vpx/vp8/encoder/onyx_if.c
Johann d393885af1 Remove halfpix specialization
This function only exists as a shortcut to subpixel variance with
predefined offsets. xoffset = 4 for horizontal, yoffset = 4 for vertical
and both for "hv"

Removing this allows the existing optimizations for the variance
functions to be called. Instead of having only sse2 optimizations, this
gives sse2, ssse3, msa and neon.

BUG=webm:1273

Change-Id: Ieb407b423b91b87d33c4263c6a1ad5e673b0efd6
2016-08-23 17:05:39 -07:00

5382 lines
176 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "./vpx_scale_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "./vp8_rtcd.h"
#include "vp8/common/onyxc_int.h"
#include "vp8/common/blockd.h"
#include "onyx_int.h"
#include "vp8/common/systemdependent.h"
#include "vp8/encoder/quantize.h"
#include "vp8/common/alloccommon.h"
#include "mcomp.h"
#include "firstpass.h"
#include "vpx_dsp/psnr.h"
#include "vpx_scale/vpx_scale.h"
#include "vp8/common/extend.h"
#include "ratectrl.h"
#include "vp8/common/quant_common.h"
#include "segmentation.h"
#if CONFIG_POSTPROC
#include "vp8/common/postproc.h"
#endif
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/reconintra.h"
#include "vp8/common/swapyv12buffer.h"
#include "vp8/common/threading.h"
#include "vpx_ports/vpx_timer.h"
#if ARCH_ARM
#include "vpx_ports/arm.h"
#endif
#if CONFIG_MULTI_RES_ENCODING
#include "mr_dissim.h"
#endif
#include "encodeframe.h"
#include <math.h>
#include <stdio.h>
#include <limits.h>
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
extern int vp8_update_coef_context(VP8_COMP *cpi);
extern void vp8_update_coef_probs(VP8_COMP *cpi);
#endif
extern void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
extern void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val);
extern void vp8cx_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *post, int filt_lvl,
int low_var_thresh, int flag);
extern void print_parms(VP8_CONFIG *ocf, char *filenam);
extern unsigned int vp8_get_processor_freq();
extern void print_tree_update_probs();
extern int vp8cx_create_encoder_threads(VP8_COMP *cpi);
extern void vp8cx_remove_encoder_threads(VP8_COMP *cpi);
int vp8_estimate_entropy_savings(VP8_COMP *cpi);
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest);
extern void vp8_temporal_filter_prepare_c(VP8_COMP *cpi, int distance);
static void set_default_lf_deltas(VP8_COMP *cpi);
extern const int vp8_gf_interval_table[101];
#if CONFIG_INTERNAL_STATS
#include "math.h"
#include "vpx_dsp/ssim.h"
#endif
#ifdef OUTPUT_YUV_SRC
FILE *yuv_file;
#endif
#ifdef OUTPUT_YUV_DENOISED
FILE *yuv_denoised_file;
#endif
#if 0
FILE *framepsnr;
FILE *kf_list;
FILE *keyfile;
#endif
#if 0
extern int skip_true_count;
extern int skip_false_count;
#endif
#ifdef VP8_ENTROPY_STATS
extern int intra_mode_stats[10][10][10];
#endif
#ifdef SPEEDSTATS
unsigned int frames_at_speed[16] = { 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 };
unsigned int tot_pm = 0;
unsigned int cnt_pm = 0;
unsigned int tot_ef = 0;
unsigned int cnt_ef = 0;
#endif
#ifdef MODE_STATS
extern unsigned __int64 Sectionbits[50];
extern int y_modes[5];
extern int uv_modes[4];
extern int b_modes[10];
extern int inter_y_modes[10];
extern int inter_uv_modes[4];
extern unsigned int inter_b_modes[15];
#endif
extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
extern const int qrounding_factors[129];
extern const int qzbin_factors[129];
extern void vp8cx_init_quantizer(VP8_COMP *cpi);
extern const int vp8cx_base_skip_false_prob[128];
/* Tables relating active max Q to active min Q */
static const unsigned char kf_low_motion_minq[QINDEX_RANGE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5,
5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 11,
11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16,
17, 17, 18, 18, 18, 18, 19, 20, 20, 21, 21, 22, 23, 23
};
static const unsigned char kf_high_motion_minq[QINDEX_RANGE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5,
5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10,
10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16,
16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21,
22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30
};
static const unsigned char gf_low_motion_minq[QINDEX_RANGE] = {
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3,
3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8,
8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15,
15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24,
25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34,
34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58
};
static const unsigned char gf_mid_motion_minq[QINDEX_RANGE] = {
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5,
5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11,
11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18,
18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37,
37, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
};
static const unsigned char gf_high_motion_minq[QINDEX_RANGE] = {
0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11,
12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21,
21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30,
31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40,
40, 41, 41, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80
};
static const unsigned char inter_minq[QINDEX_RANGE] = {
0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11,
11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24,
24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38,
39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53,
54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69,
70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
};
#ifdef PACKET_TESTING
extern FILE *vpxlogc;
#endif
static void save_layer_context(VP8_COMP *cpi) {
LAYER_CONTEXT *lc = &cpi->layer_context[cpi->current_layer];
/* Save layer dependent coding state */
lc->target_bandwidth = cpi->target_bandwidth;
lc->starting_buffer_level = cpi->oxcf.starting_buffer_level;
lc->optimal_buffer_level = cpi->oxcf.optimal_buffer_level;
lc->maximum_buffer_size = cpi->oxcf.maximum_buffer_size;
lc->starting_buffer_level_in_ms = cpi->oxcf.starting_buffer_level_in_ms;
lc->optimal_buffer_level_in_ms = cpi->oxcf.optimal_buffer_level_in_ms;
lc->maximum_buffer_size_in_ms = cpi->oxcf.maximum_buffer_size_in_ms;
lc->buffer_level = cpi->buffer_level;
lc->bits_off_target = cpi->bits_off_target;
lc->total_actual_bits = cpi->total_actual_bits;
lc->worst_quality = cpi->worst_quality;
lc->active_worst_quality = cpi->active_worst_quality;
lc->best_quality = cpi->best_quality;
lc->active_best_quality = cpi->active_best_quality;
lc->ni_av_qi = cpi->ni_av_qi;
lc->ni_tot_qi = cpi->ni_tot_qi;
lc->ni_frames = cpi->ni_frames;
lc->avg_frame_qindex = cpi->avg_frame_qindex;
lc->rate_correction_factor = cpi->rate_correction_factor;
lc->key_frame_rate_correction_factor = cpi->key_frame_rate_correction_factor;
lc->gf_rate_correction_factor = cpi->gf_rate_correction_factor;
lc->zbin_over_quant = cpi->mb.zbin_over_quant;
lc->inter_frame_target = cpi->inter_frame_target;
lc->total_byte_count = cpi->total_byte_count;
lc->filter_level = cpi->common.filter_level;
lc->last_frame_percent_intra = cpi->last_frame_percent_intra;
memcpy(lc->count_mb_ref_frame_usage, cpi->mb.count_mb_ref_frame_usage,
sizeof(cpi->mb.count_mb_ref_frame_usage));
}
static void restore_layer_context(VP8_COMP *cpi, const int layer) {
LAYER_CONTEXT *lc = &cpi->layer_context[layer];
/* Restore layer dependent coding state */
cpi->current_layer = layer;
cpi->target_bandwidth = lc->target_bandwidth;
cpi->oxcf.target_bandwidth = lc->target_bandwidth;
cpi->oxcf.starting_buffer_level = lc->starting_buffer_level;
cpi->oxcf.optimal_buffer_level = lc->optimal_buffer_level;
cpi->oxcf.maximum_buffer_size = lc->maximum_buffer_size;
cpi->oxcf.starting_buffer_level_in_ms = lc->starting_buffer_level_in_ms;
cpi->oxcf.optimal_buffer_level_in_ms = lc->optimal_buffer_level_in_ms;
cpi->oxcf.maximum_buffer_size_in_ms = lc->maximum_buffer_size_in_ms;
cpi->buffer_level = lc->buffer_level;
cpi->bits_off_target = lc->bits_off_target;
cpi->total_actual_bits = lc->total_actual_bits;
cpi->active_worst_quality = lc->active_worst_quality;
cpi->active_best_quality = lc->active_best_quality;
cpi->ni_av_qi = lc->ni_av_qi;
cpi->ni_tot_qi = lc->ni_tot_qi;
cpi->ni_frames = lc->ni_frames;
cpi->avg_frame_qindex = lc->avg_frame_qindex;
cpi->rate_correction_factor = lc->rate_correction_factor;
cpi->key_frame_rate_correction_factor = lc->key_frame_rate_correction_factor;
cpi->gf_rate_correction_factor = lc->gf_rate_correction_factor;
cpi->mb.zbin_over_quant = lc->zbin_over_quant;
cpi->inter_frame_target = lc->inter_frame_target;
cpi->total_byte_count = lc->total_byte_count;
cpi->common.filter_level = lc->filter_level;
cpi->last_frame_percent_intra = lc->last_frame_percent_intra;
memcpy(cpi->mb.count_mb_ref_frame_usage, lc->count_mb_ref_frame_usage,
sizeof(cpi->mb.count_mb_ref_frame_usage));
}
static int rescale(int val, int num, int denom) {
int64_t llnum = num;
int64_t llden = denom;
int64_t llval = val;
return (int)(llval * llnum / llden);
}
static void init_temporal_layer_context(VP8_COMP *cpi, VP8_CONFIG *oxcf,
const int layer,
double prev_layer_framerate) {
LAYER_CONTEXT *lc = &cpi->layer_context[layer];
lc->framerate = cpi->output_framerate / cpi->oxcf.rate_decimator[layer];
lc->target_bandwidth = cpi->oxcf.target_bitrate[layer] * 1000;
lc->starting_buffer_level_in_ms = oxcf->starting_buffer_level;
lc->optimal_buffer_level_in_ms = oxcf->optimal_buffer_level;
lc->maximum_buffer_size_in_ms = oxcf->maximum_buffer_size;
lc->starting_buffer_level =
rescale((int)(oxcf->starting_buffer_level), lc->target_bandwidth, 1000);
if (oxcf->optimal_buffer_level == 0) {
lc->optimal_buffer_level = lc->target_bandwidth / 8;
} else {
lc->optimal_buffer_level =
rescale((int)(oxcf->optimal_buffer_level), lc->target_bandwidth, 1000);
}
if (oxcf->maximum_buffer_size == 0) {
lc->maximum_buffer_size = lc->target_bandwidth / 8;
} else {
lc->maximum_buffer_size =
rescale((int)(oxcf->maximum_buffer_size), lc->target_bandwidth, 1000);
}
/* Work out the average size of a frame within this layer */
if (layer > 0) {
lc->avg_frame_size_for_layer =
(int)((cpi->oxcf.target_bitrate[layer] -
cpi->oxcf.target_bitrate[layer - 1]) *
1000 / (lc->framerate - prev_layer_framerate));
}
lc->active_worst_quality = cpi->oxcf.worst_allowed_q;
lc->active_best_quality = cpi->oxcf.best_allowed_q;
lc->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
lc->buffer_level = lc->starting_buffer_level;
lc->bits_off_target = lc->starting_buffer_level;
lc->total_actual_bits = 0;
lc->ni_av_qi = 0;
lc->ni_tot_qi = 0;
lc->ni_frames = 0;
lc->rate_correction_factor = 1.0;
lc->key_frame_rate_correction_factor = 1.0;
lc->gf_rate_correction_factor = 1.0;
lc->inter_frame_target = 0;
}
// Upon a run-time change in temporal layers, reset the layer context parameters
// for any "new" layers. For "existing" layers, let them inherit the parameters
// from the previous layer state (at the same layer #). In future we may want
// to better map the previous layer state(s) to the "new" ones.
static void reset_temporal_layer_change(VP8_COMP *cpi, VP8_CONFIG *oxcf,
const int prev_num_layers) {
int i;
double prev_layer_framerate = 0;
const int curr_num_layers = cpi->oxcf.number_of_layers;
// If the previous state was 1 layer, get current layer context from cpi.
// We need this to set the layer context for the new layers below.
if (prev_num_layers == 1) {
cpi->current_layer = 0;
save_layer_context(cpi);
}
for (i = 0; i < curr_num_layers; ++i) {
LAYER_CONTEXT *lc = &cpi->layer_context[i];
if (i >= prev_num_layers) {
init_temporal_layer_context(cpi, oxcf, i, prev_layer_framerate);
}
// The initial buffer levels are set based on their starting levels.
// We could set the buffer levels based on the previous state (normalized
// properly by the layer bandwidths) but we would need to keep track of
// the previous set of layer bandwidths (i.e., target_bitrate[i])
// before the layer change. For now, reset to the starting levels.
lc->buffer_level =
cpi->oxcf.starting_buffer_level_in_ms * cpi->oxcf.target_bitrate[i];
lc->bits_off_target = lc->buffer_level;
// TDOD(marpan): Should we set the rate_correction_factor and
// active_worst/best_quality to values derived from the previous layer
// state (to smooth-out quality dips/rate fluctuation at transition)?
// We need to treat the 1 layer case separately: oxcf.target_bitrate[i]
// is not set for 1 layer, and the restore_layer_context/save_context()
// are not called in the encoding loop, so we need to call it here to
// pass the layer context state to |cpi|.
if (curr_num_layers == 1) {
lc->target_bandwidth = cpi->oxcf.target_bandwidth;
lc->buffer_level =
cpi->oxcf.starting_buffer_level_in_ms * lc->target_bandwidth / 1000;
lc->bits_off_target = lc->buffer_level;
restore_layer_context(cpi, 0);
}
prev_layer_framerate = cpi->output_framerate / cpi->oxcf.rate_decimator[i];
}
}
static void setup_features(VP8_COMP *cpi) {
// If segmentation enabled set the update flags
if (cpi->mb.e_mbd.segmentation_enabled) {
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
} else {
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
}
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 0;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
memset(cpi->mb.e_mbd.last_ref_lf_deltas, 0,
sizeof(cpi->mb.e_mbd.ref_lf_deltas));
memset(cpi->mb.e_mbd.last_mode_lf_deltas, 0,
sizeof(cpi->mb.e_mbd.mode_lf_deltas));
set_default_lf_deltas(cpi);
}
static void dealloc_raw_frame_buffers(VP8_COMP *cpi);
void vp8_initialize_enc(void) {
static volatile int init_done = 0;
if (!init_done) {
vpx_dsp_rtcd();
vp8_init_intra_predictors();
init_done = 1;
}
}
static void dealloc_compressor_data(VP8_COMP *cpi) {
vpx_free(cpi->tplist);
cpi->tplist = NULL;
/* Delete last frame MV storage buffers */
vpx_free(cpi->lfmv);
cpi->lfmv = 0;
vpx_free(cpi->lf_ref_frame_sign_bias);
cpi->lf_ref_frame_sign_bias = 0;
vpx_free(cpi->lf_ref_frame);
cpi->lf_ref_frame = 0;
/* Delete sementation map */
vpx_free(cpi->segmentation_map);
cpi->segmentation_map = 0;
vpx_free(cpi->active_map);
cpi->active_map = 0;
vp8_de_alloc_frame_buffers(&cpi->common);
vp8_yv12_de_alloc_frame_buffer(&cpi->pick_lf_lvl_frame);
vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source);
dealloc_raw_frame_buffers(cpi);
vpx_free(cpi->tok);
cpi->tok = 0;
/* Structure used to monitor GF usage */
vpx_free(cpi->gf_active_flags);
cpi->gf_active_flags = 0;
/* Activity mask based per mb zbin adjustments */
vpx_free(cpi->mb_activity_map);
cpi->mb_activity_map = 0;
vpx_free(cpi->mb.pip);
cpi->mb.pip = 0;
#if CONFIG_MULTITHREAD
vpx_free(cpi->mt_current_mb_col);
cpi->mt_current_mb_col = NULL;
#endif
}
static void enable_segmentation(VP8_COMP *cpi) {
/* Set the appropriate feature bit */
cpi->mb.e_mbd.segmentation_enabled = 1;
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
static void disable_segmentation(VP8_COMP *cpi) {
/* Clear the appropriate feature bit */
cpi->mb.e_mbd.segmentation_enabled = 0;
}
/* Valid values for a segment are 0 to 3
* Segmentation map is arrange as [Rows][Columns]
*/
static void set_segmentation_map(VP8_COMP *cpi,
unsigned char *segmentation_map) {
/* Copy in the new segmentation map */
memcpy(cpi->segmentation_map, segmentation_map,
(cpi->common.mb_rows * cpi->common.mb_cols));
/* Signal that the map should be updated. */
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
/* The values given for each segment can be either deltas (from the default
* value chosen for the frame) or absolute values.
*
* Valid range for abs values is:
* (0-127 for MB_LVL_ALT_Q), (0-63 for SEGMENT_ALT_LF)
* Valid range for delta values are:
* (+/-127 for MB_LVL_ALT_Q), (+/-63 for SEGMENT_ALT_LF)
*
* abs_delta = SEGMENT_DELTADATA (deltas)
* abs_delta = SEGMENT_ABSDATA (use the absolute values given).
*
*/
static void set_segment_data(VP8_COMP *cpi, signed char *feature_data,
unsigned char abs_delta) {
cpi->mb.e_mbd.mb_segement_abs_delta = abs_delta;
memcpy(cpi->segment_feature_data, feature_data,
sizeof(cpi->segment_feature_data));
}
/* A simple function to cyclically refresh the background at a lower Q */
static void cyclic_background_refresh(VP8_COMP *cpi, int Q, int lf_adjustment) {
unsigned char *seg_map = cpi->segmentation_map;
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
int i;
int block_count = cpi->cyclic_refresh_mode_max_mbs_perframe;
int mbs_in_frame = cpi->common.mb_rows * cpi->common.mb_cols;
cpi->cyclic_refresh_q = Q / 2;
if (cpi->oxcf.screen_content_mode) {
// Modify quality ramp-up based on Q. Above some Q level, increase the
// number of blocks to be refreshed, and reduce it below the thredhold.
// Turn-off under certain conditions (i.e., away from key frame, and if
// we are at good quality (low Q) and most of the blocks were
// skipped-encoded
// in previous frame.
int qp_thresh = (cpi->oxcf.screen_content_mode == 2) ? 80 : 100;
if (Q >= qp_thresh) {
cpi->cyclic_refresh_mode_max_mbs_perframe =
(cpi->common.mb_rows * cpi->common.mb_cols) / 10;
} else if (cpi->frames_since_key > 250 && Q < 20 &&
cpi->mb.skip_true_count > (int)(0.95 * mbs_in_frame)) {
cpi->cyclic_refresh_mode_max_mbs_perframe = 0;
} else {
cpi->cyclic_refresh_mode_max_mbs_perframe =
(cpi->common.mb_rows * cpi->common.mb_cols) / 20;
}
block_count = cpi->cyclic_refresh_mode_max_mbs_perframe;
}
// Set every macroblock to be eligible for update.
// For key frame this will reset seg map to 0.
memset(cpi->segmentation_map, 0, mbs_in_frame);
if (cpi->common.frame_type != KEY_FRAME && block_count > 0) {
/* Cycle through the macro_block rows */
/* MB loop to set local segmentation map */
i = cpi->cyclic_refresh_mode_index;
assert(i < mbs_in_frame);
do {
/* If the MB is as a candidate for clean up then mark it for
* possible boost/refresh (segment 1) The segment id may get
* reset to 0 later if the MB gets coded anything other than
* last frame 0,0 as only (last frame 0,0) MBs are eligable for
* refresh : that is to say Mbs likely to be background blocks.
*/
if (cpi->cyclic_refresh_map[i] == 0) {
seg_map[i] = 1;
block_count--;
} else if (cpi->cyclic_refresh_map[i] < 0) {
cpi->cyclic_refresh_map[i]++;
}
i++;
if (i == mbs_in_frame) i = 0;
} while (block_count && i != cpi->cyclic_refresh_mode_index);
cpi->cyclic_refresh_mode_index = i;
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0) {
if (cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive &&
Q < (int)cpi->denoiser.denoise_pars.qp_thresh &&
(cpi->frames_since_key >
2 * cpi->denoiser.denoise_pars.consec_zerolast)) {
// Under aggressive denoising, use segmentation to turn off loop
// filter below some qp thresh. The filter is reduced for all
// blocks that have been encoded as ZEROMV LAST x frames in a row,
// where x is set by cpi->denoiser.denoise_pars.consec_zerolast.
// This is to avoid "dot" artifacts that can occur from repeated
// loop filtering on noisy input source.
cpi->cyclic_refresh_q = Q;
// lf_adjustment = -MAX_LOOP_FILTER;
lf_adjustment = -40;
for (i = 0; i < mbs_in_frame; ++i) {
seg_map[i] = (cpi->consec_zero_last[i] >
cpi->denoiser.denoise_pars.consec_zerolast)
? 1
: 0;
}
}
}
#endif
}
/* Activate segmentation. */
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
enable_segmentation(cpi);
/* Set up the quant segment data */
feature_data[MB_LVL_ALT_Q][0] = 0;
feature_data[MB_LVL_ALT_Q][1] = (cpi->cyclic_refresh_q - Q);
feature_data[MB_LVL_ALT_Q][2] = 0;
feature_data[MB_LVL_ALT_Q][3] = 0;
/* Set up the loop segment data */
feature_data[MB_LVL_ALT_LF][0] = 0;
feature_data[MB_LVL_ALT_LF][1] = lf_adjustment;
feature_data[MB_LVL_ALT_LF][2] = 0;
feature_data[MB_LVL_ALT_LF][3] = 0;
/* Initialise the feature data structure */
set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA);
}
static void set_default_lf_deltas(VP8_COMP *cpi) {
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 1;
memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
/* Test of ref frame deltas */
cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2;
cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0;
cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2;
cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2;
cpi->mb.e_mbd.mode_lf_deltas[0] = 4; /* BPRED */
if (cpi->oxcf.Mode == MODE_REALTIME) {
cpi->mb.e_mbd.mode_lf_deltas[1] = -12; /* Zero */
} else {
cpi->mb.e_mbd.mode_lf_deltas[1] = -2; /* Zero */
}
cpi->mb.e_mbd.mode_lf_deltas[2] = 2; /* New mv */
cpi->mb.e_mbd.mode_lf_deltas[3] = 4; /* Split mv */
}
/* Convenience macros for mapping speed and mode into a continuous
* range
*/
#define GOOD(x) (x + 1)
#define RT(x) (x + 7)
static int speed_map(int speed, const int *map) {
int res;
do {
res = *map++;
} while (speed >= *map++);
return res;
}
static const int thresh_mult_map_znn[] = {
/* map common to zero, nearest, and near */
0, GOOD(2), 1500, GOOD(3), 2000, RT(0), 1000, RT(2), 2000, INT_MAX
};
static const int thresh_mult_map_vhpred[] = { 1000, GOOD(2), 1500, GOOD(3),
2000, RT(0), 1000, RT(1),
2000, RT(7), INT_MAX, INT_MAX };
static const int thresh_mult_map_bpred[] = { 2000, GOOD(0), 2500, GOOD(2),
5000, GOOD(3), 7500, RT(0),
2500, RT(1), 5000, RT(6),
INT_MAX, INT_MAX };
static const int thresh_mult_map_tm[] = { 1000, GOOD(2), 1500, GOOD(3),
2000, RT(0), 0, RT(1),
1000, RT(2), 2000, RT(7),
INT_MAX, INT_MAX };
static const int thresh_mult_map_new1[] = { 1000, GOOD(2), 2000,
RT(0), 2000, INT_MAX };
static const int thresh_mult_map_new2[] = { 1000, GOOD(2), 2000, GOOD(3),
2500, GOOD(5), 4000, RT(0),
2000, RT(2), 2500, RT(5),
4000, INT_MAX };
static const int thresh_mult_map_split1[] = {
2500, GOOD(0), 1700, GOOD(2), 10000, GOOD(3), 25000, GOOD(4), INT_MAX,
RT(0), 5000, RT(1), 10000, RT(2), 25000, RT(3), INT_MAX, INT_MAX
};
static const int thresh_mult_map_split2[] = {
5000, GOOD(0), 4500, GOOD(2), 20000, GOOD(3), 50000, GOOD(4), INT_MAX,
RT(0), 10000, RT(1), 20000, RT(2), 50000, RT(3), INT_MAX, INT_MAX
};
static const int mode_check_freq_map_zn2[] = {
/* {zero,nearest}{2,3} */
0, RT(10), 1 << 1, RT(11), 1 << 2, RT(12), 1 << 3, INT_MAX
};
static const int mode_check_freq_map_vhbpred[] = {
0, GOOD(5), 2, RT(0), 0, RT(3), 2, RT(5), 4, INT_MAX
};
static const int mode_check_freq_map_near2[] = {
0, GOOD(5), 2, RT(0), 0, RT(3), 2,
RT(10), 1 << 2, RT(11), 1 << 3, RT(12), 1 << 4, INT_MAX
};
static const int mode_check_freq_map_new1[] = {
0, RT(10), 1 << 1, RT(11), 1 << 2, RT(12), 1 << 3, INT_MAX
};
static const int mode_check_freq_map_new2[] = { 0, GOOD(5), 4, RT(0),
0, RT(3), 4, RT(10),
1 << 3, RT(11), 1 << 4, RT(12),
1 << 5, INT_MAX };
static const int mode_check_freq_map_split1[] = {
0, GOOD(2), 2, GOOD(3), 7, RT(1), 2, RT(2), 7, INT_MAX
};
static const int mode_check_freq_map_split2[] = {
0, GOOD(1), 2, GOOD(2), 4, GOOD(3), 15, RT(1), 4, RT(2), 15, INT_MAX
};
void vp8_set_speed_features(VP8_COMP *cpi) {
SPEED_FEATURES *sf = &cpi->sf;
int Mode = cpi->compressor_speed;
int Speed = cpi->Speed;
int i;
VP8_COMMON *cm = &cpi->common;
int last_improved_quant = sf->improved_quant;
int ref_frames;
/* Initialise default mode frequency sampling variables */
for (i = 0; i < MAX_MODES; ++i) {
cpi->mode_check_freq[i] = 0;
}
cpi->mb.mbs_tested_so_far = 0;
cpi->mb.mbs_zero_last_dot_suppress = 0;
/* best quality defaults */
sf->RD = 1;
sf->search_method = NSTEP;
sf->improved_quant = 1;
sf->improved_dct = 1;
sf->auto_filter = 1;
sf->recode_loop = 1;
sf->quarter_pixel_search = 1;
sf->half_pixel_search = 1;
sf->iterative_sub_pixel = 1;
sf->optimize_coefficients = 1;
sf->use_fastquant_for_pick = 0;
sf->no_skip_block4x4_search = 1;
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
sf->improved_mv_pred = 1;
/* default thresholds to 0 */
for (i = 0; i < MAX_MODES; ++i) sf->thresh_mult[i] = 0;
/* Count enabled references */
ref_frames = 1;
if (cpi->ref_frame_flags & VP8_LAST_FRAME) ref_frames++;
if (cpi->ref_frame_flags & VP8_GOLD_FRAME) ref_frames++;
if (cpi->ref_frame_flags & VP8_ALTR_FRAME) ref_frames++;
/* Convert speed to continuous range, with clamping */
if (Mode == 0) {
Speed = 0;
} else if (Mode == 2) {
Speed = RT(Speed);
} else {
if (Speed > 5) Speed = 5;
Speed = GOOD(Speed);
}
sf->thresh_mult[THR_ZERO1] = sf->thresh_mult[THR_NEAREST1] =
sf->thresh_mult[THR_NEAR1] = sf->thresh_mult[THR_DC] = 0; /* always */
sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO3] =
sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST3] =
sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR3] =
speed_map(Speed, thresh_mult_map_znn);
sf->thresh_mult[THR_V_PRED] = sf->thresh_mult[THR_H_PRED] =
speed_map(Speed, thresh_mult_map_vhpred);
sf->thresh_mult[THR_B_PRED] = speed_map(Speed, thresh_mult_map_bpred);
sf->thresh_mult[THR_TM] = speed_map(Speed, thresh_mult_map_tm);
sf->thresh_mult[THR_NEW1] = speed_map(Speed, thresh_mult_map_new1);
sf->thresh_mult[THR_NEW2] = sf->thresh_mult[THR_NEW3] =
speed_map(Speed, thresh_mult_map_new2);
sf->thresh_mult[THR_SPLIT1] = speed_map(Speed, thresh_mult_map_split1);
sf->thresh_mult[THR_SPLIT2] = sf->thresh_mult[THR_SPLIT3] =
speed_map(Speed, thresh_mult_map_split2);
// Special case for temporal layers.
// Reduce the thresholds for zero/nearest/near for GOLDEN, if GOLDEN is
// used as second reference. We don't modify thresholds for ALTREF case
// since ALTREF is usually used as long-term reference in temporal layers.
if ((cpi->Speed <= 6) && (cpi->oxcf.number_of_layers > 1) &&
(cpi->ref_frame_flags & VP8_LAST_FRAME) &&
(cpi->ref_frame_flags & VP8_GOLD_FRAME)) {
if (cpi->closest_reference_frame == GOLDEN_FRAME) {
sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO2] >> 3;
sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST2] >> 3;
sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR2] >> 3;
} else {
sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO2] >> 1;
sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST2] >> 1;
sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR2] >> 1;
}
}
cpi->mode_check_freq[THR_ZERO1] = cpi->mode_check_freq[THR_NEAREST1] =
cpi->mode_check_freq[THR_NEAR1] = cpi->mode_check_freq[THR_TM] =
cpi->mode_check_freq[THR_DC] = 0; /* always */
cpi->mode_check_freq[THR_ZERO2] = cpi->mode_check_freq[THR_ZERO3] =
cpi->mode_check_freq[THR_NEAREST2] = cpi->mode_check_freq[THR_NEAREST3] =
speed_map(Speed, mode_check_freq_map_zn2);
cpi->mode_check_freq[THR_NEAR2] = cpi->mode_check_freq[THR_NEAR3] =
speed_map(Speed, mode_check_freq_map_near2);
cpi->mode_check_freq[THR_V_PRED] = cpi->mode_check_freq[THR_H_PRED] =
cpi->mode_check_freq[THR_B_PRED] =
speed_map(Speed, mode_check_freq_map_vhbpred);
cpi->mode_check_freq[THR_NEW1] = speed_map(Speed, mode_check_freq_map_new1);
cpi->mode_check_freq[THR_NEW2] = cpi->mode_check_freq[THR_NEW3] =
speed_map(Speed, mode_check_freq_map_new2);
cpi->mode_check_freq[THR_SPLIT1] =
speed_map(Speed, mode_check_freq_map_split1);
cpi->mode_check_freq[THR_SPLIT2] = cpi->mode_check_freq[THR_SPLIT3] =
speed_map(Speed, mode_check_freq_map_split2);
Speed = cpi->Speed;
switch (Mode) {
#if !CONFIG_REALTIME_ONLY
case 0: /* best quality mode */
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
break;
case 1:
case 3:
if (Speed > 0) {
/* Disable coefficient optimization above speed 0 */
sf->optimize_coefficients = 0;
sf->use_fastquant_for_pick = 1;
sf->no_skip_block4x4_search = 0;
sf->first_step = 1;
}
if (Speed > 2) {
sf->improved_quant = 0;
sf->improved_dct = 0;
/* Only do recode loop on key frames, golden frames and
* alt ref frames
*/
sf->recode_loop = 2;
}
if (Speed > 3) {
sf->auto_filter = 1;
sf->recode_loop = 0; /* recode loop off */
sf->RD = 0; /* Turn rd off */
}
if (Speed > 4) {
sf->auto_filter = 0; /* Faster selection of loop filter */
}
break;
#endif
case 2:
sf->optimize_coefficients = 0;
sf->recode_loop = 0;
sf->auto_filter = 1;
sf->iterative_sub_pixel = 1;
sf->search_method = NSTEP;
if (Speed > 0) {
sf->improved_quant = 0;
sf->improved_dct = 0;
sf->use_fastquant_for_pick = 1;
sf->no_skip_block4x4_search = 0;
sf->first_step = 1;
}
if (Speed > 2) sf->auto_filter = 0; /* Faster selection of loop filter */
if (Speed > 3) {
sf->RD = 0;
sf->auto_filter = 1;
}
if (Speed > 4) {
sf->auto_filter = 0; /* Faster selection of loop filter */
sf->search_method = HEX;
sf->iterative_sub_pixel = 0;
}
if (Speed > 6) {
unsigned int sum = 0;
unsigned int total_mbs = cm->MBs;
int thresh;
unsigned int total_skip;
int min = 2000;
if (cpi->oxcf.encode_breakout > 2000) min = cpi->oxcf.encode_breakout;
min >>= 7;
for (i = 0; i < min; ++i) {
sum += cpi->mb.error_bins[i];
}
total_skip = sum;
sum = 0;
/* i starts from 2 to make sure thresh started from 2048 */
for (; i < 1024; ++i) {
sum += cpi->mb.error_bins[i];
if (10 * sum >=
(unsigned int)(cpi->Speed - 6) * (total_mbs - total_skip)) {
break;
}
}
i--;
thresh = (i << 7);
if (thresh < 2000) thresh = 2000;
if (ref_frames > 1) {
sf->thresh_mult[THR_NEW1] = thresh;
sf->thresh_mult[THR_NEAREST1] = thresh >> 1;
sf->thresh_mult[THR_NEAR1] = thresh >> 1;
}
if (ref_frames > 2) {
sf->thresh_mult[THR_NEW2] = thresh << 1;
sf->thresh_mult[THR_NEAREST2] = thresh;
sf->thresh_mult[THR_NEAR2] = thresh;
}
if (ref_frames > 3) {
sf->thresh_mult[THR_NEW3] = thresh << 1;
sf->thresh_mult[THR_NEAREST3] = thresh;
sf->thresh_mult[THR_NEAR3] = thresh;
}
sf->improved_mv_pred = 0;
}
if (Speed > 8) sf->quarter_pixel_search = 0;
if (cm->version == 0) {
cm->filter_type = NORMAL_LOOPFILTER;
if (Speed >= 14) cm->filter_type = SIMPLE_LOOPFILTER;
} else {
cm->filter_type = SIMPLE_LOOPFILTER;
}
/* This has a big hit on quality. Last resort */
if (Speed >= 15) sf->half_pixel_search = 0;
memset(cpi->mb.error_bins, 0, sizeof(cpi->mb.error_bins));
}; /* switch */
/* Slow quant, dct and trellis not worthwhile for first pass
* so make sure they are always turned off.
*/
if (cpi->pass == 1) {
sf->improved_quant = 0;
sf->optimize_coefficients = 0;
sf->improved_dct = 0;
}
if (cpi->sf.search_method == NSTEP) {
vp8_init3smotion_compensation(&cpi->mb,
cm->yv12_fb[cm->lst_fb_idx].y_stride);
} else if (cpi->sf.search_method == DIAMOND) {
vp8_init_dsmotion_compensation(&cpi->mb,
cm->yv12_fb[cm->lst_fb_idx].y_stride);
}
if (cpi->sf.improved_dct) {
cpi->mb.short_fdct8x4 = vp8_short_fdct8x4;
cpi->mb.short_fdct4x4 = vp8_short_fdct4x4;
} else {
/* No fast FDCT defined for any platform at this time. */
cpi->mb.short_fdct8x4 = vp8_short_fdct8x4;
cpi->mb.short_fdct4x4 = vp8_short_fdct4x4;
}
cpi->mb.short_walsh4x4 = vp8_short_walsh4x4;
if (cpi->sf.improved_quant) {
cpi->mb.quantize_b = vp8_regular_quantize_b;
} else {
cpi->mb.quantize_b = vp8_fast_quantize_b;
}
if (cpi->sf.improved_quant != last_improved_quant) vp8cx_init_quantizer(cpi);
if (cpi->sf.iterative_sub_pixel == 1) {
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively;
} else if (cpi->sf.quarter_pixel_search) {
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step;
} else if (cpi->sf.half_pixel_search) {
cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step;
} else {
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
}
if (cpi->sf.optimize_coefficients == 1 && cpi->pass != 1) {
cpi->mb.optimize = 1;
} else {
cpi->mb.optimize = 0;
}
if (cpi->common.full_pixel) {
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
}
#ifdef SPEEDSTATS
frames_at_speed[cpi->Speed]++;
#endif
}
#undef GOOD
#undef RT
static void alloc_raw_frame_buffers(VP8_COMP *cpi) {
#if VP8_TEMPORAL_ALT_REF
int width = (cpi->oxcf.Width + 15) & ~15;
int height = (cpi->oxcf.Height + 15) & ~15;
#endif
cpi->lookahead = vp8_lookahead_init(cpi->oxcf.Width, cpi->oxcf.Height,
cpi->oxcf.lag_in_frames);
if (!cpi->lookahead) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
}
#if VP8_TEMPORAL_ALT_REF
if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer, width, height,
VP8BORDERINPIXELS)) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
}
#endif
}
static void dealloc_raw_frame_buffers(VP8_COMP *cpi) {
#if VP8_TEMPORAL_ALT_REF
vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer);
#endif
vp8_lookahead_destroy(cpi->lookahead);
}
static int vp8_alloc_partition_data(VP8_COMP *cpi) {
vpx_free(cpi->mb.pip);
cpi->mb.pip =
vpx_calloc((cpi->common.mb_cols + 1) * (cpi->common.mb_rows + 1),
sizeof(PARTITION_INFO));
if (!cpi->mb.pip) return 1;
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
return 0;
}
void vp8_alloc_compressor_data(VP8_COMP *cpi) {
VP8_COMMON *cm = &cpi->common;
int width = cm->Width;
int height = cm->Height;
if (vp8_alloc_frame_buffers(cm, width, height)) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
}
if (vp8_alloc_partition_data(cpi)) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate partition data");
}
if ((width & 0xf) != 0) width += 16 - (width & 0xf);
if ((height & 0xf) != 0) height += 16 - (height & 0xf);
if (vp8_yv12_alloc_frame_buffer(&cpi->pick_lf_lvl_frame, width, height,
VP8BORDERINPIXELS)) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
}
if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source, width, height,
VP8BORDERINPIXELS)) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
}
vpx_free(cpi->tok);
{
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
unsigned int tokens = 8 * 24 * 16; /* one MB for each thread */
#else
unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16;
#endif
CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
}
/* Data used for real time vc mode to see if gf needs refreshing */
cpi->zeromv_count = 0;
/* Structures used to monitor GF usage */
vpx_free(cpi->gf_active_flags);
CHECK_MEM_ERROR(
cpi->gf_active_flags,
vpx_calloc(sizeof(*cpi->gf_active_flags), cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
vpx_free(cpi->mb_activity_map);
CHECK_MEM_ERROR(
cpi->mb_activity_map,
vpx_calloc(sizeof(*cpi->mb_activity_map), cm->mb_rows * cm->mb_cols));
/* allocate memory for storing last frame's MVs for MV prediction. */
vpx_free(cpi->lfmv);
CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2),
sizeof(*cpi->lfmv)));
vpx_free(cpi->lf_ref_frame_sign_bias);
CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias,
vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2),
sizeof(*cpi->lf_ref_frame_sign_bias)));
vpx_free(cpi->lf_ref_frame);
CHECK_MEM_ERROR(cpi->lf_ref_frame,
vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2),
sizeof(*cpi->lf_ref_frame)));
/* Create the encoder segmentation map and set all entries to 0 */
vpx_free(cpi->segmentation_map);
CHECK_MEM_ERROR(
cpi->segmentation_map,
vpx_calloc(cm->mb_rows * cm->mb_cols, sizeof(*cpi->segmentation_map)));
cpi->cyclic_refresh_mode_index = 0;
vpx_free(cpi->active_map);
CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cm->mb_rows * cm->mb_cols,
sizeof(*cpi->active_map)));
memset(cpi->active_map, 1, (cm->mb_rows * cm->mb_cols));
#if CONFIG_MULTITHREAD
if (width < 640) {
cpi->mt_sync_range = 1;
} else if (width <= 1280) {
cpi->mt_sync_range = 4;
} else if (width <= 2560) {
cpi->mt_sync_range = 8;
} else {
cpi->mt_sync_range = 16;
}
if (cpi->oxcf.multi_threaded > 1) {
vpx_free(cpi->mt_current_mb_col);
CHECK_MEM_ERROR(cpi->mt_current_mb_col,
vpx_malloc(sizeof(*cpi->mt_current_mb_col) * cm->mb_rows));
}
#endif
vpx_free(cpi->tplist);
CHECK_MEM_ERROR(cpi->tplist, vpx_malloc(sizeof(TOKENLIST) * cm->mb_rows));
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0) {
vp8_denoiser_free(&cpi->denoiser);
if (vp8_denoiser_allocate(&cpi->denoiser, width, height, cm->mb_rows,
cm->mb_cols, cpi->oxcf.noise_sensitivity)) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate denoiser");
}
}
#endif
}
/* Quant MOD */
static const int q_trans[] = {
0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19,
20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41,
43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 64, 67, 70, 73, 76, 79,
82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127,
};
int vp8_reverse_trans(int x) {
int i;
for (i = 0; i < 64; ++i) {
if (q_trans[i] >= x) return i;
}
return 63;
}
void vp8_new_framerate(VP8_COMP *cpi, double framerate) {
if (framerate < .1) framerate = 30;
cpi->framerate = framerate;
cpi->output_framerate = framerate;
cpi->per_frame_bandwidth =
(int)(cpi->oxcf.target_bandwidth / cpi->output_framerate);
cpi->av_per_frame_bandwidth = cpi->per_frame_bandwidth;
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth *
cpi->oxcf.two_pass_vbrmin_section / 100);
/* Set Maximum gf/arf interval */
cpi->max_gf_interval = ((int)(cpi->output_framerate / 2.0) + 2);
if (cpi->max_gf_interval < 12) cpi->max_gf_interval = 12;
/* Extended interval for genuinely static scenes */
cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
/* Special conditions when altr ref frame enabled in lagged compress mode */
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) {
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1) {
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
}
if (cpi->twopass.static_scene_max_gf_interval >
cpi->oxcf.lag_in_frames - 1) {
cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
}
}
if (cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval) {
cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
}
}
static void init_config(VP8_COMP *cpi, VP8_CONFIG *oxcf) {
VP8_COMMON *cm = &cpi->common;
cpi->oxcf = *oxcf;
cpi->auto_gold = 1;
cpi->auto_adjust_gold_quantizer = 1;
cm->version = oxcf->Version;
vp8_setup_version(cm);
/* Frame rate is not available on the first frame, as it's derived from
* the observed timestamps. The actual value used here doesn't matter
* too much, as it will adapt quickly.
*/
if (oxcf->timebase.num > 0) {
cpi->framerate =
(double)(oxcf->timebase.den) / (double)(oxcf->timebase.num);
} else {
cpi->framerate = 30;
}
/* If the reciprocal of the timebase seems like a reasonable framerate,
* then use that as a guess, otherwise use 30.
*/
if (cpi->framerate > 180) cpi->framerate = 30;
cpi->ref_framerate = cpi->framerate;
cpi->ref_frame_flags = VP8_ALTR_FRAME | VP8_GOLD_FRAME | VP8_LAST_FRAME;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
cm->refresh_entropy_probs = 1;
/* change includes all joint functionality */
vp8_change_config(cpi, oxcf);
/* Initialize active best and worst q and average q values. */
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
/* Initialise the starting buffer levels */
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->total_actual_bits = 0;
cpi->total_target_vs_actual = 0;
/* Temporal scalabilty */
if (cpi->oxcf.number_of_layers > 1) {
unsigned int i;
double prev_layer_framerate = 0;
for (i = 0; i < cpi->oxcf.number_of_layers; ++i) {
init_temporal_layer_context(cpi, oxcf, i, prev_layer_framerate);
prev_layer_framerate =
cpi->output_framerate / cpi->oxcf.rate_decimator[i];
}
}
#if VP8_TEMPORAL_ALT_REF
{
int i;
cpi->fixed_divide[0] = 0;
for (i = 1; i < 512; ++i) cpi->fixed_divide[i] = 0x80000 / i;
}
#endif
}
static void update_layer_contexts(VP8_COMP *cpi) {
VP8_CONFIG *oxcf = &cpi->oxcf;
/* Update snapshots of the layer contexts to reflect new parameters */
if (oxcf->number_of_layers > 1) {
unsigned int i;
double prev_layer_framerate = 0;
assert(oxcf->number_of_layers <= VPX_TS_MAX_LAYERS);
for (i = 0; i < oxcf->number_of_layers && i < VPX_TS_MAX_LAYERS; ++i) {
LAYER_CONTEXT *lc = &cpi->layer_context[i];
lc->framerate = cpi->ref_framerate / oxcf->rate_decimator[i];
lc->target_bandwidth = oxcf->target_bitrate[i] * 1000;
lc->starting_buffer_level = rescale(
(int)oxcf->starting_buffer_level_in_ms, lc->target_bandwidth, 1000);
if (oxcf->optimal_buffer_level == 0) {
lc->optimal_buffer_level = lc->target_bandwidth / 8;
} else {
lc->optimal_buffer_level = rescale(
(int)oxcf->optimal_buffer_level_in_ms, lc->target_bandwidth, 1000);
}
if (oxcf->maximum_buffer_size == 0) {
lc->maximum_buffer_size = lc->target_bandwidth / 8;
} else {
lc->maximum_buffer_size = rescale((int)oxcf->maximum_buffer_size_in_ms,
lc->target_bandwidth, 1000);
}
/* Work out the average size of a frame within this layer */
if (i > 0) {
lc->avg_frame_size_for_layer =
(int)((oxcf->target_bitrate[i] - oxcf->target_bitrate[i - 1]) *
1000 / (lc->framerate - prev_layer_framerate));
}
prev_layer_framerate = lc->framerate;
}
}
}
void vp8_change_config(VP8_COMP *cpi, VP8_CONFIG *oxcf) {
VP8_COMMON *cm = &cpi->common;
int last_w, last_h;
unsigned int prev_number_of_layers;
if (!cpi) return;
if (!oxcf) return;
if (cm->version != oxcf->Version) {
cm->version = oxcf->Version;
vp8_setup_version(cm);
}
last_w = cpi->oxcf.Width;
last_h = cpi->oxcf.Height;
prev_number_of_layers = cpi->oxcf.number_of_layers;
cpi->oxcf = *oxcf;
switch (cpi->oxcf.Mode) {
case MODE_REALTIME:
cpi->pass = 0;
cpi->compressor_speed = 2;
if (cpi->oxcf.cpu_used < -16) {
cpi->oxcf.cpu_used = -16;
}
if (cpi->oxcf.cpu_used > 16) cpi->oxcf.cpu_used = 16;
break;
case MODE_GOODQUALITY:
cpi->pass = 0;
cpi->compressor_speed = 1;
if (cpi->oxcf.cpu_used < -5) {
cpi->oxcf.cpu_used = -5;
}
if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5;
break;
case MODE_BESTQUALITY:
cpi->pass = 0;
cpi->compressor_speed = 0;
break;
case MODE_FIRSTPASS:
cpi->pass = 1;
cpi->compressor_speed = 1;
break;
case MODE_SECONDPASS:
cpi->pass = 2;
cpi->compressor_speed = 1;
if (cpi->oxcf.cpu_used < -5) {
cpi->oxcf.cpu_used = -5;
}
if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5;
break;
case MODE_SECONDPASS_BEST:
cpi->pass = 2;
cpi->compressor_speed = 0;
break;
}
if (cpi->pass == 0) cpi->auto_worst_q = 1;
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
if (oxcf->fixed_q >= 0) {
if (oxcf->worst_allowed_q < 0) {
cpi->oxcf.fixed_q = q_trans[0];
} else {
cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q];
}
if (oxcf->alt_q < 0) {
cpi->oxcf.alt_q = q_trans[0];
} else {
cpi->oxcf.alt_q = q_trans[oxcf->alt_q];
}
if (oxcf->key_q < 0) {
cpi->oxcf.key_q = q_trans[0];
} else {
cpi->oxcf.key_q = q_trans[oxcf->key_q];
}
if (oxcf->gold_q < 0) {
cpi->oxcf.gold_q = q_trans[0];
} else {
cpi->oxcf.gold_q = q_trans[oxcf->gold_q];
}
}
cpi->baseline_gf_interval =
cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL;
#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
cpi->oxcf.token_partitions = 3;
#endif
if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3) {
cm->multi_token_partition = (TOKEN_PARTITION)cpi->oxcf.token_partitions;
}
setup_features(cpi);
{
int i;
for (i = 0; i < MAX_MB_SEGMENTS; ++i) {
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
}
/* At the moment the first order values may not be > MAXQ */
if (cpi->oxcf.fixed_q > MAXQ) cpi->oxcf.fixed_q = MAXQ;
/* local file playback mode == really big buffer */
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) {
cpi->oxcf.starting_buffer_level = 60000;
cpi->oxcf.optimal_buffer_level = 60000;
cpi->oxcf.maximum_buffer_size = 240000;
cpi->oxcf.starting_buffer_level_in_ms = 60000;
cpi->oxcf.optimal_buffer_level_in_ms = 60000;
cpi->oxcf.maximum_buffer_size_in_ms = 240000;
}
/* Convert target bandwidth from Kbit/s to Bit/s */
cpi->oxcf.target_bandwidth *= 1000;
cpi->oxcf.starting_buffer_level = rescale(
(int)cpi->oxcf.starting_buffer_level, cpi->oxcf.target_bandwidth, 1000);
/* Set or reset optimal and maximum buffer levels. */
if (cpi->oxcf.optimal_buffer_level == 0) {
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
} else {
cpi->oxcf.optimal_buffer_level = rescale(
(int)cpi->oxcf.optimal_buffer_level, cpi->oxcf.target_bandwidth, 1000);
}
if (cpi->oxcf.maximum_buffer_size == 0) {
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
} else {
cpi->oxcf.maximum_buffer_size = rescale((int)cpi->oxcf.maximum_buffer_size,
cpi->oxcf.target_bandwidth, 1000);
}
// Under a configuration change, where maximum_buffer_size may change,
// keep buffer level clipped to the maximum allowed buffer size.
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) {
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
cpi->buffer_level = cpi->bits_off_target;
}
/* Set up frame rate and related parameters rate control values. */
vp8_new_framerate(cpi, cpi->framerate);
/* Set absolute upper and lower quality limits */
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
cpi->best_quality = cpi->oxcf.best_allowed_q;
/* active values should only be modified if out of new range */
if (cpi->active_worst_quality > cpi->oxcf.worst_allowed_q) {
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
}
/* less likely */
else if (cpi->active_worst_quality < cpi->oxcf.best_allowed_q) {
cpi->active_worst_quality = cpi->oxcf.best_allowed_q;
}
if (cpi->active_best_quality < cpi->oxcf.best_allowed_q) {
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
}
/* less likely */
else if (cpi->active_best_quality > cpi->oxcf.worst_allowed_q) {
cpi->active_best_quality = cpi->oxcf.worst_allowed_q;
}
cpi->buffered_mode = cpi->oxcf.optimal_buffer_level > 0;
cpi->cq_target_quality = cpi->oxcf.cq_level;
/* Only allow dropped frames in buffered mode */
cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode;
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
// Check if the number of temporal layers has changed, and if so reset the
// pattern counter and set/initialize the temporal layer context for the
// new layer configuration.
if (cpi->oxcf.number_of_layers != prev_number_of_layers) {
// If the number of temporal layers are changed we must start at the
// base of the pattern cycle, so set the layer id to 0 and reset
// the temporal pattern counter.
if (cpi->temporal_layer_id > 0) {
cpi->temporal_layer_id = 0;
}
cpi->temporal_pattern_counter = 0;
reset_temporal_layer_change(cpi, oxcf, prev_number_of_layers);
}
if (!cpi->initial_width) {
cpi->initial_width = cpi->oxcf.Width;
cpi->initial_height = cpi->oxcf.Height;
}
cm->Width = cpi->oxcf.Width;
cm->Height = cpi->oxcf.Height;
assert(cm->Width <= cpi->initial_width);
assert(cm->Height <= cpi->initial_height);
/* TODO(jkoleszar): if an internal spatial resampling is active,
* and we downsize the input image, maybe we should clear the
* internal scale immediately rather than waiting for it to
* correct.
*/
/* VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) */
if (cpi->oxcf.Sharpness > 7) cpi->oxcf.Sharpness = 7;
cm->sharpness_level = cpi->oxcf.Sharpness;
if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL) {
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
/* always go to the next whole number */
cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs;
cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs;
}
if (last_w != cpi->oxcf.Width || last_h != cpi->oxcf.Height) {
cpi->force_next_frame_intra = 1;
}
if (((cm->Width + 15) & ~15) != cm->yv12_fb[cm->lst_fb_idx].y_width ||
((cm->Height + 15) & ~15) != cm->yv12_fb[cm->lst_fb_idx].y_height ||
cm->yv12_fb[cm->lst_fb_idx].y_width == 0) {
dealloc_raw_frame_buffers(cpi);
alloc_raw_frame_buffers(cpi);
vp8_alloc_compressor_data(cpi);
}
if (cpi->oxcf.fixed_q >= 0) {
cpi->last_q[0] = cpi->oxcf.fixed_q;
cpi->last_q[1] = cpi->oxcf.fixed_q;
}
cpi->Speed = cpi->oxcf.cpu_used;
/* force to allowlag to 0 if lag_in_frames is 0; */
if (cpi->oxcf.lag_in_frames == 0) {
cpi->oxcf.allow_lag = 0;
}
/* Limit on lag buffers as these are not currently dynamically allocated */
else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) {
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
}
/* YX Temp */
cpi->alt_ref_source = NULL;
cpi->is_src_frame_alt_ref = 0;
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity) {
if (!cpi->denoiser.yv12_mc_running_avg.buffer_alloc) {
int width = (cpi->oxcf.Width + 15) & ~15;
int height = (cpi->oxcf.Height + 15) & ~15;
if (vp8_denoiser_allocate(&cpi->denoiser, width, height, cm->mb_rows,
cm->mb_cols, cpi->oxcf.noise_sensitivity)) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate denoiser");
}
}
}
#endif
#if 0
/* Experimental RD Code */
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
}
#ifndef M_LOG2_E
#define M_LOG2_E 0.693147180559945309417
#endif
#define log2f(x) (log(x) / (float)M_LOG2_E)
static void cal_mvsadcosts(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 300;
mvsadcost[1][0] = 300;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= mvfp_max);
}
struct VP8_COMP *vp8_create_compressor(VP8_CONFIG *oxcf) {
int i;
VP8_COMP *cpi;
VP8_COMMON *cm;
cpi = vpx_memalign(32, sizeof(VP8_COMP));
/* Check that the CPI instance is valid */
if (!cpi) return 0;
cm = &cpi->common;
memset(cpi, 0, sizeof(VP8_COMP));
if (setjmp(cm->error.jmp)) {
cpi->common.error.setjmp = 0;
vp8_remove_compressor(&cpi);
return 0;
}
cpi->common.error.setjmp = 1;
CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site),
(MAX_MVSEARCH_STEPS * 8) + 1));
vp8_create_common(&cpi->common);
init_config(cpi, oxcf);
memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob,
sizeof(vp8cx_base_skip_false_prob));
cpi->common.current_video_frame = 0;
cpi->temporal_pattern_counter = 0;
cpi->temporal_layer_id = -1;
cpi->kf_overspend_bits = 0;
cpi->kf_bitrate_adjustment = 0;
cpi->frames_till_gf_update_due = 0;
cpi->gf_overspend_bits = 0;
cpi->non_gf_bitrate_adjustment = 0;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
cpi->prob_intra_coded = 63;
/* Prime the recent reference frame usage counters.
* Hereafter they will be maintained as a sort of moving average
*/
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
/* Set reference frame sign bias for ALTREF frame to 1 (for now) */
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
cpi->twopass.gf_decay_rate = 0;
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->gold_is_last = 0;
cpi->alt_is_last = 0;
cpi->gold_is_alt = 0;
cpi->active_map_enabled = 0;
#if 0
/* Experimental code for lagged and one pass */
/* Initialise one_pass GF frames stats */
/* Update stats used for GF selection */
if (cpi->pass == 0)
{
cpi->one_pass_frame_index = 0;
for (i = 0; i < MAX_LAG_BUFFERS; ++i)
{
cpi->one_pass_frame_stats[i].frames_so_far = 0;
cpi->one_pass_frame_stats[i].frame_intra_error = 0.0;
cpi->one_pass_frame_stats[i].frame_coded_error = 0.0;
cpi->one_pass_frame_stats[i].frame_pcnt_inter = 0.0;
cpi->one_pass_frame_stats[i].frame_pcnt_motion = 0.0;
cpi->one_pass_frame_stats[i].frame_mvr = 0.0;
cpi->one_pass_frame_stats[i].frame_mvr_abs = 0.0;
cpi->one_pass_frame_stats[i].frame_mvc = 0.0;
cpi->one_pass_frame_stats[i].frame_mvc_abs = 0.0;
}
}
#endif
cpi->mse_source_denoised = 0;
/* Should we use the cyclic refresh method.
* Currently this is tied to error resilliant mode
*/
cpi->cyclic_refresh_mode_enabled = cpi->oxcf.error_resilient_mode;
cpi->cyclic_refresh_mode_max_mbs_perframe =
(cpi->common.mb_rows * cpi->common.mb_cols) / 7;
if (cpi->oxcf.number_of_layers == 1) {
cpi->cyclic_refresh_mode_max_mbs_perframe =
(cpi->common.mb_rows * cpi->common.mb_cols) / 20;
} else if (cpi->oxcf.number_of_layers == 2) {
cpi->cyclic_refresh_mode_max_mbs_perframe =
(cpi->common.mb_rows * cpi->common.mb_cols) / 10;
}
cpi->cyclic_refresh_mode_index = 0;
cpi->cyclic_refresh_q = 32;
if (cpi->cyclic_refresh_mode_enabled) {
CHECK_MEM_ERROR(cpi->cyclic_refresh_map,
vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
} else {
cpi->cyclic_refresh_map = (signed char *)NULL;
}
CHECK_MEM_ERROR(cpi->consec_zero_last,
vpx_calloc(cm->mb_rows * cm->mb_cols, 1));
CHECK_MEM_ERROR(cpi->consec_zero_last_mvbias,
vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
#ifdef VP8_ENTROPY_STATS
init_context_counters();
#endif
/*Initialize the feed-forward activity masking.*/
cpi->activity_avg = 90 << 12;
/* Give a sensible default for the first frame. */
cpi->frames_since_key = 8;
cpi->key_frame_frequency = cpi->oxcf.key_freq;
cpi->this_key_frame_forced = 0;
cpi->next_key_frame_forced = 0;
cpi->source_alt_ref_pending = 0;
cpi->source_alt_ref_active = 0;
cpi->common.refresh_alt_ref_frame = 0;
cpi->force_maxqp = 0;
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
cpi->b_calculate_ssimg = 0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr) {
cpi->total_sq_error = 0.0;
cpi->total_sq_error2 = 0.0;
cpi->total_y = 0.0;
cpi->total_u = 0.0;
cpi->total_v = 0.0;
cpi->total = 0.0;
cpi->totalp_y = 0.0;
cpi->totalp_u = 0.0;
cpi->totalp_v = 0.0;
cpi->totalp = 0.0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
}
#endif
cpi->first_time_stamp_ever = 0x7FFFFFFF;
cpi->frames_till_gf_update_due = 0;
cpi->key_frame_count = 1;
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
cpi->ni_tot_qi = 0;
cpi->ni_frames = 0;
cpi->total_byte_count = 0;
cpi->drop_frame = 0;
cpi->rate_correction_factor = 1.0;
cpi->key_frame_rate_correction_factor = 1.0;
cpi->gf_rate_correction_factor = 1.0;
cpi->twopass.est_max_qcorrection_factor = 1.0;
for (i = 0; i < KEY_FRAME_CONTEXT; ++i) {
cpi->prior_key_frame_distance[i] = (int)cpi->output_framerate;
}
#ifdef OUTPUT_YUV_SRC
yuv_file = fopen("bd.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_DENOISED
yuv_denoised_file = fopen("denoised.yuv", "ab");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
#endif
cpi->output_pkt_list = oxcf->output_pkt_list;
#if !CONFIG_REALTIME_ONLY
if (cpi->pass == 1) {
vp8_init_first_pass(cpi);
} else if (cpi->pass == 2) {
size_t packet_sz = sizeof(FIRSTPASS_STATS);
int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end =
(void *)((char *)cpi->twopass.stats_in + (packets - 1) * packet_sz);
vp8_init_second_pass(cpi);
}
#endif
if (cpi->compressor_speed == 2) {
cpi->avg_encode_time = 0;
cpi->avg_pick_mode_time = 0;
}
vp8_set_speed_features(cpi);
/* Set starting values of RD threshold multipliers (128 = *1) */
for (i = 0; i < MAX_MODES; ++i) {
cpi->mb.rd_thresh_mult[i] = 128;
}
#ifdef VP8_ENTROPY_STATS
init_mv_ref_counts();
#endif
#if CONFIG_MULTITHREAD
if (vp8cx_create_encoder_threads(cpi)) {
vp8_remove_compressor(&cpi);
return 0;
}
#endif
cpi->fn_ptr[BLOCK_16X16].sdf = vpx_sad16x16;
cpi->fn_ptr[BLOCK_16X16].vf = vpx_variance16x16;
cpi->fn_ptr[BLOCK_16X16].svf = vpx_sub_pixel_variance16x16;
cpi->fn_ptr[BLOCK_16X16].sdx3f = vpx_sad16x16x3;
cpi->fn_ptr[BLOCK_16X16].sdx8f = vpx_sad16x16x8;
cpi->fn_ptr[BLOCK_16X16].sdx4df = vpx_sad16x16x4d;
cpi->fn_ptr[BLOCK_16X8].sdf = vpx_sad16x8;
cpi->fn_ptr[BLOCK_16X8].vf = vpx_variance16x8;
cpi->fn_ptr[BLOCK_16X8].svf = vpx_sub_pixel_variance16x8;
cpi->fn_ptr[BLOCK_16X8].sdx3f = vpx_sad16x8x3;
cpi->fn_ptr[BLOCK_16X8].sdx8f = vpx_sad16x8x8;
cpi->fn_ptr[BLOCK_16X8].sdx4df = vpx_sad16x8x4d;
cpi->fn_ptr[BLOCK_8X16].sdf = vpx_sad8x16;
cpi->fn_ptr[BLOCK_8X16].vf = vpx_variance8x16;
cpi->fn_ptr[BLOCK_8X16].svf = vpx_sub_pixel_variance8x16;
cpi->fn_ptr[BLOCK_8X16].sdx3f = vpx_sad8x16x3;
cpi->fn_ptr[BLOCK_8X16].sdx8f = vpx_sad8x16x8;
cpi->fn_ptr[BLOCK_8X16].sdx4df = vpx_sad8x16x4d;
cpi->fn_ptr[BLOCK_8X8].sdf = vpx_sad8x8;
cpi->fn_ptr[BLOCK_8X8].vf = vpx_variance8x8;
cpi->fn_ptr[BLOCK_8X8].svf = vpx_sub_pixel_variance8x8;
cpi->fn_ptr[BLOCK_8X8].sdx3f = vpx_sad8x8x3;
cpi->fn_ptr[BLOCK_8X8].sdx8f = vpx_sad8x8x8;
cpi->fn_ptr[BLOCK_8X8].sdx4df = vpx_sad8x8x4d;
cpi->fn_ptr[BLOCK_4X4].sdf = vpx_sad4x4;
cpi->fn_ptr[BLOCK_4X4].vf = vpx_variance4x4;
cpi->fn_ptr[BLOCK_4X4].svf = vpx_sub_pixel_variance4x4;
cpi->fn_ptr[BLOCK_4X4].sdx3f = vpx_sad4x4x3;
cpi->fn_ptr[BLOCK_4X4].sdx8f = vpx_sad4x4x8;
cpi->fn_ptr[BLOCK_4X4].sdx4df = vpx_sad4x4x4d;
#if ARCH_X86 || ARCH_X86_64
cpi->fn_ptr[BLOCK_16X16].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_16X8].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_8X16].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_8X8].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_4X4].copymem = vp8_copy32xn;
#endif
cpi->full_search_sad = vp8_full_search_sad;
cpi->diamond_search_sad = vp8_diamond_search_sad;
cpi->refining_search_sad = vp8_refining_search_sad;
/* make sure frame 1 is okay */
cpi->mb.error_bins[0] = cpi->common.MBs;
/* vp8cx_init_quantizer() is first called here. Add check in
* vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only
* called later when needed. This will avoid unnecessary calls of
* vp8cx_init_quantizer() for every frame.
*/
vp8cx_init_quantizer(cpi);
vp8_loop_filter_init(cm);
cpi->common.error.setjmp = 0;
#if CONFIG_MULTI_RES_ENCODING
/* Calculate # of MBs in a row in lower-resolution level image. */
if (cpi->oxcf.mr_encoder_id > 0) vp8_cal_low_res_mb_cols(cpi);
#endif
/* setup RD costs to MACROBLOCK struct */
cpi->mb.mvcost[0] = &cpi->rd_costs.mvcosts[0][mv_max + 1];
cpi->mb.mvcost[1] = &cpi->rd_costs.mvcosts[1][mv_max + 1];
cpi->mb.mvsadcost[0] = &cpi->rd_costs.mvsadcosts[0][mvfp_max + 1];
cpi->mb.mvsadcost[1] = &cpi->rd_costs.mvsadcosts[1][mvfp_max + 1];
cal_mvsadcosts(cpi->mb.mvsadcost);
cpi->mb.mbmode_cost = cpi->rd_costs.mbmode_cost;
cpi->mb.intra_uv_mode_cost = cpi->rd_costs.intra_uv_mode_cost;
cpi->mb.bmode_costs = cpi->rd_costs.bmode_costs;
cpi->mb.inter_bmode_costs = cpi->rd_costs.inter_bmode_costs;
cpi->mb.token_costs = cpi->rd_costs.token_costs;
/* setup block ptrs & offsets */
vp8_setup_block_ptrs(&cpi->mb);
vp8_setup_block_dptrs(&cpi->mb.e_mbd);
return cpi;
}
void vp8_remove_compressor(VP8_COMP **ptr) {
VP8_COMP *cpi = *ptr;
if (!cpi) return;
if (cpi && (cpi->common.current_video_frame > 0)) {
#if !CONFIG_REALTIME_ONLY
if (cpi->pass == 2) {
vp8_end_second_pass(cpi);
}
#endif
#ifdef VP8_ENTROPY_STATS
print_context_counters();
print_tree_update_probs();
print_mode_context();
#endif
#if CONFIG_INTERNAL_STATS
if (cpi->pass != 1) {
FILE *f = fopen("opsnr.stt", "a");
double time_encoded =
(cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) /
10000000.000;
double total_encode_time =
(cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
double dr = (double)cpi->bytes * 8.0 / 1000.0 / time_encoded;
const double target_rate = (double)cpi->oxcf.target_bandwidth / 1000;
const double rate_err = ((100.0 * (dr - target_rate)) / target_rate);
if (cpi->b_calculate_psnr) {
if (cpi->oxcf.number_of_layers > 1) {
int i;
fprintf(f,
"Layer\tBitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t"
"GLPsnrP\tVPXSSIM\t\n");
for (i = 0; i < (int)cpi->oxcf.number_of_layers; ++i) {
double dr =
(double)cpi->bytes_in_layer[i] * 8.0 / 1000.0 / time_encoded;
double samples = 3.0 / 2 * cpi->frames_in_layer[i] *
cpi->common.Width * cpi->common.Height;
double total_psnr =
vpx_sse_to_psnr(samples, 255.0, cpi->total_error2[i]);
double total_psnr2 =
vpx_sse_to_psnr(samples, 255.0, cpi->total_error2_p[i]);
double total_ssim =
100 * pow(cpi->sum_ssim[i] / cpi->sum_weights[i], 8.0);
fprintf(f,
"%5d\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%7.3f\n",
i, dr, cpi->sum_psnr[i] / cpi->frames_in_layer[i],
total_psnr, cpi->sum_psnr_p[i] / cpi->frames_in_layer[i],
total_psnr2, total_ssim);
}
} else {
double samples =
3.0 / 2 * cpi->count * cpi->common.Width * cpi->common.Height;
double total_psnr =
vpx_sse_to_psnr(samples, 255.0, cpi->total_sq_error);
double total_psnr2 =
vpx_sse_to_psnr(samples, 255.0, cpi->total_sq_error2);
double total_ssim =
100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
fprintf(f,
"Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t"
"GLPsnrP\tVPXSSIM\t Time(us) Rc-Err "
"Abs Err\n");
fprintf(f,
"%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%8.0f %7.2f %7.2f\n",
dr, cpi->total / cpi->count, total_psnr,
cpi->totalp / cpi->count, total_psnr2, total_ssim,
total_encode_time, rate_err, fabs(rate_err));
}
}
fclose(f);
#if 0
f = fopen("qskip.stt", "a");
fprintf(f, "minq:%d -maxq:%d skiptrue:skipfalse = %d:%d\n", cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q, skiptruecount, skipfalsecount);
fclose(f);
#endif
}
#endif
#ifdef SPEEDSTATS
if (cpi->compressor_speed == 2) {
int i;
FILE *f = fopen("cxspeed.stt", "a");
cnt_pm /= cpi->common.MBs;
for (i = 0; i < 16; ++i) fprintf(f, "%5d", frames_at_speed[i]);
fprintf(f, "\n");
fclose(f);
}
#endif
#ifdef MODE_STATS
{
extern int count_mb_seg[4];
FILE *f = fopen("modes.stt", "a");
double dr = (double)cpi->framerate * (double)bytes * (double)8 /
(double)count / (double)1000;
fprintf(f, "intra_mode in Intra Frames:\n");
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d\n", y_modes[0], y_modes[1],
y_modes[2], y_modes[3], y_modes[4]);
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", uv_modes[0], uv_modes[1],
uv_modes[2], uv_modes[3]);
fprintf(f, "B: ");
{
int i;
for (i = 0; i < 10; ++i) fprintf(f, "%8d, ", b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "Modes in Inter Frames:\n");
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n",
inter_y_modes[0], inter_y_modes[1], inter_y_modes[2],
inter_y_modes[3], inter_y_modes[4], inter_y_modes[5],
inter_y_modes[6], inter_y_modes[7], inter_y_modes[8],
inter_y_modes[9]);
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", inter_uv_modes[0],
inter_uv_modes[1], inter_uv_modes[2], inter_uv_modes[3]);
fprintf(f, "B: ");
{
int i;
for (i = 0; i < 15; ++i) fprintf(f, "%8d, ", inter_b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1],
count_mb_seg[2], count_mb_seg[3]);
fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4],
inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4],
inter_b_modes[NEW4X4]);
fclose(f);
}
#endif
#ifdef VP8_ENTROPY_STATS
{
int i, j, k;
FILE *fmode = fopen("modecontext.c", "w");
fprintf(fmode, "\n#include \"entropymode.h\"\n\n");
fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts ");
fprintf(fmode,
"[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n");
for (i = 0; i < 10; ++i) {
fprintf(fmode, " { /* Above Mode : %d */\n", i);
for (j = 0; j < 10; ++j) {
fprintf(fmode, " {");
for (k = 0; k < 10; ++k) {
if (!intra_mode_stats[i][j][k])
fprintf(fmode, " %5d, ", 1);
else
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
}
fprintf(fmode, "}, /* left_mode %d */\n", j);
}
fprintf(fmode, " },\n");
}
fprintf(fmode, "};\n");
fclose(fmode);
}
#endif
#if defined(SECTIONBITS_OUTPUT)
if (0) {
int i;
FILE *f = fopen("tokenbits.stt", "a");
for (i = 0; i < 28; ++i) fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
fprintf(f, "\n");
fclose(f);
}
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
#endif
}
#if CONFIG_MULTITHREAD
vp8cx_remove_encoder_threads(cpi);
#endif
#if CONFIG_TEMPORAL_DENOISING
vp8_denoiser_free(&cpi->denoiser);
#endif
dealloc_compressor_data(cpi);
vpx_free(cpi->mb.ss);
vpx_free(cpi->tok);
vpx_free(cpi->cyclic_refresh_map);
vpx_free(cpi->consec_zero_last);
vpx_free(cpi->consec_zero_last_mvbias);
vp8_remove_common(&cpi->common);
vpx_free(cpi);
*ptr = 0;
#ifdef OUTPUT_YUV_SRC
fclose(yuv_file);
#endif
#ifdef OUTPUT_YUV_DENOISED
fclose(yuv_denoised_file);
#endif
#if 0
if (keyfile)
fclose(keyfile);
if (framepsnr)
fclose(framepsnr);
if (kf_list)
fclose(kf_list);
#endif
}
static uint64_t calc_plane_error(unsigned char *orig, int orig_stride,
unsigned char *recon, int recon_stride,
unsigned int cols, unsigned int rows) {
unsigned int row, col;
uint64_t total_sse = 0;
int diff;
for (row = 0; row + 16 <= rows; row += 16) {
for (col = 0; col + 16 <= cols; col += 16) {
unsigned int sse;
vpx_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse);
total_sse += sse;
}
/* Handle odd-sized width */
if (col < cols) {
unsigned int border_row, border_col;
unsigned char *border_orig = orig;
unsigned char *border_recon = recon;
for (border_row = 0; border_row < 16; ++border_row) {
for (border_col = col; border_col < cols; ++border_col) {
diff = border_orig[border_col] - border_recon[border_col];
total_sse += diff * diff;
}
border_orig += orig_stride;
border_recon += recon_stride;
}
}
orig += orig_stride * 16;
recon += recon_stride * 16;
}
/* Handle odd-sized height */
for (; row < rows; ++row) {
for (col = 0; col < cols; ++col) {
diff = orig[col] - recon[col];
total_sse += diff * diff;
}
orig += orig_stride;
recon += recon_stride;
}
vp8_clear_system_state();
return total_sse;
}
static void generate_psnr_packet(VP8_COMP *cpi) {
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
struct vpx_codec_cx_pkt pkt;
uint64_t sse;
int i;
unsigned int width = cpi->common.Width;
unsigned int height = cpi->common.Height;
pkt.kind = VPX_CODEC_PSNR_PKT;
sse = calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer,
recon->y_stride, width, height);
pkt.data.psnr.sse[0] = sse;
pkt.data.psnr.sse[1] = sse;
pkt.data.psnr.samples[0] = width * height;
pkt.data.psnr.samples[1] = width * height;
width = (width + 1) / 2;
height = (height + 1) / 2;
sse = calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer,
recon->uv_stride, width, height);
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[2] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[2] = width * height;
sse = calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer,
recon->uv_stride, width, height);
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[3] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[3] = width * height;
for (i = 0; i < 4; ++i) {
pkt.data.psnr.psnr[i] = vpx_sse_to_psnr(pkt.data.psnr.samples[i], 255.0,
(double)(pkt.data.psnr.sse[i]));
}
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int vp8_use_as_reference(VP8_COMP *cpi, int ref_frame_flags) {
if (ref_frame_flags > 7) return -1;
cpi->ref_frame_flags = ref_frame_flags;
return 0;
}
int vp8_update_reference(VP8_COMP *cpi, int ref_frame_flags) {
if (ref_frame_flags > 7) return -1;
cpi->common.refresh_golden_frame = 0;
cpi->common.refresh_alt_ref_frame = 0;
cpi->common.refresh_last_frame = 0;
if (ref_frame_flags & VP8_LAST_FRAME) cpi->common.refresh_last_frame = 1;
if (ref_frame_flags & VP8_GOLD_FRAME) cpi->common.refresh_golden_frame = 1;
if (ref_frame_flags & VP8_ALTR_FRAME) cpi->common.refresh_alt_ref_frame = 1;
return 0;
}
int vp8_get_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
VP8_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP8_LAST_FRAME) {
ref_fb_idx = cm->lst_fb_idx;
} else if (ref_frame_flag == VP8_GOLD_FRAME) {
ref_fb_idx = cm->gld_fb_idx;
} else if (ref_frame_flag == VP8_ALTR_FRAME) {
ref_fb_idx = cm->alt_fb_idx;
} else {
return -1;
}
vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd);
return 0;
}
int vp8_set_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
VP8_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP8_LAST_FRAME) {
ref_fb_idx = cm->lst_fb_idx;
} else if (ref_frame_flag == VP8_GOLD_FRAME) {
ref_fb_idx = cm->gld_fb_idx;
} else if (ref_frame_flag == VP8_ALTR_FRAME) {
ref_fb_idx = cm->alt_fb_idx;
} else {
return -1;
}
vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]);
return 0;
}
int vp8_update_entropy(VP8_COMP *cpi, int update) {
VP8_COMMON *cm = &cpi->common;
cm->refresh_entropy_probs = update;
return 0;
}
#if defined(OUTPUT_YUV_SRC) || defined(OUTPUT_YUV_DENOISED)
void vp8_write_yuv_frame(FILE *yuv_file, YV12_BUFFER_CONFIG *s) {
unsigned char *src = s->y_buffer;
int h = s->y_height;
do {
fwrite(src, s->y_width, 1, yuv_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
} while (--h);
}
#endif
static void scale_and_extend_source(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi) {
VP8_COMMON *cm = &cpi->common;
/* are we resizing the image */
if (cm->horiz_scale != 0 || cm->vert_scale != 0) {
#if CONFIG_SPATIAL_RESAMPLING
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
int tmp_height;
if (cm->vert_scale == 3) {
tmp_height = 9;
} else {
tmp_height = 11;
}
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
vpx_scale_frame(sd, &cpi->scaled_source, cm->temp_scale_frame.y_buffer,
tmp_height, hs, hr, vs, vr, 0);
vp8_yv12_extend_frame_borders(&cpi->scaled_source);
cpi->Source = &cpi->scaled_source;
#endif
} else {
cpi->Source = sd;
}
}
static int resize_key_frame(VP8_COMP *cpi) {
#if CONFIG_SPATIAL_RESAMPLING
VP8_COMMON *cm = &cpi->common;
/* Do we need to apply resampling for one pass cbr.
* In one pass this is more limited than in two pass cbr.
* The test and any change is only made once per key frame sequence.
*/
if (cpi->oxcf.allow_spatial_resampling &&
(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) {
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
int new_width, new_height;
/* If we are below the resample DOWN watermark then scale down a
* notch.
*/
if (cpi->buffer_level < (cpi->oxcf.resample_down_water_mark *
cpi->oxcf.optimal_buffer_level / 100)) {
cm->horiz_scale =
(cm->horiz_scale < ONETWO) ? cm->horiz_scale + 1 : ONETWO;
cm->vert_scale = (cm->vert_scale < ONETWO) ? cm->vert_scale + 1 : ONETWO;
}
/* Should we now start scaling back up */
else if (cpi->buffer_level > (cpi->oxcf.resample_up_water_mark *
cpi->oxcf.optimal_buffer_level / 100)) {
cm->horiz_scale =
(cm->horiz_scale > NORMAL) ? cm->horiz_scale - 1 : NORMAL;
cm->vert_scale = (cm->vert_scale > NORMAL) ? cm->vert_scale - 1 : NORMAL;
}
/* Get the new height and width */
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
/* If the image size has changed we need to reallocate the buffers
* and resample the source image
*/
if ((cm->Width != new_width) || (cm->Height != new_height)) {
cm->Width = new_width;
cm->Height = new_height;
vp8_alloc_compressor_data(cpi);
scale_and_extend_source(cpi->un_scaled_source, cpi);
return 1;
}
}
#endif
return 0;
}
static void update_alt_ref_frame_stats(VP8_COMP *cpi) {
VP8_COMMON *cm = &cpi->common;
/* Select an interval before next GF or altref */
if (!cpi->auto_gold) cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL;
if ((cpi->pass != 2) && cpi->frames_till_gf_update_due) {
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
/* Set the bits per frame that we should try and recover in
* subsequent inter frames to account for the extra GF spend...
* note that his does not apply for GF updates that occur
* coincident with a key frame as the extra cost of key frames is
* dealt with elsewhere.
*/
cpi->gf_overspend_bits += cpi->projected_frame_size;
cpi->non_gf_bitrate_adjustment =
cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
}
/* Update data structure that monitors level of reference to last GF */
memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
/* this frame refreshes means next frames don't unless specified by user */
cpi->frames_since_golden = 0;
/* Clear the alternate reference update pending flag. */
cpi->source_alt_ref_pending = 0;
/* Set the alternate reference frame active flag */
cpi->source_alt_ref_active = 1;
}
static void update_golden_frame_stats(VP8_COMP *cpi) {
VP8_COMMON *cm = &cpi->common;
/* Update the Golden frame usage counts. */
if (cm->refresh_golden_frame) {
/* Select an interval before next GF */
if (!cpi->auto_gold) cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL;
if ((cpi->pass != 2) && (cpi->frames_till_gf_update_due > 0)) {
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
/* Set the bits per frame that we should try and recover in
* subsequent inter frames to account for the extra GF spend...
* note that his does not apply for GF updates that occur
* coincident with a key frame as the extra cost of key frames
* is dealt with elsewhere.
*/
if ((cm->frame_type != KEY_FRAME) && !cpi->source_alt_ref_active) {
/* Calcluate GF bits to be recovered
* Projected size - av frame bits available for inter
* frames for clip as a whole
*/
cpi->gf_overspend_bits +=
(cpi->projected_frame_size - cpi->inter_frame_target);
}
cpi->non_gf_bitrate_adjustment =
cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
}
/* Update data structure that monitors level of reference to last GF */
memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
/* this frame refreshes means next frames don't unless specified by
* user
*/
cm->refresh_golden_frame = 0;
cpi->frames_since_golden = 0;
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
/* ******** Fixed Q test code only ************ */
/* If we are going to use the ALT reference for the next group of
* frames set a flag to say so.
*/
if (cpi->oxcf.fixed_q >= 0 && cpi->oxcf.play_alternate &&
!cpi->common.refresh_alt_ref_frame) {
cpi->source_alt_ref_pending = 1;
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
}
if (!cpi->source_alt_ref_pending) cpi->source_alt_ref_active = 0;
/* Decrement count down till next gf */
if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--;
} else if (!cpi->common.refresh_alt_ref_frame) {
/* Decrement count down till next gf */
if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--;
if (cpi->frames_till_alt_ref_frame) cpi->frames_till_alt_ref_frame--;
cpi->frames_since_golden++;
if (cpi->frames_since_golden > 1) {
cpi->recent_ref_frame_usage[INTRA_FRAME] +=
cpi->mb.count_mb_ref_frame_usage[INTRA_FRAME];
cpi->recent_ref_frame_usage[LAST_FRAME] +=
cpi->mb.count_mb_ref_frame_usage[LAST_FRAME];
cpi->recent_ref_frame_usage[GOLDEN_FRAME] +=
cpi->mb.count_mb_ref_frame_usage[GOLDEN_FRAME];
cpi->recent_ref_frame_usage[ALTREF_FRAME] +=
cpi->mb.count_mb_ref_frame_usage[ALTREF_FRAME];
}
}
}
/* This function updates the reference frame probability estimates that
* will be used during mode selection
*/
static void update_rd_ref_frame_probs(VP8_COMP *cpi) {
VP8_COMMON *cm = &cpi->common;
const int *const rfct = cpi->mb.count_mb_ref_frame_usage;
const int rf_intra = rfct[INTRA_FRAME];
const int rf_inter =
rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
if (cm->frame_type == KEY_FRAME) {
cpi->prob_intra_coded = 255;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
} else if (!(rf_intra + rf_inter)) {
cpi->prob_intra_coded = 63;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
}
/* update reference frame costs since we can do better than what we got
* last frame.
*/
if (cpi->oxcf.number_of_layers == 1) {
if (cpi->common.refresh_alt_ref_frame) {
cpi->prob_intra_coded += 40;
if (cpi->prob_intra_coded > 255) cpi->prob_intra_coded = 255;
cpi->prob_last_coded = 200;
cpi->prob_gf_coded = 1;
} else if (cpi->frames_since_golden == 0) {
cpi->prob_last_coded = 214;
} else if (cpi->frames_since_golden == 1) {
cpi->prob_last_coded = 192;
cpi->prob_gf_coded = 220;
} else if (cpi->source_alt_ref_active) {
cpi->prob_gf_coded -= 20;
if (cpi->prob_gf_coded < 10) cpi->prob_gf_coded = 10;
}
if (!cpi->source_alt_ref_active) cpi->prob_gf_coded = 255;
}
}
#if !CONFIG_REALTIME_ONLY
/* 1 = key, 0 = inter */
static int decide_key_frame(VP8_COMP *cpi) {
VP8_COMMON *cm = &cpi->common;
int code_key_frame = 0;
cpi->kf_boost = 0;
if (cpi->Speed > 11) return 0;
/* Clear down mmx registers */
vp8_clear_system_state();
if ((cpi->compressor_speed == 2) && (cpi->Speed >= 5) && (cpi->sf.RD == 0)) {
double change = 1.0 *
abs((int)(cpi->mb.intra_error - cpi->last_intra_error)) /
(1 + cpi->last_intra_error);
double change2 =
1.0 *
abs((int)(cpi->mb.prediction_error - cpi->last_prediction_error)) /
(1 + cpi->last_prediction_error);
double minerror = cm->MBs * 256;
cpi->last_intra_error = cpi->mb.intra_error;
cpi->last_prediction_error = cpi->mb.prediction_error;
if (10 * cpi->mb.intra_error / (1 + cpi->mb.prediction_error) < 15 &&
cpi->mb.prediction_error > minerror &&
(change > .25 || change2 > .25)) {
/*(change > 1.4 || change < .75)&& cpi->this_frame_percent_intra >
* cpi->last_frame_percent_intra + 3*/
return 1;
}
return 0;
}
/* If the following are true we might as well code a key frame */
if (((cpi->this_frame_percent_intra == 100) &&
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 2))) ||
((cpi->this_frame_percent_intra > 95) &&
(cpi->this_frame_percent_intra >=
(cpi->last_frame_percent_intra + 5)))) {
code_key_frame = 1;
}
/* in addition if the following are true and this is not a golden frame
* then code a key frame Note that on golden frames there often seems
* to be a pop in intra useage anyway hence this restriction is
* designed to prevent spurious key frames. The Intra pop needs to be
* investigated.
*/
else if (((cpi->this_frame_percent_intra > 60) &&
(cpi->this_frame_percent_intra >
(cpi->last_frame_percent_intra * 2))) ||
((cpi->this_frame_percent_intra > 75) &&
(cpi->this_frame_percent_intra >
(cpi->last_frame_percent_intra * 3 / 2))) ||
((cpi->this_frame_percent_intra > 90) &&
(cpi->this_frame_percent_intra >
(cpi->last_frame_percent_intra + 10)))) {
if (!cm->refresh_golden_frame) code_key_frame = 1;
}
return code_key_frame;
}
static void Pass1Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest,
unsigned int *frame_flags) {
(void)size;
(void)dest;
(void)frame_flags;
vp8_set_quantizer(cpi, 26);
vp8_first_pass(cpi);
}
#endif
#if 0
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame)
{
/* write the frame */
FILE *yframe;
int i;
char filename[255];
sprintf(filename, "cx\\y%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->y_height; ++i)
fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\u%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; ++i)
fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\v%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; ++i)
fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
fclose(yframe);
}
#endif
/* return of 0 means drop frame */
#if !CONFIG_REALTIME_ONLY
/* Function to test for conditions that indeicate we should loop
* back and recode a frame.
*/
static int recode_loop_test(VP8_COMP *cpi, int high_limit, int low_limit, int q,
int maxq, int minq) {
int force_recode = 0;
VP8_COMMON *cm = &cpi->common;
/* Is frame recode allowed at all
* Yes if either recode mode 1 is selected or mode two is selcted
* and the frame is a key frame. golden frame or alt_ref_frame
*/
if ((cpi->sf.recode_loop == 1) ||
((cpi->sf.recode_loop == 2) &&
((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame ||
cm->refresh_alt_ref_frame))) {
/* General over and under shoot tests */
if (((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
((cpi->projected_frame_size < low_limit) && (q > minq))) {
force_recode = 1;
}
/* Special Constrained quality tests */
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
/* Undershoot and below auto cq level */
if ((q > cpi->cq_target_quality) &&
(cpi->projected_frame_size < ((cpi->this_frame_target * 7) >> 3))) {
force_recode = 1;
}
/* Severe undershoot and between auto and user cq level */
else if ((q > cpi->oxcf.cq_level) &&
(cpi->projected_frame_size < cpi->min_frame_bandwidth) &&
(cpi->active_best_quality > cpi->oxcf.cq_level)) {
force_recode = 1;
cpi->active_best_quality = cpi->oxcf.cq_level;
}
}
}
return force_recode;
}
#endif // !CONFIG_REALTIME_ONLY
static void update_reference_frames(VP8_COMP *cpi) {
VP8_COMMON *cm = &cpi->common;
YV12_BUFFER_CONFIG *yv12_fb = cm->yv12_fb;
/* At this point the new frame has been encoded.
* If any buffer copy / swapping is signaled it should be done here.
*/
if (cm->frame_type == KEY_FRAME) {
yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FRAME | VP8_ALTR_FRAME;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->gld_fb_idx = cm->new_fb_idx;
cpi->current_ref_frames[GOLDEN_FRAME] = cm->current_video_frame;
cpi->current_ref_frames[ALTREF_FRAME] = cm->current_video_frame;
} else /* For non key frames */
{
if (cm->refresh_alt_ref_frame) {
assert(!cm->copy_buffer_to_arf);
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_ALTR_FRAME;
cm->yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->new_fb_idx;
cpi->current_ref_frames[ALTREF_FRAME] = cm->current_video_frame;
} else if (cm->copy_buffer_to_arf) {
assert(!(cm->copy_buffer_to_arf & ~0x3));
if (cm->copy_buffer_to_arf == 1) {
if (cm->alt_fb_idx != cm->lst_fb_idx) {
yv12_fb[cm->lst_fb_idx].flags |= VP8_ALTR_FRAME;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->lst_fb_idx;
cpi->current_ref_frames[ALTREF_FRAME] =
cpi->current_ref_frames[LAST_FRAME];
}
} else /* if (cm->copy_buffer_to_arf == 2) */
{
if (cm->alt_fb_idx != cm->gld_fb_idx) {
yv12_fb[cm->gld_fb_idx].flags |= VP8_ALTR_FRAME;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->gld_fb_idx;
cpi->current_ref_frames[ALTREF_FRAME] =
cpi->current_ref_frames[GOLDEN_FRAME];
}
}
}
if (cm->refresh_golden_frame) {
assert(!cm->copy_buffer_to_gf);
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FRAME;
cm->yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
cm->gld_fb_idx = cm->new_fb_idx;
cpi->current_ref_frames[GOLDEN_FRAME] = cm->current_video_frame;
} else if (cm->copy_buffer_to_gf) {
assert(!(cm->copy_buffer_to_arf & ~0x3));
if (cm->copy_buffer_to_gf == 1) {
if (cm->gld_fb_idx != cm->lst_fb_idx) {
yv12_fb[cm->lst_fb_idx].flags |= VP8_GOLD_FRAME;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
cm->gld_fb_idx = cm->lst_fb_idx;
cpi->current_ref_frames[GOLDEN_FRAME] =
cpi->current_ref_frames[LAST_FRAME];
}
} else /* if (cm->copy_buffer_to_gf == 2) */
{
if (cm->alt_fb_idx != cm->gld_fb_idx) {
yv12_fb[cm->alt_fb_idx].flags |= VP8_GOLD_FRAME;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
cm->gld_fb_idx = cm->alt_fb_idx;
cpi->current_ref_frames[GOLDEN_FRAME] =
cpi->current_ref_frames[ALTREF_FRAME];
}
}
}
}
if (cm->refresh_last_frame) {
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_LAST_FRAME;
cm->yv12_fb[cm->lst_fb_idx].flags &= ~VP8_LAST_FRAME;
cm->lst_fb_idx = cm->new_fb_idx;
cpi->current_ref_frames[LAST_FRAME] = cm->current_video_frame;
}
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity) {
/* we shouldn't have to keep multiple copies as we know in advance which
* buffer we should start - for now to get something up and running
* I've chosen to copy the buffers
*/
if (cm->frame_type == KEY_FRAME) {
int i;
for (i = LAST_FRAME; i < MAX_REF_FRAMES; ++i)
vp8_yv12_copy_frame(cpi->Source, &cpi->denoiser.yv12_running_avg[i]);
} else /* For non key frames */
{
vp8_yv12_extend_frame_borders(
&cpi->denoiser.yv12_running_avg[INTRA_FRAME]);
if (cm->refresh_alt_ref_frame || cm->copy_buffer_to_arf) {
vp8_yv12_copy_frame(&cpi->denoiser.yv12_running_avg[INTRA_FRAME],
&cpi->denoiser.yv12_running_avg[ALTREF_FRAME]);
}
if (cm->refresh_golden_frame || cm->copy_buffer_to_gf) {
vp8_yv12_copy_frame(&cpi->denoiser.yv12_running_avg[INTRA_FRAME],
&cpi->denoiser.yv12_running_avg[GOLDEN_FRAME]);
}
if (cm->refresh_last_frame) {
vp8_yv12_copy_frame(&cpi->denoiser.yv12_running_avg[INTRA_FRAME],
&cpi->denoiser.yv12_running_avg[LAST_FRAME]);
}
}
if (cpi->oxcf.noise_sensitivity == 4)
vp8_yv12_copy_frame(cpi->Source, &cpi->denoiser.yv12_last_source);
}
#endif
}
static int measure_square_diff_partial(YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest,
VP8_COMP *cpi) {
int i, j;
int Total = 0;
int num_blocks = 0;
int skip = 2;
int min_consec_zero_last = 10;
int tot_num_blocks = (source->y_height * source->y_width) >> 8;
unsigned char *src = source->y_buffer;
unsigned char *dst = dest->y_buffer;
/* Loop through the Y plane, every |skip| blocks along rows and colmumns,
* summing the square differences, and only for blocks that have been
* zero_last mode at least |x| frames in a row.
*/
for (i = 0; i < source->y_height; i += 16 * skip) {
int block_index_row = (i >> 4) * cpi->common.mb_cols;
for (j = 0; j < source->y_width; j += 16 * skip) {
int index = block_index_row + (j >> 4);
if (cpi->consec_zero_last[index] >= min_consec_zero_last) {
unsigned int sse;
Total += vpx_mse16x16(src + j, source->y_stride, dst + j,
dest->y_stride, &sse);
num_blocks++;
}
}
src += 16 * skip * source->y_stride;
dst += 16 * skip * dest->y_stride;
}
// Only return non-zero if we have at least ~1/16 samples for estimate.
if (num_blocks > (tot_num_blocks >> 4)) {
return (Total / num_blocks);
} else {
return 0;
}
}
#if CONFIG_TEMPORAL_DENOISING
static void process_denoiser_mode_change(VP8_COMP *cpi) {
const VP8_COMMON *const cm = &cpi->common;
int i, j;
int total = 0;
int num_blocks = 0;
// Number of blocks skipped along row/column in computing the
// nmse (normalized mean square error) of source.
int skip = 2;
// Only select blocks for computing nmse that have been encoded
// as ZERO LAST min_consec_zero_last frames in a row.
// Scale with number of temporal layers.
int min_consec_zero_last = 12 / cpi->oxcf.number_of_layers;
// Decision is tested for changing the denoising mode every
// num_mode_change times this function is called. Note that this
// function called every 8 frames, so (8 * num_mode_change) is number
// of frames where denoising mode change is tested for switch.
int num_mode_change = 20;
// Framerate factor, to compensate for larger mse at lower framerates.
// Use ref_framerate, which is full source framerate for temporal layers.
// TODO(marpan): Adjust this factor.
int fac_framerate = cpi->ref_framerate < 25.0f ? 80 : 100;
int tot_num_blocks = cm->mb_rows * cm->mb_cols;
int ystride = cpi->Source->y_stride;
unsigned char *src = cpi->Source->y_buffer;
unsigned char *dst = cpi->denoiser.yv12_last_source.y_buffer;
static const unsigned char const_source[16] = { 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128,
128, 128, 128, 128 };
int bandwidth = (int)(cpi->target_bandwidth);
// For temporal layers, use full bandwidth (top layer).
if (cpi->oxcf.number_of_layers > 1) {
LAYER_CONTEXT *lc = &cpi->layer_context[cpi->oxcf.number_of_layers - 1];
bandwidth = (int)(lc->target_bandwidth);
}
// Loop through the Y plane, every skip blocks along rows and columns,
// summing the normalized mean square error, only for blocks that have
// been encoded as ZEROMV LAST at least min_consec_zero_last least frames in
// a row and have small sum difference between current and previous frame.
// Normalization here is by the contrast of the current frame block.
for (i = 0; i < cm->Height; i += 16 * skip) {
int block_index_row = (i >> 4) * cm->mb_cols;
for (j = 0; j < cm->Width; j += 16 * skip) {
int index = block_index_row + (j >> 4);
if (cpi->consec_zero_last[index] >= min_consec_zero_last) {
unsigned int sse;
const unsigned int var =
vpx_variance16x16(src + j, ystride, dst + j, ystride, &sse);
// Only consider this block as valid for noise measurement
// if the sum_diff average of the current and previous frame
// is small (to avoid effects from lighting change).
if ((sse - var) < 128) {
unsigned int sse2;
const unsigned int act =
vpx_variance16x16(src + j, ystride, const_source, 0, &sse2);
if (act > 0) total += sse / act;
num_blocks++;
}
}
}
src += 16 * skip * ystride;
dst += 16 * skip * ystride;
}
total = total * fac_framerate / 100;
// Only consider this frame as valid sample if we have computed nmse over
// at least ~1/16 blocks, and Total > 0 (Total == 0 can happen if the
// application inputs duplicate frames, or contrast is all zero).
if (total > 0 && (num_blocks > (tot_num_blocks >> 4))) {
// Update the recursive mean square source_diff.
total = (total << 8) / num_blocks;
if (cpi->denoiser.nmse_source_diff_count == 0) {
// First sample in new interval.
cpi->denoiser.nmse_source_diff = total;
cpi->denoiser.qp_avg = cm->base_qindex;
} else {
// For subsequent samples, use average with weight ~1/4 for new sample.
cpi->denoiser.nmse_source_diff =
(int)((total + 3 * cpi->denoiser.nmse_source_diff) >> 2);
cpi->denoiser.qp_avg =
(int)((cm->base_qindex + 3 * cpi->denoiser.qp_avg) >> 2);
}
cpi->denoiser.nmse_source_diff_count++;
}
// Check for changing the denoiser mode, when we have obtained #samples =
// num_mode_change. Condition the change also on the bitrate and QP.
if (cpi->denoiser.nmse_source_diff_count == num_mode_change) {
// Check for going up: from normal to aggressive mode.
if ((cpi->denoiser.denoiser_mode == kDenoiserOnYUV) &&
(cpi->denoiser.nmse_source_diff >
cpi->denoiser.threshold_aggressive_mode) &&
(cpi->denoiser.qp_avg < cpi->denoiser.qp_threshold_up &&
bandwidth > cpi->denoiser.bitrate_threshold)) {
vp8_denoiser_set_parameters(&cpi->denoiser, kDenoiserOnYUVAggressive);
} else {
// Check for going down: from aggressive to normal mode.
if (((cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive) &&
(cpi->denoiser.nmse_source_diff <
cpi->denoiser.threshold_aggressive_mode)) ||
((cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive) &&
(cpi->denoiser.qp_avg > cpi->denoiser.qp_threshold_down ||
bandwidth < cpi->denoiser.bitrate_threshold))) {
vp8_denoiser_set_parameters(&cpi->denoiser, kDenoiserOnYUV);
}
}
// Reset metric and counter for next interval.
cpi->denoiser.nmse_source_diff = 0;
cpi->denoiser.qp_avg = 0;
cpi->denoiser.nmse_source_diff_count = 0;
}
}
#endif
void vp8_loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm) {
const FRAME_TYPE frame_type = cm->frame_type;
int update_any_ref_buffers = 1;
if (cpi->common.refresh_last_frame == 0 &&
cpi->common.refresh_golden_frame == 0 &&
cpi->common.refresh_alt_ref_frame == 0) {
update_any_ref_buffers = 0;
}
if (cm->no_lpf) {
cm->filter_level = 0;
} else {
struct vpx_usec_timer timer;
vp8_clear_system_state();
vpx_usec_timer_start(&timer);
if (cpi->sf.auto_filter == 0) {
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity && cm->frame_type != KEY_FRAME) {
// Use the denoised buffer for selecting base loop filter level.
// Denoised signal for current frame is stored in INTRA_FRAME.
// No denoising on key frames.
vp8cx_pick_filter_level_fast(
&cpi->denoiser.yv12_running_avg[INTRA_FRAME], cpi);
} else {
vp8cx_pick_filter_level_fast(cpi->Source, cpi);
}
#else
vp8cx_pick_filter_level_fast(cpi->Source, cpi);
#endif
} else {
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity && cm->frame_type != KEY_FRAME) {
// Use the denoised buffer for selecting base loop filter level.
// Denoised signal for current frame is stored in INTRA_FRAME.
// No denoising on key frames.
vp8cx_pick_filter_level(&cpi->denoiser.yv12_running_avg[INTRA_FRAME],
cpi);
} else {
vp8cx_pick_filter_level(cpi->Source, cpi);
}
#else
vp8cx_pick_filter_level(cpi->Source, cpi);
#endif
}
if (cm->filter_level > 0) {
vp8cx_set_alt_lf_level(cpi, cm->filter_level);
}
vpx_usec_timer_mark(&timer);
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
}
#if CONFIG_MULTITHREAD
if (cpi->b_multi_threaded) {
sem_post(&cpi->h_event_end_lpf); /* signal that we have set filter_level */
}
#endif
// No need to apply loop-filter if the encoded frame does not update
// any reference buffers.
if (cm->filter_level > 0 && update_any_ref_buffers) {
vp8_loop_filter_frame(cm, &cpi->mb.e_mbd, frame_type);
}
vp8_yv12_extend_frame_borders(cm->frame_to_show);
}
static void encode_frame_to_data_rate(VP8_COMP *cpi, unsigned long *size,
unsigned char *dest,
unsigned char *dest_end,
unsigned int *frame_flags) {
int Q;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
int Loop = 0;
int loop_count;
VP8_COMMON *cm = &cpi->common;
int active_worst_qchanged = 0;
#if !CONFIG_REALTIME_ONLY
int q_low;
int q_high;
int zbin_oq_high;
int zbin_oq_low = 0;
int top_index;
int bottom_index;
int overshoot_seen = 0;
int undershoot_seen = 0;
#endif
int drop_mark = (int)(cpi->oxcf.drop_frames_water_mark *
cpi->oxcf.optimal_buffer_level / 100);
int drop_mark75 = drop_mark * 2 / 3;
int drop_mark50 = drop_mark / 4;
int drop_mark25 = drop_mark / 8;
/* Clear down mmx registers to allow floating point in what follows */
vp8_clear_system_state();
if (cpi->force_next_frame_intra) {
cm->frame_type = KEY_FRAME; /* delayed intra frame */
cpi->force_next_frame_intra = 0;
}
/* For an alt ref frame in 2 pass we skip the call to the second pass
* function that sets the target bandwidth
*/
switch (cpi->pass) {
#if !CONFIG_REALTIME_ONLY
case 2:
if (cpi->common.refresh_alt_ref_frame) {
/* Per frame bit target for the alt ref frame */
cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
/* per second target bitrate */
cpi->target_bandwidth =
(int)(cpi->twopass.gf_bits * cpi->output_framerate);
}
break;
#endif // !CONFIG_REALTIME_ONLY
default:
cpi->per_frame_bandwidth =
(int)(cpi->target_bandwidth / cpi->output_framerate);
break;
}
/* Default turn off buffer to buffer copying */
cm->copy_buffer_to_gf = 0;
cm->copy_buffer_to_arf = 0;
/* Clear zbin over-quant value and mode boost values. */
cpi->mb.zbin_over_quant = 0;
cpi->mb.zbin_mode_boost = 0;
/* Enable or disable mode based tweaking of the zbin
* For 2 Pass Only used where GF/ARF prediction quality
* is above a threshold
*/
cpi->mb.zbin_mode_boost_enabled = 1;
if (cpi->pass == 2) {
if (cpi->gfu_boost <= 400) {
cpi->mb.zbin_mode_boost_enabled = 0;
}
}
/* Current default encoder behaviour for the altref sign bias */
if (cpi->source_alt_ref_active) {
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
} else {
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0;
}
/* Check to see if a key frame is signaled
* For two pass with auto key frame enabled cm->frame_type may already
* be set, but not for one pass.
*/
if ((cm->current_video_frame == 0) || (cm->frame_flags & FRAMEFLAGS_KEY) ||
(cpi->oxcf.auto_key &&
(cpi->frames_since_key % cpi->key_frame_frequency == 0))) {
/* Key frame from VFW/auto-keyframe/first frame */
cm->frame_type = KEY_FRAME;
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity == 4) {
// For adaptive mode, reset denoiser to normal mode on key frame.
vp8_denoiser_set_parameters(&cpi->denoiser, kDenoiserOnYUV);
}
#endif
}
#if CONFIG_MULTI_RES_ENCODING
if (cpi->oxcf.mr_total_resolutions > 1) {
LOWER_RES_FRAME_INFO *low_res_frame_info =
(LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info;
if (cpi->oxcf.mr_encoder_id) {
// TODO(marpan): This constraint shouldn't be needed, as we would like
// to allow for key frame setting (forced or periodic) defined per
// spatial layer. For now, keep this in.
cm->frame_type = low_res_frame_info->frame_type;
// Check if lower resolution is available for motion vector reuse.
if (cm->frame_type != KEY_FRAME) {
cpi->mr_low_res_mv_avail = 1;
cpi->mr_low_res_mv_avail &= !(low_res_frame_info->is_frame_dropped);
if (cpi->ref_frame_flags & VP8_LAST_FRAME)
cpi->mr_low_res_mv_avail &=
(cpi->current_ref_frames[LAST_FRAME] ==
low_res_frame_info->low_res_ref_frames[LAST_FRAME]);
if (cpi->ref_frame_flags & VP8_GOLD_FRAME)
cpi->mr_low_res_mv_avail &=
(cpi->current_ref_frames[GOLDEN_FRAME] ==
low_res_frame_info->low_res_ref_frames[GOLDEN_FRAME]);
// Don't use altref to determine whether low res is available.
// TODO (marpan): Should we make this type of condition on a
// per-reference frame basis?
/*
if (cpi->ref_frame_flags & VP8_ALTR_FRAME)
cpi->mr_low_res_mv_avail &= (cpi->current_ref_frames[ALTREF_FRAME]
== low_res_frame_info->low_res_ref_frames[ALTREF_FRAME]);
*/
}
}
// On a key frame: For the lowest resolution, keep track of the key frame
// counter value. For the higher resolutions, reset the current video
// frame counter to that of the lowest resolution.
// This is done to the handle the case where we may stop/start encoding
// higher layer(s). The restart-encoding of higher layer is only signaled
// by a key frame for now.
// TODO (marpan): Add flag to indicate restart-encoding of higher layer.
if (cm->frame_type == KEY_FRAME) {
if (cpi->oxcf.mr_encoder_id) {
// If the initial starting value of the buffer level is zero (this can
// happen because we may have not started encoding this higher stream),
// then reset it to non-zero value based on |starting_buffer_level|.
if (cpi->common.current_video_frame == 0 && cpi->buffer_level == 0) {
unsigned int i;
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
for (i = 0; i < cpi->oxcf.number_of_layers; ++i) {
LAYER_CONTEXT *lc = &cpi->layer_context[i];
lc->bits_off_target = lc->starting_buffer_level;
lc->buffer_level = lc->starting_buffer_level;
}
}
cpi->common.current_video_frame =
low_res_frame_info->key_frame_counter_value;
} else {
low_res_frame_info->key_frame_counter_value =
cpi->common.current_video_frame;
}
}
}
#endif
// Find the reference frame closest to the current frame.
cpi->closest_reference_frame = LAST_FRAME;
if (cm->frame_type != KEY_FRAME) {
int i;
MV_REFERENCE_FRAME closest_ref = INTRA_FRAME;
if (cpi->ref_frame_flags & VP8_LAST_FRAME) {
closest_ref = LAST_FRAME;
} else if (cpi->ref_frame_flags & VP8_GOLD_FRAME) {
closest_ref = GOLDEN_FRAME;
} else if (cpi->ref_frame_flags & VP8_ALTR_FRAME) {
closest_ref = ALTREF_FRAME;
}
for (i = 1; i <= 3; ++i) {
vpx_ref_frame_type_t ref_frame_type =
(vpx_ref_frame_type_t)((i == 3) ? 4 : i);
if (cpi->ref_frame_flags & ref_frame_type) {
if ((cm->current_video_frame - cpi->current_ref_frames[i]) <
(cm->current_video_frame - cpi->current_ref_frames[closest_ref])) {
closest_ref = i;
}
}
}
cpi->closest_reference_frame = closest_ref;
}
/* Set various flags etc to special state if it is a key frame */
if (cm->frame_type == KEY_FRAME) {
int i;
// Set the loop filter deltas and segmentation map update
setup_features(cpi);
/* The alternate reference frame cannot be active for a key frame */
cpi->source_alt_ref_active = 0;
/* Reset the RD threshold multipliers to default of * 1 (128) */
for (i = 0; i < MAX_MODES; ++i) {
cpi->mb.rd_thresh_mult[i] = 128;
}
// Reset the zero_last counter to 0 on key frame.
memset(cpi->consec_zero_last, 0, cm->mb_rows * cm->mb_cols);
memset(cpi->consec_zero_last_mvbias, 0,
(cpi->common.mb_rows * cpi->common.mb_cols));
}
#if 0
/* Experimental code for lagged compress and one pass
* Initialise one_pass GF frames stats
* Update stats used for GF selection
*/
{
cpi->one_pass_frame_index = cm->current_video_frame % MAX_LAG_BUFFERS;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frames_so_far = 0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_intra_error = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_coded_error = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_inter = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_motion = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr_abs = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc_abs = 0.0;
}
#endif
update_rd_ref_frame_probs(cpi);
if (cpi->drop_frames_allowed) {
/* The reset to decimation 0 is only done here for one pass.
* Once it is set two pass leaves decimation on till the next kf.
*/
if ((cpi->buffer_level > drop_mark) && (cpi->decimation_factor > 0)) {
cpi->decimation_factor--;
}
if (cpi->buffer_level > drop_mark75 && cpi->decimation_factor > 0) {
cpi->decimation_factor = 1;
} else if (cpi->buffer_level < drop_mark25 &&
(cpi->decimation_factor == 2 || cpi->decimation_factor == 3)) {
cpi->decimation_factor = 3;
} else if (cpi->buffer_level < drop_mark50 &&
(cpi->decimation_factor == 1 || cpi->decimation_factor == 2)) {
cpi->decimation_factor = 2;
} else if (cpi->buffer_level < drop_mark75 &&
(cpi->decimation_factor == 0 || cpi->decimation_factor == 1)) {
cpi->decimation_factor = 1;
}
}
/* The following decimates the frame rate according to a regular
* pattern (i.e. to 1/2 or 2/3 frame rate) This can be used to help
* prevent buffer under-run in CBR mode. Alternatively it might be
* desirable in some situations to drop frame rate but throw more bits
* at each frame.
*
* Note that dropping a key frame can be problematic if spatial
* resampling is also active
*/
if (cpi->decimation_factor > 0) {
switch (cpi->decimation_factor) {
case 1:
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 3 / 2;
break;
case 2:
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
break;
case 3:
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
break;
}
/* Note that we should not throw out a key frame (especially when
* spatial resampling is enabled).
*/
if (cm->frame_type == KEY_FRAME) {
cpi->decimation_count = cpi->decimation_factor;
} else if (cpi->decimation_count > 0) {
cpi->decimation_count--;
cpi->bits_off_target += cpi->av_per_frame_bandwidth;
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) {
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
}
#if CONFIG_MULTI_RES_ENCODING
vp8_store_drop_frame_info(cpi);
#endif
cm->current_video_frame++;
cpi->frames_since_key++;
// We advance the temporal pattern for dropped frames.
cpi->temporal_pattern_counter++;
#if CONFIG_INTERNAL_STATS
cpi->count++;
#endif
cpi->buffer_level = cpi->bits_off_target;
if (cpi->oxcf.number_of_layers > 1) {
unsigned int i;
/* Propagate bits saved by dropping the frame to higher
* layers
*/
for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) {
LAYER_CONTEXT *lc = &cpi->layer_context[i];
lc->bits_off_target += (int)(lc->target_bandwidth / lc->framerate);
if (lc->bits_off_target > lc->maximum_buffer_size) {
lc->bits_off_target = lc->maximum_buffer_size;
}
lc->buffer_level = lc->bits_off_target;
}
}
return;
} else {
cpi->decimation_count = cpi->decimation_factor;
}
} else {
cpi->decimation_count = 0;
}
/* Decide how big to make the frame */
if (!vp8_pick_frame_size(cpi)) {
/*TODO: 2 drop_frame and return code could be put together. */
#if CONFIG_MULTI_RES_ENCODING
vp8_store_drop_frame_info(cpi);
#endif
cm->current_video_frame++;
cpi->frames_since_key++;
// We advance the temporal pattern for dropped frames.
cpi->temporal_pattern_counter++;
return;
}
/* Reduce active_worst_allowed_q for CBR if our buffer is getting too full.
* This has a knock on effect on active best quality as well.
* For CBR if the buffer reaches its maximum level then we can no longer
* save up bits for later frames so we might as well use them up
* on the current frame.
*/
if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
(cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) &&
cpi->buffered_mode) {
/* Max adjustment is 1/4 */
int Adjustment = cpi->active_worst_quality / 4;
if (Adjustment) {
int buff_lvl_step;
if (cpi->buffer_level < cpi->oxcf.maximum_buffer_size) {
buff_lvl_step = (int)((cpi->oxcf.maximum_buffer_size -
cpi->oxcf.optimal_buffer_level) /
Adjustment);
if (buff_lvl_step) {
Adjustment =
(int)((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) /
buff_lvl_step);
} else {
Adjustment = 0;
}
}
cpi->active_worst_quality -= Adjustment;
if (cpi->active_worst_quality < cpi->active_best_quality) {
cpi->active_worst_quality = cpi->active_best_quality;
}
}
}
/* Set an active best quality and if necessary active worst quality
* There is some odd behavior for one pass here that needs attention.
*/
if ((cpi->pass == 2) || (cpi->ni_frames > 150)) {
vp8_clear_system_state();
Q = cpi->active_worst_quality;
if (cm->frame_type == KEY_FRAME) {
if (cpi->pass == 2) {
if (cpi->gfu_boost > 600) {
cpi->active_best_quality = kf_low_motion_minq[Q];
} else {
cpi->active_best_quality = kf_high_motion_minq[Q];
}
/* Special case for key frames forced because we have reached
* the maximum key frame interval. Here force the Q to a range
* based on the ambient Q to reduce the risk of popping
*/
if (cpi->this_key_frame_forced) {
if (cpi->active_best_quality > cpi->avg_frame_qindex * 7 / 8) {
cpi->active_best_quality = cpi->avg_frame_qindex * 7 / 8;
} else if (cpi->active_best_quality<cpi->avg_frame_qindex>> 2) {
cpi->active_best_quality = cpi->avg_frame_qindex >> 2;
}
}
}
/* One pass more conservative */
else {
cpi->active_best_quality = kf_high_motion_minq[Q];
}
}
else if (cpi->oxcf.number_of_layers == 1 &&
(cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame)) {
/* Use the lower of cpi->active_worst_quality and recent
* average Q as basis for GF/ARF Q limit unless last frame was
* a key frame.
*/
if ((cpi->frames_since_key > 1) &&
(cpi->avg_frame_qindex < cpi->active_worst_quality)) {
Q = cpi->avg_frame_qindex;
}
/* For constrained quality dont allow Q less than the cq level */
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < cpi->cq_target_quality)) {
Q = cpi->cq_target_quality;
}
if (cpi->pass == 2) {
if (cpi->gfu_boost > 1000) {
cpi->active_best_quality = gf_low_motion_minq[Q];
} else if (cpi->gfu_boost < 400) {
cpi->active_best_quality = gf_high_motion_minq[Q];
} else {
cpi->active_best_quality = gf_mid_motion_minq[Q];
}
/* Constrained quality use slightly lower active best. */
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
cpi->active_best_quality = cpi->active_best_quality * 15 / 16;
}
}
/* One pass more conservative */
else {
cpi->active_best_quality = gf_high_motion_minq[Q];
}
} else {
cpi->active_best_quality = inter_minq[Q];
/* For the constant/constrained quality mode we dont want
* q to fall below the cq level.
*/
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(cpi->active_best_quality < cpi->cq_target_quality)) {
/* If we are strongly undershooting the target rate in the last
* frames then use the user passed in cq value not the auto
* cq value.
*/
if (cpi->rolling_actual_bits < cpi->min_frame_bandwidth) {
cpi->active_best_quality = cpi->oxcf.cq_level;
} else {
cpi->active_best_quality = cpi->cq_target_quality;
}
}
}
/* If CBR and the buffer is as full then it is reasonable to allow
* higher quality on the frames to prevent bits just going to waste.
*/
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
/* Note that the use of >= here elliminates the risk of a devide
* by 0 error in the else if clause
*/
if (cpi->buffer_level >= cpi->oxcf.maximum_buffer_size) {
cpi->active_best_quality = cpi->best_quality;
} else if (cpi->buffer_level > cpi->oxcf.optimal_buffer_level) {
int Fraction =
(int)(((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) * 128) /
(cpi->oxcf.maximum_buffer_size -
cpi->oxcf.optimal_buffer_level));
int min_qadjustment =
((cpi->active_best_quality - cpi->best_quality) * Fraction) / 128;
cpi->active_best_quality -= min_qadjustment;
}
}
}
/* Make sure constrained quality mode limits are adhered to for the first
* few frames of one pass encodes
*/
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame ||
cpi->common.refresh_alt_ref_frame) {
cpi->active_best_quality = cpi->best_quality;
} else if (cpi->active_best_quality < cpi->cq_target_quality) {
cpi->active_best_quality = cpi->cq_target_quality;
}
}
/* Clip the active best and worst quality values to limits */
if (cpi->active_worst_quality > cpi->worst_quality) {
cpi->active_worst_quality = cpi->worst_quality;
}
if (cpi->active_best_quality < cpi->best_quality) {
cpi->active_best_quality = cpi->best_quality;
}
if (cpi->active_worst_quality < cpi->active_best_quality) {
cpi->active_worst_quality = cpi->active_best_quality;
}
/* Determine initial Q to try */
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
#if !CONFIG_REALTIME_ONLY
/* Set highest allowed value for Zbin over quant */
if (cm->frame_type == KEY_FRAME) {
zbin_oq_high = 0;
} else if ((cpi->oxcf.number_of_layers == 1) &&
((cm->refresh_alt_ref_frame ||
(cm->refresh_golden_frame && !cpi->source_alt_ref_active)))) {
zbin_oq_high = 16;
} else {
zbin_oq_high = ZBIN_OQ_MAX;
}
#endif
/* Setup background Q adjustment for error resilient mode.
* For multi-layer encodes only enable this for the base layer.
*/
if (cpi->cyclic_refresh_mode_enabled) {
// Special case for screen_content_mode with golden frame updates.
int disable_cr_gf =
(cpi->oxcf.screen_content_mode == 2 && cm->refresh_golden_frame);
if (cpi->current_layer == 0 && cpi->force_maxqp == 0 && !disable_cr_gf) {
cyclic_background_refresh(cpi, Q, 0);
} else {
disable_segmentation(cpi);
}
}
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit,
&frame_over_shoot_limit);
#if !CONFIG_REALTIME_ONLY
/* Limit Q range for the adaptive loop. */
bottom_index = cpi->active_best_quality;
top_index = cpi->active_worst_quality;
q_low = cpi->active_best_quality;
q_high = cpi->active_worst_quality;
#endif
vp8_save_coding_context(cpi);
loop_count = 0;
scale_and_extend_source(cpi->un_scaled_source, cpi);
#if CONFIG_TEMPORAL_DENOISING && CONFIG_POSTPROC
// Option to apply spatial blur under the aggressive or adaptive
// (temporal denoising) mode.
if (cpi->oxcf.noise_sensitivity >= 3) {
if (cpi->denoiser.denoise_pars.spatial_blur != 0) {
vp8_de_noise(cm, cpi->Source, cpi->Source,
cpi->denoiser.denoise_pars.spatial_blur, 1, 0, 0);
}
}
#endif
#if !(CONFIG_REALTIME_ONLY) && CONFIG_POSTPROC && !(CONFIG_TEMPORAL_DENOISING)
if (cpi->oxcf.noise_sensitivity > 0) {
unsigned char *src;
int l = 0;
switch (cpi->oxcf.noise_sensitivity) {
case 1: l = 20; break;
case 2: l = 40; break;
case 3: l = 60; break;
case 4: l = 80; break;
case 5: l = 100; break;
case 6: l = 150; break;
}
if (cm->frame_type == KEY_FRAME) {
vp8_de_noise(cm, cpi->Source, cpi->Source, l, 1, 0, 1);
} else {
vp8_de_noise(cm, cpi->Source, cpi->Source, l, 1, 0, 1);
src = cpi->Source->y_buffer;
if (cpi->Source->y_stride < 0) {
src += cpi->Source->y_stride * (cpi->Source->y_height - 1);
}
}
}
#endif
#ifdef OUTPUT_YUV_SRC
vp8_write_yuv_frame(yuv_file, cpi->Source);
#endif
do {
vp8_clear_system_state();
vp8_set_quantizer(cpi, Q);
/* setup skip prob for costing in mode/mv decision */
if (cpi->common.mb_no_coeff_skip) {
cpi->prob_skip_false = cpi->base_skip_false_prob[Q];
if (cm->frame_type != KEY_FRAME) {
if (cpi->common.refresh_alt_ref_frame) {
if (cpi->last_skip_false_probs[2] != 0) {
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
}
/*
if(cpi->last_skip_false_probs[2]!=0 && abs(Q-
cpi->last_skip_probs_q[2])<=16 )
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
else if (cpi->last_skip_false_probs[2]!=0)
cpi->prob_skip_false = (cpi->last_skip_false_probs[2] +
cpi->prob_skip_false ) / 2;
*/
} else if (cpi->common.refresh_golden_frame) {
if (cpi->last_skip_false_probs[1] != 0) {
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
}
/*
if(cpi->last_skip_false_probs[1]!=0 && abs(Q-
cpi->last_skip_probs_q[1])<=16 )
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
else if (cpi->last_skip_false_probs[1]!=0)
cpi->prob_skip_false = (cpi->last_skip_false_probs[1] +
cpi->prob_skip_false ) / 2;
*/
} else {
if (cpi->last_skip_false_probs[0] != 0) {
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
}
/*
if(cpi->last_skip_false_probs[0]!=0 && abs(Q-
cpi->last_skip_probs_q[0])<=16 )
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
else if(cpi->last_skip_false_probs[0]!=0)
cpi->prob_skip_false = (cpi->last_skip_false_probs[0] +
cpi->prob_skip_false ) / 2;
*/
}
/* as this is for cost estimate, let's make sure it does not
* go extreme eitehr way
*/
if (cpi->prob_skip_false < 5) cpi->prob_skip_false = 5;
if (cpi->prob_skip_false > 250) cpi->prob_skip_false = 250;
if (cpi->oxcf.number_of_layers == 1 && cpi->is_src_frame_alt_ref) {
cpi->prob_skip_false = 1;
}
}
#if 0
if (cpi->pass != 1)
{
FILE *f = fopen("skip.stt", "a");
fprintf(f, "%d, %d, %4d ", cpi->common.refresh_golden_frame, cpi->common.refresh_alt_ref_frame, cpi->prob_skip_false);
fclose(f);
}
#endif
}
if (cm->frame_type == KEY_FRAME) {
if (resize_key_frame(cpi)) {
/* If the frame size has changed, need to reset Q, quantizer,
* and background refresh.
*/
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
if (cpi->cyclic_refresh_mode_enabled) {
if (cpi->current_layer == 0) {
cyclic_background_refresh(cpi, Q, 0);
} else {
disable_segmentation(cpi);
}
}
// Reset the zero_last counter to 0 on key frame.
memset(cpi->consec_zero_last, 0, cm->mb_rows * cm->mb_cols);
memset(cpi->consec_zero_last_mvbias, 0,
(cpi->common.mb_rows * cpi->common.mb_cols));
vp8_set_quantizer(cpi, Q);
}
vp8_setup_key_frame(cpi);
}
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
{
if (cpi->oxcf.error_resilient_mode) cm->refresh_entropy_probs = 0;
if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) {
if (cm->frame_type == KEY_FRAME) cm->refresh_entropy_probs = 1;
}
if (cm->refresh_entropy_probs == 0) {
/* save a copy for later refresh */
memcpy(&cm->lfc, &cm->fc, sizeof(cm->fc));
}
vp8_update_coef_context(cpi);
vp8_update_coef_probs(cpi);
/* transform / motion compensation build reconstruction frame
* +pack coef partitions
*/
vp8_encode_frame(cpi);
/* cpi->projected_frame_size is not needed for RT mode */
}
#else
/* transform / motion compensation build reconstruction frame */
vp8_encode_frame(cpi);
if (cpi->oxcf.screen_content_mode == 2) {
if (vp8_drop_encodedframe_overshoot(cpi, Q)) return;
}
cpi->projected_frame_size -= vp8_estimate_entropy_savings(cpi);
cpi->projected_frame_size =
(cpi->projected_frame_size > 0) ? cpi->projected_frame_size : 0;
#endif
vp8_clear_system_state();
/* Test to see if the stats generated for this frame indicate that
* we should have coded a key frame (assuming that we didn't)!
*/
if (cpi->pass != 2 && cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME &&
cpi->compressor_speed != 2) {
#if !CONFIG_REALTIME_ONLY
if (decide_key_frame(cpi)) {
/* Reset all our sizing numbers and recode */
cm->frame_type = KEY_FRAME;
vp8_pick_frame_size(cpi);
/* Clear the Alt reference frame active flag when we have
* a key frame
*/
cpi->source_alt_ref_active = 0;
// Set the loop filter deltas and segmentation map update
setup_features(cpi);
vp8_restore_coding_context(cpi);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit,
&frame_over_shoot_limit);
/* Limit Q range for the adaptive loop. */
bottom_index = cpi->active_best_quality;
top_index = cpi->active_worst_quality;
q_low = cpi->active_best_quality;
q_high = cpi->active_worst_quality;
loop_count++;
Loop = 1;
continue;
}
#endif
}
vp8_clear_system_state();
if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1;
/* Are we are overshooting and up against the limit of active max Q. */
if (((cpi->pass != 2) ||
(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) &&
(Q == cpi->active_worst_quality) &&
(cpi->active_worst_quality < cpi->worst_quality) &&
(cpi->projected_frame_size > frame_over_shoot_limit)) {
int over_size_percent =
((cpi->projected_frame_size - frame_over_shoot_limit) * 100) /
frame_over_shoot_limit;
/* If so is there any scope for relaxing it */
while ((cpi->active_worst_quality < cpi->worst_quality) &&
(over_size_percent > 0)) {
cpi->active_worst_quality++;
/* Assume 1 qstep = about 4% on frame size. */
over_size_percent = (int)(over_size_percent * 0.96);
}
#if !CONFIG_REALTIME_ONLY
top_index = cpi->active_worst_quality;
#endif // !CONFIG_REALTIME_ONLY
/* If we have updated the active max Q do not call
* vp8_update_rate_correction_factors() this loop.
*/
active_worst_qchanged = 1;
} else {
active_worst_qchanged = 0;
}
#if CONFIG_REALTIME_ONLY
Loop = 0;
#else
/* Special case handling for forced key frames */
if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
int last_q = Q;
int kf_err = vp8_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]);
/* The key frame is not good enough */
if (kf_err > ((cpi->ambient_err * 7) >> 3)) {
/* Lower q_high */
q_high = (Q > q_low) ? (Q - 1) : q_low;
/* Adjust Q */
Q = (q_high + q_low) >> 1;
}
/* The key frame is much better than the previous frame */
else if (kf_err < (cpi->ambient_err >> 1)) {
/* Raise q_low */
q_low = (Q < q_high) ? (Q + 1) : q_high;
/* Adjust Q */
Q = (q_high + q_low + 1) >> 1;
}
/* Clamp Q to upper and lower limits: */
if (Q > q_high) {
Q = q_high;
} else if (Q < q_low) {
Q = q_low;
}
Loop = Q != last_q;
}
/* Is the projected frame size out of range and are we allowed
* to attempt to recode.
*/
else if (recode_loop_test(cpi, frame_over_shoot_limit,
frame_under_shoot_limit, Q, top_index,
bottom_index)) {
int last_q = Q;
int Retries = 0;
/* Frame size out of permitted range. Update correction factor
* & compute new Q to try...
*/
/* Frame is too large */
if (cpi->projected_frame_size > cpi->this_frame_target) {
/* Raise Qlow as to at least the current value */
q_low = (Q < q_high) ? (Q + 1) : q_high;
/* If we are using over quant do the same for zbin_oq_low */
if (cpi->mb.zbin_over_quant > 0) {
zbin_oq_low = (cpi->mb.zbin_over_quant < zbin_oq_high)
? (cpi->mb.zbin_over_quant + 1)
: zbin_oq_high;
}
if (undershoot_seen) {
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
if (!active_worst_qchanged) {
vp8_update_rate_correction_factors(cpi, 1);
}
Q = (q_high + q_low + 1) / 2;
/* Adjust cpi->zbin_over_quant (only allowed when Q
* is max)
*/
if (Q < MAXQ) {
cpi->mb.zbin_over_quant = 0;
} else {
zbin_oq_low = (cpi->mb.zbin_over_quant < zbin_oq_high)
? (cpi->mb.zbin_over_quant + 1)
: zbin_oq_high;
cpi->mb.zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
}
} else {
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
if (!active_worst_qchanged) {
vp8_update_rate_correction_factors(cpi, 0);
}
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
while (((Q < q_low) || (cpi->mb.zbin_over_quant < zbin_oq_low)) &&
(Retries < 10)) {
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
Retries++;
}
}
overshoot_seen = 1;
}
/* Frame is too small */
else {
if (cpi->mb.zbin_over_quant == 0) {
/* Lower q_high if not using over quant */
q_high = (Q > q_low) ? (Q - 1) : q_low;
} else {
/* else lower zbin_oq_high */
zbin_oq_high = (cpi->mb.zbin_over_quant > zbin_oq_low)
? (cpi->mb.zbin_over_quant - 1)
: zbin_oq_low;
}
if (overshoot_seen) {
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
if (!active_worst_qchanged) {
vp8_update_rate_correction_factors(cpi, 1);
}
Q = (q_high + q_low) / 2;
/* Adjust cpi->zbin_over_quant (only allowed when Q
* is max)
*/
if (Q < MAXQ) {
cpi->mb.zbin_over_quant = 0;
} else {
cpi->mb.zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
}
} else {
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
if (!active_worst_qchanged) {
vp8_update_rate_correction_factors(cpi, 0);
}
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
/* Special case reset for qlow for constrained quality.
* This should only trigger where there is very substantial
* undershoot on a frame and the auto cq level is above
* the user passsed in value.
*/
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < q_low)) {
q_low = Q;
}
while (((Q > q_high) || (cpi->mb.zbin_over_quant > zbin_oq_high)) &&
(Retries < 10)) {
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
Retries++;
}
}
undershoot_seen = 1;
}
/* Clamp Q to upper and lower limits: */
if (Q > q_high) {
Q = q_high;
} else if (Q < q_low) {
Q = q_low;
}
/* Clamp cpi->zbin_over_quant */
cpi->mb.zbin_over_quant = (cpi->mb.zbin_over_quant < zbin_oq_low)
? zbin_oq_low
: (cpi->mb.zbin_over_quant > zbin_oq_high)
? zbin_oq_high
: cpi->mb.zbin_over_quant;
Loop = Q != last_q;
} else {
Loop = 0;
}
#endif // CONFIG_REALTIME_ONLY
if (cpi->is_src_frame_alt_ref) Loop = 0;
if (Loop == 1) {
vp8_restore_coding_context(cpi);
loop_count++;
#if CONFIG_INTERNAL_STATS
cpi->tot_recode_hits++;
#endif
}
} while (Loop == 1);
#if 0
/* Experimental code for lagged and one pass
* Update stats used for one pass GF selection
*/
{
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_coded_error = (double)cpi->prediction_error;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_intra_error = (double)cpi->intra_error;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_pcnt_inter = (double)(100 - cpi->this_frame_percent_intra) / 100.0;
}
#endif
/* Special case code to reduce pulsing when key frames are forced at a
* fixed interval. Note the reconstruction error if it is the frame before
* the force key frame
*/
if (cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0)) {
cpi->ambient_err =
vp8_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]);
}
/* This frame's MVs are saved and will be used in next frame's MV predictor.
* Last frame has one more line(add to bottom) and one more column(add to
* right) than cm->mip. The edge elements are initialized to 0.
*/
#if CONFIG_MULTI_RES_ENCODING
if (!cpi->oxcf.mr_encoder_id && cm->show_frame)
#else
if (cm->show_frame) /* do not save for altref frame */
#endif
{
int mb_row;
int mb_col;
/* Point to beginning of allocated MODE_INFO arrays. */
MODE_INFO *tmp = cm->mip;
if (cm->frame_type != KEY_FRAME) {
for (mb_row = 0; mb_row < cm->mb_rows + 1; ++mb_row) {
for (mb_col = 0; mb_col < cm->mb_cols + 1; ++mb_col) {
if (tmp->mbmi.ref_frame != INTRA_FRAME) {
cpi->lfmv[mb_col + mb_row * (cm->mode_info_stride + 1)].as_int =
tmp->mbmi.mv.as_int;
}
cpi->lf_ref_frame_sign_bias[mb_col +
mb_row * (cm->mode_info_stride + 1)] =
cm->ref_frame_sign_bias[tmp->mbmi.ref_frame];
cpi->lf_ref_frame[mb_col + mb_row * (cm->mode_info_stride + 1)] =
tmp->mbmi.ref_frame;
tmp++;
}
}
}
}
/* Count last ref frame 0,0 usage on current encoded frame. */
{
int mb_row;
int mb_col;
/* Point to beginning of MODE_INFO arrays. */
MODE_INFO *tmp = cm->mi;
cpi->zeromv_count = 0;
if (cm->frame_type != KEY_FRAME) {
for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
if (tmp->mbmi.mode == ZEROMV && tmp->mbmi.ref_frame == LAST_FRAME) {
cpi->zeromv_count++;
}
tmp++;
}
tmp++;
}
}
}
#if CONFIG_MULTI_RES_ENCODING
vp8_cal_dissimilarity(cpi);
#endif
/* Update the GF useage maps.
* This is done after completing the compression of a frame when all
* modes etc. are finalized but before loop filter
*/
if (cpi->oxcf.number_of_layers == 1) {
vp8_update_gf_useage_maps(cpi, cm, &cpi->mb);
}
if (cm->frame_type == KEY_FRAME) cm->refresh_last_frame = 1;
#if 0
{
FILE *f = fopen("gfactive.stt", "a");
fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame);
fclose(f);
}
#endif
/* For inter frames the current default behavior is that when
* cm->refresh_golden_frame is set we copy the old GF over to the ARF buffer
* This is purely an encoder decision at present.
*/
if (!cpi->oxcf.error_resilient_mode && cm->refresh_golden_frame) {
cm->copy_buffer_to_arf = 2;
} else {
cm->copy_buffer_to_arf = 0;
}
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
#if CONFIG_TEMPORAL_DENOISING
// Get some measure of the amount of noise, by measuring the (partial) mse
// between source and denoised buffer, for y channel. Partial refers to
// computing the sse for a sub-sample of the frame (i.e., skip x blocks along
// row/column),
// and only for blocks in that set that are consecutive ZEROMV_LAST mode.
// Do this every ~8 frames, to further reduce complexity.
// TODO(marpan): Keep this for now for the case cpi->oxcf.noise_sensitivity <
// 4,
// should be removed in favor of the process_denoiser_mode_change() function
// below.
if (cpi->oxcf.noise_sensitivity > 0 && cpi->oxcf.noise_sensitivity < 4 &&
!cpi->oxcf.screen_content_mode && cpi->frames_since_key % 8 == 0 &&
cm->frame_type != KEY_FRAME) {
cpi->mse_source_denoised = measure_square_diff_partial(
&cpi->denoiser.yv12_running_avg[INTRA_FRAME], cpi->Source, cpi);
}
// For the adaptive denoising mode (noise_sensitivity == 4), sample the mse
// of source diff (between current and previous frame), and determine if we
// should switch the denoiser mode. Sampling refers to computing the mse for
// a sub-sample of the frame (i.e., skip x blocks along row/column), and
// only for blocks in that set that have used ZEROMV LAST, along with some
// constraint on the sum diff between blocks. This process is called every
// ~8 frames, to further reduce complexity.
if (cpi->oxcf.noise_sensitivity == 4 && !cpi->oxcf.screen_content_mode &&
cpi->frames_since_key % 8 == 0 && cm->frame_type != KEY_FRAME) {
process_denoiser_mode_change(cpi);
}
#endif
#if CONFIG_MULTITHREAD
if (cpi->b_multi_threaded) {
/* start loopfilter in separate thread */
sem_post(&cpi->h_event_start_lpf);
} else
#endif
{
vp8_loopfilter_frame(cpi, cm);
}
update_reference_frames(cpi);
#ifdef OUTPUT_YUV_DENOISED
vp8_write_yuv_frame(yuv_denoised_file,
&cpi->denoiser.yv12_running_avg[INTRA_FRAME]);
#endif
#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
if (cpi->oxcf.error_resilient_mode) {
cm->refresh_entropy_probs = 0;
}
#endif
#if CONFIG_MULTITHREAD
/* wait that filter_level is picked so that we can continue with stream
* packing */
if (cpi->b_multi_threaded) sem_wait(&cpi->h_event_end_lpf);
#endif
/* build the bitstream */
vp8_pack_bitstream(cpi, dest, dest_end, size);
#if CONFIG_MULTITHREAD
/* wait for the lpf thread done */
if (cpi->b_multi_threaded) {
sem_wait(&cpi->h_event_end_lpf);
}
#endif
/* Move storing frame_type out of the above loop since it is also
* needed in motion search besides loopfilter */
cm->last_frame_type = cm->frame_type;
/* Update rate control heuristics */
cpi->total_byte_count += (*size);
cpi->projected_frame_size = (*size) << 3;
if (cpi->oxcf.number_of_layers > 1) {
unsigned int i;
for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) {
cpi->layer_context[i].total_byte_count += (*size);
}
}
if (!active_worst_qchanged) vp8_update_rate_correction_factors(cpi, 2);
cpi->last_q[cm->frame_type] = cm->base_qindex;
if (cm->frame_type == KEY_FRAME) {
vp8_adjust_key_frame_context(cpi);
}
/* Keep a record of ambient average Q. */
if (cm->frame_type != KEY_FRAME) {
cpi->avg_frame_qindex =
(2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
}
/* Keep a record from which we can calculate the average Q excluding
* GF updates and key frames
*/
if ((cm->frame_type != KEY_FRAME) &&
((cpi->oxcf.number_of_layers > 1) ||
(!cm->refresh_golden_frame && !cm->refresh_alt_ref_frame))) {
cpi->ni_frames++;
/* Calculate the average Q for normal inter frames (not key or GFU
* frames).
*/
if (cpi->pass == 2) {
cpi->ni_tot_qi += Q;
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
} else {
/* Damp value for first few frames */
if (cpi->ni_frames > 150) {
cpi->ni_tot_qi += Q;
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
}
/* For one pass, early in the clip ... average the current frame Q
* value with the worstq entered by the user as a dampening measure
*/
else {
cpi->ni_tot_qi += Q;
cpi->ni_av_qi =
((cpi->ni_tot_qi / cpi->ni_frames) + cpi->worst_quality + 1) / 2;
}
/* If the average Q is higher than what was used in the last
* frame (after going through the recode loop to keep the frame
* size within range) then use the last frame value - 1. The -1
* is designed to stop Q and hence the data rate, from
* progressively falling away during difficult sections, but at
* the same time reduce the number of itterations around the
* recode loop.
*/
if (Q > cpi->ni_av_qi) cpi->ni_av_qi = Q - 1;
}
}
/* Update the buffer level variable. */
/* Non-viewable frames are a special case and are treated as pure overhead. */
if (!cm->show_frame) {
cpi->bits_off_target -= cpi->projected_frame_size;
} else {
cpi->bits_off_target +=
cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
}
/* Clip the buffer level to the maximum specified buffer size */
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) {
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
}
// If the frame dropper is not enabled, don't let the buffer level go below
// some threshold, given here by -|maximum_buffer_size|. For now we only do
// this for screen content input.
if (cpi->drop_frames_allowed == 0 && cpi->oxcf.screen_content_mode &&
cpi->bits_off_target < -cpi->oxcf.maximum_buffer_size) {
cpi->bits_off_target = -cpi->oxcf.maximum_buffer_size;
}
/* Rolling monitors of whether we are over or underspending used to
* help regulate min and Max Q in two pass.
*/
cpi->rolling_target_bits =
((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
cpi->rolling_actual_bits =
((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
cpi->long_rolling_target_bits =
((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
cpi->long_rolling_actual_bits =
((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) /
32;
/* Actual bits spent */
cpi->total_actual_bits += cpi->projected_frame_size;
/* Debug stats */
cpi->total_target_vs_actual +=
(cpi->this_frame_target - cpi->projected_frame_size);
cpi->buffer_level = cpi->bits_off_target;
/* Propagate values to higher temporal layers */
if (cpi->oxcf.number_of_layers > 1) {
unsigned int i;
for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) {
LAYER_CONTEXT *lc = &cpi->layer_context[i];
int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate -
cpi->projected_frame_size);
lc->bits_off_target += bits_off_for_this_layer;
/* Clip buffer level to maximum buffer size for the layer */
if (lc->bits_off_target > lc->maximum_buffer_size) {
lc->bits_off_target = lc->maximum_buffer_size;
}
lc->total_actual_bits += cpi->projected_frame_size;
lc->total_target_vs_actual += bits_off_for_this_layer;
lc->buffer_level = lc->bits_off_target;
}
}
/* Update bits left to the kf and gf groups to account for overshoot
* or undershoot on these frames
*/
if (cm->frame_type == KEY_FRAME) {
cpi->twopass.kf_group_bits +=
cpi->this_frame_target - cpi->projected_frame_size;
if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0;
} else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame) {
cpi->twopass.gf_group_bits +=
cpi->this_frame_target - cpi->projected_frame_size;
if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0;
}
if (cm->frame_type != KEY_FRAME) {
if (cpi->common.refresh_alt_ref_frame) {
cpi->last_skip_false_probs[2] = cpi->prob_skip_false;
cpi->last_skip_probs_q[2] = cm->base_qindex;
} else if (cpi->common.refresh_golden_frame) {
cpi->last_skip_false_probs[1] = cpi->prob_skip_false;
cpi->last_skip_probs_q[1] = cm->base_qindex;
} else {
cpi->last_skip_false_probs[0] = cpi->prob_skip_false;
cpi->last_skip_probs_q[0] = cm->base_qindex;
/* update the baseline */
cpi->base_skip_false_prob[cm->base_qindex] = cpi->prob_skip_false;
}
}
#if 0 && CONFIG_INTERNAL_STATS
{
FILE *f = fopen("tmp.stt", "a");
vp8_clear_system_state();
if (cpi->twopass.total_left_stats.coded_error != 0.0)
fprintf(f, "%10d %10d %10d %10d %10d %10"PRId64" %10"PRId64
"%10"PRId64" %10d %6d %6d %6d %6d %5d %5d %5d %8d "
"%8.2lf %"PRId64" %10.3lf %10"PRId64" %8d\n",
cpi->common.current_video_frame, cpi->this_frame_target,
cpi->projected_frame_size,
(cpi->projected_frame_size - cpi->this_frame_target),
cpi->total_target_vs_actual,
cpi->buffer_level,
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
cpi->total_actual_bits, cm->base_qindex,
cpi->active_best_quality, cpi->active_worst_quality,
cpi->ni_av_qi, cpi->cq_target_quality,
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
(double)cpi->twopass.bits_left /
cpi->twopass.total_left_stats.coded_error,
cpi->tot_recode_hits);
else
fprintf(f, "%10d %10d %10d %10d %10d %10"PRId64" %10"PRId64
"%10"PRId64" %10d %6d %6d %6d %6d %5d %5d %5d %8d "
"%8.2lf %"PRId64" %10.3lf %8d\n",
cpi->common.current_video_frame, cpi->this_frame_target,
cpi->projected_frame_size,
(cpi->projected_frame_size - cpi->this_frame_target),
cpi->total_target_vs_actual,
cpi->buffer_level,
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
cpi->total_actual_bits, cm->base_qindex,
cpi->active_best_quality, cpi->active_worst_quality,
cpi->ni_av_qi, cpi->cq_target_quality,
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
cpi->tot_recode_hits);
fclose(f);
{
FILE *fmodes = fopen("Modes.stt", "a");
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
cpi->common.current_video_frame,
cm->frame_type, cm->refresh_golden_frame,
cm->refresh_alt_ref_frame);
fprintf(fmodes, "\n");
fclose(fmodes);
}
}
#endif
if (cm->refresh_golden_frame == 1) {
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
} else {
cm->frame_flags = cm->frame_flags & ~FRAMEFLAGS_GOLDEN;
}
if (cm->refresh_alt_ref_frame == 1) {
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
} else {
cm->frame_flags = cm->frame_flags & ~FRAMEFLAGS_ALTREF;
}
if (cm->refresh_last_frame & cm->refresh_golden_frame) { /* both refreshed */
cpi->gold_is_last = 1;
} else if (cm->refresh_last_frame ^ cm->refresh_golden_frame) {
/* 1 refreshed but not the other */
cpi->gold_is_last = 0;
}
if (cm->refresh_last_frame & cm->refresh_alt_ref_frame) { /* both refreshed */
cpi->alt_is_last = 1;
} else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame) {
/* 1 refreshed but not the other */
cpi->alt_is_last = 0;
}
if (cm->refresh_alt_ref_frame &
cm->refresh_golden_frame) { /* both refreshed */
cpi->gold_is_alt = 1;
} else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame) {
/* 1 refreshed but not the other */
cpi->gold_is_alt = 0;
}
cpi->ref_frame_flags = VP8_ALTR_FRAME | VP8_GOLD_FRAME | VP8_LAST_FRAME;
if (cpi->gold_is_last) cpi->ref_frame_flags &= ~VP8_GOLD_FRAME;
if (cpi->alt_is_last) cpi->ref_frame_flags &= ~VP8_ALTR_FRAME;
if (cpi->gold_is_alt) cpi->ref_frame_flags &= ~VP8_ALTR_FRAME;
if (!cpi->oxcf.error_resilient_mode) {
if (cpi->oxcf.play_alternate && cm->refresh_alt_ref_frame &&
(cm->frame_type != KEY_FRAME)) {
/* Update the alternate reference frame stats as appropriate. */
update_alt_ref_frame_stats(cpi);
} else {
/* Update the Golden frame stats as appropriate. */
update_golden_frame_stats(cpi);
}
}
if (cm->frame_type == KEY_FRAME) {
/* Tell the caller that the frame was coded as a key frame */
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
/* As this frame is a key frame the next defaults to an inter frame. */
cm->frame_type = INTER_FRAME;
cpi->last_frame_percent_intra = 100;
} else {
*frame_flags = cm->frame_flags & ~FRAMEFLAGS_KEY;
cpi->last_frame_percent_intra = cpi->this_frame_percent_intra;
}
/* Clear the one shot update flags for segmentation map and mode/ref
* loop filter deltas.
*/
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
/* Dont increment frame counters if this was an altref buffer update
* not a real frame
*/
if (cm->show_frame) {
cm->current_video_frame++;
cpi->frames_since_key++;
cpi->temporal_pattern_counter++;
}
/* reset to normal state now that we are done. */
#if 0
{
char filename[512];
FILE *recon_file;
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
recon_file = fopen(filename, "wb");
fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc,
cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file);
fclose(recon_file);
}
#endif
/* DEBUG */
/* vp8_write_yuv_frame("encoder_recon.yuv", cm->frame_to_show); */
}
#if !CONFIG_REALTIME_ONLY
static void Pass2Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest,
unsigned char *dest_end, unsigned int *frame_flags) {
if (!cpi->common.refresh_alt_ref_frame) vp8_second_pass(cpi);
encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags);
cpi->twopass.bits_left -= 8 * (int)(*size);
if (!cpi->common.refresh_alt_ref_frame) {
double two_pass_min_rate =
(double)(cpi->oxcf.target_bandwidth *
cpi->oxcf.two_pass_vbrmin_section / 100);
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->framerate);
}
}
#endif
int vp8_receive_raw_frame(VP8_COMP *cpi, unsigned int frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time) {
struct vpx_usec_timer timer;
int res = 0;
vpx_usec_timer_start(&timer);
/* Reinit the lookahead buffer if the frame size changes */
if (sd->y_width != cpi->oxcf.Width || sd->y_height != cpi->oxcf.Height) {
assert(cpi->oxcf.lag_in_frames < 2);
dealloc_raw_frame_buffers(cpi);
alloc_raw_frame_buffers(cpi);
}
if (vp8_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags,
cpi->active_map_enabled ? cpi->active_map : NULL)) {
res = -1;
}
vpx_usec_timer_mark(&timer);
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
return res;
}
static int frame_is_reference(const VP8_COMP *cpi) {
const VP8_COMMON *cm = &cpi->common;
const MACROBLOCKD *xd = &cpi->mb.e_mbd;
return cm->frame_type == KEY_FRAME || cm->refresh_last_frame ||
cm->refresh_golden_frame || cm->refresh_alt_ref_frame ||
cm->copy_buffer_to_gf || cm->copy_buffer_to_arf ||
cm->refresh_entropy_probs || xd->mode_ref_lf_delta_update ||
xd->update_mb_segmentation_map || xd->update_mb_segmentation_data;
}
int vp8_get_compressed_data(VP8_COMP *cpi, unsigned int *frame_flags,
unsigned long *size, unsigned char *dest,
unsigned char *dest_end, int64_t *time_stamp,
int64_t *time_end, int flush) {
VP8_COMMON *cm;
struct vpx_usec_timer tsctimer;
struct vpx_usec_timer ticktimer;
struct vpx_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
if (!cpi) return -1;
cm = &cpi->common;
if (setjmp(cpi->common.error.jmp)) {
cpi->common.error.setjmp = 0;
vp8_clear_system_state();
return VPX_CODEC_CORRUPT_FRAME;
}
cpi->common.error.setjmp = 1;
vpx_usec_timer_start(&cmptimer);
cpi->source = NULL;
#if !CONFIG_REALTIME_ONLY
/* Should we code an alternate reference frame */
if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.play_alternate &&
cpi->source_alt_ref_pending) {
if ((cpi->source = vp8_lookahead_peek(
cpi->lookahead, cpi->frames_till_gf_update_due, PEEK_FORWARD))) {
cpi->alt_ref_source = cpi->source;
if (cpi->oxcf.arnr_max_frames > 0) {
vp8_temporal_filter_prepare_c(cpi, cpi->frames_till_gf_update_due);
force_src_buffer = &cpi->alt_ref_buffer;
}
cpi->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due;
cm->refresh_alt_ref_frame = 1;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 0;
cm->show_frame = 0;
/* Clear Pending alt Ref flag. */
cpi->source_alt_ref_pending = 0;
cpi->is_src_frame_alt_ref = 0;
}
}
#endif
if (!cpi->source) {
/* Read last frame source if we are encoding first pass. */
if (cpi->pass == 1 && cm->current_video_frame > 0) {
if ((cpi->last_source =
vp8_lookahead_peek(cpi->lookahead, 1, PEEK_BACKWARD)) == NULL) {
return -1;
}
}
if ((cpi->source = vp8_lookahead_pop(cpi->lookahead, flush))) {
cm->show_frame = 1;
cpi->is_src_frame_alt_ref =
cpi->alt_ref_source && (cpi->source == cpi->alt_ref_source);
if (cpi->is_src_frame_alt_ref) cpi->alt_ref_source = NULL;
}
}
if (cpi->source) {
cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img;
cpi->un_scaled_source = cpi->Source;
*time_stamp = cpi->source->ts_start;
*time_end = cpi->source->ts_end;
*frame_flags = cpi->source->flags;
if (cpi->pass == 1 && cm->current_video_frame > 0) {
cpi->last_frame_unscaled_source = &cpi->last_source->img;
}
} else {
*size = 0;
#if !CONFIG_REALTIME_ONLY
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) {
vp8_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
}
#endif
return -1;
}
if (cpi->source->ts_start < cpi->first_time_stamp_ever) {
cpi->first_time_stamp_ever = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
}
/* adjust frame rates based on timestamps given */
if (cm->show_frame) {
int64_t this_duration;
int step = 0;
if (cpi->source->ts_start == cpi->first_time_stamp_ever) {
this_duration = cpi->source->ts_end - cpi->source->ts_start;
step = 1;
} else {
int64_t last_duration;
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
last_duration = cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen;
/* do a step update if the duration changes by 10% */
if (last_duration) {
step = (int)(((this_duration - last_duration) * 10 / last_duration));
}
}
if (this_duration) {
if (step) {
cpi->ref_framerate = 10000000.0 / this_duration;
} else {
double avg_duration, interval;
/* Average this frame's rate into the last second's average
* frame rate. If we haven't seen 1 second yet, then average
* over the whole interval seen.
*/
interval = (double)(cpi->source->ts_end - cpi->first_time_stamp_ever);
if (interval > 10000000.0) interval = 10000000;
avg_duration = 10000000.0 / cpi->ref_framerate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
cpi->ref_framerate = 10000000.0 / avg_duration;
}
#if CONFIG_MULTI_RES_ENCODING
if (cpi->oxcf.mr_total_resolutions > 1) {
LOWER_RES_FRAME_INFO *low_res_frame_info =
(LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info;
// Frame rate should be the same for all spatial layers in
// multi-res-encoding (simulcast), so we constrain the frame for
// higher layers to be that of lowest resolution. This is needed
// as he application may decide to skip encoding a high layer and
// then start again, in which case a big jump in time-stamps will
// be received for that high layer, which will yield an incorrect
// frame rate (from time-stamp adjustment in above calculation).
if (cpi->oxcf.mr_encoder_id) {
cpi->ref_framerate = low_res_frame_info->low_res_framerate;
} else {
// Keep track of frame rate for lowest resolution.
low_res_frame_info->low_res_framerate = cpi->ref_framerate;
}
}
#endif
if (cpi->oxcf.number_of_layers > 1) {
unsigned int i;
/* Update frame rates for each layer */
assert(cpi->oxcf.number_of_layers <= VPX_TS_MAX_LAYERS);
for (i = 0; i < cpi->oxcf.number_of_layers && i < VPX_TS_MAX_LAYERS;
++i) {
LAYER_CONTEXT *lc = &cpi->layer_context[i];
lc->framerate = cpi->ref_framerate / cpi->oxcf.rate_decimator[i];
}
} else {
vp8_new_framerate(cpi, cpi->ref_framerate);
}
}
cpi->last_time_stamp_seen = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
}
if (cpi->oxcf.number_of_layers > 1) {
int layer;
update_layer_contexts(cpi);
/* Restore layer specific context & set frame rate */
if (cpi->temporal_layer_id >= 0) {
layer = cpi->temporal_layer_id;
} else {
layer =
cpi->oxcf
.layer_id[cpi->temporal_pattern_counter % cpi->oxcf.periodicity];
}
restore_layer_context(cpi, layer);
vp8_new_framerate(cpi, cpi->layer_context[layer].framerate);
}
if (cpi->compressor_speed == 2) {
vpx_usec_timer_start(&tsctimer);
vpx_usec_timer_start(&ticktimer);
}
cpi->lf_zeromv_pct = (cpi->zeromv_count * 100) / cm->MBs;
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
{
int i;
const int num_part = (1 << cm->multi_token_partition);
/* the available bytes in dest */
const unsigned long dest_size = dest_end - dest;
const int tok_part_buff_size = (dest_size * 9) / (10 * num_part);
unsigned char *dp = dest;
cpi->partition_d[0] = dp;
dp += dest_size / 10; /* reserve 1/10 for control partition */
cpi->partition_d_end[0] = dp;
for (i = 0; i < num_part; ++i) {
cpi->partition_d[i + 1] = dp;
dp += tok_part_buff_size;
cpi->partition_d_end[i + 1] = dp;
}
}
#endif
/* start with a 0 size frame */
*size = 0;
/* Clear down mmx registers */
vp8_clear_system_state();
cm->frame_type = INTER_FRAME;
cm->frame_flags = *frame_flags;
#if 0
if (cm->refresh_alt_ref_frame)
{
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 0;
}
else
{
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
}
#endif
/* find a free buffer for the new frame */
{
int i = 0;
for (; i < NUM_YV12_BUFFERS; ++i) {
if (!cm->yv12_fb[i].flags) {
cm->new_fb_idx = i;
break;
}
}
assert(i < NUM_YV12_BUFFERS);
}
switch (cpi->pass) {
#if !CONFIG_REALTIME_ONLY
case 1: Pass1Encode(cpi, size, dest, frame_flags); break;
case 2: Pass2Encode(cpi, size, dest, dest_end, frame_flags); break;
#endif // !CONFIG_REALTIME_ONLY
default:
encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags);
break;
}
if (cpi->compressor_speed == 2) {
unsigned int duration, duration2;
vpx_usec_timer_mark(&tsctimer);
vpx_usec_timer_mark(&ticktimer);
duration = (int)(vpx_usec_timer_elapsed(&ticktimer));
duration2 = (unsigned int)((double)duration / 2);
if (cm->frame_type != KEY_FRAME) {
if (cpi->avg_encode_time == 0) {
cpi->avg_encode_time = duration;
} else {
cpi->avg_encode_time = (7 * cpi->avg_encode_time + duration) >> 3;
}
}
if (duration2) {
{
if (cpi->avg_pick_mode_time == 0) {
cpi->avg_pick_mode_time = duration2;
} else {
cpi->avg_pick_mode_time =
(7 * cpi->avg_pick_mode_time + duration2) >> 3;
}
}
}
}
if (cm->refresh_entropy_probs == 0) {
memcpy(&cm->fc, &cm->lfc, sizeof(cm->fc));
}
/* Save the contexts separately for alt ref, gold and last. */
/* (TODO jbb -> Optimize this with pointers to avoid extra copies. ) */
if (cm->refresh_alt_ref_frame) memcpy(&cpi->lfc_a, &cm->fc, sizeof(cm->fc));
if (cm->refresh_golden_frame) memcpy(&cpi->lfc_g, &cm->fc, sizeof(cm->fc));
if (cm->refresh_last_frame) memcpy(&cpi->lfc_n, &cm->fc, sizeof(cm->fc));
/* if its a dropped frame honor the requests on subsequent frames */
if (*size > 0) {
cpi->droppable = !frame_is_reference(cpi);
/* return to normal state */
cm->refresh_entropy_probs = 1;
cm->refresh_alt_ref_frame = 0;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
cm->frame_type = INTER_FRAME;
}
/* Save layer specific state */
if (cpi->oxcf.number_of_layers > 1) save_layer_context(cpi);
vpx_usec_timer_mark(&cmptimer);
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame) {
generate_psnr_packet(cpi);
}
#if CONFIG_INTERNAL_STATS
if (cpi->pass != 1) {
cpi->bytes += *size;
if (cm->show_frame) {
cpi->common.show_frame_mi = cpi->common.mi;
cpi->count++;
if (cpi->b_calculate_psnr) {
uint64_t ye, ue, ve;
double frame_psnr;
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
unsigned int y_width = cpi->common.Width;
unsigned int y_height = cpi->common.Height;
unsigned int uv_width = (y_width + 1) / 2;
unsigned int uv_height = (y_height + 1) / 2;
int y_samples = y_height * y_width;
int uv_samples = uv_height * uv_width;
int t_samples = y_samples + 2 * uv_samples;
double sq_error;
ye = calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer,
recon->y_stride, y_width, y_height);
ue = calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer,
recon->uv_stride, uv_width, uv_height);
ve = calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer,
recon->uv_stride, uv_width, uv_height);
sq_error = (double)(ye + ue + ve);
frame_psnr = vpx_sse_to_psnr(t_samples, 255.0, sq_error);
cpi->total_y += vpx_sse_to_psnr(y_samples, 255.0, (double)ye);
cpi->total_u += vpx_sse_to_psnr(uv_samples, 255.0, (double)ue);
cpi->total_v += vpx_sse_to_psnr(uv_samples, 255.0, (double)ve);
cpi->total_sq_error += sq_error;
cpi->total += frame_psnr;
#if CONFIG_POSTPROC
{
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
double sq_error2;
double frame_psnr2, frame_ssim2 = 0;
double weight = 0;
vp8_deblock(cm, cm->frame_to_show, &cm->post_proc_buffer,
cm->filter_level * 10 / 6, 1, 0);
vp8_clear_system_state();
ye = calc_plane_error(orig->y_buffer, orig->y_stride, pp->y_buffer,
pp->y_stride, y_width, y_height);
ue = calc_plane_error(orig->u_buffer, orig->uv_stride, pp->u_buffer,
pp->uv_stride, uv_width, uv_height);
ve = calc_plane_error(orig->v_buffer, orig->uv_stride, pp->v_buffer,
pp->uv_stride, uv_width, uv_height);
sq_error2 = (double)(ye + ue + ve);
frame_psnr2 = vpx_sse_to_psnr(t_samples, 255.0, sq_error2);
cpi->totalp_y += vpx_sse_to_psnr(y_samples, 255.0, (double)ye);
cpi->totalp_u += vpx_sse_to_psnr(uv_samples, 255.0, (double)ue);
cpi->totalp_v += vpx_sse_to_psnr(uv_samples, 255.0, (double)ve);
cpi->total_sq_error2 += sq_error2;
cpi->totalp += frame_psnr2;
frame_ssim2 =
vpx_calc_ssim(cpi->Source, &cm->post_proc_buffer, &weight);
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
if (cpi->oxcf.number_of_layers > 1) {
unsigned int i;
for (i = cpi->current_layer; i < cpi->oxcf.number_of_layers; ++i) {
cpi->frames_in_layer[i]++;
cpi->bytes_in_layer[i] += *size;
cpi->sum_psnr[i] += frame_psnr;
cpi->sum_psnr_p[i] += frame_psnr2;
cpi->total_error2[i] += sq_error;
cpi->total_error2_p[i] += sq_error2;
cpi->sum_ssim[i] += frame_ssim2 * weight;
cpi->sum_weights[i] += weight;
}
}
}
#endif
}
}
}
#if 0
if (cpi->common.frame_type != 0 && cpi->common.base_qindex == cpi->oxcf.worst_allowed_q)
{
skiptruecount += cpi->skip_true_count;
skipfalsecount += cpi->skip_false_count;
}
#endif
#if 0
if (cpi->pass != 1)
{
FILE *f = fopen("skip.stt", "a");
fprintf(f, "frame:%4d flags:%4x Q:%4d P:%4d Size:%5d\n", cpi->common.current_video_frame, *frame_flags, cpi->common.base_qindex, cpi->prob_skip_false, *size);
if (cpi->is_src_frame_alt_ref == 1)
fprintf(f, "skipcount: %4d framesize: %d\n", cpi->skip_true_count , *size);
fclose(f);
}
#endif
#endif
cpi->common.error.setjmp = 0;
return 0;
}
int vp8_get_preview_raw_frame(VP8_COMP *cpi, YV12_BUFFER_CONFIG *dest,
vp8_ppflags_t *flags) {
if (cpi->common.refresh_alt_ref_frame) {
return -1;
} else {
int ret;
#if CONFIG_POSTPROC
cpi->common.show_frame_mi = cpi->common.mi;
ret = vp8_post_proc_frame(&cpi->common, dest, flags);
#else
(void)flags;
if (cpi->common.frame_to_show) {
*dest = *cpi->common.frame_to_show;
dest->y_width = cpi->common.Width;
dest->y_height = cpi->common.Height;
dest->uv_height = cpi->common.Height / 2;
ret = 0;
} else {
ret = -1;
}
#endif
vp8_clear_system_state();
return ret;
}
}
int vp8_set_roimap(VP8_COMP *cpi, unsigned char *map, unsigned int rows,
unsigned int cols, int delta_q[4], int delta_lf[4],
unsigned int threshold[4]) {
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
int internal_delta_q[MAX_MB_SEGMENTS];
const int range = 63;
int i;
// This method is currently incompatible with the cyclic refresh method
if (cpi->cyclic_refresh_mode_enabled) return -1;
// Check number of rows and columns match
if (cpi->common.mb_rows != (int)rows || cpi->common.mb_cols != (int)cols) {
return -1;
}
// Range check the delta Q values and convert the external Q range values
// to internal ones.
if ((abs(delta_q[0]) > range) || (abs(delta_q[1]) > range) ||
(abs(delta_q[2]) > range) || (abs(delta_q[3]) > range)) {
return -1;
}
// Range check the delta lf values
if ((abs(delta_lf[0]) > range) || (abs(delta_lf[1]) > range) ||
(abs(delta_lf[2]) > range) || (abs(delta_lf[3]) > range)) {
return -1;
}
if (!map) {
disable_segmentation(cpi);
return 0;
}
// Translate the external delta q values to internal values.
for (i = 0; i < MAX_MB_SEGMENTS; ++i) {
internal_delta_q[i] =
(delta_q[i] >= 0) ? q_trans[delta_q[i]] : -q_trans[-delta_q[i]];
}
/* Set the segmentation Map */
set_segmentation_map(cpi, map);
/* Activate segmentation. */
enable_segmentation(cpi);
/* Set up the quant segment data */
feature_data[MB_LVL_ALT_Q][0] = internal_delta_q[0];
feature_data[MB_LVL_ALT_Q][1] = internal_delta_q[1];
feature_data[MB_LVL_ALT_Q][2] = internal_delta_q[2];
feature_data[MB_LVL_ALT_Q][3] = internal_delta_q[3];
/* Set up the loop segment data s */
feature_data[MB_LVL_ALT_LF][0] = delta_lf[0];
feature_data[MB_LVL_ALT_LF][1] = delta_lf[1];
feature_data[MB_LVL_ALT_LF][2] = delta_lf[2];
feature_data[MB_LVL_ALT_LF][3] = delta_lf[3];
cpi->segment_encode_breakout[0] = threshold[0];
cpi->segment_encode_breakout[1] = threshold[1];
cpi->segment_encode_breakout[2] = threshold[2];
cpi->segment_encode_breakout[3] = threshold[3];
/* Initialise the feature data structure */
set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA);
return 0;
}
int vp8_set_active_map(VP8_COMP *cpi, unsigned char *map, unsigned int rows,
unsigned int cols) {
if ((int)rows == cpi->common.mb_rows && (int)cols == cpi->common.mb_cols) {
if (map) {
memcpy(cpi->active_map, map, rows * cols);
cpi->active_map_enabled = 1;
} else {
cpi->active_map_enabled = 0;
}
return 0;
} else {
return -1;
}
}
int vp8_set_internal_size(VP8_COMP *cpi, VPX_SCALING horiz_mode,
VPX_SCALING vert_mode) {
if (horiz_mode <= ONETWO) {
cpi->common.horiz_scale = horiz_mode;
} else {
return -1;
}
if (vert_mode <= ONETWO) {
cpi->common.vert_scale = vert_mode;
} else {
return -1;
}
return 0;
}
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest) {
int i, j;
int Total = 0;
unsigned char *src = source->y_buffer;
unsigned char *dst = dest->y_buffer;
/* Loop through the Y plane raw and reconstruction data summing
* (square differences)
*/
for (i = 0; i < source->y_height; i += 16) {
for (j = 0; j < source->y_width; j += 16) {
unsigned int sse;
Total += vpx_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride,
&sse);
}
src += 16 * source->y_stride;
dst += 16 * dest->y_stride;
}
return Total;
}
int vp8_get_quantizer(VP8_COMP *cpi) { return cpi->common.base_qindex; }