + first_partition_length_in_bytes);
xd->current_bc = &pbi->bc2;
/* Read the default quantizers. */
{
int Q, q_update;
Q = vp8_read_literal(bc, QINDEX_BITS); /* AC 1st order Q = default */
pc->base_qindex = Q;
q_update = 0;
pc->y1dc_delta_q = get_delta_q(bc, pc->y1dc_delta_q, &q_update);
pc->y2dc_delta_q = get_delta_q(bc, pc->y2dc_delta_q, &q_update);
pc->y2ac_delta_q = get_delta_q(bc, pc->y2ac_delta_q, &q_update);
pc->uvdc_delta_q = get_delta_q(bc, pc->uvdc_delta_q, &q_update);
pc->uvac_delta_q = get_delta_q(bc, pc->uvac_delta_q, &q_update);
if (q_update)
vp8cx_init_de_quantizer(pbi);
/* MB level dequantizer setup */
mb_init_dequantizer(pbi, &pbi->mb);
}
/* Determine if the golden frame or ARF buffer should be updated and how.
* For all non key frames the GF and ARF refresh flags and sign bias
* flags must be set explicitly.
*/
if (pc->frame_type != KEY_FRAME)
{
/* Should the GF or ARF be updated from the current frame */
pc->refresh_golden_frame = vp8_read_bit(bc);
pc->refresh_alt_ref_frame = vp8_read_bit(bc);
if(pc->refresh_alt_ref_frame)
{
vpx_memcpy(&pc->fc, &pc->lfc_a, sizeof(pc->fc));
vpx_memcpy( pc->vp8_mode_contexts,
pc->mode_context_a,
sizeof(pc->vp8_mode_contexts));
}
else
{
vpx_memcpy(&pc->fc, &pc->lfc, sizeof(pc->fc));
vpx_memcpy( pc->vp8_mode_contexts,
pc->mode_context,
sizeof(pc->vp8_mode_contexts));
}
/* Buffer to buffer copy flags. */
pc->copy_buffer_to_gf = 0;
if (!pc->refresh_golden_frame)
pc->copy_buffer_to_gf = vp8_read_literal(bc, 2);
pc->copy_buffer_to_arf = 0;
if (!pc->refresh_alt_ref_frame)
pc->copy_buffer_to_arf = vp8_read_literal(bc, 2);
pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp8_read_bit(bc);
pc->ref_frame_sign_bias[ALTREF_FRAME] = vp8_read_bit(bc);
#if CONFIG_HIGH_PRECISION_MV
/* Is high precision mv allowed */
xd->allow_high_precision_mv = (unsigned char)vp8_read_bit(bc);
#endif
#if CONFIG_ENHANCED_INTERP
// Read the type of subpel filter to use
pc->mcomp_filter_type = vp8_read_literal(bc, 2);
/* To enable choice of different interploation filters */
if (pc->mcomp_filter_type == SIXTAP)
{
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap16x16);
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap_avg8x8);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap_avg16x16);
}
else if (pc->mcomp_filter_type == EIGHTTAP)
{
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap16x16);
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap_avg8x8);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap_avg16x16);
}
else if (pc->mcomp_filter_type == EIGHTTAP_SHARP)
{
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap4x4_sharp);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x4_sharp);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap8x8_sharp);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap16x16_sharp);
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap_avg8x8_sharp);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), eighttap_avg16x16_sharp);
}
else
{
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x8);
xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear16x16);
xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear_avg8x8);
xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear_avg16x16);
}
#endif
}
pc->refresh_entropy_probs = vp8_read_bit(bc);
if (pc->refresh_entropy_probs == 0)
{
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
}
pc->refresh_last_frame = pc->frame_type == KEY_FRAME || vp8_read_bit(bc);
if (0)
{
FILE *z = fopen("decodestats.stt", "a");
fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n",
pc->current_video_frame,
pc->frame_type,
pc->refresh_golden_frame,
pc->refresh_alt_ref_frame,
pc->refresh_last_frame,
pc->base_qindex);
fclose(z);
}
{
if(vp8_read_bit(bc))
{
/* read coef probability tree */
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
for (l = 0; l < ENTROPY_NODES; l++)
{
vp8_prob *const p = pc->fc.coef_probs [i][j][k] + l;
if (vp8_read(bc, vp8_coef_update_probs [i][j][k][l]))
{
*p = (vp8_prob)vp8_read_literal(bc, 8);
}
}
}
}
if(pbi->common.txfm_mode == ALLOW_8X8 && vp8_read_bit(bc))
{
// read coef probability tree
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++)
{
vp8_prob *const p = pc->fc.coef_probs_8x8 [i][j][k] + l;
if (vp8_read(bc, vp8_coef_update_probs_8x8 [i][j][k][l]))
{
*p = (vp8_prob)vp8_read_literal(bc, 8);
}
}
}
vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->lst_fb_idx], sizeof(YV12_BUFFER_CONFIG));
vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx], sizeof(YV12_BUFFER_CONFIG));
// Create the segmentation map structure and set to 0
if (!pc->last_frame_seg_map)
CHECK_MEM_ERROR(pc->last_frame_seg_map,
vpx_calloc((pc->mb_rows * pc->mb_cols), 1));
/* set up frame new frame for intra coded blocks */
vp8_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]);
vp8_setup_block_dptrs(xd);
vp8_build_block_doffsets(xd);
/* clear out the coeff buffer */
vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff));
/* Read the mb_no_coeff_skip flag */
pc->mb_no_coeff_skip = (int)vp8_read_bit(bc);
vp8_decode_mode_mvs(pbi);
if(pbi->common.frame_type != KEY_FRAME)
{
vp8_update_mode_context(&pbi->common);
}
vpx_memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols);
// Resset the macroblock mode info context to the start of the list
xd->mode_info_context = pc->mi;
/* Decode a row of superblocks */
for (mb_row = 0; mb_row < pc->mb_rows; mb_row+=2)
{
decode_sb_row(pbi, pc, mb_row, xd);
}
corrupt_tokens |= xd->corrupted;
/* Collect information about decoder corruption. */
/* 1. Check first boolean decoder for errors. */
pc->yv12_fb[pc->new_fb_idx].corrupted = vp8dx_bool_error(bc);
/* 2. Check the macroblock information */
pc->yv12_fb[pc->new_fb_idx].corrupted |= corrupt_tokens;
if (!pbi->decoded_key_frame)
{
if (pc->frame_type == KEY_FRAME &&
!pc->yv12_fb[pc->new_fb_idx].corrupted)
pbi->decoded_key_frame = 1;
else
vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME,
"A stream must start with a complete key frame");
}
/* vpx_log("Decoder: Frame Decoded, Size Roughly:%d bytes \n",bc->pos+pbi->bc2.pos); */
/* If this was a kf or Gf note the Q used */
if ((pc->frame_type == KEY_FRAME) ||
pc->refresh_golden_frame || pc->refresh_alt_ref_frame)
{
pc->last_kf_gf_q = pc->base_qindex;
}
if(pc->refresh_entropy_probs)
{
if(pc->refresh_alt_ref_frame)
vpx_memcpy(&pc->lfc_a, &pc->fc, sizeof(pc->fc));
else
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
}
#ifdef PACKET_TESTING
{
FILE *f = fopen("decompressor.VP8", "ab");
unsigned int size = pbi->bc2.pos + pbi->bc.pos + 8;
fwrite((void *) &size, 4, 1, f);
fwrite((void *) pbi->Source, size, 1, f);
fclose(f);
}
#endif
//printf("Frame %d Done\n", frame_count++);
return 0;
}