ba30e7746e
Coding and costing of mv reference signal. Issues in updating MV ref with COMPANDED_MVREF_THRESH to be resolved. Ideally the MV precision should be defined based on absolute MV magnitude not as now the MV ref magnitude. Update to mv counts moved into bitstream.c because otherwise if the motion reference is changed at the last minute the encoder and decoder get out of step in terms of the counts used to update entropy probs. Code working on a few test clips but no results yet re benefit vs signaling cost and no tuning of red loop to test lower cost alternatives based on the available reference values. Patch 3. Added check to make sure we don't pick a reference that would give rise to an uncodeable / out of range residual. Patch 6-7: Attempt to rebase. OK to submit but best to leave flag off for now. Patch 9. Remove print no longer needed. Change-Id: I1938c2ffe41afe6d3cf6ccc0cb2c5d404809a712
2425 lines
76 KiB
C
2425 lines
76 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include "vp8/common/header.h"
|
|
#include "encodemv.h"
|
|
#include "vp8/common/entropymode.h"
|
|
#include "vp8/common/findnearmv.h"
|
|
#include "mcomp.h"
|
|
#include "vp8/common/systemdependent.h"
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
#include "vp8/common/pragmas.h"
|
|
#include "vpx/vpx_encoder.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "bitstream.h"
|
|
#include "segmentation.h"
|
|
|
|
#include "vp8/common/seg_common.h"
|
|
#include "vp8/common/pred_common.h"
|
|
#include "vp8/common/entropy.h"
|
|
#include "vp8/encoder/encodemv.h"
|
|
#include "vp8/common/entropymv.h"
|
|
|
|
#if CONFIG_NEWBESTREFMV
|
|
#include "vp8/common/mvref_common.h"
|
|
#endif
|
|
|
|
#if defined(SECTIONBITS_OUTPUT)
|
|
unsigned __int64 Sectionbits[500];
|
|
#endif
|
|
|
|
//int final_packing = 0;
|
|
|
|
#ifdef ENTROPY_STATS
|
|
int intra_mode_stats [VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES];
|
|
unsigned int tree_update_hist [BLOCK_TYPES]
|
|
[COEF_BANDS]
|
|
[PREV_COEF_CONTEXTS]
|
|
[ENTROPY_NODES][2];
|
|
unsigned int hybrid_tree_update_hist [BLOCK_TYPES]
|
|
[COEF_BANDS]
|
|
[PREV_COEF_CONTEXTS]
|
|
[ENTROPY_NODES][2];
|
|
unsigned int tree_update_hist_8x8 [BLOCK_TYPES_8X8]
|
|
[COEF_BANDS]
|
|
[PREV_COEF_CONTEXTS]
|
|
[ENTROPY_NODES] [2];
|
|
unsigned int hybrid_tree_update_hist_8x8 [BLOCK_TYPES_8X8]
|
|
[COEF_BANDS]
|
|
[PREV_COEF_CONTEXTS]
|
|
[ENTROPY_NODES] [2];
|
|
unsigned int tree_update_hist_16x16 [BLOCK_TYPES_16X16]
|
|
[COEF_BANDS]
|
|
[PREV_COEF_CONTEXTS]
|
|
[ENTROPY_NODES] [2];
|
|
unsigned int hybrid_tree_update_hist_16x16 [BLOCK_TYPES_16X16]
|
|
[COEF_BANDS]
|
|
[PREV_COEF_CONTEXTS]
|
|
[ENTROPY_NODES] [2];
|
|
|
|
extern unsigned int active_section;
|
|
#endif
|
|
|
|
#ifdef MODE_STATS
|
|
int count_mb_seg[4] = { 0, 0, 0, 0 };
|
|
#endif
|
|
|
|
#define vp8_cost_upd ((int)(vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8)
|
|
#define vp8_cost_upd256 ((int)(vp8_cost_one(upd) - vp8_cost_zero(upd)))
|
|
|
|
#define SEARCH_NEWP
|
|
static int update_bits[255];
|
|
|
|
static void compute_update_table() {
|
|
int i;
|
|
for (i = 0; i < 255; i++)
|
|
update_bits[i] = vp8_count_term_subexp(i, SUBEXP_PARAM, 255);
|
|
}
|
|
|
|
static int split_index(int i, int n, int modulus) {
|
|
int max1 = (n - 1 - modulus / 2) / modulus + 1;
|
|
if (i % modulus == modulus / 2) i = i / modulus;
|
|
else i = max1 + i - (i + modulus - modulus / 2) / modulus;
|
|
return i;
|
|
}
|
|
|
|
static int remap_prob(int v, int m) {
|
|
const int n = 256;
|
|
const int modulus = MODULUS_PARAM;
|
|
int i;
|
|
if ((m << 1) <= n)
|
|
i = recenter_nonneg(v, m) - 1;
|
|
else
|
|
i = recenter_nonneg(n - 1 - v, n - 1 - m) - 1;
|
|
|
|
i = split_index(i, n - 1, modulus);
|
|
return i;
|
|
}
|
|
|
|
static void write_prob_diff_update(vp8_writer *const bc,
|
|
vp8_prob newp, vp8_prob oldp) {
|
|
int delp = remap_prob(newp, oldp);
|
|
vp8_encode_term_subexp(bc, delp, SUBEXP_PARAM, 255);
|
|
}
|
|
|
|
static int prob_diff_update_cost(vp8_prob newp, vp8_prob oldp) {
|
|
int delp = remap_prob(newp, oldp);
|
|
return update_bits[delp] * 256;
|
|
}
|
|
|
|
static void update_mode(
|
|
vp8_writer *const bc,
|
|
int n,
|
|
vp8_token tok [/* n */],
|
|
vp8_tree tree,
|
|
vp8_prob Pnew [/* n-1 */],
|
|
vp8_prob Pcur [/* n-1 */],
|
|
unsigned int bct [/* n-1 */] [2],
|
|
const unsigned int num_events[/* n */]
|
|
) {
|
|
unsigned int new_b = 0, old_b = 0;
|
|
int i = 0;
|
|
|
|
vp8_tree_probs_from_distribution(
|
|
n--, tok, tree,
|
|
Pnew, bct, num_events,
|
|
256, 1
|
|
);
|
|
|
|
do {
|
|
new_b += vp8_cost_branch(bct[i], Pnew[i]);
|
|
old_b += vp8_cost_branch(bct[i], Pcur[i]);
|
|
} while (++i < n);
|
|
|
|
if (new_b + (n << 8) < old_b) {
|
|
int i = 0;
|
|
|
|
vp8_write_bit(bc, 1);
|
|
|
|
do {
|
|
const vp8_prob p = Pnew[i];
|
|
|
|
vp8_write_literal(bc, Pcur[i] = p ? p : 1, 8);
|
|
} while (++i < n);
|
|
} else
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
|
|
static void update_mbintra_mode_probs(VP8_COMP* const cpi,
|
|
vp8_writer* const bc) {
|
|
VP8_COMMON *const cm = &cpi->common;
|
|
|
|
{
|
|
vp8_prob Pnew [VP8_YMODES - 1];
|
|
unsigned int bct [VP8_YMODES - 1] [2];
|
|
|
|
update_mode(
|
|
bc, VP8_YMODES, vp8_ymode_encodings, vp8_ymode_tree,
|
|
Pnew, cm->fc.ymode_prob, bct, (unsigned int *)cpi->ymode_count
|
|
);
|
|
}
|
|
}
|
|
|
|
static int get_prob(int num, int den) {
|
|
int p;
|
|
if (den <= 0)
|
|
return 128;
|
|
p = (num * 255 + (den >> 1)) / den;
|
|
if (p > 255)
|
|
return 255;
|
|
else if (p < 1)
|
|
return 1;
|
|
return p;
|
|
}
|
|
|
|
static int get_binary_prob(int n0, int n1) {
|
|
return get_prob(n0, n0 + n1);
|
|
}
|
|
|
|
void update_skip_probs(VP8_COMP *cpi) {
|
|
VP8_COMMON *const pc = &cpi->common;
|
|
int prob_skip_false[3] = {0, 0, 0};
|
|
int k;
|
|
|
|
for (k = 0; k < MBSKIP_CONTEXTS; ++k) {
|
|
pc->mbskip_pred_probs[k] = get_binary_prob(cpi->skip_false_count[k],
|
|
cpi->skip_true_count[k]);
|
|
}
|
|
}
|
|
|
|
void update_switchable_interp_probs(VP8_COMP *cpi, vp8_writer* const bc) {
|
|
VP8_COMMON *const pc = &cpi->common;
|
|
unsigned int branch_ct[32][2];
|
|
int i, j;
|
|
for (j = 0; j <= VP8_SWITCHABLE_FILTERS; ++j) {
|
|
vp8_tree_probs_from_distribution(
|
|
VP8_SWITCHABLE_FILTERS,
|
|
vp8_switchable_interp_encodings, vp8_switchable_interp_tree,
|
|
pc->fc.switchable_interp_prob[j], branch_ct,
|
|
cpi->switchable_interp_count[j], 256, 1);
|
|
for (i = 0; i < VP8_SWITCHABLE_FILTERS - 1; ++i) {
|
|
if (pc->fc.switchable_interp_prob[j][i] < 1)
|
|
pc->fc.switchable_interp_prob[j][i] = 1;
|
|
vp8_write_literal(bc, pc->fc.switchable_interp_prob[j][i], 8);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function updates the reference frame prediction stats
|
|
static void update_refpred_stats(VP8_COMP *cpi) {
|
|
VP8_COMMON *const cm = &cpi->common;
|
|
int i;
|
|
int tot_count;
|
|
vp8_prob new_pred_probs[PREDICTION_PROBS];
|
|
int old_cost, new_cost;
|
|
|
|
// Set the prediction probability structures to defaults
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
// Set the prediction probabilities to defaults
|
|
cm->ref_pred_probs[0] = 120;
|
|
cm->ref_pred_probs[1] = 80;
|
|
cm->ref_pred_probs[2] = 40;
|
|
|
|
vpx_memset(cpi->ref_pred_probs_update, 0,
|
|
sizeof(cpi->ref_pred_probs_update));
|
|
} else {
|
|
// From the prediction counts set the probabilities for each context
|
|
for (i = 0; i < PREDICTION_PROBS; i++) {
|
|
new_pred_probs[i] = get_binary_prob(cpi->ref_pred_count[i][0],
|
|
cpi->ref_pred_count[i][1]);
|
|
|
|
// Decide whether or not to update the reference frame probs.
|
|
// Returned costs are in 1/256 bit units.
|
|
old_cost =
|
|
(cpi->ref_pred_count[i][0] * vp8_cost_zero(cm->ref_pred_probs[i])) +
|
|
(cpi->ref_pred_count[i][1] * vp8_cost_one(cm->ref_pred_probs[i]));
|
|
|
|
new_cost =
|
|
(cpi->ref_pred_count[i][0] * vp8_cost_zero(new_pred_probs[i])) +
|
|
(cpi->ref_pred_count[i][1] * vp8_cost_one(new_pred_probs[i]));
|
|
|
|
// Cost saving must be >= 8 bits (2048 in these units)
|
|
if ((old_cost - new_cost) >= 2048) {
|
|
cpi->ref_pred_probs_update[i] = 1;
|
|
cm->ref_pred_probs[i] = new_pred_probs[i];
|
|
} else
|
|
cpi->ref_pred_probs_update[i] = 0;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_mvcount(VP8_COMP *cpi, MACROBLOCK *x,
|
|
int_mv *best_ref_mv, int_mv *second_best_ref_mv) {
|
|
MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi;
|
|
MV mv;
|
|
|
|
if (mbmi->mode == SPLITMV) {
|
|
int i;
|
|
|
|
for (i = 0; i < x->partition_info->count; i++) {
|
|
if (x->partition_info->bmi[i].mode == NEW4X4) {
|
|
if (x->e_mbd.allow_high_precision_mv) {
|
|
mv.row = (x->partition_info->bmi[i].mv.as_mv.row
|
|
- best_ref_mv->as_mv.row);
|
|
mv.col = (x->partition_info->bmi[i].mv.as_mv.col
|
|
- best_ref_mv->as_mv.col);
|
|
vp8_increment_nmv(&mv, &best_ref_mv->as_mv, &cpi->NMVcount, 1);
|
|
if (x->e_mbd.mode_info_context->mbmi.second_ref_frame) {
|
|
mv.row = (x->partition_info->bmi[i].second_mv.as_mv.row
|
|
- second_best_ref_mv->as_mv.row);
|
|
mv.col = (x->partition_info->bmi[i].second_mv.as_mv.col
|
|
- second_best_ref_mv->as_mv.col);
|
|
vp8_increment_nmv(&mv, &second_best_ref_mv->as_mv,
|
|
&cpi->NMVcount, 1);
|
|
}
|
|
} else {
|
|
mv.row = (x->partition_info->bmi[i].mv.as_mv.row
|
|
- best_ref_mv->as_mv.row);
|
|
mv.col = (x->partition_info->bmi[i].mv.as_mv.col
|
|
- best_ref_mv->as_mv.col);
|
|
vp8_increment_nmv(&mv, &best_ref_mv->as_mv, &cpi->NMVcount, 0);
|
|
if (x->e_mbd.mode_info_context->mbmi.second_ref_frame) {
|
|
mv.row = (x->partition_info->bmi[i].second_mv.as_mv.row
|
|
- second_best_ref_mv->as_mv.row);
|
|
mv.col = (x->partition_info->bmi[i].second_mv.as_mv.col
|
|
- second_best_ref_mv->as_mv.col);
|
|
vp8_increment_nmv(&mv, &second_best_ref_mv->as_mv,
|
|
&cpi->NMVcount, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (mbmi->mode == NEWMV) {
|
|
if (x->e_mbd.allow_high_precision_mv) {
|
|
mv.row = (mbmi->mv[0].as_mv.row - best_ref_mv->as_mv.row);
|
|
mv.col = (mbmi->mv[0].as_mv.col - best_ref_mv->as_mv.col);
|
|
vp8_increment_nmv(&mv, &best_ref_mv->as_mv, &cpi->NMVcount, 1);
|
|
if (mbmi->second_ref_frame) {
|
|
mv.row = (mbmi->mv[1].as_mv.row - second_best_ref_mv->as_mv.row);
|
|
mv.col = (mbmi->mv[1].as_mv.col - second_best_ref_mv->as_mv.col);
|
|
vp8_increment_nmv(&mv, &second_best_ref_mv->as_mv, &cpi->NMVcount, 1);
|
|
}
|
|
} else {
|
|
mv.row = (mbmi->mv[0].as_mv.row - best_ref_mv->as_mv.row);
|
|
mv.col = (mbmi->mv[0].as_mv.col - best_ref_mv->as_mv.col);
|
|
vp8_increment_nmv(&mv, &best_ref_mv->as_mv, &cpi->NMVcount, 0);
|
|
if (mbmi->second_ref_frame) {
|
|
mv.row = (mbmi->mv[1].as_mv.row - second_best_ref_mv->as_mv.row);
|
|
mv.col = (mbmi->mv[1].as_mv.col - second_best_ref_mv->as_mv.col);
|
|
vp8_increment_nmv(&mv, &second_best_ref_mv->as_mv, &cpi->NMVcount, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void write_ymode(vp8_writer *bc, int m, const vp8_prob *p) {
|
|
vp8_write_token(bc, vp8_ymode_tree, p, vp8_ymode_encodings + m);
|
|
}
|
|
|
|
static void kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p) {
|
|
vp8_write_token(bc, vp8_kf_ymode_tree, p, vp8_kf_ymode_encodings + m);
|
|
}
|
|
|
|
#if CONFIG_SUPERBLOCKS
|
|
static void sb_kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p) {
|
|
vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_sb_kf_ymode_encodings + m);
|
|
}
|
|
#endif
|
|
|
|
static void write_i8x8_mode(vp8_writer *bc, int m, const vp8_prob *p) {
|
|
vp8_write_token(bc, vp8_i8x8_mode_tree, p, vp8_i8x8_mode_encodings + m);
|
|
}
|
|
|
|
static void write_uv_mode(vp8_writer *bc, int m, const vp8_prob *p) {
|
|
vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_uv_mode_encodings + m);
|
|
}
|
|
|
|
|
|
static void write_bmode(vp8_writer *bc, int m, const vp8_prob *p) {
|
|
vp8_write_token(bc, vp8_bmode_tree, p, vp8_bmode_encodings + m);
|
|
}
|
|
|
|
static void write_split(vp8_writer *bc, int x, const vp8_prob *p) {
|
|
vp8_write_token(
|
|
bc, vp8_mbsplit_tree, p, vp8_mbsplit_encodings + x
|
|
);
|
|
}
|
|
|
|
static int prob_update_savings(const unsigned int *ct,
|
|
const vp8_prob oldp, const vp8_prob newp,
|
|
const vp8_prob upd) {
|
|
const int old_b = vp8_cost_branch256(ct, oldp);
|
|
const int new_b = vp8_cost_branch256(ct, newp);
|
|
const int update_b = 2048 + vp8_cost_upd256;
|
|
return (old_b - new_b - update_b);
|
|
}
|
|
|
|
static int prob_diff_update_savings(const unsigned int *ct,
|
|
const vp8_prob oldp, const vp8_prob newp,
|
|
const vp8_prob upd) {
|
|
const int old_b = vp8_cost_branch256(ct, oldp);
|
|
const int new_b = vp8_cost_branch256(ct, newp);
|
|
const int update_b = (newp == oldp ? 0 :
|
|
prob_diff_update_cost(newp, oldp) + vp8_cost_upd256);
|
|
return (old_b - new_b - update_b);
|
|
}
|
|
|
|
static int prob_diff_update_savings_search(const unsigned int *ct,
|
|
const vp8_prob oldp, vp8_prob *bestp,
|
|
const vp8_prob upd) {
|
|
const int old_b = vp8_cost_branch256(ct, oldp);
|
|
int new_b, update_b, savings, bestsavings, step;
|
|
vp8_prob newp, bestnewp;
|
|
|
|
bestsavings = 0;
|
|
bestnewp = oldp;
|
|
|
|
step = (*bestp > oldp ? -1 : 1);
|
|
for (newp = *bestp; newp != oldp; newp += step) {
|
|
new_b = vp8_cost_branch256(ct, newp);
|
|
update_b = prob_diff_update_cost(newp, oldp) + vp8_cost_upd256;
|
|
savings = old_b - new_b - update_b;
|
|
if (savings > bestsavings) {
|
|
bestsavings = savings;
|
|
bestnewp = newp;
|
|
}
|
|
}
|
|
*bestp = bestnewp;
|
|
return bestsavings;
|
|
}
|
|
|
|
static void pack_mb_tokens(vp8_writer* const bc,
|
|
TOKENEXTRA **tp,
|
|
const TOKENEXTRA *const stop) {
|
|
unsigned int split;
|
|
unsigned int shift;
|
|
int count = bc->count;
|
|
unsigned int range = bc->range;
|
|
unsigned int lowvalue = bc->lowvalue;
|
|
TOKENEXTRA *p = *tp;
|
|
|
|
while (p < stop) {
|
|
const int t = p->Token;
|
|
vp8_token *const a = vp8_coef_encodings + t;
|
|
const vp8_extra_bit_struct *const b = vp8_extra_bits + t;
|
|
int i = 0;
|
|
const unsigned char *pp = p->context_tree;
|
|
int v = a->value;
|
|
int n = a->Len;
|
|
|
|
if (t == EOSB_TOKEN)
|
|
{
|
|
++p;
|
|
break;
|
|
}
|
|
|
|
/* skip one or two nodes */
|
|
if (p->skip_eob_node) {
|
|
n -= p->skip_eob_node;
|
|
i = 2 * p->skip_eob_node;
|
|
}
|
|
|
|
do {
|
|
const int bb = (v >> --n) & 1;
|
|
split = 1 + (((range - 1) * pp[i >> 1]) >> 8);
|
|
i = vp8_coef_tree[i + bb];
|
|
|
|
if (bb) {
|
|
lowvalue += split;
|
|
range = range - split;
|
|
} else {
|
|
range = split;
|
|
}
|
|
|
|
shift = vp8_norm[range];
|
|
range <<= shift;
|
|
count += shift;
|
|
|
|
if (count >= 0) {
|
|
int offset = shift - count;
|
|
|
|
if ((lowvalue << (offset - 1)) & 0x80000000) {
|
|
int x = bc->pos - 1;
|
|
|
|
while (x >= 0 && bc->buffer[x] == 0xff) {
|
|
bc->buffer[x] = (unsigned char)0;
|
|
x--;
|
|
}
|
|
|
|
bc->buffer[x] += 1;
|
|
}
|
|
|
|
bc->buffer[bc->pos++] = (lowvalue >> (24 - offset));
|
|
lowvalue <<= offset;
|
|
shift = count;
|
|
lowvalue &= 0xffffff;
|
|
count -= 8;
|
|
}
|
|
|
|
lowvalue <<= shift;
|
|
} while (n);
|
|
|
|
|
|
if (b->base_val) {
|
|
const int e = p->Extra, L = b->Len;
|
|
|
|
if (L) {
|
|
const unsigned char *pp = b->prob;
|
|
int v = e >> 1;
|
|
int n = L; /* number of bits in v, assumed nonzero */
|
|
int i = 0;
|
|
|
|
do {
|
|
const int bb = (v >> --n) & 1;
|
|
split = 1 + (((range - 1) * pp[i >> 1]) >> 8);
|
|
i = b->tree[i + bb];
|
|
|
|
if (bb) {
|
|
lowvalue += split;
|
|
range = range - split;
|
|
} else {
|
|
range = split;
|
|
}
|
|
|
|
shift = vp8_norm[range];
|
|
range <<= shift;
|
|
count += shift;
|
|
|
|
if (count >= 0) {
|
|
int offset = shift - count;
|
|
|
|
if ((lowvalue << (offset - 1)) & 0x80000000) {
|
|
int x = bc->pos - 1;
|
|
|
|
while (x >= 0 && bc->buffer[x] == 0xff) {
|
|
bc->buffer[x] = (unsigned char)0;
|
|
x--;
|
|
}
|
|
|
|
bc->buffer[x] += 1;
|
|
}
|
|
|
|
bc->buffer[bc->pos++] = (lowvalue >> (24 - offset));
|
|
lowvalue <<= offset;
|
|
shift = count;
|
|
lowvalue &= 0xffffff;
|
|
count -= 8;
|
|
}
|
|
|
|
lowvalue <<= shift;
|
|
} while (n);
|
|
}
|
|
|
|
|
|
{
|
|
|
|
split = (range + 1) >> 1;
|
|
|
|
if (e & 1) {
|
|
lowvalue += split;
|
|
range = range - split;
|
|
} else {
|
|
range = split;
|
|
}
|
|
|
|
range <<= 1;
|
|
|
|
if ((lowvalue & 0x80000000)) {
|
|
int x = bc->pos - 1;
|
|
|
|
while (x >= 0 && bc->buffer[x] == 0xff) {
|
|
bc->buffer[x] = (unsigned char)0;
|
|
x--;
|
|
}
|
|
|
|
bc->buffer[x] += 1;
|
|
|
|
}
|
|
|
|
lowvalue <<= 1;
|
|
|
|
if (!++count) {
|
|
count = -8;
|
|
bc->buffer[bc->pos++] = (lowvalue >> 24);
|
|
lowvalue &= 0xffffff;
|
|
}
|
|
}
|
|
|
|
}
|
|
++p;
|
|
}
|
|
|
|
bc->count = count;
|
|
bc->lowvalue = lowvalue;
|
|
bc->range = range;
|
|
*tp = p;
|
|
}
|
|
|
|
static void write_partition_size(unsigned char *cx_data, int size) {
|
|
signed char csize;
|
|
|
|
csize = size & 0xff;
|
|
*cx_data = csize;
|
|
csize = (size >> 8) & 0xff;
|
|
*(cx_data + 1) = csize;
|
|
csize = (size >> 16) & 0xff;
|
|
*(cx_data + 2) = csize;
|
|
|
|
}
|
|
|
|
static void write_mv_ref
|
|
(
|
|
vp8_writer *bc, MB_PREDICTION_MODE m, const vp8_prob *p
|
|
) {
|
|
#if CONFIG_DEBUG
|
|
assert(NEARESTMV <= m && m <= SPLITMV);
|
|
#endif
|
|
vp8_write_token(bc, vp8_mv_ref_tree, p,
|
|
vp8_mv_ref_encoding_array - NEARESTMV + m);
|
|
}
|
|
|
|
#if CONFIG_SUPERBLOCKS
|
|
static void write_sb_mv_ref(vp8_writer *bc, MB_PREDICTION_MODE m,
|
|
const vp8_prob *p) {
|
|
#if CONFIG_DEBUG
|
|
assert(NEARESTMV <= m && m < SPLITMV);
|
|
#endif
|
|
vp8_write_token(bc, vp8_sb_mv_ref_tree, p,
|
|
vp8_sb_mv_ref_encoding_array - NEARESTMV + m);
|
|
}
|
|
#endif
|
|
|
|
static void write_sub_mv_ref
|
|
(
|
|
vp8_writer *bc, B_PREDICTION_MODE m, const vp8_prob *p
|
|
) {
|
|
#if CONFIG_DEBUG
|
|
assert(LEFT4X4 <= m && m <= NEW4X4);
|
|
#endif
|
|
vp8_write_token(bc, vp8_sub_mv_ref_tree, p,
|
|
vp8_sub_mv_ref_encoding_array - LEFT4X4 + m);
|
|
}
|
|
|
|
static void write_nmv(vp8_writer *bc, const MV *mv, const int_mv *ref,
|
|
const nmv_context *nmvc, int usehp) {
|
|
MV e;
|
|
e.row = mv->row - ref->as_mv.row;
|
|
e.col = mv->col - ref->as_mv.col;
|
|
|
|
vp8_encode_nmv(bc, &e, &ref->as_mv, nmvc);
|
|
vp8_encode_nmv_fp(bc, &e, &ref->as_mv, nmvc, usehp);
|
|
}
|
|
|
|
#if CONFIG_NEW_MVREF
|
|
static int vp8_cost_mv_ref_id(vp8_prob * ref_id_probs, int mv_ref_id) {
|
|
int cost;
|
|
|
|
// Encode the index for the MV reference.
|
|
switch (mv_ref_id) {
|
|
case 0:
|
|
cost = vp8_cost_zero(ref_id_probs[0]);
|
|
break;
|
|
case 1:
|
|
cost = vp8_cost_one(ref_id_probs[0]);
|
|
cost += vp8_cost_zero(ref_id_probs[1]);
|
|
break;
|
|
case 2:
|
|
cost = vp8_cost_one(ref_id_probs[0]);
|
|
cost += vp8_cost_one(ref_id_probs[1]);
|
|
cost += vp8_cost_zero(ref_id_probs[2]);
|
|
break;
|
|
case 3:
|
|
cost = vp8_cost_one(ref_id_probs[0]);
|
|
cost += vp8_cost_one(ref_id_probs[1]);
|
|
cost += vp8_cost_one(ref_id_probs[2]);
|
|
break;
|
|
|
|
// TRAP.. This should not happen
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
return cost;
|
|
}
|
|
|
|
static void vp8_write_mv_ref_id(vp8_writer *w,
|
|
vp8_prob * ref_id_probs,
|
|
int mv_ref_id) {
|
|
// Encode the index for the MV reference.
|
|
switch (mv_ref_id) {
|
|
case 0:
|
|
vp8_write(w, 0, ref_id_probs[0]);
|
|
break;
|
|
case 1:
|
|
vp8_write(w, 1, ref_id_probs[0]);
|
|
vp8_write(w, 0, ref_id_probs[1]);
|
|
break;
|
|
case 2:
|
|
vp8_write(w, 1, ref_id_probs[0]);
|
|
vp8_write(w, 1, ref_id_probs[1]);
|
|
vp8_write(w, 0, ref_id_probs[2]);
|
|
break;
|
|
case 3:
|
|
vp8_write(w, 1, ref_id_probs[0]);
|
|
vp8_write(w, 1, ref_id_probs[1]);
|
|
vp8_write(w, 1, ref_id_probs[2]);
|
|
break;
|
|
|
|
// TRAP.. This should not happen
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Estimate the cost of each coding the vector using each reference candidate
|
|
static unsigned int pick_best_mv_ref(MACROBLOCK *x,
|
|
MV_REFERENCE_FRAME ref_frame,
|
|
int_mv target_mv,
|
|
int_mv * mv_ref_list,
|
|
int_mv * best_ref) {
|
|
int i;
|
|
int best_index = 0;
|
|
int cost, cost2;
|
|
int zero_seen = (mv_ref_list[0].as_int) ? FALSE : TRUE;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
int max_mv = MV_MAX;
|
|
|
|
cost = vp8_cost_mv_ref_id(xd->mb_mv_ref_id_probs[ref_frame], 0) +
|
|
vp8_mv_bit_cost(&target_mv,
|
|
&mv_ref_list[0],
|
|
XMVCOST, 96,
|
|
xd->allow_high_precision_mv);
|
|
|
|
|
|
// Use 4 for now : for (i = 1; i < MAX_MV_REFS; ++i ) {
|
|
for (i = 1; i < 4; ++i) {
|
|
// If we see a 0,0 reference vector for a second time we have reached
|
|
// the end of the list of valid candidate vectors.
|
|
if (!mv_ref_list[i].as_int)
|
|
if (zero_seen)
|
|
break;
|
|
else
|
|
zero_seen = TRUE;
|
|
|
|
// Check for cases where the reference choice would give rise to an
|
|
// uncodable/out of range residual for row or col.
|
|
if ((abs(target_mv.as_mv.row - mv_ref_list[i].as_mv.row) > max_mv) ||
|
|
(abs(target_mv.as_mv.col - mv_ref_list[i].as_mv.col) > max_mv)) {
|
|
continue;
|
|
}
|
|
|
|
cost2 = vp8_cost_mv_ref_id(xd->mb_mv_ref_id_probs[ref_frame], i) +
|
|
vp8_mv_bit_cost(&target_mv,
|
|
&mv_ref_list[i],
|
|
XMVCOST, 96,
|
|
xd->allow_high_precision_mv);
|
|
|
|
if (cost2 < cost) {
|
|
cost = cost2;
|
|
best_index = i;
|
|
}
|
|
}
|
|
|
|
(*best_ref).as_int = mv_ref_list[best_index].as_int;
|
|
|
|
return best_index;
|
|
}
|
|
#endif
|
|
|
|
// This function writes the current macro block's segnment id to the bitstream
|
|
// It should only be called if a segment map update is indicated.
|
|
static void write_mb_segid(vp8_writer *bc,
|
|
const MB_MODE_INFO *mi, const MACROBLOCKD *xd) {
|
|
// Encode the MB segment id.
|
|
if (xd->segmentation_enabled && xd->update_mb_segmentation_map) {
|
|
switch (mi->segment_id) {
|
|
case 0:
|
|
vp8_write(bc, 0, xd->mb_segment_tree_probs[0]);
|
|
vp8_write(bc, 0, xd->mb_segment_tree_probs[1]);
|
|
break;
|
|
case 1:
|
|
vp8_write(bc, 0, xd->mb_segment_tree_probs[0]);
|
|
vp8_write(bc, 1, xd->mb_segment_tree_probs[1]);
|
|
break;
|
|
case 2:
|
|
vp8_write(bc, 1, xd->mb_segment_tree_probs[0]);
|
|
vp8_write(bc, 0, xd->mb_segment_tree_probs[2]);
|
|
break;
|
|
case 3:
|
|
vp8_write(bc, 1, xd->mb_segment_tree_probs[0]);
|
|
vp8_write(bc, 1, xd->mb_segment_tree_probs[2]);
|
|
break;
|
|
|
|
// TRAP.. This should not happen
|
|
default:
|
|
vp8_write(bc, 0, xd->mb_segment_tree_probs[0]);
|
|
vp8_write(bc, 0, xd->mb_segment_tree_probs[1]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function encodes the reference frame
|
|
static void encode_ref_frame(vp8_writer *const bc,
|
|
VP8_COMMON *const cm,
|
|
MACROBLOCKD *xd,
|
|
int segment_id,
|
|
MV_REFERENCE_FRAME rf) {
|
|
int seg_ref_active;
|
|
int seg_ref_count = 0;
|
|
seg_ref_active = segfeature_active(xd,
|
|
segment_id,
|
|
SEG_LVL_REF_FRAME);
|
|
|
|
if (seg_ref_active) {
|
|
seg_ref_count = check_segref(xd, segment_id, INTRA_FRAME) +
|
|
check_segref(xd, segment_id, LAST_FRAME) +
|
|
check_segref(xd, segment_id, GOLDEN_FRAME) +
|
|
check_segref(xd, segment_id, ALTREF_FRAME);
|
|
}
|
|
|
|
// If segment level coding of this signal is disabled...
|
|
// or the segment allows multiple reference frame options
|
|
if (!seg_ref_active || (seg_ref_count > 1)) {
|
|
// Values used in prediction model coding
|
|
unsigned char prediction_flag;
|
|
vp8_prob pred_prob;
|
|
MV_REFERENCE_FRAME pred_rf;
|
|
|
|
// Get the context probability the prediction flag
|
|
pred_prob = get_pred_prob(cm, xd, PRED_REF);
|
|
|
|
// Get the predicted value.
|
|
pred_rf = get_pred_ref(cm, xd);
|
|
|
|
// Did the chosen reference frame match its predicted value.
|
|
prediction_flag =
|
|
(xd->mode_info_context->mbmi.ref_frame == pred_rf);
|
|
|
|
set_pred_flag(xd, PRED_REF, prediction_flag);
|
|
vp8_write(bc, prediction_flag, pred_prob);
|
|
|
|
// If not predicted correctly then code value explicitly
|
|
if (!prediction_flag) {
|
|
vp8_prob mod_refprobs[PREDICTION_PROBS];
|
|
|
|
vpx_memcpy(mod_refprobs,
|
|
cm->mod_refprobs[pred_rf], sizeof(mod_refprobs));
|
|
|
|
// If segment coding enabled blank out options that cant occur by
|
|
// setting the branch probability to 0.
|
|
if (seg_ref_active) {
|
|
mod_refprobs[INTRA_FRAME] *=
|
|
check_segref(xd, segment_id, INTRA_FRAME);
|
|
mod_refprobs[LAST_FRAME] *=
|
|
check_segref(xd, segment_id, LAST_FRAME);
|
|
mod_refprobs[GOLDEN_FRAME] *=
|
|
(check_segref(xd, segment_id, GOLDEN_FRAME) *
|
|
check_segref(xd, segment_id, ALTREF_FRAME));
|
|
}
|
|
|
|
if (mod_refprobs[0]) {
|
|
vp8_write(bc, (rf != INTRA_FRAME), mod_refprobs[0]);
|
|
}
|
|
|
|
// Inter coded
|
|
if (rf != INTRA_FRAME) {
|
|
if (mod_refprobs[1]) {
|
|
vp8_write(bc, (rf != LAST_FRAME), mod_refprobs[1]);
|
|
}
|
|
|
|
if (rf != LAST_FRAME) {
|
|
if (mod_refprobs[2]) {
|
|
vp8_write(bc, (rf != GOLDEN_FRAME), mod_refprobs[2]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// if using the prediction mdoel we have nothing further to do because
|
|
// the reference frame is fully coded by the segment
|
|
}
|
|
|
|
// Update the probabilities used to encode reference frame data
|
|
static void update_ref_probs(VP8_COMP *const cpi) {
|
|
VP8_COMMON *const cm = &cpi->common;
|
|
|
|
const int *const rfct = cpi->count_mb_ref_frame_usage;
|
|
const int rf_intra = rfct[INTRA_FRAME];
|
|
const int rf_inter = rfct[LAST_FRAME] +
|
|
rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
|
|
|
|
cm->prob_intra_coded = get_binary_prob(rf_intra, rf_inter);
|
|
cm->prob_last_coded = get_prob(rfct[LAST_FRAME], rf_inter);
|
|
cm->prob_gf_coded = get_binary_prob(rfct[GOLDEN_FRAME], rfct[ALTREF_FRAME]);
|
|
|
|
// Compute a modified set of probabilities to use when prediction of the
|
|
// reference frame fails
|
|
compute_mod_refprobs(cm);
|
|
}
|
|
|
|
static void pack_inter_mode_mvs(VP8_COMP *const cpi, vp8_writer *const bc) {
|
|
int i;
|
|
VP8_COMMON *const pc = &cpi->common;
|
|
const nmv_context *nmvc = &pc->fc.nmvc;
|
|
MACROBLOCK *x = &cpi->mb;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
MODE_INFO *m;
|
|
MODE_INFO *prev_m;
|
|
TOKENEXTRA *tok = cpi->tok;
|
|
TOKENEXTRA *tok_end = tok + cpi->tok_count;
|
|
|
|
const int mis = pc->mode_info_stride;
|
|
int mb_row, mb_col;
|
|
int row, col;
|
|
|
|
// Values used in prediction model coding
|
|
vp8_prob pred_prob;
|
|
unsigned char prediction_flag;
|
|
|
|
int row_delta[4] = { 0, +1, 0, -1};
|
|
int col_delta[4] = { +1, -1, +1, +1};
|
|
|
|
//final_packing = !cpi->dummy_packing;
|
|
|
|
cpi->mb.partition_info = cpi->mb.pi;
|
|
|
|
mb_row = 0;
|
|
for (row = 0; row < pc->mb_rows; row += 2) {
|
|
m = pc->mi + row * mis;
|
|
prev_m = pc->prev_mi + row * mis;
|
|
|
|
mb_col = 0;
|
|
for (col = 0; col < pc->mb_cols; col += 2) {
|
|
int i;
|
|
|
|
// Process the 4 MBs in the order:
|
|
// top-left, top-right, bottom-left, bottom-right
|
|
#if CONFIG_SUPERBLOCKS
|
|
vp8_write(bc, m->mbmi.encoded_as_sb, pc->sb_coded);
|
|
#endif
|
|
for (i = 0; i < 4; i++) {
|
|
MB_MODE_INFO *mi;
|
|
MV_REFERENCE_FRAME rf;
|
|
MB_PREDICTION_MODE mode;
|
|
int segment_id;
|
|
|
|
int dy = row_delta[i];
|
|
int dx = col_delta[i];
|
|
int offset_extended = dy * mis + dx;
|
|
|
|
if ((mb_row >= pc->mb_rows) || (mb_col >= pc->mb_cols)) {
|
|
// MB lies outside frame, move on
|
|
mb_row += dy;
|
|
mb_col += dx;
|
|
m += offset_extended;
|
|
prev_m += offset_extended;
|
|
cpi->mb.partition_info += offset_extended;
|
|
continue;
|
|
}
|
|
|
|
mi = &m->mbmi;
|
|
rf = mi->ref_frame;
|
|
mode = mi->mode;
|
|
segment_id = mi->segment_id;
|
|
|
|
// Distance of Mb to the various image edges.
|
|
// These specified to 8th pel as they are always compared to MV
|
|
// values that are in 1/8th pel units
|
|
xd->mb_to_left_edge = -((mb_col * 16) << 3);
|
|
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
|
|
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
|
|
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
|
|
|
|
// Make sure the MacroBlockD mode info pointer is set correctly
|
|
xd->mode_info_context = m;
|
|
xd->prev_mode_info_context = prev_m;
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 9;
|
|
#endif
|
|
|
|
if (cpi->mb.e_mbd.update_mb_segmentation_map) {
|
|
// Is temporal coding of the segment map enabled
|
|
if (pc->temporal_update) {
|
|
prediction_flag = get_pred_flag(xd, PRED_SEG_ID);
|
|
pred_prob = get_pred_prob(pc, xd, PRED_SEG_ID);
|
|
|
|
// Code the segment id prediction flag for this mb
|
|
vp8_write(bc, prediction_flag, pred_prob);
|
|
|
|
// If the mb segment id wasn't predicted code explicitly
|
|
if (!prediction_flag)
|
|
write_mb_segid(bc, mi, &cpi->mb.e_mbd);
|
|
} else {
|
|
// Normal unpredicted coding
|
|
write_mb_segid(bc, mi, &cpi->mb.e_mbd);
|
|
}
|
|
}
|
|
|
|
if (pc->mb_no_coeff_skip &&
|
|
(!segfeature_active(xd, segment_id, SEG_LVL_EOB) ||
|
|
(get_segdata(xd, segment_id, SEG_LVL_EOB) != 0))) {
|
|
int skip_coeff = mi->mb_skip_coeff;
|
|
#if CONFIG_SUPERBLOCKS
|
|
if (mi->encoded_as_sb) {
|
|
skip_coeff &= m[1].mbmi.mb_skip_coeff;
|
|
skip_coeff &= m[mis].mbmi.mb_skip_coeff;
|
|
skip_coeff &= m[mis + 1].mbmi.mb_skip_coeff;
|
|
}
|
|
#endif
|
|
vp8_encode_bool(bc, skip_coeff,
|
|
get_pred_prob(pc, xd, PRED_MBSKIP));
|
|
}
|
|
|
|
// Encode the reference frame.
|
|
encode_ref_frame(bc, pc, xd, segment_id, rf);
|
|
|
|
if (rf == INTRA_FRAME) {
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 6;
|
|
#endif
|
|
|
|
// TODO(rbultje) write using SB tree structure
|
|
|
|
if (!segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
|
|
write_ymode(bc, mode, pc->fc.ymode_prob);
|
|
}
|
|
|
|
if (mode == B_PRED) {
|
|
int j = 0;
|
|
#if CONFIG_COMP_INTRA_PRED
|
|
int uses_second =
|
|
m->bmi[0].as_mode.second !=
|
|
(B_PREDICTION_MODE)(B_DC_PRED - 1);
|
|
vp8_write(bc, uses_second, 128);
|
|
#endif
|
|
do {
|
|
#if CONFIG_COMP_INTRA_PRED
|
|
B_PREDICTION_MODE mode2 = m->bmi[j].as_mode.second;
|
|
#endif
|
|
write_bmode(bc, m->bmi[j].as_mode.first,
|
|
pc->fc.bmode_prob);
|
|
/*
|
|
if (!cpi->dummy_packing) {
|
|
int p;
|
|
for (p = 0; p < VP8_BINTRAMODES - 1; ++p)
|
|
printf(" %d", pc->fc.bmode_prob[p]);
|
|
printf("\nbmode[%d][%d]: %d\n", pc->current_video_frame, j, m->bmi[j].as_mode.first);
|
|
}
|
|
*/
|
|
#if CONFIG_COMP_INTRA_PRED
|
|
if (uses_second) {
|
|
write_bmode(bc, mode2, pc->fc.bmode_prob);
|
|
}
|
|
#endif
|
|
} while (++j < 16);
|
|
}
|
|
if (mode == I8X8_PRED) {
|
|
write_i8x8_mode(bc, m->bmi[0].as_mode.first,
|
|
pc->fc.i8x8_mode_prob);
|
|
write_i8x8_mode(bc, m->bmi[2].as_mode.first,
|
|
pc->fc.i8x8_mode_prob);
|
|
write_i8x8_mode(bc, m->bmi[8].as_mode.first,
|
|
pc->fc.i8x8_mode_prob);
|
|
write_i8x8_mode(bc, m->bmi[10].as_mode.first,
|
|
pc->fc.i8x8_mode_prob);
|
|
} else {
|
|
write_uv_mode(bc, mi->uv_mode,
|
|
pc->fc.uv_mode_prob[mode]);
|
|
}
|
|
} else {
|
|
int_mv best_mv, best_second_mv;
|
|
int ct[4];
|
|
|
|
vp8_prob mv_ref_p [VP8_MVREFS - 1];
|
|
|
|
{
|
|
int_mv n1, n2;
|
|
|
|
// Only used for context just now and soon to be deprecated.
|
|
vp8_find_near_mvs(xd, m, prev_m, &n1, &n2, &best_mv, ct,
|
|
rf, cpi->common.ref_frame_sign_bias);
|
|
#if CONFIG_NEWBESTREFMV
|
|
best_mv.as_int = mi->ref_mvs[rf][0].as_int;
|
|
#endif
|
|
|
|
vp8_mv_ref_probs(&cpi->common, mv_ref_p, ct);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
accum_mv_refs(mode, ct);
|
|
#endif
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 3;
|
|
#endif
|
|
|
|
// Is the segment coding of mode enabled
|
|
if (!segfeature_active(xd, segment_id, SEG_LVL_MODE)) {
|
|
#if CONFIG_SUPERBLOCKS
|
|
if (mi->encoded_as_sb) {
|
|
write_sb_mv_ref(bc, mode, mv_ref_p);
|
|
} else
|
|
#endif
|
|
{
|
|
write_mv_ref(bc, mode, mv_ref_p);
|
|
}
|
|
vp8_accum_mv_refs(&cpi->common, mode, ct);
|
|
}
|
|
|
|
#if CONFIG_PRED_FILTER
|
|
// Is the prediction filter enabled
|
|
if (mode >= NEARESTMV && mode < SPLITMV) {
|
|
if (cpi->common.pred_filter_mode == 2)
|
|
vp8_write(bc, mi->pred_filter_enabled,
|
|
pc->prob_pred_filter_off);
|
|
else
|
|
assert(mi->pred_filter_enabled ==
|
|
cpi->common.pred_filter_mode);
|
|
}
|
|
#endif
|
|
if (mode >= NEARESTMV && mode <= SPLITMV)
|
|
{
|
|
if (cpi->common.mcomp_filter_type == SWITCHABLE) {
|
|
vp8_write_token(bc, vp8_switchable_interp_tree,
|
|
get_pred_probs(&cpi->common, xd,
|
|
PRED_SWITCHABLE_INTERP),
|
|
vp8_switchable_interp_encodings +
|
|
vp8_switchable_interp_map[mi->interp_filter]);
|
|
} else {
|
|
assert (mi->interp_filter ==
|
|
cpi->common.mcomp_filter_type);
|
|
}
|
|
}
|
|
if (mi->second_ref_frame &&
|
|
(mode == NEWMV || mode == SPLITMV)) {
|
|
int_mv n1, n2;
|
|
|
|
// Only used for context just now and soon to be deprecated.
|
|
vp8_find_near_mvs(xd, m, prev_m,
|
|
&n1, &n2, &best_second_mv, ct,
|
|
mi->second_ref_frame,
|
|
cpi->common.ref_frame_sign_bias);
|
|
|
|
#if CONFIG_NEWBESTREFMV
|
|
best_second_mv.as_int =
|
|
mi->ref_mvs[mi->second_ref_frame][0].as_int;
|
|
#endif
|
|
}
|
|
|
|
// does the feature use compound prediction or not
|
|
// (if not specified at the frame/segment level)
|
|
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
|
|
vp8_write(bc, mi->second_ref_frame != INTRA_FRAME,
|
|
get_pred_prob(pc, xd, PRED_COMP));
|
|
}
|
|
|
|
{
|
|
switch (mode) { /* new, split require MVs */
|
|
case NEWMV:
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 5;
|
|
#endif
|
|
|
|
#if CONFIG_NEW_MVREF
|
|
{
|
|
unsigned int best_index;
|
|
|
|
// Choose the best mv reference
|
|
best_index = pick_best_mv_ref(x, rf, mi->mv[0],
|
|
mi->ref_mvs[rf], &best_mv);
|
|
|
|
// Encode the index of the choice.
|
|
vp8_write_mv_ref_id(bc,
|
|
xd->mb_mv_ref_id_probs[rf], best_index);
|
|
|
|
cpi->best_ref_index_counts[rf][best_index]++;
|
|
|
|
}
|
|
#endif
|
|
|
|
write_nmv(bc, &mi->mv[0].as_mv, &best_mv,
|
|
(const nmv_context*) nmvc,
|
|
xd->allow_high_precision_mv);
|
|
|
|
if (mi->second_ref_frame) {
|
|
#if CONFIG_NEW_MVREF
|
|
unsigned int best_index;
|
|
MV_REFERENCE_FRAME sec_ref_frame = mi->second_ref_frame;
|
|
|
|
best_index =
|
|
pick_best_mv_ref(x, sec_ref_frame, mi->mv[1],
|
|
mi->ref_mvs[sec_ref_frame],
|
|
&best_second_mv);
|
|
|
|
// Encode the index of the choice.
|
|
vp8_write_mv_ref_id(bc,
|
|
xd->mb_mv_ref_id_probs[sec_ref_frame],
|
|
best_index);
|
|
|
|
cpi->best_ref_index_counts[sec_ref_frame][best_index]++;
|
|
#endif
|
|
write_nmv(bc, &mi->mv[1].as_mv, &best_second_mv,
|
|
(const nmv_context*) nmvc,
|
|
xd->allow_high_precision_mv);
|
|
}
|
|
break;
|
|
case SPLITMV: {
|
|
int j = 0;
|
|
|
|
#ifdef MODE_STATS
|
|
++count_mb_seg [mi->partitioning];
|
|
#endif
|
|
|
|
write_split(bc, mi->partitioning, cpi->common.fc.mbsplit_prob);
|
|
cpi->mbsplit_count[mi->partitioning]++;
|
|
|
|
do {
|
|
B_PREDICTION_MODE blockmode;
|
|
int_mv blockmv;
|
|
const int *const L =
|
|
vp8_mbsplits [mi->partitioning];
|
|
int k = -1; /* first block in subset j */
|
|
int mv_contz;
|
|
int_mv leftmv, abovemv;
|
|
|
|
blockmode = cpi->mb.partition_info->bmi[j].mode;
|
|
blockmv = cpi->mb.partition_info->bmi[j].mv;
|
|
#if CONFIG_DEBUG
|
|
while (j != L[++k])
|
|
if (k >= 16)
|
|
assert(0);
|
|
#else
|
|
while (j != L[++k]);
|
|
#endif
|
|
leftmv.as_int = left_block_mv(m, k);
|
|
abovemv.as_int = above_block_mv(m, k, mis);
|
|
mv_contz = vp8_mv_cont(&leftmv, &abovemv);
|
|
|
|
write_sub_mv_ref(bc, blockmode,
|
|
cpi->common.fc.sub_mv_ref_prob [mv_contz]);
|
|
cpi->sub_mv_ref_count[mv_contz][blockmode - LEFT4X4]++;
|
|
if (blockmode == NEW4X4) {
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 11;
|
|
#endif
|
|
write_nmv(bc, &blockmv.as_mv, &best_mv,
|
|
(const nmv_context*) nmvc,
|
|
xd->allow_high_precision_mv);
|
|
|
|
if (mi->second_ref_frame) {
|
|
write_nmv(bc,
|
|
&cpi->mb.partition_info->bmi[j].second_mv.as_mv,
|
|
&best_second_mv,
|
|
(const nmv_context*) nmvc,
|
|
xd->allow_high_precision_mv);
|
|
}
|
|
}
|
|
} while (++j < cpi->mb.partition_info->count);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Update the mvcounts used to tune mv probs but only if this is
|
|
// the real pack run.
|
|
if ( !cpi->dummy_packing ) {
|
|
update_mvcount(cpi, x, &best_mv, &best_second_mv);
|
|
}
|
|
}
|
|
|
|
if (((rf == INTRA_FRAME && mode <= I8X8_PRED) ||
|
|
(rf != INTRA_FRAME && !(mode == SPLITMV &&
|
|
mi->partitioning == PARTITIONING_4X4))) &&
|
|
pc->txfm_mode == TX_MODE_SELECT &&
|
|
!((pc->mb_no_coeff_skip && mi->mb_skip_coeff) ||
|
|
(segfeature_active(xd, segment_id, SEG_LVL_EOB) &&
|
|
get_segdata(xd, segment_id, SEG_LVL_EOB) == 0))) {
|
|
TX_SIZE sz = mi->txfm_size;
|
|
// FIXME(rbultje) code ternary symbol once all experiments are merged
|
|
vp8_write(bc, sz != TX_4X4, pc->prob_tx[0]);
|
|
if (sz != TX_4X4 && mode != I8X8_PRED && mode != SPLITMV)
|
|
vp8_write(bc, sz != TX_8X8, pc->prob_tx[1]);
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 1;
|
|
#endif
|
|
assert(tok < tok_end);
|
|
pack_mb_tokens(bc, &tok, tok_end);
|
|
|
|
#if CONFIG_SUPERBLOCKS
|
|
if (m->mbmi.encoded_as_sb) {
|
|
assert(!i);
|
|
mb_col += 2;
|
|
m += 2;
|
|
cpi->mb.partition_info += 2;
|
|
prev_m += 2;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
// Next MB
|
|
mb_row += dy;
|
|
mb_col += dx;
|
|
m += offset_extended;
|
|
prev_m += offset_extended;
|
|
cpi->mb.partition_info += offset_extended;
|
|
#if CONFIG_DEBUG
|
|
assert((prev_m - cpi->common.prev_mip) == (m - cpi->common.mip));
|
|
assert((prev_m - cpi->common.prev_mi) == (m - cpi->common.mi));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Next SB
|
|
mb_row += 2;
|
|
m += mis + (1 - (pc->mb_cols & 0x1));
|
|
prev_m += mis + (1 - (pc->mb_cols & 0x1));
|
|
cpi->mb.partition_info += mis + (1 - (pc->mb_cols & 0x1));
|
|
}
|
|
}
|
|
|
|
|
|
static void write_mb_modes_kf(const VP8_COMMON *c,
|
|
const MACROBLOCKD *xd,
|
|
const MODE_INFO *m,
|
|
int mode_info_stride,
|
|
vp8_writer *const bc) {
|
|
const int mis = mode_info_stride;
|
|
int ym;
|
|
int segment_id;
|
|
|
|
ym = m->mbmi.mode;
|
|
segment_id = m->mbmi.segment_id;
|
|
|
|
if (xd->update_mb_segmentation_map) {
|
|
write_mb_segid(bc, &m->mbmi, xd);
|
|
}
|
|
|
|
if (c->mb_no_coeff_skip &&
|
|
(!segfeature_active(xd, segment_id, SEG_LVL_EOB) ||
|
|
(get_segdata(xd, segment_id, SEG_LVL_EOB) != 0))) {
|
|
int skip_coeff = m->mbmi.mb_skip_coeff;
|
|
#if CONFIG_SUPERBLOCKS
|
|
if (m->mbmi.encoded_as_sb) {
|
|
skip_coeff &= m[1].mbmi.mb_skip_coeff;
|
|
skip_coeff &= m[mis].mbmi.mb_skip_coeff;
|
|
skip_coeff &= m[mis + 1].mbmi.mb_skip_coeff;
|
|
}
|
|
#endif
|
|
vp8_encode_bool(bc, skip_coeff,
|
|
get_pred_prob(c, xd, PRED_MBSKIP));
|
|
}
|
|
|
|
#if CONFIG_SUPERBLOCKS
|
|
if (m->mbmi.encoded_as_sb) {
|
|
sb_kfwrite_ymode(bc, ym,
|
|
c->sb_kf_ymode_prob[c->kf_ymode_probs_index]);
|
|
} else
|
|
#endif
|
|
{
|
|
kfwrite_ymode(bc, ym,
|
|
c->kf_ymode_prob[c->kf_ymode_probs_index]);
|
|
}
|
|
|
|
if (ym == B_PRED) {
|
|
const int mis = c->mode_info_stride;
|
|
int i = 0;
|
|
#if CONFIG_COMP_INTRA_PRED
|
|
int uses_second =
|
|
m->bmi[0].as_mode.second !=
|
|
(B_PREDICTION_MODE)(B_DC_PRED - 1);
|
|
vp8_write(bc, uses_second, 128);
|
|
#endif
|
|
do {
|
|
const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
|
|
const B_PREDICTION_MODE L = left_block_mode(m, i);
|
|
const int bm = m->bmi[i].as_mode.first;
|
|
#if CONFIG_COMP_INTRA_PRED
|
|
const int bm2 = m->bmi[i].as_mode.second;
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
++intra_mode_stats [A] [L] [bm];
|
|
#endif
|
|
|
|
write_bmode(bc, bm, c->kf_bmode_prob [A] [L]);
|
|
// printf(" mode: %d\n", bm);
|
|
#if CONFIG_COMP_INTRA_PRED
|
|
if (uses_second) {
|
|
write_bmode(bc, bm2, c->kf_bmode_prob [A] [L]);
|
|
}
|
|
#endif
|
|
} while (++i < 16);
|
|
}
|
|
if (ym == I8X8_PRED) {
|
|
write_i8x8_mode(bc, m->bmi[0].as_mode.first,
|
|
c->fc.i8x8_mode_prob);
|
|
// printf(" mode: %d\n", m->bmi[0].as_mode.first); fflush(stdout);
|
|
write_i8x8_mode(bc, m->bmi[2].as_mode.first,
|
|
c->fc.i8x8_mode_prob);
|
|
// printf(" mode: %d\n", m->bmi[2].as_mode.first); fflush(stdout);
|
|
write_i8x8_mode(bc, m->bmi[8].as_mode.first,
|
|
c->fc.i8x8_mode_prob);
|
|
// printf(" mode: %d\n", m->bmi[8].as_mode.first); fflush(stdout);
|
|
write_i8x8_mode(bc, m->bmi[10].as_mode.first,
|
|
c->fc.i8x8_mode_prob);
|
|
// printf(" mode: %d\n", m->bmi[10].as_mode.first); fflush(stdout);
|
|
} else
|
|
write_uv_mode(bc, m->mbmi.uv_mode, c->kf_uv_mode_prob[ym]);
|
|
|
|
if (ym <= I8X8_PRED && c->txfm_mode == TX_MODE_SELECT &&
|
|
!((c->mb_no_coeff_skip && m->mbmi.mb_skip_coeff) ||
|
|
(segfeature_active(xd, segment_id, SEG_LVL_EOB) &&
|
|
get_segdata(xd, segment_id, SEG_LVL_EOB) == 0))) {
|
|
TX_SIZE sz = m->mbmi.txfm_size;
|
|
// FIXME(rbultje) code ternary symbol once all experiments are merged
|
|
vp8_write(bc, sz != TX_4X4, c->prob_tx[0]);
|
|
if (sz != TX_4X4 && ym <= TM_PRED)
|
|
vp8_write(bc, sz != TX_8X8, c->prob_tx[1]);
|
|
}
|
|
}
|
|
|
|
static void write_kfmodes(VP8_COMP* const cpi, vp8_writer* const bc) {
|
|
VP8_COMMON *const c = &cpi->common;
|
|
const int mis = c->mode_info_stride;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
MODE_INFO *m;
|
|
int i;
|
|
int row, col;
|
|
int mb_row, mb_col;
|
|
int row_delta[4] = { 0, +1, 0, -1};
|
|
int col_delta[4] = { +1, -1, +1, +1};
|
|
TOKENEXTRA *tok = cpi->tok;
|
|
TOKENEXTRA *tok_end = tok + cpi->tok_count;
|
|
|
|
mb_row = 0;
|
|
for (row = 0; row < c->mb_rows; row += 2) {
|
|
m = c->mi + row * mis;
|
|
|
|
mb_col = 0;
|
|
for (col = 0; col < c->mb_cols; col += 2) {
|
|
#if CONFIG_SUPERBLOCKS
|
|
vp8_write(bc, m->mbmi.encoded_as_sb, c->sb_coded);
|
|
#endif
|
|
// Process the 4 MBs in the order:
|
|
// top-left, top-right, bottom-left, bottom-right
|
|
for (i = 0; i < 4; i++) {
|
|
int dy = row_delta[i];
|
|
int dx = col_delta[i];
|
|
int offset_extended = dy * mis + dx;
|
|
|
|
if ((mb_row >= c->mb_rows) || (mb_col >= c->mb_cols)) {
|
|
// MB lies outside frame, move on
|
|
mb_row += dy;
|
|
mb_col += dx;
|
|
m += offset_extended;
|
|
continue;
|
|
}
|
|
|
|
// Make sure the MacroBlockD mode info pointer is set correctly
|
|
xd->mode_info_context = m;
|
|
|
|
write_mb_modes_kf(c, xd, m, mis, bc);
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 8;
|
|
#endif
|
|
assert(tok < tok_end);
|
|
pack_mb_tokens(bc, &tok, tok_end);
|
|
|
|
#if CONFIG_SUPERBLOCKS
|
|
if (m->mbmi.encoded_as_sb) {
|
|
assert(!i);
|
|
mb_col += 2;
|
|
m += 2;
|
|
break;
|
|
}
|
|
#endif
|
|
// Next MB
|
|
mb_row += dy;
|
|
mb_col += dx;
|
|
m += offset_extended;
|
|
}
|
|
}
|
|
mb_row += 2;
|
|
}
|
|
}
|
|
|
|
|
|
/* This function is used for debugging probability trees. */
|
|
static void print_prob_tree(vp8_prob
|
|
coef_probs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES]) {
|
|
/* print coef probability tree */
|
|
int i, j, k, l;
|
|
FILE *f = fopen("enc_tree_probs.txt", "a");
|
|
fprintf(f, "{\n");
|
|
for (i = 0; i < BLOCK_TYPES; i++) {
|
|
fprintf(f, " {\n");
|
|
for (j = 0; j < COEF_BANDS; j++) {
|
|
fprintf(f, " {\n");
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
|
|
fprintf(f, " {");
|
|
for (l = 0; l < ENTROPY_NODES; l++) {
|
|
fprintf(f, "%3u, ",
|
|
(unsigned int)(coef_probs [i][j][k][l]));
|
|
}
|
|
fprintf(f, " }\n");
|
|
}
|
|
fprintf(f, " }\n");
|
|
}
|
|
fprintf(f, " }\n");
|
|
}
|
|
fprintf(f, "}\n");
|
|
fclose(f);
|
|
}
|
|
|
|
|
|
void build_coeff_contexts(VP8_COMP *cpi) {
|
|
int i = 0, j, k;
|
|
#ifdef ENTROPY_STATS
|
|
int t = 0;
|
|
#endif
|
|
for (i = 0; i < BLOCK_TYPES; ++i) {
|
|
for (j = 0; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
vp8_tree_probs_from_distribution(
|
|
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
|
|
cpi->frame_coef_probs [i][j][k],
|
|
cpi->frame_branch_ct [i][j][k],
|
|
cpi->coef_counts [i][j][k],
|
|
256, 1
|
|
);
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing)
|
|
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
|
|
context_counters[i][j][k][t] += cpi->coef_counts[i][j][k][t];
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < BLOCK_TYPES; ++i) {
|
|
for (j = 0; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
vp8_tree_probs_from_distribution(
|
|
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
|
|
cpi->frame_hybrid_coef_probs [i][j][k],
|
|
cpi->frame_hybrid_branch_ct [i][j][k],
|
|
cpi->hybrid_coef_counts [i][j][k],
|
|
256, 1
|
|
);
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing)
|
|
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
|
|
hybrid_context_counters[i][j][k][t] += cpi->hybrid_coef_counts[i][j][k][t];
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cpi->common.txfm_mode != ONLY_4X4) {
|
|
for (i = 0; i < BLOCK_TYPES_8X8; ++i) {
|
|
for (j = 0; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
/* at every context */
|
|
/* calc probs and branch cts for this frame only */
|
|
// vp8_prob new_p [ENTROPY_NODES];
|
|
// unsigned int branch_ct [ENTROPY_NODES] [2];
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
vp8_tree_probs_from_distribution(
|
|
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
|
|
cpi->frame_coef_probs_8x8 [i][j][k],
|
|
cpi->frame_branch_ct_8x8 [i][j][k],
|
|
cpi->coef_counts_8x8 [i][j][k],
|
|
256, 1
|
|
);
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing)
|
|
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
|
|
context_counters_8x8[i][j][k][t] += cpi->coef_counts_8x8[i][j][k][t];
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < BLOCK_TYPES_8X8; ++i) {
|
|
for (j = 0; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
/* at every context */
|
|
/* calc probs and branch cts for this frame only */
|
|
// vp8_prob new_p [ENTROPY_NODES];
|
|
// unsigned int branch_ct [ENTROPY_NODES] [2];
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
vp8_tree_probs_from_distribution(
|
|
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
|
|
cpi->frame_hybrid_coef_probs_8x8 [i][j][k],
|
|
cpi->frame_hybrid_branch_ct_8x8 [i][j][k],
|
|
cpi->hybrid_coef_counts_8x8 [i][j][k],
|
|
256, 1
|
|
);
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing)
|
|
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
|
|
hybrid_context_counters_8x8[i][j][k][t] += cpi->hybrid_coef_counts_8x8[i][j][k][t];
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cpi->common.txfm_mode > ALLOW_8X8) {
|
|
for (i = 0; i < BLOCK_TYPES_16X16; ++i) {
|
|
for (j = 0; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
vp8_tree_probs_from_distribution(
|
|
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
|
|
cpi->frame_coef_probs_16x16[i][j][k],
|
|
cpi->frame_branch_ct_16x16[i][j][k],
|
|
cpi->coef_counts_16x16[i][j][k], 256, 1);
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing)
|
|
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
|
|
context_counters_16x16[i][j][k][t] += cpi->coef_counts_16x16[i][j][k][t];
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < BLOCK_TYPES_16X16; ++i) {
|
|
for (j = 0; j < COEF_BANDS; ++j) {
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
vp8_tree_probs_from_distribution(
|
|
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
|
|
cpi->frame_hybrid_coef_probs_16x16[i][j][k],
|
|
cpi->frame_hybrid_branch_ct_16x16[i][j][k],
|
|
cpi->hybrid_coef_counts_16x16[i][j][k], 256, 1);
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing)
|
|
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
|
|
hybrid_context_counters_16x16[i][j][k][t] += cpi->hybrid_coef_counts_16x16[i][j][k][t];
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_coef_probs_common(
|
|
vp8_writer* const bc,
|
|
vp8_prob new_frame_coef_probs[BLOCK_TYPES][COEF_BANDS]
|
|
[PREV_COEF_CONTEXTS][ENTROPY_NODES],
|
|
vp8_prob old_frame_coef_probs[BLOCK_TYPES][COEF_BANDS]
|
|
[PREV_COEF_CONTEXTS][ENTROPY_NODES],
|
|
unsigned int frame_branch_ct[BLOCK_TYPES][COEF_BANDS]
|
|
[PREV_COEF_CONTEXTS][ENTROPY_NODES][2]) {
|
|
int i, j, k, t;
|
|
int update[2] = {0, 0};
|
|
int savings;
|
|
// vp8_prob bestupd = find_coef_update_prob(cpi);
|
|
|
|
/* dry run to see if there is any udpate at all needed */
|
|
savings = 0;
|
|
for (i = 0; i < BLOCK_TYPES; ++i) {
|
|
for (j = !i; j < COEF_BANDS; ++j) {
|
|
int prev_coef_savings[ENTROPY_NODES] = {0};
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
for (t = 0; t < ENTROPY_NODES; ++t) {
|
|
vp8_prob newp = new_frame_coef_probs[i][j][k][t];
|
|
const vp8_prob oldp = old_frame_coef_probs[i][j][k][t];
|
|
const vp8_prob upd = COEF_UPDATE_PROB;
|
|
int s = prev_coef_savings[t];
|
|
int u = 0;
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
#if defined(SEARCH_NEWP)
|
|
s = prob_diff_update_savings_search(
|
|
frame_branch_ct[i][j][k][t],
|
|
oldp, &newp, upd);
|
|
if (s > 0 && newp != oldp)
|
|
u = 1;
|
|
if (u)
|
|
savings += s - (int)(vp8_cost_zero(upd));
|
|
else
|
|
savings -= (int)(vp8_cost_zero(upd));
|
|
#else
|
|
s = prob_update_savings(
|
|
frame_branch_ct[i][j][k][t],
|
|
oldp, newp, upd);
|
|
if (s > 0)
|
|
u = 1;
|
|
if (u)
|
|
savings += s;
|
|
#endif
|
|
|
|
update[u]++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// printf("Update %d %d, savings %d\n", update[0], update[1], savings);
|
|
/* Is coef updated at all */
|
|
if (update[1] == 0 || savings < 0) {
|
|
vp8_write_bit(bc, 0);
|
|
} else {
|
|
vp8_write_bit(bc, 1);
|
|
for (i = 0; i < BLOCK_TYPES; ++i) {
|
|
for (j = !i; j < COEF_BANDS; ++j) {
|
|
int prev_coef_savings[ENTROPY_NODES] = {0};
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k) {
|
|
// calc probs and branch cts for this frame only
|
|
for (t = 0; t < ENTROPY_NODES; ++t) {
|
|
vp8_prob newp = new_frame_coef_probs[i][j][k][t];
|
|
vp8_prob *oldp = old_frame_coef_probs[i][j][k] + t;
|
|
const vp8_prob upd = COEF_UPDATE_PROB;
|
|
int s = prev_coef_savings[t];
|
|
int u = 0;
|
|
if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0)))
|
|
continue;
|
|
|
|
#if defined(SEARCH_NEWP)
|
|
s = prob_diff_update_savings_search(
|
|
frame_branch_ct[i][j][k][t],
|
|
*oldp, &newp, upd);
|
|
if (s > 0 && newp != *oldp)
|
|
u = 1;
|
|
#else
|
|
s = prob_update_savings(
|
|
frame_branch_ct[i][j][k][t],
|
|
*oldp, newp, upd);
|
|
if (s > 0)
|
|
u = 1;
|
|
#endif
|
|
vp8_write(bc, u, upd);
|
|
#ifdef ENTROPY_STATS
|
|
if (!cpi->dummy_packing)
|
|
++ tree_update_hist [i][j][k][t] [u];
|
|
#endif
|
|
if (u) {
|
|
/* send/use new probability */
|
|
write_prob_diff_update(bc, newp, *oldp);
|
|
*oldp = newp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_coef_probs(VP8_COMP* const cpi, vp8_writer* const bc) {
|
|
vp8_clear_system_state();
|
|
|
|
// Build the cofficient contexts based on counts collected in encode loop
|
|
build_coeff_contexts(cpi);
|
|
|
|
update_coef_probs_common(bc,
|
|
cpi->frame_coef_probs,
|
|
cpi->common.fc.coef_probs,
|
|
cpi->frame_branch_ct);
|
|
|
|
update_coef_probs_common(bc,
|
|
cpi->frame_hybrid_coef_probs,
|
|
cpi->common.fc.hybrid_coef_probs,
|
|
cpi->frame_hybrid_branch_ct);
|
|
|
|
/* do not do this if not even allowed */
|
|
if (cpi->common.txfm_mode != ONLY_4X4) {
|
|
update_coef_probs_common(bc,
|
|
cpi->frame_coef_probs_8x8,
|
|
cpi->common.fc.coef_probs_8x8,
|
|
cpi->frame_branch_ct_8x8);
|
|
|
|
update_coef_probs_common(bc,
|
|
cpi->frame_hybrid_coef_probs_8x8,
|
|
cpi->common.fc.hybrid_coef_probs_8x8,
|
|
cpi->frame_hybrid_branch_ct_8x8);
|
|
}
|
|
|
|
if (cpi->common.txfm_mode > ALLOW_8X8) {
|
|
update_coef_probs_common(bc,
|
|
cpi->frame_coef_probs_16x16,
|
|
cpi->common.fc.coef_probs_16x16,
|
|
cpi->frame_branch_ct_16x16);
|
|
update_coef_probs_common(bc,
|
|
cpi->frame_hybrid_coef_probs_16x16,
|
|
cpi->common.fc.hybrid_coef_probs_16x16,
|
|
cpi->frame_hybrid_branch_ct_16x16);
|
|
}
|
|
}
|
|
|
|
#ifdef PACKET_TESTING
|
|
FILE *vpxlogc = 0;
|
|
#endif
|
|
|
|
static void put_delta_q(vp8_writer *bc, int delta_q) {
|
|
if (delta_q != 0) {
|
|
vp8_write_bit(bc, 1);
|
|
vp8_write_literal(bc, abs(delta_q), 4);
|
|
|
|
if (delta_q < 0)
|
|
vp8_write_bit(bc, 1);
|
|
else
|
|
vp8_write_bit(bc, 0);
|
|
} else
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
|
|
static void decide_kf_ymode_entropy(VP8_COMP *cpi) {
|
|
|
|
int mode_cost[MB_MODE_COUNT];
|
|
int cost;
|
|
int bestcost = INT_MAX;
|
|
int bestindex = 0;
|
|
int i, j;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
vp8_cost_tokens(mode_cost, cpi->common.kf_ymode_prob[i], vp8_kf_ymode_tree);
|
|
cost = 0;
|
|
for (j = 0; j < VP8_YMODES; j++) {
|
|
cost += mode_cost[j] * cpi->ymode_count[j];
|
|
}
|
|
#if CONFIG_SUPERBLOCKS
|
|
vp8_cost_tokens(mode_cost, cpi->common.sb_kf_ymode_prob[i],
|
|
vp8_sb_ymode_tree);
|
|
for (j = 0; j < VP8_I32X32_MODES; j++) {
|
|
cost += mode_cost[j] * cpi->sb_ymode_count[j];
|
|
}
|
|
#endif
|
|
if (cost < bestcost) {
|
|
bestindex = i;
|
|
bestcost = cost;
|
|
}
|
|
}
|
|
cpi->common.kf_ymode_probs_index = bestindex;
|
|
|
|
}
|
|
static void segment_reference_frames(VP8_COMP *cpi) {
|
|
VP8_COMMON *oci = &cpi->common;
|
|
MODE_INFO *mi = oci->mi;
|
|
int ref[MAX_MB_SEGMENTS] = {0};
|
|
int i, j;
|
|
int mb_index = 0;
|
|
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
|
|
|
|
for (i = 0; i < oci->mb_rows; i++) {
|
|
for (j = 0; j < oci->mb_cols; j++, mb_index++) {
|
|
ref[mi[mb_index].mbmi.segment_id] |= (1 << mi[mb_index].mbmi.ref_frame);
|
|
}
|
|
mb_index++;
|
|
}
|
|
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
|
|
enable_segfeature(xd, i, SEG_LVL_REF_FRAME);
|
|
set_segdata(xd, i, SEG_LVL_REF_FRAME, ref[i]);
|
|
}
|
|
}
|
|
|
|
void vp8_pack_bitstream(VP8_COMP *cpi, unsigned char *dest, unsigned long *size) {
|
|
int i, j;
|
|
VP8_HEADER oh;
|
|
VP8_COMMON *const pc = &cpi->common;
|
|
vp8_writer header_bc, residual_bc;
|
|
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
|
|
int extra_bytes_packed = 0;
|
|
|
|
unsigned char *cx_data = dest;
|
|
|
|
oh.show_frame = (int) pc->show_frame;
|
|
oh.type = (int)pc->frame_type;
|
|
oh.version = pc->version;
|
|
oh.first_partition_length_in_bytes = 0;
|
|
|
|
cx_data += 3;
|
|
|
|
#if defined(SECTIONBITS_OUTPUT)
|
|
Sectionbits[active_section = 1] += sizeof(VP8_HEADER) * 8 * 256;
|
|
#endif
|
|
|
|
compute_update_table();
|
|
|
|
// vp8_kf_default_bmode_probs() is called in vp8_setup_key_frame() once for each
|
|
// K frame before encode frame. pc->kf_bmode_prob doesn't get changed anywhere
|
|
// else. No need to call it again here. --yw
|
|
// vp8_kf_default_bmode_probs( pc->kf_bmode_prob);
|
|
|
|
// every keyframe send startcode, width, height, scale factor, clamp and color type
|
|
if (oh.type == KEY_FRAME) {
|
|
int v;
|
|
|
|
// Start / synch code
|
|
cx_data[0] = 0x9D;
|
|
cx_data[1] = 0x01;
|
|
cx_data[2] = 0x2a;
|
|
|
|
v = (pc->horiz_scale << 14) | pc->Width;
|
|
cx_data[3] = v;
|
|
cx_data[4] = v >> 8;
|
|
|
|
v = (pc->vert_scale << 14) | pc->Height;
|
|
cx_data[5] = v;
|
|
cx_data[6] = v >> 8;
|
|
|
|
extra_bytes_packed = 7;
|
|
cx_data += extra_bytes_packed;
|
|
|
|
vp8_start_encode(&header_bc, cx_data);
|
|
|
|
// signal clr type
|
|
vp8_write_bit(&header_bc, pc->clr_type);
|
|
vp8_write_bit(&header_bc, pc->clamp_type);
|
|
|
|
} else {
|
|
vp8_start_encode(&header_bc, cx_data);
|
|
}
|
|
|
|
// Signal whether or not Segmentation is enabled
|
|
vp8_write_bit(&header_bc, (xd->segmentation_enabled) ? 1 : 0);
|
|
|
|
// Indicate which features are enabled
|
|
if (xd->segmentation_enabled) {
|
|
// Indicate whether or not the segmentation map is being updated.
|
|
vp8_write_bit(&header_bc, (xd->update_mb_segmentation_map) ? 1 : 0);
|
|
|
|
// If it is, then indicate the method that will be used.
|
|
if (xd->update_mb_segmentation_map) {
|
|
// Select the coding strategy (temporal or spatial)
|
|
choose_segmap_coding_method(cpi);
|
|
// Send the tree probabilities used to decode unpredicted
|
|
// macro-block segments
|
|
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) {
|
|
int data = xd->mb_segment_tree_probs[i];
|
|
|
|
if (data != 255) {
|
|
vp8_write_bit(&header_bc, 1);
|
|
vp8_write_literal(&header_bc, data, 8);
|
|
} else {
|
|
vp8_write_bit(&header_bc, 0);
|
|
}
|
|
}
|
|
|
|
// Write out the chosen coding method.
|
|
vp8_write_bit(&header_bc, (pc->temporal_update) ? 1 : 0);
|
|
if (pc->temporal_update) {
|
|
for (i = 0; i < PREDICTION_PROBS; i++) {
|
|
int data = pc->segment_pred_probs[i];
|
|
|
|
if (data != 255) {
|
|
vp8_write_bit(&header_bc, 1);
|
|
vp8_write_literal(&header_bc, data, 8);
|
|
} else {
|
|
vp8_write_bit(&header_bc, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
vp8_write_bit(&header_bc, (xd->update_mb_segmentation_data) ? 1 : 0);
|
|
|
|
// segment_reference_frames(cpi);
|
|
|
|
if (xd->update_mb_segmentation_data) {
|
|
signed char Data;
|
|
|
|
vp8_write_bit(&header_bc, (xd->mb_segment_abs_delta) ? 1 : 0);
|
|
|
|
// For each segments id...
|
|
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
|
|
// For each segmentation codable feature...
|
|
for (j = 0; j < SEG_LVL_MAX; j++) {
|
|
Data = get_segdata(xd, i, j);
|
|
|
|
|
|
#if CONFIG_FEATUREUPDATES
|
|
|
|
// check if there's an update
|
|
if (segfeature_changed(xd, i, j)) {
|
|
vp8_write_bit(&header_bc, 1);
|
|
|
|
if (segfeature_active(xd, i, j)) {
|
|
// this bit is to say we are still
|
|
// active/ if we were inactive
|
|
// this is unnecessary
|
|
if (old_segfeature_active(xd, i, j)) {
|
|
vp8_write_bit(&header_bc, 1);
|
|
}
|
|
// Is the segment data signed..
|
|
if (is_segfeature_signed(j)) {
|
|
// Encode the relevant feature data
|
|
if (Data < 0) {
|
|
Data = - Data;
|
|
vp8_write_literal(&header_bc, Data,
|
|
seg_feature_data_bits(j));
|
|
vp8_write_bit(&header_bc, 1);
|
|
} else {
|
|
vp8_write_literal(&header_bc, Data,
|
|
seg_feature_data_bits(j));
|
|
vp8_write_bit(&header_bc, 0);
|
|
}
|
|
}
|
|
// Unsigned data element so no sign bit needed
|
|
else
|
|
vp8_write_literal(&header_bc, Data,
|
|
seg_feature_data_bits(j));
|
|
}
|
|
// feature is inactive now
|
|
else if (old_segfeature_active(xd, i, j)) {
|
|
vp8_write_bit(&header_bc, 0);
|
|
}
|
|
} else {
|
|
vp8_write_bit(&header_bc, 0);
|
|
}
|
|
#else
|
|
|
|
// If the feature is enabled...
|
|
if (segfeature_active(xd, i, j)) {
|
|
vp8_write_bit(&header_bc, 1);
|
|
|
|
// Is the segment data signed..
|
|
if (is_segfeature_signed(j)) {
|
|
// Encode the relevant feature data
|
|
if (Data < 0) {
|
|
Data = - Data;
|
|
vp8_write_literal(&header_bc, Data,
|
|
seg_feature_data_bits(j));
|
|
vp8_write_bit(&header_bc, 1);
|
|
} else {
|
|
vp8_write_literal(&header_bc, Data,
|
|
seg_feature_data_bits(j));
|
|
vp8_write_bit(&header_bc, 0);
|
|
}
|
|
}
|
|
// Unsigned data element so no sign bit needed
|
|
else
|
|
vp8_write_literal(&header_bc, Data,
|
|
seg_feature_data_bits(j));
|
|
} else
|
|
vp8_write_bit(&header_bc, 0);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_FEATUREUPDATES
|
|
// save the segment info for updates next frame
|
|
save_segment_info(xd);
|
|
#endif
|
|
|
|
}
|
|
|
|
// Encode the common prediction model status flag probability updates for
|
|
// the reference frame
|
|
update_refpred_stats(cpi);
|
|
if (pc->frame_type != KEY_FRAME) {
|
|
for (i = 0; i < PREDICTION_PROBS; i++) {
|
|
if (cpi->ref_pred_probs_update[i]) {
|
|
vp8_write_bit(&header_bc, 1);
|
|
vp8_write_literal(&header_bc, pc->ref_pred_probs[i], 8);
|
|
} else {
|
|
vp8_write_bit(&header_bc, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_SUPERBLOCKS
|
|
{
|
|
/* sb mode probability */
|
|
const int sb_max = (((pc->mb_rows + 1) >> 1) * ((pc->mb_cols + 1) >> 1));
|
|
|
|
pc->sb_coded = get_prob(sb_max - cpi->sb_count, sb_max);
|
|
vp8_write_literal(&header_bc, pc->sb_coded, 8);
|
|
}
|
|
#endif
|
|
|
|
{
|
|
if (pc->txfm_mode == TX_MODE_SELECT) {
|
|
pc->prob_tx[0] = get_prob(cpi->txfm_count[0] + cpi->txfm_count_8x8p[0],
|
|
cpi->txfm_count[0] + cpi->txfm_count[1] + cpi->txfm_count[2] +
|
|
cpi->txfm_count_8x8p[0] + cpi->txfm_count_8x8p[1]);
|
|
pc->prob_tx[1] = get_prob(cpi->txfm_count[1], cpi->txfm_count[1] + cpi->txfm_count[2]);
|
|
} else {
|
|
pc->prob_tx[0] = 128;
|
|
pc->prob_tx[1] = 128;
|
|
}
|
|
vp8_write_literal(&header_bc, pc->txfm_mode, 2);
|
|
if (pc->txfm_mode == TX_MODE_SELECT) {
|
|
vp8_write_literal(&header_bc, pc->prob_tx[0], 8);
|
|
vp8_write_literal(&header_bc, pc->prob_tx[1], 8);
|
|
}
|
|
}
|
|
|
|
// Encode the loop filter level and type
|
|
vp8_write_bit(&header_bc, pc->filter_type);
|
|
vp8_write_literal(&header_bc, pc->filter_level, 6);
|
|
vp8_write_literal(&header_bc, pc->sharpness_level, 3);
|
|
|
|
// Write out loop filter deltas applied at the MB level based on mode or ref frame (if they are enabled).
|
|
vp8_write_bit(&header_bc, (xd->mode_ref_lf_delta_enabled) ? 1 : 0);
|
|
|
|
if (xd->mode_ref_lf_delta_enabled) {
|
|
// Do the deltas need to be updated
|
|
int send_update = xd->mode_ref_lf_delta_update;
|
|
|
|
vp8_write_bit(&header_bc, send_update);
|
|
if (send_update) {
|
|
int Data;
|
|
|
|
// Send update
|
|
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
|
|
Data = xd->ref_lf_deltas[i];
|
|
|
|
// Frame level data
|
|
if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i]) {
|
|
xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i];
|
|
vp8_write_bit(&header_bc, 1);
|
|
|
|
if (Data > 0) {
|
|
vp8_write_literal(&header_bc, (Data & 0x3F), 6);
|
|
vp8_write_bit(&header_bc, 0); // sign
|
|
} else {
|
|
Data = -Data;
|
|
vp8_write_literal(&header_bc, (Data & 0x3F), 6);
|
|
vp8_write_bit(&header_bc, 1); // sign
|
|
}
|
|
} else {
|
|
vp8_write_bit(&header_bc, 0);
|
|
}
|
|
}
|
|
|
|
// Send update
|
|
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
|
|
Data = xd->mode_lf_deltas[i];
|
|
|
|
if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i]) {
|
|
xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i];
|
|
vp8_write_bit(&header_bc, 1);
|
|
|
|
if (Data > 0) {
|
|
vp8_write_literal(&header_bc, (Data & 0x3F), 6);
|
|
vp8_write_bit(&header_bc, 0); // sign
|
|
} else {
|
|
Data = -Data;
|
|
vp8_write_literal(&header_bc, (Data & 0x3F), 6);
|
|
vp8_write_bit(&header_bc, 1); // sign
|
|
}
|
|
} else {
|
|
vp8_write_bit(&header_bc, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// signal here is multi token partition is enabled
|
|
// vp8_write_literal(&header_bc, pc->multi_token_partition, 2);
|
|
vp8_write_literal(&header_bc, 0, 2);
|
|
|
|
// Frame Q baseline quantizer index
|
|
vp8_write_literal(&header_bc, pc->base_qindex, QINDEX_BITS);
|
|
|
|
// Transmit Dc, Second order and Uv quantizer delta information
|
|
put_delta_q(&header_bc, pc->y1dc_delta_q);
|
|
put_delta_q(&header_bc, pc->y2dc_delta_q);
|
|
put_delta_q(&header_bc, pc->y2ac_delta_q);
|
|
put_delta_q(&header_bc, pc->uvdc_delta_q);
|
|
put_delta_q(&header_bc, pc->uvac_delta_q);
|
|
|
|
// When there is a key frame all reference buffers are updated using the new key frame
|
|
if (pc->frame_type != KEY_FRAME) {
|
|
// Should the GF or ARF be updated using the transmitted frame or buffer
|
|
vp8_write_bit(&header_bc, pc->refresh_golden_frame);
|
|
vp8_write_bit(&header_bc, pc->refresh_alt_ref_frame);
|
|
|
|
// For inter frames the current default behavior is that when
|
|
// cm->refresh_golden_frame is set we copy the old GF over to
|
|
// the ARF buffer. This is purely an encoder decision at present.
|
|
if (pc->refresh_golden_frame)
|
|
pc->copy_buffer_to_arf = 2;
|
|
|
|
// If not being updated from current frame should either GF or ARF be updated from another buffer
|
|
if (!pc->refresh_golden_frame)
|
|
vp8_write_literal(&header_bc, pc->copy_buffer_to_gf, 2);
|
|
|
|
if (!pc->refresh_alt_ref_frame)
|
|
vp8_write_literal(&header_bc, pc->copy_buffer_to_arf, 2);
|
|
|
|
// Indicate reference frame sign bias for Golden and ARF frames (always 0 for last frame buffer)
|
|
vp8_write_bit(&header_bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]);
|
|
vp8_write_bit(&header_bc, pc->ref_frame_sign_bias[ALTREF_FRAME]);
|
|
|
|
// Signal whether to allow high MV precision
|
|
vp8_write_bit(&header_bc, (xd->allow_high_precision_mv) ? 1 : 0);
|
|
if (pc->mcomp_filter_type == SWITCHABLE) {
|
|
/* Check to see if only one of the filters is actually used */
|
|
int count[VP8_SWITCHABLE_FILTERS];
|
|
int i, j, c = 0;
|
|
for (i = 0; i < VP8_SWITCHABLE_FILTERS; ++i) {
|
|
count[i] = 0;
|
|
for (j = 0; j <= VP8_SWITCHABLE_FILTERS; ++j) {
|
|
count[i] += cpi->switchable_interp_count[j][i];
|
|
}
|
|
c += (count[i] > 0);
|
|
}
|
|
if (c == 1) {
|
|
/* Only one filter is used. So set the filter at frame level */
|
|
for (i = 0; i < VP8_SWITCHABLE_FILTERS; ++i) {
|
|
if (count[i]) {
|
|
pc->mcomp_filter_type = vp8_switchable_interp[i];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Signal the type of subpel filter to use
|
|
vp8_write_bit(&header_bc, (pc->mcomp_filter_type == SWITCHABLE));
|
|
if (pc->mcomp_filter_type != SWITCHABLE)
|
|
vp8_write_literal(&header_bc, (pc->mcomp_filter_type), 2);
|
|
}
|
|
|
|
vp8_write_bit(&header_bc, pc->refresh_entropy_probs);
|
|
|
|
if (pc->frame_type != KEY_FRAME)
|
|
vp8_write_bit(&header_bc, pc->refresh_last_frame);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
if (pc->frame_type == INTER_FRAME)
|
|
active_section = 0;
|
|
else
|
|
active_section = 7;
|
|
#endif
|
|
|
|
vp8_clear_system_state(); // __asm emms;
|
|
|
|
vp8_copy(cpi->common.fc.pre_coef_probs, cpi->common.fc.coef_probs);
|
|
vp8_copy(cpi->common.fc.pre_hybrid_coef_probs, cpi->common.fc.hybrid_coef_probs);
|
|
vp8_copy(cpi->common.fc.pre_coef_probs_8x8, cpi->common.fc.coef_probs_8x8);
|
|
vp8_copy(cpi->common.fc.pre_hybrid_coef_probs_8x8, cpi->common.fc.hybrid_coef_probs_8x8);
|
|
vp8_copy(cpi->common.fc.pre_coef_probs_16x16, cpi->common.fc.coef_probs_16x16);
|
|
vp8_copy(cpi->common.fc.pre_hybrid_coef_probs_16x16, cpi->common.fc.hybrid_coef_probs_16x16);
|
|
vp8_copy(cpi->common.fc.pre_ymode_prob, cpi->common.fc.ymode_prob);
|
|
vp8_copy(cpi->common.fc.pre_uv_mode_prob, cpi->common.fc.uv_mode_prob);
|
|
vp8_copy(cpi->common.fc.pre_bmode_prob, cpi->common.fc.bmode_prob);
|
|
vp8_copy(cpi->common.fc.pre_sub_mv_ref_prob, cpi->common.fc.sub_mv_ref_prob);
|
|
vp8_copy(cpi->common.fc.pre_mbsplit_prob, cpi->common.fc.mbsplit_prob);
|
|
vp8_copy(cpi->common.fc.pre_i8x8_mode_prob, cpi->common.fc.i8x8_mode_prob);
|
|
cpi->common.fc.pre_nmvc = cpi->common.fc.nmvc;
|
|
vp8_zero(cpi->sub_mv_ref_count);
|
|
vp8_zero(cpi->mbsplit_count);
|
|
vp8_zero(cpi->common.fc.mv_ref_ct)
|
|
vp8_zero(cpi->common.fc.mv_ref_ct_a)
|
|
|
|
update_coef_probs(cpi, &header_bc);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 2;
|
|
#endif
|
|
|
|
// Write out the mb_no_coeff_skip flag
|
|
vp8_write_bit(&header_bc, pc->mb_no_coeff_skip);
|
|
if (pc->mb_no_coeff_skip) {
|
|
int k;
|
|
|
|
update_skip_probs(cpi);
|
|
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
|
|
vp8_write_literal(&header_bc, pc->mbskip_pred_probs[k], 8);
|
|
}
|
|
|
|
if (pc->frame_type == KEY_FRAME) {
|
|
if (!pc->kf_ymode_probs_update) {
|
|
vp8_write_literal(&header_bc, pc->kf_ymode_probs_index, 3);
|
|
}
|
|
} else {
|
|
// Update the probabilities used to encode reference frame data
|
|
update_ref_probs(cpi);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 1;
|
|
#endif
|
|
|
|
#if CONFIG_PRED_FILTER
|
|
// Write the prediction filter mode used for this frame
|
|
vp8_write_literal(&header_bc, pc->pred_filter_mode, 2);
|
|
|
|
// Write prediction filter on/off probability if signaling at MB level
|
|
if (pc->pred_filter_mode == 2)
|
|
vp8_write_literal(&header_bc, pc->prob_pred_filter_off, 8);
|
|
|
|
#endif
|
|
if (pc->mcomp_filter_type == SWITCHABLE)
|
|
update_switchable_interp_probs(cpi, &header_bc);
|
|
|
|
vp8_write_literal(&header_bc, pc->prob_intra_coded, 8);
|
|
vp8_write_literal(&header_bc, pc->prob_last_coded, 8);
|
|
vp8_write_literal(&header_bc, pc->prob_gf_coded, 8);
|
|
|
|
{
|
|
const int comp_pred_mode = cpi->common.comp_pred_mode;
|
|
const int use_compound_pred = (comp_pred_mode != SINGLE_PREDICTION_ONLY);
|
|
const int use_hybrid_pred = (comp_pred_mode == HYBRID_PREDICTION);
|
|
|
|
vp8_write(&header_bc, use_compound_pred, 128);
|
|
if (use_compound_pred) {
|
|
vp8_write(&header_bc, use_hybrid_pred, 128);
|
|
if (use_hybrid_pred) {
|
|
for (i = 0; i < COMP_PRED_CONTEXTS; i++) {
|
|
pc->prob_comppred[i] = get_binary_prob(cpi->single_pred_count[i],
|
|
cpi->comp_pred_count[i]);
|
|
vp8_write_literal(&header_bc, pc->prob_comppred[i], 8);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
update_mbintra_mode_probs(cpi, &header_bc);
|
|
|
|
#if CONFIG_NEW_MVREF
|
|
// Temp defaults probabilities for ecnoding the MV ref id signal
|
|
vpx_memset(xd->mb_mv_ref_id_probs, 192, sizeof(xd->mb_mv_ref_id_probs));
|
|
#endif
|
|
|
|
vp8_write_nmvprobs(cpi, xd->allow_high_precision_mv, &header_bc);
|
|
}
|
|
|
|
vp8_stop_encode(&header_bc);
|
|
|
|
oh.first_partition_length_in_bytes = header_bc.pos;
|
|
|
|
/* update frame tag */
|
|
{
|
|
int v = (oh.first_partition_length_in_bytes << 5) |
|
|
(oh.show_frame << 4) |
|
|
(oh.version << 1) |
|
|
oh.type;
|
|
|
|
dest[0] = v;
|
|
dest[1] = v >> 8;
|
|
dest[2] = v >> 16;
|
|
}
|
|
|
|
*size = VP8_HEADER_SIZE + extra_bytes_packed + header_bc.pos;
|
|
vp8_start_encode(&residual_bc, cx_data + header_bc.pos);
|
|
|
|
if (pc->frame_type == KEY_FRAME) {
|
|
decide_kf_ymode_entropy(cpi);
|
|
write_kfmodes(cpi, &residual_bc);
|
|
} else {
|
|
pack_inter_mode_mvs(cpi, &residual_bc);
|
|
vp8_update_mode_context(&cpi->common);
|
|
}
|
|
|
|
|
|
vp8_stop_encode(&residual_bc);
|
|
|
|
*size += residual_bc.pos;
|
|
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
void print_tree_update_probs() {
|
|
int i, j, k, l;
|
|
FILE *f = fopen("coefupdprob.h", "w");
|
|
int Sum;
|
|
fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
|
|
|
|
fprintf(f, "const vp8_prob\n"
|
|
"vp8_coef_update_probs[BLOCK_TYPES]\n"
|
|
" [COEF_BANDS]\n"
|
|
" [PREV_COEF_CONTEXTS]\n"
|
|
" [ENTROPY_NODES] = {\n");
|
|
for (i = 0; i < BLOCK_TYPES; i++) {
|
|
fprintf(f, " { \n");
|
|
for (j = 0; j < COEF_BANDS; j++) {
|
|
fprintf(f, " {\n");
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
|
|
fprintf(f, " {");
|
|
for (l = 0; l < ENTROPY_NODES; l++) {
|
|
fprintf(f, "%3ld, ",
|
|
get_binary_prob(tree_update_hist[i][j][k][l][0],
|
|
tree_update_hist[i][j][k][l][1]));
|
|
}
|
|
fprintf(f, "},\n");
|
|
}
|
|
fprintf(f, " },\n");
|
|
}
|
|
fprintf(f, " },\n");
|
|
}
|
|
fprintf(f, "};\n");
|
|
|
|
fprintf(f, "const vp8_prob\n"
|
|
"vp8_coef_update_probs_8x8[BLOCK_TYPES_8X8]\n"
|
|
" [COEF_BANDS]\n"
|
|
" [PREV_COEF_CONTEXTS]\n"
|
|
" [ENTROPY_NODES] = {\n");
|
|
for (i = 0; i < BLOCK_TYPES_8X8; i++) {
|
|
fprintf(f, " { \n");
|
|
for (j = 0; j < COEF_BANDS; j++) {
|
|
fprintf(f, " {\n");
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
|
|
fprintf(f, " {");
|
|
for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++) {
|
|
fprintf(f, "%3ld, ",
|
|
get_binary_prob(tree_update_hist_8x8[i][j][k][l][0],
|
|
tree_update_hist_8x8[i][j][k][l][1]));
|
|
}
|
|
fprintf(f, "},\n");
|
|
}
|
|
fprintf(f, " },\n");
|
|
}
|
|
fprintf(f, " },\n");
|
|
}
|
|
|
|
fprintf(f, "const vp8_prob\n"
|
|
"vp8_coef_update_probs_16x16[BLOCK_TYPES_16X16]\n"
|
|
" [COEF_BANDS]\n"
|
|
" [PREV_COEF_CONTEXTS]\n"
|
|
" [ENTROPY_NODES] = {\n");
|
|
for (i = 0; i < BLOCK_TYPES_16X16; i++) {
|
|
fprintf(f, " { \n");
|
|
for (j = 0; j < COEF_BANDS; j++) {
|
|
fprintf(f, " {\n");
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
|
|
fprintf(f, " {");
|
|
for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++) {
|
|
fprintf(f, "%3ld, ",
|
|
get_binary_prob(tree_update_hist_16x16[i][j][k][l][0],
|
|
tree_update_hist_16x16[i][j][k][l][1]));
|
|
}
|
|
fprintf(f, "},\n");
|
|
}
|
|
fprintf(f, " },\n");
|
|
}
|
|
fprintf(f, " },\n");
|
|
}
|
|
|
|
fclose(f);
|
|
f = fopen("treeupdate.bin", "wb");
|
|
fwrite(tree_update_hist, sizeof(tree_update_hist), 1, f);
|
|
fwrite(tree_update_hist_8x8, sizeof(tree_update_hist_8x8), 1, f);
|
|
fwrite(tree_update_hist_16x16, sizeof(tree_update_hist_16x16), 1, f);
|
|
fclose(f);
|
|
}
|
|
#endif
|