vpx/vp9/common/mips/dspr2/vp9_itrans4_dspr2.c
Jingning Han 2992739b5d Rename loop filter function from vp9_ to vpx_
Change-Id: I6f424bb8daec26bf8482b5d75dd9b0e45c11a665
2015-07-17 15:55:02 -07:00

440 lines
16 KiB
C

/*
* Copyright (c) 2013 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <stdio.h>
#include "./vpx_config.h"
#include "./vp9_rtcd.h"
#include "vpx_ports/mem.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/mips/dspr2/vp9_common_dspr2.h"
#if HAVE_DSPR2
static void vp9_idct4_rows_dspr2(const int16_t *input, int16_t *output) {
int16_t step_0, step_1, step_2, step_3;
int Temp0, Temp1, Temp2, Temp3;
const int const_2_power_13 = 8192;
int i;
for (i = 4; i--; ) {
__asm__ __volatile__ (
/*
temp_1 = (input[0] + input[2]) * cospi_16_64;
step_0 = dct_const_round_shift(temp_1);
temp_2 = (input[0] - input[2]) * cospi_16_64;
step_1 = dct_const_round_shift(temp_2);
*/
"lh %[Temp0], 0(%[input]) \n\t"
"lh %[Temp1], 4(%[input]) \n\t"
"mtlo %[const_2_power_13], $ac0 \n\t"
"mthi $zero, $ac0 \n\t"
"mtlo %[const_2_power_13], $ac1 \n\t"
"mthi $zero, $ac1 \n\t"
"add %[Temp2], %[Temp0], %[Temp1] \n\t"
"sub %[Temp3], %[Temp0], %[Temp1] \n\t"
"madd $ac0, %[Temp2], %[cospi_16_64] \n\t"
"lh %[Temp0], 2(%[input]) \n\t"
"lh %[Temp1], 6(%[input]) \n\t"
"extp %[step_0], $ac0, 31 \n\t"
"mtlo %[const_2_power_13], $ac0 \n\t"
"mthi $zero, $ac0 \n\t"
"madd $ac1, %[Temp3], %[cospi_16_64] \n\t"
"extp %[step_1], $ac1, 31 \n\t"
"mtlo %[const_2_power_13], $ac1 \n\t"
"mthi $zero, $ac1 \n\t"
/*
temp1 = input[1] * cospi_24_64 - input[3] * cospi_8_64;
step_2 = dct_const_round_shift(temp1);
*/
"madd $ac0, %[Temp0], %[cospi_24_64] \n\t"
"msub $ac0, %[Temp1], %[cospi_8_64] \n\t"
"extp %[step_2], $ac0, 31 \n\t"
/*
temp2 = input[1] * cospi_8_64 + input[3] * cospi_24_64;
step_3 = dct_const_round_shift(temp2);
*/
"madd $ac1, %[Temp0], %[cospi_8_64] \n\t"
"madd $ac1, %[Temp1], %[cospi_24_64] \n\t"
"extp %[step_3], $ac1, 31 \n\t"
/*
output[0] = step_0 + step_3;
output[4] = step_1 + step_2;
output[8] = step_1 - step_2;
output[12] = step_0 - step_3;
*/
"add %[Temp0], %[step_0], %[step_3] \n\t"
"sh %[Temp0], 0(%[output]) \n\t"
"add %[Temp1], %[step_1], %[step_2] \n\t"
"sh %[Temp1], 8(%[output]) \n\t"
"sub %[Temp2], %[step_1], %[step_2] \n\t"
"sh %[Temp2], 16(%[output]) \n\t"
"sub %[Temp3], %[step_0], %[step_3] \n\t"
"sh %[Temp3], 24(%[output]) \n\t"
: [Temp0] "=&r" (Temp0), [Temp1] "=&r" (Temp1),
[Temp2] "=&r" (Temp2), [Temp3] "=&r" (Temp3),
[step_0] "=&r" (step_0), [step_1] "=&r" (step_1),
[step_2] "=&r" (step_2), [step_3] "=&r" (step_3),
[output] "+r" (output)
: [const_2_power_13] "r" (const_2_power_13),
[cospi_8_64] "r" (cospi_8_64), [cospi_16_64] "r" (cospi_16_64),
[cospi_24_64] "r" (cospi_24_64),
[input] "r" (input)
);
input += 4;
output += 1;
}
}
static void vp9_idct4_columns_add_blk_dspr2(int16_t *input, uint8_t *dest,
int dest_stride) {
int16_t step_0, step_1, step_2, step_3;
int Temp0, Temp1, Temp2, Temp3;
const int const_2_power_13 = 8192;
int i;
uint8_t *dest_pix;
uint8_t *cm = vp9_ff_cropTbl;
/* prefetch vp9_ff_cropTbl */
prefetch_load(vp9_ff_cropTbl);
prefetch_load(vp9_ff_cropTbl + 32);
prefetch_load(vp9_ff_cropTbl + 64);
prefetch_load(vp9_ff_cropTbl + 96);
prefetch_load(vp9_ff_cropTbl + 128);
prefetch_load(vp9_ff_cropTbl + 160);
prefetch_load(vp9_ff_cropTbl + 192);
prefetch_load(vp9_ff_cropTbl + 224);
for (i = 0; i < 4; ++i) {
dest_pix = (dest + i);
__asm__ __volatile__ (
/*
temp_1 = (input[0] + input[2]) * cospi_16_64;
step_0 = dct_const_round_shift(temp_1);
temp_2 = (input[0] - input[2]) * cospi_16_64;
step_1 = dct_const_round_shift(temp_2);
*/
"lh %[Temp0], 0(%[input]) \n\t"
"lh %[Temp1], 4(%[input]) \n\t"
"mtlo %[const_2_power_13], $ac0 \n\t"
"mthi $zero, $ac0 \n\t"
"mtlo %[const_2_power_13], $ac1 \n\t"
"mthi $zero, $ac1 \n\t"
"add %[Temp2], %[Temp0], %[Temp1] \n\t"
"sub %[Temp3], %[Temp0], %[Temp1] \n\t"
"madd $ac0, %[Temp2], %[cospi_16_64] \n\t"
"lh %[Temp0], 2(%[input]) \n\t"
"lh %[Temp1], 6(%[input]) \n\t"
"extp %[step_0], $ac0, 31 \n\t"
"mtlo %[const_2_power_13], $ac0 \n\t"
"mthi $zero, $ac0 \n\t"
"madd $ac1, %[Temp3], %[cospi_16_64] \n\t"
"extp %[step_1], $ac1, 31 \n\t"
"mtlo %[const_2_power_13], $ac1 \n\t"
"mthi $zero, $ac1 \n\t"
/*
temp1 = input[1] * cospi_24_64 - input[3] * cospi_8_64;
step_2 = dct_const_round_shift(temp1);
*/
"madd $ac0, %[Temp0], %[cospi_24_64] \n\t"
"msub $ac0, %[Temp1], %[cospi_8_64] \n\t"
"extp %[step_2], $ac0, 31 \n\t"
/*
temp2 = input[1] * cospi_8_64 + input[3] * cospi_24_64;
step_3 = dct_const_round_shift(temp2);
*/
"madd $ac1, %[Temp0], %[cospi_8_64] \n\t"
"madd $ac1, %[Temp1], %[cospi_24_64] \n\t"
"extp %[step_3], $ac1, 31 \n\t"
/*
output[0] = step_0 + step_3;
output[4] = step_1 + step_2;
output[8] = step_1 - step_2;
output[12] = step_0 - step_3;
*/
"add %[Temp0], %[step_0], %[step_3] \n\t"
"addi %[Temp0], %[Temp0], 8 \n\t"
"sra %[Temp0], %[Temp0], 4 \n\t"
"lbu %[Temp1], 0(%[dest_pix]) \n\t"
"add %[Temp1], %[Temp1], %[Temp0] \n\t"
"add %[Temp0], %[step_1], %[step_2] \n\t"
"lbux %[Temp2], %[Temp1](%[cm]) \n\t"
"sb %[Temp2], 0(%[dest_pix]) \n\t"
"addu %[dest_pix], %[dest_pix], %[dest_stride] \n\t"
"addi %[Temp0], %[Temp0], 8 \n\t"
"sra %[Temp0], %[Temp0], 4 \n\t"
"lbu %[Temp1], 0(%[dest_pix]) \n\t"
"add %[Temp1], %[Temp1], %[Temp0] \n\t"
"sub %[Temp0], %[step_1], %[step_2] \n\t"
"lbux %[Temp2], %[Temp1](%[cm]) \n\t"
"sb %[Temp2], 0(%[dest_pix]) \n\t"
"addu %[dest_pix], %[dest_pix], %[dest_stride] \n\t"
"addi %[Temp0], %[Temp0], 8 \n\t"
"sra %[Temp0], %[Temp0], 4 \n\t"
"lbu %[Temp1], 0(%[dest_pix]) \n\t"
"add %[Temp1], %[Temp1], %[Temp0] \n\t"
"sub %[Temp0], %[step_0], %[step_3] \n\t"
"lbux %[Temp2], %[Temp1](%[cm]) \n\t"
"sb %[Temp2], 0(%[dest_pix]) \n\t"
"addu %[dest_pix], %[dest_pix], %[dest_stride] \n\t"
"addi %[Temp0], %[Temp0], 8 \n\t"
"sra %[Temp0], %[Temp0], 4 \n\t"
"lbu %[Temp1], 0(%[dest_pix]) \n\t"
"add %[Temp1], %[Temp1], %[Temp0] \n\t"
"lbux %[Temp2], %[Temp1](%[cm]) \n\t"
"sb %[Temp2], 0(%[dest_pix]) \n\t"
: [Temp0] "=&r" (Temp0), [Temp1] "=&r" (Temp1),
[Temp2] "=&r" (Temp2), [Temp3] "=&r" (Temp3),
[step_0] "=&r" (step_0), [step_1] "=&r" (step_1),
[step_2] "=&r" (step_2), [step_3] "=&r" (step_3),
[dest_pix] "+r" (dest_pix)
: [const_2_power_13] "r" (const_2_power_13),
[cospi_8_64] "r" (cospi_8_64), [cospi_16_64] "r" (cospi_16_64),
[cospi_24_64] "r" (cospi_24_64),
[input] "r" (input), [cm] "r" (cm), [dest_stride] "r" (dest_stride)
);
input += 4;
}
}
void vp9_idct4x4_16_add_dspr2(const int16_t *input, uint8_t *dest,
int dest_stride) {
DECLARE_ALIGNED(32, int16_t, out[4 * 4]);
int16_t *outptr = out;
uint32_t pos = 45;
/* bit positon for extract from acc */
__asm__ __volatile__ (
"wrdsp %[pos], 1 \n\t"
:
: [pos] "r" (pos)
);
// Rows
vp9_idct4_rows_dspr2(input, outptr);
// Columns
vp9_idct4_columns_add_blk_dspr2(&out[0], dest, dest_stride);
}
void vp9_idct4x4_1_add_dspr2(const int16_t *input, uint8_t *dest,
int dest_stride) {
int a1, absa1;
int r;
int32_t out;
int t2, vector_a1, vector_a;
uint32_t pos = 45;
int16_t input_dc = input[0];
/* bit positon for extract from acc */
__asm__ __volatile__ (
"wrdsp %[pos], 1 \n\t"
:
: [pos] "r" (pos)
);
out = DCT_CONST_ROUND_SHIFT_TWICE_COSPI_16_64(input_dc);
__asm__ __volatile__ (
"addi %[out], %[out], 8 \n\t"
"sra %[a1], %[out], 4 \n\t"
: [out] "+r" (out), [a1] "=r" (a1)
:
);
if (a1 < 0) {
/* use quad-byte
* input and output memory are four byte aligned */
__asm__ __volatile__ (
"abs %[absa1], %[a1] \n\t"
"replv.qb %[vector_a1], %[absa1] \n\t"
: [absa1] "=r" (absa1), [vector_a1] "=r" (vector_a1)
: [a1] "r" (a1)
);
for (r = 4; r--;) {
__asm__ __volatile__ (
"lw %[t2], 0(%[dest]) \n\t"
"subu_s.qb %[vector_a], %[t2], %[vector_a1] \n\t"
"sw %[vector_a], 0(%[dest]) \n\t"
"add %[dest], %[dest], %[dest_stride] \n\t"
: [t2] "=&r" (t2), [vector_a] "=&r" (vector_a),
[dest] "+&r" (dest)
: [dest_stride] "r" (dest_stride), [vector_a1] "r" (vector_a1)
);
}
} else {
/* use quad-byte
* input and output memory are four byte aligned */
__asm__ __volatile__ (
"replv.qb %[vector_a1], %[a1] \n\t"
: [vector_a1] "=r" (vector_a1)
: [a1] "r" (a1)
);
for (r = 4; r--;) {
__asm__ __volatile__ (
"lw %[t2], 0(%[dest]) \n\t"
"addu_s.qb %[vector_a], %[t2], %[vector_a1] \n\t"
"sw %[vector_a], 0(%[dest]) \n\t"
"add %[dest], %[dest], %[dest_stride] \n\t"
: [t2] "=&r" (t2), [vector_a] "=&r" (vector_a),
[dest] "+&r" (dest)
: [dest_stride] "r" (dest_stride), [vector_a1] "r" (vector_a1)
);
}
}
}
static void iadst4_dspr2(const int16_t *input, int16_t *output) {
int s0, s1, s2, s3, s4, s5, s6, s7;
int x0, x1, x2, x3;
x0 = input[0];
x1 = input[1];
x2 = input[2];
x3 = input[3];
if (!(x0 | x1 | x2 | x3)) {
output[0] = output[1] = output[2] = output[3] = 0;
return;
}
s0 = sinpi_1_9 * x0;
s1 = sinpi_2_9 * x0;
s2 = sinpi_3_9 * x1;
s3 = sinpi_4_9 * x2;
s4 = sinpi_1_9 * x2;
s5 = sinpi_2_9 * x3;
s6 = sinpi_4_9 * x3;
s7 = x0 - x2 + x3;
x0 = s0 + s3 + s5;
x1 = s1 - s4 - s6;
x2 = sinpi_3_9 * s7;
x3 = s2;
s0 = x0 + x3;
s1 = x1 + x3;
s2 = x2;
s3 = x0 + x1 - x3;
// 1-D transform scaling factor is sqrt(2).
// The overall dynamic range is 14b (input) + 14b (multiplication scaling)
// + 1b (addition) = 29b.
// Hence the output bit depth is 15b.
output[0] = dct_const_round_shift(s0);
output[1] = dct_const_round_shift(s1);
output[2] = dct_const_round_shift(s2);
output[3] = dct_const_round_shift(s3);
}
void vp9_iht4x4_16_add_dspr2(const int16_t *input, uint8_t *dest,
int dest_stride, int tx_type) {
int i, j;
DECLARE_ALIGNED(32, int16_t, out[4 * 4]);
int16_t *outptr = out;
int16_t temp_in[4 * 4], temp_out[4];
uint32_t pos = 45;
/* bit positon for extract from acc */
__asm__ __volatile__ (
"wrdsp %[pos], 1 \n\t"
:
: [pos] "r" (pos)
);
switch (tx_type) {
case DCT_DCT: // DCT in both horizontal and vertical
vp9_idct4_rows_dspr2(input, outptr);
vp9_idct4_columns_add_blk_dspr2(&out[0], dest, dest_stride);
break;
case ADST_DCT: // ADST in vertical, DCT in horizontal
vp9_idct4_rows_dspr2(input, outptr);
outptr = out;
for (i = 0; i < 4; ++i) {
iadst4_dspr2(outptr, temp_out);
for (j = 0; j < 4; ++j)
dest[j * dest_stride + i] =
clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 4)
+ dest[j * dest_stride + i]);
outptr += 4;
}
break;
case DCT_ADST: // DCT in vertical, ADST in horizontal
for (i = 0; i < 4; ++i) {
iadst4_dspr2(input, outptr);
input += 4;
outptr += 4;
}
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
temp_in[i * 4 + j] = out[j * 4 + i];
}
}
vp9_idct4_columns_add_blk_dspr2(&temp_in[0], dest, dest_stride);
break;
case ADST_ADST: // ADST in both directions
for (i = 0; i < 4; ++i) {
iadst4_dspr2(input, outptr);
input += 4;
outptr += 4;
}
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = out[j * 4 + i];
iadst4_dspr2(temp_in, temp_out);
for (j = 0; j < 4; ++j)
dest[j * dest_stride + i] =
clip_pixel(ROUND_POWER_OF_TWO(temp_out[j], 4)
+ dest[j * dest_stride + i]);
}
break;
default:
printf("vp9_short_iht4x4_add_dspr2 : Invalid tx_type\n");
break;
}
}
#endif // #if HAVE_DSPR2