d124465975
Some further changes and refactoring of mv reference code and selection of center point for searches. Mainly relates to not passing so many different local copies of things around. Some place holder comments. Change-Id: I309f10ffe9a9cde7663e7eae19eb594371c8d055
4528 lines
145 KiB
C
4528 lines
145 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include "vpx_config.h"
|
|
#include "vp9/common/vp9_onyxc_int.h"
|
|
#include "vp9/encoder/vp9_onyx_int.h"
|
|
#include "vp9/common/vp9_systemdependent.h"
|
|
#include "vp9/encoder/vp9_quantize.h"
|
|
#include "vp9/common/vp9_alloccommon.h"
|
|
#include "vp9/encoder/vp9_mcomp.h"
|
|
#include "vp9/encoder/vp9_firstpass.h"
|
|
#include "vp9/encoder/vp9_psnr.h"
|
|
#include "vpx_scale/vpx_scale.h"
|
|
#include "vp9/common/vp9_extend.h"
|
|
#include "vp9/encoder/vp9_ratectrl.h"
|
|
#include "vp9/common/vp9_quant_common.h"
|
|
#include "vp9/encoder/vp9_segmentation.h"
|
|
#include "./vp9_rtcd.h"
|
|
#include "./vpx_scale_rtcd.h"
|
|
#if CONFIG_POSTPROC
|
|
#include "vp9/common/vp9_postproc.h"
|
|
#endif
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vp9/common/vp9_swapyv12buffer.h"
|
|
#include "vpx_ports/vpx_timer.h"
|
|
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
#include "vp9/encoder/vp9_mbgraph.h"
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/encoder/vp9_rdopt.h"
|
|
#include "vp9/encoder/vp9_bitstream.h"
|
|
#include "vp9/encoder/vp9_picklpf.h"
|
|
#include "vp9/common/vp9_mvref_common.h"
|
|
#include "vp9/encoder/vp9_temporal_filter.h"
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
|
|
extern void print_tree_update_probs();
|
|
|
|
static void set_default_lf_deltas(VP9_COMP *cpi);
|
|
|
|
#define DEFAULT_INTERP_FILTER EIGHTTAP /* SWITCHABLE for better performance */
|
|
#define SEARCH_BEST_FILTER 0 /* to search exhaustively for
|
|
best filter */
|
|
#define RESET_FOREACH_FILTER 0 /* whether to reset the encoder state
|
|
before trying each new filter */
|
|
#define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */
|
|
|
|
#define ALTREF_HIGH_PRECISION_MV 1 /* whether to use high precision mv
|
|
for altref computation */
|
|
#define HIGH_PRECISION_MV_QTHRESH 200 /* Q threshold for use of high precision
|
|
mv. Choose a very high value for
|
|
now so that HIGH_PRECISION is always
|
|
chosen */
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
#include "math.h"
|
|
|
|
extern double vp9_calc_ssim(YV12_BUFFER_CONFIG *source,
|
|
YV12_BUFFER_CONFIG *dest, int lumamask,
|
|
double *weight);
|
|
|
|
|
|
extern double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source,
|
|
YV12_BUFFER_CONFIG *dest, double *ssim_y,
|
|
double *ssim_u, double *ssim_v);
|
|
|
|
|
|
#endif
|
|
|
|
// #define OUTPUT_YUV_REC
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
FILE *yuv_file;
|
|
#endif
|
|
#ifdef OUTPUT_YUV_REC
|
|
FILE *yuv_rec_file;
|
|
#endif
|
|
|
|
#if 0
|
|
FILE *framepsnr;
|
|
FILE *kf_list;
|
|
FILE *keyfile;
|
|
#endif
|
|
|
|
#if 0
|
|
extern int skip_true_count;
|
|
extern int skip_false_count;
|
|
#endif
|
|
|
|
|
|
#ifdef ENTROPY_STATS
|
|
extern int intra_mode_stats[VP9_KF_BINTRAMODES]
|
|
[VP9_KF_BINTRAMODES]
|
|
[VP9_KF_BINTRAMODES];
|
|
#endif
|
|
|
|
#ifdef NMV_STATS
|
|
extern void init_nmvstats();
|
|
extern void print_nmvstats();
|
|
#endif
|
|
|
|
#ifdef SPEEDSTATS
|
|
unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
#endif
|
|
|
|
#if defined(SECTIONBITS_OUTPUT)
|
|
extern unsigned __int64 Sectionbits[500];
|
|
#endif
|
|
#ifdef MODE_STATS
|
|
extern INT64 Sectionbits[500];
|
|
extern unsigned int y_modes[VP9_YMODES];
|
|
extern unsigned int i8x8_modes[VP9_I8X8_MODES];
|
|
extern unsigned int uv_modes[VP9_UV_MODES];
|
|
extern unsigned int uv_modes_y[VP9_YMODES][VP9_UV_MODES];
|
|
extern unsigned int b_modes[B_MODE_COUNT];
|
|
extern unsigned int inter_y_modes[MB_MODE_COUNT];
|
|
extern unsigned int inter_uv_modes[VP9_UV_MODES];
|
|
extern unsigned int inter_b_modes[B_MODE_COUNT];
|
|
#endif
|
|
|
|
extern void vp9_init_quantizer(VP9_COMP *cpi);
|
|
|
|
static int base_skip_false_prob[QINDEX_RANGE][3];
|
|
|
|
// Tables relating active max Q to active min Q
|
|
static int kf_low_motion_minq[QINDEX_RANGE];
|
|
static int kf_high_motion_minq[QINDEX_RANGE];
|
|
static int gf_low_motion_minq[QINDEX_RANGE];
|
|
static int gf_high_motion_minq[QINDEX_RANGE];
|
|
static int inter_minq[QINDEX_RANGE];
|
|
|
|
// Functions to compute the active minq lookup table entries based on a
|
|
// formulaic approach to facilitate easier adjustment of the Q tables.
|
|
// The formulae were derived from computing a 3rd order polynomial best
|
|
// fit to the original data (after plotting real maxq vs minq (not q index))
|
|
static int calculate_minq_index(double maxq,
|
|
double x3, double x2, double x, double c) {
|
|
int i;
|
|
double minqtarget;
|
|
double thisq;
|
|
|
|
minqtarget = ((x3 * maxq * maxq * maxq) +
|
|
(x2 * maxq * maxq) +
|
|
(x * maxq) +
|
|
c);
|
|
|
|
if (minqtarget > maxq)
|
|
minqtarget = maxq;
|
|
|
|
for (i = 0; i < QINDEX_RANGE; i++) {
|
|
thisq = vp9_convert_qindex_to_q(i);
|
|
if (minqtarget <= vp9_convert_qindex_to_q(i))
|
|
return i;
|
|
}
|
|
return QINDEX_RANGE - 1;
|
|
}
|
|
|
|
static void init_minq_luts(void) {
|
|
int i;
|
|
double maxq;
|
|
|
|
for (i = 0; i < QINDEX_RANGE; i++) {
|
|
maxq = vp9_convert_qindex_to_q(i);
|
|
|
|
|
|
kf_low_motion_minq[i] = calculate_minq_index(maxq,
|
|
0.0000003,
|
|
-0.000015,
|
|
0.074,
|
|
0.0);
|
|
kf_high_motion_minq[i] = calculate_minq_index(maxq,
|
|
0.0000004,
|
|
-0.000125,
|
|
0.14,
|
|
0.0);
|
|
gf_low_motion_minq[i] = calculate_minq_index(maxq,
|
|
0.0000015,
|
|
-0.0009,
|
|
0.33,
|
|
0.0);
|
|
gf_high_motion_minq[i] = calculate_minq_index(maxq,
|
|
0.0000021,
|
|
-0.00125,
|
|
0.45,
|
|
0.0);
|
|
inter_minq[i] = calculate_minq_index(maxq,
|
|
0.00000271,
|
|
-0.00113,
|
|
0.697,
|
|
0.0);
|
|
|
|
}
|
|
}
|
|
|
|
static void set_mvcost(MACROBLOCK *mb) {
|
|
if (mb->e_mbd.allow_high_precision_mv) {
|
|
mb->mvcost = mb->nmvcost_hp;
|
|
mb->mvsadcost = mb->nmvsadcost_hp;
|
|
|
|
} else {
|
|
mb->mvcost = mb->nmvcost;
|
|
mb->mvsadcost = mb->nmvsadcost;
|
|
}
|
|
}
|
|
static void init_base_skip_probs(void) {
|
|
int i;
|
|
double q;
|
|
int skip_prob, t;
|
|
|
|
for (i = 0; i < QINDEX_RANGE; i++) {
|
|
q = vp9_convert_qindex_to_q(i);
|
|
|
|
// Exponential decay caluclation of baseline skip prob with clamping
|
|
// Based on crude best fit of old table.
|
|
t = (int)(564.25 * pow(2.71828, (-0.012 * q)));
|
|
|
|
skip_prob = t;
|
|
if (skip_prob < 1)
|
|
skip_prob = 1;
|
|
else if (skip_prob > 255)
|
|
skip_prob = 255;
|
|
base_skip_false_prob[i][1] = skip_prob;
|
|
|
|
skip_prob = t * 3 / 4;
|
|
if (skip_prob < 1)
|
|
skip_prob = 1;
|
|
else if (skip_prob > 255)
|
|
skip_prob = 255;
|
|
base_skip_false_prob[i][2] = skip_prob;
|
|
|
|
skip_prob = t * 5 / 4;
|
|
if (skip_prob < 1)
|
|
skip_prob = 1;
|
|
else if (skip_prob > 255)
|
|
skip_prob = 255;
|
|
base_skip_false_prob[i][0] = skip_prob;
|
|
}
|
|
}
|
|
|
|
static void update_base_skip_probs(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
vp9_update_skip_probs(cpi);
|
|
|
|
if (cm->refresh_alt_ref_frame) {
|
|
int k;
|
|
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
|
|
cpi->last_skip_false_probs[2][k] = cm->mbskip_pred_probs[k];
|
|
cpi->last_skip_probs_q[2] = cm->base_qindex;
|
|
} else if (cpi->common.refresh_golden_frame) {
|
|
int k;
|
|
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
|
|
cpi->last_skip_false_probs[1][k] = cm->mbskip_pred_probs[k];
|
|
cpi->last_skip_probs_q[1] = cm->base_qindex;
|
|
} else {
|
|
int k;
|
|
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
|
|
cpi->last_skip_false_probs[0][k] = cm->mbskip_pred_probs[k];
|
|
cpi->last_skip_probs_q[0] = cm->base_qindex;
|
|
|
|
// update the baseline table for the current q
|
|
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
|
|
cpi->base_skip_false_prob[cm->base_qindex][k] =
|
|
cm->mbskip_pred_probs[k];
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void vp9_initialize_enc() {
|
|
static int init_done = 0;
|
|
|
|
if (!init_done) {
|
|
vp9_initialize_common();
|
|
vp9_tokenize_initialize();
|
|
vp9_init_quant_tables();
|
|
vp9_init_me_luts();
|
|
init_minq_luts();
|
|
init_base_skip_probs();
|
|
init_done = 1;
|
|
}
|
|
}
|
|
#ifdef PACKET_TESTING
|
|
extern FILE *vpxlogc;
|
|
#endif
|
|
|
|
static void setup_features(VP9_COMP *cpi) {
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
|
|
// Set up default state for MB feature flags
|
|
|
|
xd->segmentation_enabled = 0; // Default segmentation disabled
|
|
|
|
xd->update_mb_segmentation_map = 0;
|
|
xd->update_mb_segmentation_data = 0;
|
|
vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs));
|
|
|
|
vp9_clearall_segfeatures(xd);
|
|
|
|
xd->mode_ref_lf_delta_enabled = 0;
|
|
xd->mode_ref_lf_delta_update = 0;
|
|
vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
|
|
vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
|
|
vpx_memset(xd->last_ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
|
|
vpx_memset(xd->last_mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
|
|
|
|
set_default_lf_deltas(cpi);
|
|
|
|
}
|
|
|
|
|
|
static void dealloc_compressor_data(VP9_COMP *cpi) {
|
|
vpx_free(cpi->tplist);
|
|
cpi->tplist = NULL;
|
|
|
|
// Delete last frame MV storage buffers
|
|
vpx_free(cpi->lfmv);
|
|
cpi->lfmv = 0;
|
|
|
|
vpx_free(cpi->lf_ref_frame_sign_bias);
|
|
cpi->lf_ref_frame_sign_bias = 0;
|
|
|
|
vpx_free(cpi->lf_ref_frame);
|
|
cpi->lf_ref_frame = 0;
|
|
|
|
// Delete sementation map
|
|
vpx_free(cpi->segmentation_map);
|
|
cpi->segmentation_map = 0;
|
|
vpx_free(cpi->common.last_frame_seg_map);
|
|
cpi->common.last_frame_seg_map = 0;
|
|
vpx_free(cpi->coding_context.last_frame_seg_map_copy);
|
|
cpi->coding_context.last_frame_seg_map_copy = 0;
|
|
|
|
vpx_free(cpi->active_map);
|
|
cpi->active_map = 0;
|
|
|
|
vp9_de_alloc_frame_buffers(&cpi->common);
|
|
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->last_frame_uf);
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source);
|
|
#if VP9_TEMPORAL_ALT_REF
|
|
vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer);
|
|
#endif
|
|
vp9_lookahead_destroy(cpi->lookahead);
|
|
|
|
vpx_free(cpi->tok);
|
|
cpi->tok = 0;
|
|
|
|
// Structure used to monitor GF usage
|
|
vpx_free(cpi->gf_active_flags);
|
|
cpi->gf_active_flags = 0;
|
|
|
|
// Activity mask based per mb zbin adjustments
|
|
vpx_free(cpi->mb_activity_map);
|
|
cpi->mb_activity_map = 0;
|
|
vpx_free(cpi->mb_norm_activity_map);
|
|
cpi->mb_norm_activity_map = 0;
|
|
|
|
vpx_free(cpi->mb.pip);
|
|
cpi->mb.pip = 0;
|
|
|
|
vpx_free(cpi->twopass.total_stats);
|
|
cpi->twopass.total_stats = 0;
|
|
|
|
vpx_free(cpi->twopass.total_left_stats);
|
|
cpi->twopass.total_left_stats = 0;
|
|
|
|
vpx_free(cpi->twopass.this_frame_stats);
|
|
cpi->twopass.this_frame_stats = 0;
|
|
}
|
|
|
|
// Computes a q delta (in "q index" terms) to get from a starting q value
|
|
// to a target value
|
|
// target q value
|
|
static int compute_qdelta(VP9_COMP *cpi, double qstart, double qtarget) {
|
|
int i;
|
|
int start_index = cpi->worst_quality;
|
|
int target_index = cpi->worst_quality;
|
|
|
|
// Convert the average q value to an index.
|
|
for (i = cpi->best_quality; i < cpi->worst_quality; i++) {
|
|
start_index = i;
|
|
if (vp9_convert_qindex_to_q(i) >= qstart)
|
|
break;
|
|
}
|
|
|
|
// Convert the q target to an index
|
|
for (i = cpi->best_quality; i < cpi->worst_quality; i++) {
|
|
target_index = i;
|
|
if (vp9_convert_qindex_to_q(i) >= qtarget)
|
|
break;
|
|
}
|
|
|
|
return target_index - start_index;
|
|
}
|
|
|
|
static void init_seg_features(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
|
|
int high_q = (int)(cpi->avg_q > 48.0);
|
|
int qi_delta;
|
|
|
|
// Disable and clear down for KF
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
// Clear down the global segmentation map
|
|
vpx_memset(cpi->segmentation_map, 0, (cm->mb_rows * cm->mb_cols));
|
|
xd->update_mb_segmentation_map = 0;
|
|
xd->update_mb_segmentation_data = 0;
|
|
cpi->static_mb_pct = 0;
|
|
|
|
// Disable segmentation
|
|
vp9_disable_segmentation((VP9_PTR)cpi);
|
|
|
|
// Clear down the segment features.
|
|
vp9_clearall_segfeatures(xd);
|
|
}
|
|
|
|
// If this is an alt ref frame
|
|
else if (cm->refresh_alt_ref_frame) {
|
|
// Clear down the global segmentation map
|
|
vpx_memset(cpi->segmentation_map, 0, (cm->mb_rows * cm->mb_cols));
|
|
xd->update_mb_segmentation_map = 0;
|
|
xd->update_mb_segmentation_data = 0;
|
|
cpi->static_mb_pct = 0;
|
|
|
|
// Disable segmentation and individual segment features by default
|
|
vp9_disable_segmentation((VP9_PTR)cpi);
|
|
vp9_clearall_segfeatures(xd);
|
|
|
|
// Scan frames from current to arf frame.
|
|
// This function re-enables segmentation if appropriate.
|
|
vp9_update_mbgraph_stats(cpi);
|
|
|
|
// If segmentation was enabled set those features needed for the
|
|
// arf itself.
|
|
if (xd->segmentation_enabled) {
|
|
xd->update_mb_segmentation_map = 1;
|
|
xd->update_mb_segmentation_data = 1;
|
|
|
|
qi_delta = compute_qdelta(cpi, cpi->avg_q, (cpi->avg_q * 0.875));
|
|
vp9_set_segdata(xd, 1, SEG_LVL_ALT_Q, (qi_delta - 2));
|
|
vp9_set_segdata(xd, 1, SEG_LVL_ALT_LF, -2);
|
|
|
|
vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_Q);
|
|
vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_LF);
|
|
|
|
// Where relevant assume segment data is delta data
|
|
xd->mb_segment_abs_delta = SEGMENT_DELTADATA;
|
|
|
|
}
|
|
}
|
|
// All other frames if segmentation has been enabled
|
|
else if (xd->segmentation_enabled) {
|
|
// First normal frame in a valid gf or alt ref group
|
|
if (cpi->common.frames_since_golden == 0) {
|
|
// Set up segment features for normal frames in an af group
|
|
if (cpi->source_alt_ref_active) {
|
|
xd->update_mb_segmentation_map = 0;
|
|
xd->update_mb_segmentation_data = 1;
|
|
xd->mb_segment_abs_delta = SEGMENT_DELTADATA;
|
|
|
|
qi_delta = compute_qdelta(cpi, cpi->avg_q,
|
|
(cpi->avg_q * 1.125));
|
|
vp9_set_segdata(xd, 1, SEG_LVL_ALT_Q, (qi_delta + 2));
|
|
vp9_set_segdata(xd, 1, SEG_LVL_ALT_Q, 0);
|
|
vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_Q);
|
|
|
|
vp9_set_segdata(xd, 1, SEG_LVL_ALT_LF, -2);
|
|
vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_LF);
|
|
|
|
// Segment coding disabled for compred testing
|
|
if (high_q || (cpi->static_mb_pct == 100)) {
|
|
// set_segref(xd, 1, LAST_FRAME);
|
|
vp9_set_segref(xd, 1, ALTREF_FRAME);
|
|
vp9_enable_segfeature(xd, 1, SEG_LVL_REF_FRAME);
|
|
|
|
vp9_set_segdata(xd, 1, SEG_LVL_MODE, ZEROMV);
|
|
vp9_enable_segfeature(xd, 1, SEG_LVL_MODE);
|
|
|
|
// EOB segment coding not fixed for 8x8 yet
|
|
vp9_set_segdata(xd, 1, SEG_LVL_EOB, 0);
|
|
vp9_enable_segfeature(xd, 1, SEG_LVL_EOB);
|
|
}
|
|
}
|
|
// Disable segmentation and clear down features if alt ref
|
|
// is not active for this group
|
|
else {
|
|
vp9_disable_segmentation((VP9_PTR)cpi);
|
|
|
|
vpx_memset(cpi->segmentation_map, 0,
|
|
(cm->mb_rows * cm->mb_cols));
|
|
|
|
xd->update_mb_segmentation_map = 0;
|
|
xd->update_mb_segmentation_data = 0;
|
|
|
|
vp9_clearall_segfeatures(xd);
|
|
}
|
|
}
|
|
|
|
// Special case where we are coding over the top of a previous
|
|
// alt ref frame
|
|
// Segment coding disabled for compred testing
|
|
else if (cpi->is_src_frame_alt_ref) {
|
|
// Enable mode and ref frame features for segment 0 as well
|
|
vp9_enable_segfeature(xd, 0, SEG_LVL_REF_FRAME);
|
|
vp9_enable_segfeature(xd, 0, SEG_LVL_MODE);
|
|
vp9_enable_segfeature(xd, 1, SEG_LVL_REF_FRAME);
|
|
vp9_enable_segfeature(xd, 1, SEG_LVL_MODE);
|
|
|
|
// All mbs should use ALTREF_FRAME, ZEROMV exclusively
|
|
vp9_clear_segref(xd, 0);
|
|
vp9_set_segref(xd, 0, ALTREF_FRAME);
|
|
vp9_clear_segref(xd, 1);
|
|
vp9_set_segref(xd, 1, ALTREF_FRAME);
|
|
vp9_set_segdata(xd, 0, SEG_LVL_MODE, ZEROMV);
|
|
vp9_set_segdata(xd, 1, SEG_LVL_MODE, ZEROMV);
|
|
|
|
// Skip all MBs if high Q
|
|
if (high_q) {
|
|
vp9_enable_segfeature(xd, 0, SEG_LVL_EOB);
|
|
vp9_set_segdata(xd, 0, SEG_LVL_EOB, 0);
|
|
vp9_enable_segfeature(xd, 1, SEG_LVL_EOB);
|
|
vp9_set_segdata(xd, 1, SEG_LVL_EOB, 0);
|
|
}
|
|
// Enable data udpate
|
|
xd->update_mb_segmentation_data = 1;
|
|
}
|
|
// All other frames.
|
|
else {
|
|
// No updates.. leave things as they are.
|
|
xd->update_mb_segmentation_map = 0;
|
|
xd->update_mb_segmentation_data = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// DEBUG: Print out the segment id of each MB in the current frame.
|
|
static void print_seg_map(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
int row, col;
|
|
int map_index = 0;
|
|
FILE *statsfile;
|
|
|
|
statsfile = fopen("segmap.stt", "a");
|
|
|
|
fprintf(statsfile, "%10d\n",
|
|
cm->current_video_frame);
|
|
|
|
for (row = 0; row < cpi->common.mb_rows; row++) {
|
|
for (col = 0; col < cpi->common.mb_cols; col++) {
|
|
fprintf(statsfile, "%10d",
|
|
cpi->segmentation_map[map_index]);
|
|
map_index++;
|
|
}
|
|
fprintf(statsfile, "\n");
|
|
}
|
|
fprintf(statsfile, "\n");
|
|
|
|
fclose(statsfile);
|
|
}
|
|
|
|
static void update_reference_segmentation_map(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
int row, col, sb_rows = (cm->mb_rows + 1) >> 1, sb_cols = (cm->mb_cols + 1) >> 1;
|
|
MODE_INFO *mi = cm->mi;
|
|
uint8_t *segmap = cpi->segmentation_map;
|
|
uint8_t *segcache = cm->last_frame_seg_map;
|
|
|
|
for (row = 0; row < sb_rows; row++) {
|
|
for (col = 0; col < sb_cols; col++) {
|
|
MODE_INFO *miptr = mi + col * 2;
|
|
uint8_t *cache = segcache + col * 2;
|
|
#if CONFIG_SUPERBLOCKS
|
|
if (miptr->mbmi.encoded_as_sb) {
|
|
cache[0] = miptr->mbmi.segment_id;
|
|
if (!(cm->mb_cols & 1) || col < sb_cols - 1)
|
|
cache[1] = miptr->mbmi.segment_id;
|
|
if (!(cm->mb_rows & 1) || row < sb_rows - 1) {
|
|
cache[cm->mb_cols] = miptr->mbmi.segment_id;
|
|
if (!(cm->mb_cols & 1) || col < sb_cols - 1)
|
|
cache[cm->mb_cols + 1] = miptr->mbmi.segment_id;
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
cache[0] = miptr[0].mbmi.segment_id;
|
|
if (!(cm->mb_cols & 1) || col < sb_cols - 1)
|
|
cache[1] = miptr[1].mbmi.segment_id;
|
|
if (!(cm->mb_rows & 1) || row < sb_rows - 1) {
|
|
cache[cm->mb_cols] = miptr[cm->mode_info_stride].mbmi.segment_id;
|
|
if (!(cm->mb_cols & 1) || col < sb_cols - 1)
|
|
cache[1] = miptr[1].mbmi.segment_id;
|
|
cache[cm->mb_cols + 1] = miptr[cm->mode_info_stride + 1].mbmi.segment_id;
|
|
}
|
|
}
|
|
}
|
|
segmap += 2 * cm->mb_cols;
|
|
segcache += 2 * cm->mb_cols;
|
|
mi += 2 * cm->mode_info_stride;
|
|
}
|
|
}
|
|
|
|
static void set_default_lf_deltas(VP9_COMP *cpi) {
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1;
|
|
cpi->mb.e_mbd.mode_ref_lf_delta_update = 1;
|
|
|
|
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
|
|
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
|
|
|
|
// Test of ref frame deltas
|
|
cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2;
|
|
cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0;
|
|
cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2;
|
|
cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2;
|
|
|
|
cpi->mb.e_mbd.mode_lf_deltas[0] = 4; // BPRED
|
|
cpi->mb.e_mbd.mode_lf_deltas[1] = -2; // Zero
|
|
cpi->mb.e_mbd.mode_lf_deltas[2] = 2; // New mv
|
|
cpi->mb.e_mbd.mode_lf_deltas[3] = 4; // Split mv
|
|
}
|
|
|
|
void vp9_set_speed_features(VP9_COMP *cpi) {
|
|
SPEED_FEATURES *sf = &cpi->sf;
|
|
int Mode = cpi->compressor_speed;
|
|
int Speed = cpi->Speed;
|
|
int i;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
// Only modes 0 and 1 supported for now in experimental code basae
|
|
if (Mode > 1)
|
|
Mode = 1;
|
|
|
|
// Initialise default mode frequency sampling variables
|
|
for (i = 0; i < MAX_MODES; i ++) {
|
|
cpi->mode_check_freq[i] = 0;
|
|
cpi->mode_test_hit_counts[i] = 0;
|
|
cpi->mode_chosen_counts[i] = 0;
|
|
}
|
|
|
|
// best quality defaults
|
|
sf->RD = 1;
|
|
sf->search_method = NSTEP;
|
|
sf->improved_dct = 1;
|
|
sf->auto_filter = 1;
|
|
sf->recode_loop = 1;
|
|
sf->quarter_pixel_search = 1;
|
|
sf->half_pixel_search = 1;
|
|
sf->iterative_sub_pixel = 1;
|
|
#if CONFIG_LOSSLESS
|
|
sf->optimize_coefficients = 0;
|
|
#else
|
|
sf->optimize_coefficients = 1;
|
|
#endif
|
|
sf->no_skip_block4x4_search = 1;
|
|
|
|
sf->first_step = 0;
|
|
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
|
|
|
|
// default thresholds to 0
|
|
for (i = 0; i < MAX_MODES; i++)
|
|
sf->thresh_mult[i] = 0;
|
|
|
|
switch (Mode) {
|
|
case 0: // best quality mode
|
|
#if CONFIG_PRED_FILTER
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_ZEROMV_FILT ] = 0;
|
|
sf->thresh_mult[THR_ZEROG ] = 0;
|
|
sf->thresh_mult[THR_ZEROG_FILT ] = 0;
|
|
sf->thresh_mult[THR_ZEROA ] = 0;
|
|
sf->thresh_mult[THR_ZEROA_FILT ] = 0;
|
|
sf->thresh_mult[THR_NEARESTMV ] = 0;
|
|
sf->thresh_mult[THR_NEARESTMV_FILT] = 0;
|
|
sf->thresh_mult[THR_NEARESTG ] = 0;
|
|
sf->thresh_mult[THR_NEARESTG_FILT ] = 0;
|
|
sf->thresh_mult[THR_NEARESTA ] = 0;
|
|
sf->thresh_mult[THR_NEARESTA_FILT ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_NEARMV_FILT ] = 0;
|
|
sf->thresh_mult[THR_NEARG ] = 0;
|
|
sf->thresh_mult[THR_NEARG_FILT ] = 0;
|
|
sf->thresh_mult[THR_NEARA ] = 0;
|
|
sf->thresh_mult[THR_NEARA_FILT ] = 0;
|
|
|
|
sf->thresh_mult[THR_DC ] = 0;
|
|
|
|
sf->thresh_mult[THR_V_PRED ] = 1000;
|
|
sf->thresh_mult[THR_H_PRED ] = 1000;
|
|
sf->thresh_mult[THR_D45_PRED ] = 1000;
|
|
sf->thresh_mult[THR_D135_PRED] = 1000;
|
|
sf->thresh_mult[THR_D117_PRED] = 1000;
|
|
sf->thresh_mult[THR_D153_PRED] = 1000;
|
|
sf->thresh_mult[THR_D27_PRED ] = 1000;
|
|
sf->thresh_mult[THR_D63_PRED ] = 1000;
|
|
sf->thresh_mult[THR_B_PRED ] = 2000;
|
|
sf->thresh_mult[THR_I8X8_PRED] = 2000;
|
|
sf->thresh_mult[THR_TM ] = 1000;
|
|
|
|
sf->thresh_mult[THR_NEWMV ] = 1000;
|
|
sf->thresh_mult[THR_NEWG ] = 1000;
|
|
sf->thresh_mult[THR_NEWA ] = 1000;
|
|
sf->thresh_mult[THR_NEWMV_FILT ] = 1000;
|
|
sf->thresh_mult[THR_NEWG_FILT ] = 1000;
|
|
sf->thresh_mult[THR_NEWA_FILT ] = 1000;
|
|
#else
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_ZEROG ] = 0;
|
|
sf->thresh_mult[THR_ZEROA ] = 0;
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_NEARESTG ] = 0;
|
|
sf->thresh_mult[THR_NEARESTA ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_NEARG ] = 0;
|
|
sf->thresh_mult[THR_NEARA ] = 0;
|
|
|
|
sf->thresh_mult[THR_DC ] = 0;
|
|
|
|
sf->thresh_mult[THR_V_PRED ] = 1000;
|
|
sf->thresh_mult[THR_H_PRED ] = 1000;
|
|
sf->thresh_mult[THR_D45_PRED ] = 1000;
|
|
sf->thresh_mult[THR_D135_PRED] = 1000;
|
|
sf->thresh_mult[THR_D117_PRED] = 1000;
|
|
sf->thresh_mult[THR_D153_PRED] = 1000;
|
|
sf->thresh_mult[THR_D27_PRED ] = 1000;
|
|
sf->thresh_mult[THR_D63_PRED ] = 1000;
|
|
sf->thresh_mult[THR_B_PRED ] = 2000;
|
|
sf->thresh_mult[THR_I8X8_PRED] = 2000;
|
|
sf->thresh_mult[THR_TM ] = 1000;
|
|
|
|
sf->thresh_mult[THR_NEWMV ] = 1000;
|
|
sf->thresh_mult[THR_NEWG ] = 1000;
|
|
sf->thresh_mult[THR_NEWA ] = 1000;
|
|
#endif
|
|
sf->thresh_mult[THR_SPLITMV ] = 2500;
|
|
sf->thresh_mult[THR_SPLITG ] = 5000;
|
|
sf->thresh_mult[THR_SPLITA ] = 5000;
|
|
|
|
sf->thresh_mult[THR_COMP_ZEROLG ] = 0;
|
|
sf->thresh_mult[THR_COMP_NEARESTLG] = 0;
|
|
sf->thresh_mult[THR_COMP_NEARLG ] = 0;
|
|
sf->thresh_mult[THR_COMP_ZEROLA ] = 0;
|
|
sf->thresh_mult[THR_COMP_NEARESTLA] = 0;
|
|
sf->thresh_mult[THR_COMP_NEARLA ] = 0;
|
|
sf->thresh_mult[THR_COMP_ZEROGA ] = 0;
|
|
sf->thresh_mult[THR_COMP_NEARESTGA] = 0;
|
|
sf->thresh_mult[THR_COMP_NEARGA ] = 0;
|
|
|
|
sf->thresh_mult[THR_COMP_NEWLG ] = 1000;
|
|
sf->thresh_mult[THR_COMP_NEWLA ] = 1000;
|
|
sf->thresh_mult[THR_COMP_NEWGA ] = 1000;
|
|
|
|
sf->thresh_mult[THR_COMP_SPLITLA ] = 2500;
|
|
sf->thresh_mult[THR_COMP_SPLITGA ] = 5000;
|
|
sf->thresh_mult[THR_COMP_SPLITLG ] = 5000;
|
|
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROL ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTL] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARL ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEWL ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROG ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTG] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARG ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEWG ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROA ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTA] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARA ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEWA ] = 0;
|
|
#endif
|
|
|
|
sf->first_step = 0;
|
|
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
|
|
sf->search_best_filter = SEARCH_BEST_FILTER;
|
|
break;
|
|
case 1:
|
|
#if CONFIG_PRED_FILTER
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_NEARESTMV_FILT] = 0;
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_ZEROMV_FILT ] = 0;
|
|
sf->thresh_mult[THR_DC ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_NEARMV_FILT ] = 0;
|
|
sf->thresh_mult[THR_V_PRED ] = 1000;
|
|
sf->thresh_mult[THR_H_PRED ] = 1000;
|
|
sf->thresh_mult[THR_D45_PRED ] = 1000;
|
|
sf->thresh_mult[THR_D135_PRED] = 1000;
|
|
sf->thresh_mult[THR_D117_PRED] = 1000;
|
|
sf->thresh_mult[THR_D153_PRED] = 1000;
|
|
sf->thresh_mult[THR_D27_PRED ] = 1000;
|
|
sf->thresh_mult[THR_D63_PRED ] = 1000;
|
|
sf->thresh_mult[THR_B_PRED ] = 2500;
|
|
sf->thresh_mult[THR_I8X8_PRED] = 2500;
|
|
sf->thresh_mult[THR_TM ] = 1000;
|
|
|
|
sf->thresh_mult[THR_NEARESTG ] = 1000;
|
|
sf->thresh_mult[THR_NEARESTG_FILT ] = 1000;
|
|
sf->thresh_mult[THR_NEARESTA ] = 1000;
|
|
sf->thresh_mult[THR_NEARESTA_FILT ] = 1000;
|
|
|
|
sf->thresh_mult[THR_ZEROG ] = 1000;
|
|
sf->thresh_mult[THR_ZEROA ] = 1000;
|
|
sf->thresh_mult[THR_NEARG ] = 1000;
|
|
sf->thresh_mult[THR_NEARA ] = 1000;
|
|
sf->thresh_mult[THR_ZEROG_FILT ] = 1000;
|
|
sf->thresh_mult[THR_ZEROA_FILT ] = 1000;
|
|
sf->thresh_mult[THR_NEARG_FILT ] = 1000;
|
|
sf->thresh_mult[THR_NEARA_FILT ] = 1000;
|
|
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_ZEROG ] = 0;
|
|
sf->thresh_mult[THR_ZEROA ] = 0;
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_NEARESTG ] = 0;
|
|
sf->thresh_mult[THR_NEARESTA ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_NEARG ] = 0;
|
|
sf->thresh_mult[THR_NEARA ] = 0;
|
|
sf->thresh_mult[THR_ZEROMV_FILT ] = 0;
|
|
sf->thresh_mult[THR_ZEROG_FILT ] = 0;
|
|
sf->thresh_mult[THR_ZEROA_FILT ] = 0;
|
|
sf->thresh_mult[THR_NEARESTMV_FILT] = 0;
|
|
sf->thresh_mult[THR_NEARESTG_FILT ] = 0;
|
|
sf->thresh_mult[THR_NEARESTA_FILT ] = 0;
|
|
sf->thresh_mult[THR_NEARMV_FILT ] = 0;
|
|
sf->thresh_mult[THR_NEARG_FILT ] = 0;
|
|
sf->thresh_mult[THR_NEARA_FILT ] = 0;
|
|
|
|
sf->thresh_mult[THR_NEWMV ] = 1000;
|
|
sf->thresh_mult[THR_NEWG ] = 1000;
|
|
sf->thresh_mult[THR_NEWA ] = 1000;
|
|
sf->thresh_mult[THR_NEWMV_FILT ] = 1000;
|
|
sf->thresh_mult[THR_NEWG_FILT ] = 1000;
|
|
sf->thresh_mult[THR_NEWA_FILT ] = 1000;
|
|
#else
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_DC ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_V_PRED ] = 1000;
|
|
sf->thresh_mult[THR_H_PRED ] = 1000;
|
|
sf->thresh_mult[THR_D45_PRED ] = 1000;
|
|
sf->thresh_mult[THR_D135_PRED] = 1000;
|
|
sf->thresh_mult[THR_D117_PRED] = 1000;
|
|
sf->thresh_mult[THR_D153_PRED] = 1000;
|
|
sf->thresh_mult[THR_D27_PRED ] = 1000;
|
|
sf->thresh_mult[THR_D63_PRED ] = 1000;
|
|
sf->thresh_mult[THR_B_PRED ] = 2500;
|
|
sf->thresh_mult[THR_I8X8_PRED] = 2500;
|
|
sf->thresh_mult[THR_TM ] = 1000;
|
|
|
|
sf->thresh_mult[THR_NEARESTG ] = 1000;
|
|
sf->thresh_mult[THR_NEARESTA ] = 1000;
|
|
|
|
sf->thresh_mult[THR_ZEROG ] = 1000;
|
|
sf->thresh_mult[THR_ZEROA ] = 1000;
|
|
sf->thresh_mult[THR_NEARG ] = 1000;
|
|
sf->thresh_mult[THR_NEARA ] = 1000;
|
|
|
|
sf->thresh_mult[THR_ZEROMV ] = 0;
|
|
sf->thresh_mult[THR_ZEROG ] = 0;
|
|
sf->thresh_mult[THR_ZEROA ] = 0;
|
|
sf->thresh_mult[THR_NEARESTMV] = 0;
|
|
sf->thresh_mult[THR_NEARESTG ] = 0;
|
|
sf->thresh_mult[THR_NEARESTA ] = 0;
|
|
sf->thresh_mult[THR_NEARMV ] = 0;
|
|
sf->thresh_mult[THR_NEARG ] = 0;
|
|
sf->thresh_mult[THR_NEARA ] = 0;
|
|
|
|
sf->thresh_mult[THR_NEWMV ] = 1000;
|
|
sf->thresh_mult[THR_NEWG ] = 1000;
|
|
sf->thresh_mult[THR_NEWA ] = 1000;
|
|
#endif
|
|
sf->thresh_mult[THR_SPLITMV ] = 1700;
|
|
sf->thresh_mult[THR_SPLITG ] = 4500;
|
|
sf->thresh_mult[THR_SPLITA ] = 4500;
|
|
|
|
sf->thresh_mult[THR_COMP_ZEROLG ] = 0;
|
|
sf->thresh_mult[THR_COMP_NEARESTLG] = 0;
|
|
sf->thresh_mult[THR_COMP_NEARLG ] = 0;
|
|
sf->thresh_mult[THR_COMP_ZEROLA ] = 0;
|
|
sf->thresh_mult[THR_COMP_NEARESTLA] = 0;
|
|
sf->thresh_mult[THR_COMP_NEARLA ] = 0;
|
|
sf->thresh_mult[THR_COMP_ZEROGA ] = 0;
|
|
sf->thresh_mult[THR_COMP_NEARESTGA] = 0;
|
|
sf->thresh_mult[THR_COMP_NEARGA ] = 0;
|
|
|
|
sf->thresh_mult[THR_COMP_NEWLG ] = 1000;
|
|
sf->thresh_mult[THR_COMP_NEWLA ] = 1000;
|
|
sf->thresh_mult[THR_COMP_NEWGA ] = 1000;
|
|
|
|
sf->thresh_mult[THR_COMP_SPLITLA ] = 1700;
|
|
sf->thresh_mult[THR_COMP_SPLITGA ] = 4500;
|
|
sf->thresh_mult[THR_COMP_SPLITLG ] = 4500;
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROL ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTL] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARL ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEWL ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROG ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTG] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARG ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEWG ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROA ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTA] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARA ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEWA ] = 0;
|
|
#endif
|
|
|
|
if (Speed > 0) {
|
|
/* Disable coefficient optimization above speed 0 */
|
|
sf->optimize_coefficients = 0;
|
|
sf->no_skip_block4x4_search = 0;
|
|
|
|
sf->first_step = 1;
|
|
|
|
cpi->mode_check_freq[THR_SPLITG] = 2;
|
|
cpi->mode_check_freq[THR_SPLITA] = 2;
|
|
cpi->mode_check_freq[THR_SPLITMV] = 0;
|
|
|
|
cpi->mode_check_freq[THR_COMP_SPLITGA] = 2;
|
|
cpi->mode_check_freq[THR_COMP_SPLITLG] = 2;
|
|
cpi->mode_check_freq[THR_COMP_SPLITLA] = 0;
|
|
}
|
|
|
|
if (Speed > 1) {
|
|
cpi->mode_check_freq[THR_SPLITG] = 4;
|
|
cpi->mode_check_freq[THR_SPLITA] = 4;
|
|
cpi->mode_check_freq[THR_SPLITMV] = 2;
|
|
|
|
cpi->mode_check_freq[THR_COMP_SPLITGA] = 4;
|
|
cpi->mode_check_freq[THR_COMP_SPLITLG] = 4;
|
|
cpi->mode_check_freq[THR_COMP_SPLITLA] = 2;
|
|
|
|
sf->thresh_mult[THR_TM ] = 1500;
|
|
sf->thresh_mult[THR_V_PRED ] = 1500;
|
|
sf->thresh_mult[THR_H_PRED ] = 1500;
|
|
sf->thresh_mult[THR_D45_PRED ] = 1500;
|
|
sf->thresh_mult[THR_D135_PRED] = 1500;
|
|
sf->thresh_mult[THR_D117_PRED] = 1500;
|
|
sf->thresh_mult[THR_D153_PRED] = 1500;
|
|
sf->thresh_mult[THR_D27_PRED ] = 1500;
|
|
sf->thresh_mult[THR_D63_PRED ] = 1500;
|
|
sf->thresh_mult[THR_B_PRED ] = 5000;
|
|
sf->thresh_mult[THR_I8X8_PRED] = 5000;
|
|
|
|
if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
|
|
sf->thresh_mult[THR_NEWMV ] = 2000;
|
|
#if CONFIG_PRED_FILTER
|
|
sf->thresh_mult[THR_NEWMV_FILT ] = 2000;
|
|
#endif
|
|
sf->thresh_mult[THR_SPLITMV ] = 10000;
|
|
sf->thresh_mult[THR_COMP_SPLITLG ] = 20000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP9_GOLD_FLAG) {
|
|
sf->thresh_mult[THR_NEARESTG ] = 1500;
|
|
sf->thresh_mult[THR_ZEROG ] = 1500;
|
|
sf->thresh_mult[THR_NEARG ] = 1500;
|
|
sf->thresh_mult[THR_NEWG ] = 2000;
|
|
#if CONFIG_PRED_FILTER
|
|
sf->thresh_mult[THR_NEARESTG_FILT ] = 1500;
|
|
sf->thresh_mult[THR_ZEROG_FILT ] = 1500;
|
|
sf->thresh_mult[THR_NEARG_FILT ] = 1500;
|
|
sf->thresh_mult[THR_NEWG_FILT ] = 2000;
|
|
#endif
|
|
sf->thresh_mult[THR_SPLITG ] = 20000;
|
|
sf->thresh_mult[THR_COMP_SPLITGA ] = 20000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP9_ALT_FLAG) {
|
|
sf->thresh_mult[THR_NEARESTA ] = 1500;
|
|
sf->thresh_mult[THR_ZEROA ] = 1500;
|
|
sf->thresh_mult[THR_NEARA ] = 1500;
|
|
sf->thresh_mult[THR_NEWA ] = 2000;
|
|
#if CONFIG_PRED_FILTER
|
|
sf->thresh_mult[THR_NEARESTA_FILT ] = 1500;
|
|
sf->thresh_mult[THR_ZEROA_FILT ] = 1500;
|
|
sf->thresh_mult[THR_NEARA_FILT ] = 1500;
|
|
sf->thresh_mult[THR_NEWA_FILT ] = 2000;
|
|
#endif
|
|
sf->thresh_mult[THR_SPLITA ] = 20000;
|
|
sf->thresh_mult[THR_COMP_SPLITLA ] = 10000;
|
|
}
|
|
|
|
sf->thresh_mult[THR_COMP_ZEROLG ] = 1500;
|
|
sf->thresh_mult[THR_COMP_NEARESTLG] = 1500;
|
|
sf->thresh_mult[THR_COMP_NEARLG ] = 1500;
|
|
sf->thresh_mult[THR_COMP_ZEROLA ] = 1500;
|
|
sf->thresh_mult[THR_COMP_NEARESTLA] = 1500;
|
|
sf->thresh_mult[THR_COMP_NEARLA ] = 1500;
|
|
sf->thresh_mult[THR_COMP_ZEROGA ] = 1500;
|
|
sf->thresh_mult[THR_COMP_NEARESTGA] = 1500;
|
|
sf->thresh_mult[THR_COMP_NEARGA ] = 1500;
|
|
|
|
sf->thresh_mult[THR_COMP_NEWLG ] = 2000;
|
|
sf->thresh_mult[THR_COMP_NEWLA ] = 2000;
|
|
sf->thresh_mult[THR_COMP_NEWGA ] = 2000;
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROL ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTL] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARL ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEWL ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROG ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTG] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARG ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEWG ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROA ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTA] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARA ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEWA ] = 0;
|
|
#endif
|
|
}
|
|
|
|
if (Speed > 2) {
|
|
cpi->mode_check_freq[THR_SPLITG] = 15;
|
|
cpi->mode_check_freq[THR_SPLITA] = 15;
|
|
cpi->mode_check_freq[THR_SPLITMV] = 7;
|
|
|
|
cpi->mode_check_freq[THR_COMP_SPLITGA] = 15;
|
|
cpi->mode_check_freq[THR_COMP_SPLITLG] = 15;
|
|
cpi->mode_check_freq[THR_COMP_SPLITLA] = 7;
|
|
|
|
sf->thresh_mult[THR_TM ] = 2000;
|
|
sf->thresh_mult[THR_V_PRED ] = 2000;
|
|
sf->thresh_mult[THR_H_PRED ] = 2000;
|
|
sf->thresh_mult[THR_D45_PRED ] = 2000;
|
|
sf->thresh_mult[THR_D135_PRED] = 2000;
|
|
sf->thresh_mult[THR_D117_PRED] = 2000;
|
|
sf->thresh_mult[THR_D153_PRED] = 2000;
|
|
sf->thresh_mult[THR_D27_PRED ] = 2000;
|
|
sf->thresh_mult[THR_D63_PRED ] = 2000;
|
|
sf->thresh_mult[THR_B_PRED ] = 7500;
|
|
sf->thresh_mult[THR_I8X8_PRED] = 7500;
|
|
|
|
if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
|
|
sf->thresh_mult[THR_NEWMV ] = 2000;
|
|
#if CONFIG_PRED_FILTER
|
|
sf->thresh_mult[THR_NEWMV_FILT ] = 2000;
|
|
#endif
|
|
sf->thresh_mult[THR_SPLITMV ] = 25000;
|
|
sf->thresh_mult[THR_COMP_SPLITLG ] = 50000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP9_GOLD_FLAG) {
|
|
sf->thresh_mult[THR_NEARESTG ] = 2000;
|
|
sf->thresh_mult[THR_ZEROG ] = 2000;
|
|
sf->thresh_mult[THR_NEARG ] = 2000;
|
|
sf->thresh_mult[THR_NEWG ] = 2500;
|
|
#if CONFIG_PRED_FILTER
|
|
sf->thresh_mult[THR_NEARESTG_FILT ] = 2000;
|
|
sf->thresh_mult[THR_ZEROG_FILT ] = 2000;
|
|
sf->thresh_mult[THR_NEARG_FILT ] = 2000;
|
|
sf->thresh_mult[THR_NEWG_FILT ] = 2500;
|
|
#endif
|
|
sf->thresh_mult[THR_SPLITG ] = 50000;
|
|
sf->thresh_mult[THR_COMP_SPLITGA ] = 50000;
|
|
}
|
|
|
|
if (cpi->ref_frame_flags & VP9_ALT_FLAG) {
|
|
sf->thresh_mult[THR_NEARESTA ] = 2000;
|
|
sf->thresh_mult[THR_ZEROA ] = 2000;
|
|
sf->thresh_mult[THR_NEARA ] = 2000;
|
|
sf->thresh_mult[THR_NEWA ] = 2500;
|
|
#if CONFIG_PRED_FILTER
|
|
sf->thresh_mult[THR_NEARESTA_FILT ] = 2000;
|
|
sf->thresh_mult[THR_ZEROA_FILT ] = 2000;
|
|
sf->thresh_mult[THR_NEARA_FILT ] = 2000;
|
|
sf->thresh_mult[THR_NEWA_FILT ] = 2500;
|
|
#endif
|
|
sf->thresh_mult[THR_SPLITA ] = 50000;
|
|
sf->thresh_mult[THR_COMP_SPLITLA ] = 25000;
|
|
}
|
|
|
|
sf->thresh_mult[THR_COMP_ZEROLG ] = 2000;
|
|
sf->thresh_mult[THR_COMP_NEARESTLG] = 2000;
|
|
sf->thresh_mult[THR_COMP_NEARLG ] = 2000;
|
|
sf->thresh_mult[THR_COMP_ZEROLA ] = 2000;
|
|
sf->thresh_mult[THR_COMP_NEARESTLA] = 2000;
|
|
sf->thresh_mult[THR_COMP_NEARLA ] = 2000;
|
|
sf->thresh_mult[THR_COMP_ZEROGA ] = 2000;
|
|
sf->thresh_mult[THR_COMP_NEARESTGA] = 2000;
|
|
sf->thresh_mult[THR_COMP_NEARGA ] = 2000;
|
|
|
|
sf->thresh_mult[THR_COMP_NEWLG ] = 2500;
|
|
sf->thresh_mult[THR_COMP_NEWLA ] = 2500;
|
|
sf->thresh_mult[THR_COMP_NEWGA ] = 2500;
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROL ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTL] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARL ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEWL ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROG ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTG] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARG ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEWG ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROA ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTA] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARA ] = 0;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEWA ] = 0;
|
|
#endif
|
|
|
|
sf->improved_dct = 0;
|
|
|
|
// Only do recode loop on key frames, golden frames and
|
|
// alt ref frames
|
|
sf->recode_loop = 2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}; /* switch */
|
|
|
|
/* disable frame modes if flags not set */
|
|
if (!(cpi->ref_frame_flags & VP9_LAST_FLAG)) {
|
|
sf->thresh_mult[THR_NEWMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARMV ] = INT_MAX;
|
|
#if CONFIG_PRED_FILTER
|
|
sf->thresh_mult[THR_NEWMV_FILT ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARESTMV_FILT] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROMV_FILT ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARMV_FILT ] = INT_MAX;
|
|
#endif
|
|
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
|
|
}
|
|
|
|
if (!(cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
|
|
sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROG ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARG ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEWG ] = INT_MAX;
|
|
#if CONFIG_PRED_FILTER
|
|
sf->thresh_mult[THR_NEARESTG_FILT ] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROG_FILT ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARG_FILT ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEWG_FILT ] = INT_MAX;
|
|
#endif
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROG ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTG] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARG ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEWG ] = INT_MAX;
|
|
#endif
|
|
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
|
|
}
|
|
|
|
if (!(cpi->ref_frame_flags & VP9_ALT_FLAG)) {
|
|
sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROA ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARA ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEWA ] = INT_MAX;
|
|
#if CONFIG_PRED_FILTER
|
|
sf->thresh_mult[THR_NEARESTA_FILT ] = INT_MAX;
|
|
sf->thresh_mult[THR_ZEROA_FILT ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEARA_FILT ] = INT_MAX;
|
|
sf->thresh_mult[THR_NEWA_FILT ] = INT_MAX;
|
|
#endif
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROA ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTA] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARA ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEWA ] = INT_MAX;
|
|
#endif
|
|
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
|
|
}
|
|
|
|
if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_GOLD_FLAG)) != (VP9_LAST_FLAG | VP9_GOLD_FLAG)) {
|
|
sf->thresh_mult[THR_COMP_ZEROLG ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_NEARESTLG] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_NEARLG ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_NEWLG ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_SPLITLG ] = INT_MAX;
|
|
}
|
|
|
|
if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_ALT_FLAG)) != (VP9_LAST_FLAG | VP9_ALT_FLAG)) {
|
|
sf->thresh_mult[THR_COMP_ZEROLA ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_NEARESTLA] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_NEARLA ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_NEWLA ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_SPLITLA ] = INT_MAX;
|
|
}
|
|
|
|
if ((cpi->ref_frame_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) != (VP9_GOLD_FLAG | VP9_ALT_FLAG)) {
|
|
sf->thresh_mult[THR_COMP_ZEROGA ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_NEARESTGA] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_NEARGA ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_NEWGA ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_SPLITGA ] = INT_MAX;
|
|
}
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
if ((cpi->ref_frame_flags & VP9_LAST_FLAG) != VP9_LAST_FLAG) {
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROL ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTL] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEARL ] = INT_MAX;
|
|
sf->thresh_mult[THR_COMP_INTERINTRA_NEWL ] = INT_MAX;
|
|
}
|
|
#endif
|
|
|
|
// Slow quant, dct and trellis not worthwhile for first pass
|
|
// so make sure they are always turned off.
|
|
if (cpi->pass == 1) {
|
|
sf->optimize_coefficients = 0;
|
|
sf->improved_dct = 0;
|
|
}
|
|
|
|
if (cpi->sf.search_method == NSTEP) {
|
|
vp9_init3smotion_compensation(&cpi->mb,
|
|
cm->yv12_fb[cm->lst_fb_idx].y_stride);
|
|
} else if (cpi->sf.search_method == DIAMOND) {
|
|
vp9_init_dsmotion_compensation(&cpi->mb,
|
|
cm->yv12_fb[cm->lst_fb_idx].y_stride);
|
|
}
|
|
|
|
cpi->mb.vp9_short_fdct16x16 = vp9_short_fdct16x16;
|
|
cpi->mb.vp9_short_fdct8x8 = vp9_short_fdct8x8;
|
|
cpi->mb.vp9_short_fdct8x4 = vp9_short_fdct8x4;
|
|
cpi->mb.vp9_short_fdct4x4 = vp9_short_fdct4x4;
|
|
cpi->mb.short_walsh4x4 = vp9_short_walsh4x4;
|
|
cpi->mb.short_fhaar2x2 = vp9_short_fhaar2x2;
|
|
|
|
#if CONFIG_LOSSLESS
|
|
if (cpi->oxcf.lossless) {
|
|
cpi->mb.vp9_short_fdct8x4 = vp9_short_walsh8x4_x8;
|
|
cpi->mb.vp9_short_fdct4x4 = vp9_short_walsh4x4_x8;
|
|
cpi->mb.short_walsh4x4 = vp9_short_walsh4x4;
|
|
cpi->mb.short_fhaar2x2 = vp9_short_fhaar2x2;
|
|
cpi->mb.short_walsh4x4 = vp9_short_walsh4x4_lossless;
|
|
}
|
|
#endif
|
|
|
|
cpi->mb.quantize_b_4x4 = vp9_regular_quantize_b_4x4;
|
|
cpi->mb.quantize_b_4x4_pair = vp9_regular_quantize_b_4x4_pair;
|
|
cpi->mb.quantize_b_8x8 = vp9_regular_quantize_b_8x8;
|
|
cpi->mb.quantize_b_16x16 = vp9_regular_quantize_b_16x16;
|
|
cpi->mb.quantize_b_2x2 = vp9_regular_quantize_b_2x2;
|
|
|
|
vp9_init_quantizer(cpi);
|
|
|
|
if (cpi->sf.iterative_sub_pixel == 1) {
|
|
cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_step_iteratively;
|
|
} else if (cpi->sf.quarter_pixel_search) {
|
|
cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_step;
|
|
} else if (cpi->sf.half_pixel_search) {
|
|
cpi->find_fractional_mv_step = vp9_find_best_half_pixel_step;
|
|
}
|
|
|
|
if (cpi->sf.optimize_coefficients == 1 && cpi->pass != 1)
|
|
cpi->mb.optimize = 1;
|
|
else
|
|
cpi->mb.optimize = 0;
|
|
|
|
#ifdef SPEEDSTATS
|
|
frames_at_speed[cpi->Speed]++;
|
|
#endif
|
|
}
|
|
static void alloc_raw_frame_buffers(VP9_COMP *cpi) {
|
|
int width = (cpi->oxcf.Width + 15) & ~15;
|
|
int height = (cpi->oxcf.Height + 15) & ~15;
|
|
|
|
cpi->lookahead = vp9_lookahead_init(cpi->oxcf.Width, cpi->oxcf.Height,
|
|
cpi->oxcf.lag_in_frames);
|
|
if (!cpi->lookahead)
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate lag buffers");
|
|
|
|
#if VP9_TEMPORAL_ALT_REF
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer,
|
|
width, height, VP9BORDERINPIXELS))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate altref buffer");
|
|
|
|
#endif
|
|
}
|
|
|
|
static int alloc_partition_data(VP9_COMP *cpi) {
|
|
vpx_free(cpi->mb.pip);
|
|
|
|
cpi->mb.pip = vpx_calloc((cpi->common.mb_cols + 1) *
|
|
(cpi->common.mb_rows + 1),
|
|
sizeof(PARTITION_INFO));
|
|
if (!cpi->mb.pip)
|
|
return 1;
|
|
|
|
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void vp9_alloc_compressor_data(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
int width = cm->Width;
|
|
int height = cm->Height;
|
|
|
|
if (vp9_alloc_frame_buffers(cm, width, height))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate frame buffers");
|
|
|
|
if (alloc_partition_data(cpi))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate partition data");
|
|
|
|
|
|
if ((width & 0xf) != 0)
|
|
width += 16 - (width & 0xf);
|
|
|
|
if ((height & 0xf) != 0)
|
|
height += 16 - (height & 0xf);
|
|
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->last_frame_uf,
|
|
width, height, VP9BORDERINPIXELS))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate last frame buffer");
|
|
|
|
if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source,
|
|
width, height, VP9BORDERINPIXELS))
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate scaled source buffer");
|
|
|
|
|
|
vpx_free(cpi->tok);
|
|
|
|
{
|
|
unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16;
|
|
|
|
CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
|
|
}
|
|
|
|
// Data used for real time vc mode to see if gf needs refreshing
|
|
cpi->inter_zz_count = 0;
|
|
cpi->gf_bad_count = 0;
|
|
cpi->gf_update_recommended = 0;
|
|
|
|
|
|
// Structures used to minitor GF usage
|
|
vpx_free(cpi->gf_active_flags);
|
|
CHECK_MEM_ERROR(cpi->gf_active_flags,
|
|
vpx_calloc(1, cm->mb_rows * cm->mb_cols));
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
|
|
vpx_free(cpi->mb_activity_map);
|
|
CHECK_MEM_ERROR(cpi->mb_activity_map,
|
|
vpx_calloc(sizeof(unsigned int),
|
|
cm->mb_rows * cm->mb_cols));
|
|
|
|
vpx_free(cpi->mb_norm_activity_map);
|
|
CHECK_MEM_ERROR(cpi->mb_norm_activity_map,
|
|
vpx_calloc(sizeof(unsigned int),
|
|
cm->mb_rows * cm->mb_cols));
|
|
|
|
vpx_free(cpi->twopass.total_stats);
|
|
|
|
cpi->twopass.total_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS));
|
|
|
|
vpx_free(cpi->twopass.total_left_stats);
|
|
cpi->twopass.total_left_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS));
|
|
|
|
vpx_free(cpi->twopass.this_frame_stats);
|
|
|
|
cpi->twopass.this_frame_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS));
|
|
|
|
if (!cpi->twopass.total_stats ||
|
|
!cpi->twopass.total_left_stats ||
|
|
!cpi->twopass.this_frame_stats)
|
|
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
|
|
"Failed to allocate firstpass stats");
|
|
|
|
vpx_free(cpi->tplist);
|
|
|
|
CHECK_MEM_ERROR(cpi->tplist,
|
|
vpx_malloc(sizeof(TOKENLIST) * (cpi->common.mb_rows)));
|
|
}
|
|
|
|
|
|
// TODO perhaps change number of steps expose to outside world when setting
|
|
// max and min limits. Also this will likely want refining for the extended Q
|
|
// range.
|
|
//
|
|
// Table that converts 0-63 Q range values passed in outside to the Qindex
|
|
// range used internally.
|
|
static const int q_trans[] = {
|
|
0, 4, 8, 12, 16, 20, 24, 28,
|
|
32, 36, 40, 44, 48, 52, 56, 60,
|
|
64, 68, 72, 76, 80, 84, 88, 92,
|
|
96, 100, 104, 108, 112, 116, 120, 124,
|
|
128, 132, 136, 140, 144, 148, 152, 156,
|
|
160, 164, 168, 172, 176, 180, 184, 188,
|
|
192, 196, 200, 204, 208, 212, 216, 220,
|
|
224, 228, 232, 236, 240, 244, 249, 255,
|
|
};
|
|
|
|
int vp9_reverse_trans(int x) {
|
|
int i;
|
|
|
|
for (i = 0; i < 64; i++)
|
|
if (q_trans[i] >= x)
|
|
return i;
|
|
|
|
return 63;
|
|
};
|
|
void vp9_new_frame_rate(VP9_COMP *cpi, double framerate) {
|
|
if (framerate < .1)
|
|
framerate = 30;
|
|
|
|
cpi->oxcf.frame_rate = framerate;
|
|
cpi->output_frame_rate = cpi->oxcf.frame_rate;
|
|
cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate);
|
|
cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate);
|
|
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
|
|
if (cpi->min_frame_bandwidth < FRAME_OVERHEAD_BITS)
|
|
cpi->min_frame_bandwidth = FRAME_OVERHEAD_BITS;
|
|
|
|
// Set Maximum gf/arf interval
|
|
cpi->max_gf_interval = ((int)(cpi->output_frame_rate / 2.0) + 2);
|
|
|
|
if (cpi->max_gf_interval < 12)
|
|
cpi->max_gf_interval = 12;
|
|
|
|
// Extended interval for genuinely static scenes
|
|
cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
|
|
|
|
// Special conditions when altr ref frame enabled in lagged compress mode
|
|
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) {
|
|
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1)
|
|
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
|
|
|
|
if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1)
|
|
cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
|
|
}
|
|
|
|
if (cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval)
|
|
cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
|
|
}
|
|
|
|
|
|
static int
|
|
rescale(int val, int num, int denom) {
|
|
int64_t llnum = num;
|
|
int64_t llden = denom;
|
|
int64_t llval = val;
|
|
|
|
return (int)(llval * llnum / llden);
|
|
}
|
|
|
|
|
|
static void init_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
cpi->oxcf = *oxcf;
|
|
|
|
cpi->goldfreq = 7;
|
|
|
|
cm->version = oxcf->Version;
|
|
vp9_setup_version(cm);
|
|
|
|
// change includes all joint functionality
|
|
vp9_change_config(ptr, oxcf);
|
|
|
|
// Initialize active best and worst q and average q values.
|
|
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
|
|
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
|
|
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
|
|
|
|
// Initialise the starting buffer levels
|
|
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
|
|
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
|
|
|
|
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
|
|
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
|
|
|
|
cpi->total_actual_bits = 0;
|
|
cpi->total_target_vs_actual = 0;
|
|
|
|
cpi->static_mb_pct = 0;
|
|
|
|
#if VP9_TEMPORAL_ALT_REF
|
|
{
|
|
int i;
|
|
|
|
cpi->fixed_divide[0] = 0;
|
|
|
|
for (i = 1; i < 512; i++)
|
|
cpi->fixed_divide[i] = 0x80000 / i;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void vp9_change_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
if (!cpi)
|
|
return;
|
|
|
|
if (!oxcf)
|
|
return;
|
|
|
|
if (cm->version != oxcf->Version) {
|
|
cm->version = oxcf->Version;
|
|
vp9_setup_version(cm);
|
|
}
|
|
|
|
cpi->oxcf = *oxcf;
|
|
|
|
switch (cpi->oxcf.Mode) {
|
|
// Real time and one pass deprecated in test code base
|
|
case MODE_FIRSTPASS:
|
|
cpi->pass = 1;
|
|
cpi->compressor_speed = 1;
|
|
break;
|
|
|
|
case MODE_SECONDPASS:
|
|
cpi->pass = 2;
|
|
cpi->compressor_speed = 1;
|
|
|
|
if (cpi->oxcf.cpu_used < -5) {
|
|
cpi->oxcf.cpu_used = -5;
|
|
}
|
|
|
|
if (cpi->oxcf.cpu_used > 5)
|
|
cpi->oxcf.cpu_used = 5;
|
|
|
|
break;
|
|
|
|
case MODE_SECONDPASS_BEST:
|
|
cpi->pass = 2;
|
|
cpi->compressor_speed = 0;
|
|
break;
|
|
}
|
|
|
|
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
|
|
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
|
|
cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
|
|
|
|
cpi->mb.e_mbd.inv_xform4x4_1_x8 = vp9_short_idct4x4llm_1;
|
|
cpi->mb.e_mbd.inv_xform4x4_x8 = vp9_short_idct4x4llm;
|
|
cpi->mb.e_mbd.inv_walsh4x4_1 = vp9_short_inv_walsh4x4_1;
|
|
cpi->mb.e_mbd.inv_walsh4x4_lossless = vp9_short_inv_walsh4x4;
|
|
|
|
#if CONFIG_LOSSLESS
|
|
cpi->oxcf.lossless = oxcf->lossless;
|
|
if (cpi->oxcf.lossless) {
|
|
cpi->mb.e_mbd.inv_xform4x4_1_x8 = vp9_short_inv_walsh4x4_1_x8;
|
|
cpi->mb.e_mbd.inv_xform4x4_x8 = vp9_short_inv_walsh4x4_x8;
|
|
cpi->mb.e_mbd.inv_walsh4x4_1 = vp9_short_inv_walsh4x4_1_lossless;
|
|
cpi->mb.e_mbd.inv_walsh4x4_lossless = vp9_short_inv_walsh4x4_lossless;
|
|
}
|
|
#endif
|
|
|
|
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
|
|
|
|
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
|
|
|
|
// cpi->use_golden_frame_only = 0;
|
|
// cpi->use_last_frame_only = 0;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
cm->refresh_entropy_probs = 1;
|
|
|
|
setup_features(cpi);
|
|
cpi->mb.e_mbd.allow_high_precision_mv = 0; // Default mv precision adaptation
|
|
set_mvcost(&cpi->mb);
|
|
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_MB_SEGMENTS; i++)
|
|
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
|
|
}
|
|
|
|
// At the moment the first order values may not be > MAXQ
|
|
if (cpi->oxcf.fixed_q > MAXQ)
|
|
cpi->oxcf.fixed_q = MAXQ;
|
|
|
|
// local file playback mode == really big buffer
|
|
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) {
|
|
cpi->oxcf.starting_buffer_level = 60000;
|
|
cpi->oxcf.optimal_buffer_level = 60000;
|
|
cpi->oxcf.maximum_buffer_size = 240000;
|
|
}
|
|
|
|
// Convert target bandwidth from Kbit/s to Bit/s
|
|
cpi->oxcf.target_bandwidth *= 1000;
|
|
|
|
cpi->oxcf.starting_buffer_level =
|
|
rescale(cpi->oxcf.starting_buffer_level,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
// Set or reset optimal and maximum buffer levels.
|
|
if (cpi->oxcf.optimal_buffer_level == 0)
|
|
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
|
|
else
|
|
cpi->oxcf.optimal_buffer_level =
|
|
rescale(cpi->oxcf.optimal_buffer_level,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
if (cpi->oxcf.maximum_buffer_size == 0)
|
|
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
|
|
else
|
|
cpi->oxcf.maximum_buffer_size =
|
|
rescale(cpi->oxcf.maximum_buffer_size,
|
|
cpi->oxcf.target_bandwidth, 1000);
|
|
|
|
// Set up frame rate and related parameters rate control values.
|
|
vp9_new_frame_rate(cpi, cpi->oxcf.frame_rate);
|
|
|
|
// Set absolute upper and lower quality limits
|
|
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
|
|
cpi->best_quality = cpi->oxcf.best_allowed_q;
|
|
|
|
// active values should only be modified if out of new range
|
|
if (cpi->active_worst_quality > cpi->oxcf.worst_allowed_q) {
|
|
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
|
|
}
|
|
// less likely
|
|
else if (cpi->active_worst_quality < cpi->oxcf.best_allowed_q) {
|
|
cpi->active_worst_quality = cpi->oxcf.best_allowed_q;
|
|
}
|
|
if (cpi->active_best_quality < cpi->oxcf.best_allowed_q) {
|
|
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
|
|
}
|
|
// less likely
|
|
else if (cpi->active_best_quality > cpi->oxcf.worst_allowed_q) {
|
|
cpi->active_best_quality = cpi->oxcf.worst_allowed_q;
|
|
}
|
|
|
|
cpi->buffered_mode = (cpi->oxcf.optimal_buffer_level > 0) ? TRUE : FALSE;
|
|
|
|
cpi->cq_target_quality = cpi->oxcf.cq_level;
|
|
|
|
if (!cm->use_bilinear_mc_filter)
|
|
cm->mcomp_filter_type = DEFAULT_INTERP_FILTER;
|
|
else
|
|
cm->mcomp_filter_type = BILINEAR;
|
|
|
|
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
|
|
|
|
cm->Width = cpi->oxcf.Width;
|
|
cm->Height = cpi->oxcf.Height;
|
|
|
|
cm->horiz_scale = cpi->horiz_scale;
|
|
cm->vert_scale = cpi->vert_scale;
|
|
|
|
// VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs)
|
|
if (cpi->oxcf.Sharpness > 7)
|
|
cpi->oxcf.Sharpness = 7;
|
|
|
|
cm->sharpness_level = cpi->oxcf.Sharpness;
|
|
|
|
if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL) {
|
|
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
|
|
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
|
|
|
|
Scale2Ratio(cm->horiz_scale, &hr, &hs);
|
|
Scale2Ratio(cm->vert_scale, &vr, &vs);
|
|
|
|
// always go to the next whole number
|
|
cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs;
|
|
cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs;
|
|
}
|
|
|
|
if (((cm->Width + 15) & 0xfffffff0) !=
|
|
cm->yv12_fb[cm->lst_fb_idx].y_width ||
|
|
((cm->Height + 15) & 0xfffffff0) !=
|
|
cm->yv12_fb[cm->lst_fb_idx].y_height ||
|
|
cm->yv12_fb[cm->lst_fb_idx].y_width == 0) {
|
|
alloc_raw_frame_buffers(cpi);
|
|
vp9_alloc_compressor_data(cpi);
|
|
}
|
|
|
|
if (cpi->oxcf.fixed_q >= 0) {
|
|
cpi->last_q[0] = cpi->oxcf.fixed_q;
|
|
cpi->last_q[1] = cpi->oxcf.fixed_q;
|
|
cpi->last_boosted_qindex = cpi->oxcf.fixed_q;
|
|
}
|
|
|
|
cpi->Speed = cpi->oxcf.cpu_used;
|
|
|
|
// force to allowlag to 0 if lag_in_frames is 0;
|
|
if (cpi->oxcf.lag_in_frames == 0) {
|
|
cpi->oxcf.allow_lag = 0;
|
|
}
|
|
// Limit on lag buffers as these are not currently dynamically allocated
|
|
else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS)
|
|
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
|
|
|
|
// YX Temp
|
|
cpi->alt_ref_source = NULL;
|
|
cpi->is_src_frame_alt_ref = 0;
|
|
|
|
#if 0
|
|
// Experimental RD Code
|
|
cpi->frame_distortion = 0;
|
|
cpi->last_frame_distortion = 0;
|
|
#endif
|
|
|
|
}
|
|
|
|
#define M_LOG2_E 0.693147180559945309417
|
|
#define log2f(x) (log (x) / (float) M_LOG2_E)
|
|
|
|
static void cal_nmvjointsadcost(int *mvjointsadcost) {
|
|
mvjointsadcost[0] = 600;
|
|
mvjointsadcost[1] = 300;
|
|
mvjointsadcost[2] = 300;
|
|
mvjointsadcost[0] = 300;
|
|
}
|
|
|
|
static void cal_nmvsadcosts(int *mvsadcost[2]) {
|
|
int i = 1;
|
|
|
|
mvsadcost [0] [0] = 0;
|
|
mvsadcost [1] [0] = 0;
|
|
|
|
do {
|
|
double z = 256 * (2 * (log2f(8 * i) + .6));
|
|
mvsadcost [0][i] = (int) z;
|
|
mvsadcost [1][i] = (int) z;
|
|
mvsadcost [0][-i] = (int) z;
|
|
mvsadcost [1][-i] = (int) z;
|
|
} while (++i <= MV_MAX);
|
|
}
|
|
|
|
static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
|
|
int i = 1;
|
|
|
|
mvsadcost [0] [0] = 0;
|
|
mvsadcost [1] [0] = 0;
|
|
|
|
do {
|
|
double z = 256 * (2 * (log2f(8 * i) + .6));
|
|
mvsadcost [0][i] = (int) z;
|
|
mvsadcost [1][i] = (int) z;
|
|
mvsadcost [0][-i] = (int) z;
|
|
mvsadcost [1][-i] = (int) z;
|
|
} while (++i <= MV_MAX);
|
|
}
|
|
|
|
VP9_PTR vp9_create_compressor(VP9_CONFIG *oxcf) {
|
|
int i;
|
|
volatile union {
|
|
VP9_COMP *cpi;
|
|
VP9_PTR ptr;
|
|
} ctx;
|
|
|
|
VP9_COMP *cpi;
|
|
VP9_COMMON *cm;
|
|
|
|
cpi = ctx.cpi = vpx_memalign(32, sizeof(VP9_COMP));
|
|
// Check that the CPI instance is valid
|
|
if (!cpi)
|
|
return 0;
|
|
|
|
cm = &cpi->common;
|
|
|
|
vpx_memset(cpi, 0, sizeof(VP9_COMP));
|
|
|
|
if (setjmp(cm->error.jmp)) {
|
|
VP9_PTR ptr = ctx.ptr;
|
|
|
|
ctx.cpi->common.error.setjmp = 0;
|
|
vp9_remove_compressor(&ptr);
|
|
return 0;
|
|
}
|
|
|
|
cpi->common.error.setjmp = 1;
|
|
|
|
CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1));
|
|
|
|
vp9_create_common(&cpi->common);
|
|
|
|
init_config((VP9_PTR)cpi, oxcf);
|
|
|
|
memcpy(cpi->base_skip_false_prob, base_skip_false_prob, sizeof(base_skip_false_prob));
|
|
cpi->common.current_video_frame = 0;
|
|
cpi->kf_overspend_bits = 0;
|
|
cpi->kf_bitrate_adjustment = 0;
|
|
cpi->frames_till_gf_update_due = 0;
|
|
cpi->gf_overspend_bits = 0;
|
|
cpi->non_gf_bitrate_adjustment = 0;
|
|
cm->prob_last_coded = 128;
|
|
cm->prob_gf_coded = 128;
|
|
cm->prob_intra_coded = 63;
|
|
#if CONFIG_SUPERBLOCKS
|
|
cm->sb_coded = 200;
|
|
#endif
|
|
for (i = 0; i < COMP_PRED_CONTEXTS; i++)
|
|
cm->prob_comppred[i] = 128;
|
|
for (i = 0; i < TX_SIZE_MAX_SB - 1; i++)
|
|
cm->prob_tx[i] = 128;
|
|
|
|
// Prime the recent reference frame useage counters.
|
|
// Hereafter they will be maintained as a sort of moving average
|
|
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
|
|
|
|
// Set reference frame sign bias for ALTREF frame to 1 (for now)
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
|
|
|
|
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
|
|
|
|
cpi->gold_is_last = 0;
|
|
cpi->alt_is_last = 0;
|
|
cpi->gold_is_alt = 0;
|
|
|
|
// allocate memory for storing last frame's MVs for MV prediction.
|
|
CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cpi->common.mb_rows + 2) * (cpi->common.mb_cols + 2), sizeof(int_mv)));
|
|
CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias, vpx_calloc((cpi->common.mb_rows + 2) * (cpi->common.mb_cols + 2), sizeof(int)));
|
|
CHECK_MEM_ERROR(cpi->lf_ref_frame, vpx_calloc((cpi->common.mb_rows + 2) * (cpi->common.mb_cols + 2), sizeof(int)));
|
|
|
|
// Create the encoder segmentation map and set all entries to 0
|
|
CHECK_MEM_ERROR(cpi->segmentation_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
|
|
|
|
// And a copy in common for temporal coding
|
|
CHECK_MEM_ERROR(cm->last_frame_seg_map,
|
|
vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
|
|
|
|
// And a place holder structure is the coding context
|
|
// for use if we want to save and restore it
|
|
CHECK_MEM_ERROR(cpi->coding_context.last_frame_seg_map_copy,
|
|
vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
|
|
|
|
CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
|
|
vpx_memset(cpi->active_map, 1, (cpi->common.mb_rows * cpi->common.mb_cols));
|
|
cpi->active_map_enabled = 0;
|
|
|
|
for (i = 0; i < (sizeof(cpi->mbgraph_stats) /
|
|
sizeof(cpi->mbgraph_stats[0])); i++) {
|
|
CHECK_MEM_ERROR(cpi->mbgraph_stats[i].mb_stats,
|
|
vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols *
|
|
sizeof(*cpi->mbgraph_stats[i].mb_stats),
|
|
1));
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
if (cpi->pass != 1)
|
|
init_context_counters();
|
|
#endif
|
|
#ifdef MODE_STATS
|
|
vp9_zero(y_modes);
|
|
vp9_zero(i8x8_modes);
|
|
vp9_zero(uv_modes);
|
|
vp9_zero(uv_modes_y);
|
|
vp9_zero(b_modes);
|
|
vp9_zero(inter_y_modes);
|
|
vp9_zero(inter_uv_modes);
|
|
vp9_zero(inter_b_modes);
|
|
#endif
|
|
#ifdef NMV_STATS
|
|
init_nmvstats();
|
|
#endif
|
|
|
|
/*Initialize the feed-forward activity masking.*/
|
|
cpi->activity_avg = 90 << 12;
|
|
|
|
cpi->frames_since_key = 8; // Give a sensible default for the first frame.
|
|
cpi->key_frame_frequency = cpi->oxcf.key_freq;
|
|
cpi->this_key_frame_forced = FALSE;
|
|
cpi->next_key_frame_forced = FALSE;
|
|
|
|
cpi->source_alt_ref_pending = FALSE;
|
|
cpi->source_alt_ref_active = FALSE;
|
|
cpi->common.refresh_alt_ref_frame = 0;
|
|
|
|
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
|
|
#if CONFIG_INTERNAL_STATS
|
|
cpi->b_calculate_ssimg = 0;
|
|
|
|
cpi->count = 0;
|
|
cpi->bytes = 0;
|
|
|
|
if (cpi->b_calculate_psnr) {
|
|
cpi->total_sq_error = 0.0;
|
|
cpi->total_sq_error2 = 0.0;
|
|
cpi->total_y = 0.0;
|
|
cpi->total_u = 0.0;
|
|
cpi->total_v = 0.0;
|
|
cpi->total = 0.0;
|
|
cpi->totalp_y = 0.0;
|
|
cpi->totalp_u = 0.0;
|
|
cpi->totalp_v = 0.0;
|
|
cpi->totalp = 0.0;
|
|
cpi->tot_recode_hits = 0;
|
|
cpi->summed_quality = 0;
|
|
cpi->summed_weights = 0;
|
|
}
|
|
|
|
if (cpi->b_calculate_ssimg) {
|
|
cpi->total_ssimg_y = 0;
|
|
cpi->total_ssimg_u = 0;
|
|
cpi->total_ssimg_v = 0;
|
|
cpi->total_ssimg_all = 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef LLONG_MAX
|
|
#define LLONG_MAX 9223372036854775807LL
|
|
#endif
|
|
cpi->first_time_stamp_ever = LLONG_MAX;
|
|
|
|
cpi->frames_till_gf_update_due = 0;
|
|
cpi->key_frame_count = 1;
|
|
|
|
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
|
|
cpi->ni_tot_qi = 0;
|
|
cpi->ni_frames = 0;
|
|
cpi->tot_q = 0.0;
|
|
cpi->avg_q = vp9_convert_qindex_to_q(cpi->oxcf.worst_allowed_q);
|
|
cpi->total_byte_count = 0;
|
|
|
|
cpi->rate_correction_factor = 1.0;
|
|
cpi->key_frame_rate_correction_factor = 1.0;
|
|
cpi->gf_rate_correction_factor = 1.0;
|
|
cpi->twopass.est_max_qcorrection_factor = 1.0;
|
|
|
|
cal_nmvjointsadcost(cpi->mb.nmvjointsadcost);
|
|
cpi->mb.nmvcost[0] = &cpi->mb.nmvcosts[0][MV_MAX];
|
|
cpi->mb.nmvcost[1] = &cpi->mb.nmvcosts[1][MV_MAX];
|
|
cpi->mb.nmvsadcost[0] = &cpi->mb.nmvsadcosts[0][MV_MAX];
|
|
cpi->mb.nmvsadcost[1] = &cpi->mb.nmvsadcosts[1][MV_MAX];
|
|
cal_nmvsadcosts(cpi->mb.nmvsadcost);
|
|
|
|
cpi->mb.nmvcost_hp[0] = &cpi->mb.nmvcosts_hp[0][MV_MAX];
|
|
cpi->mb.nmvcost_hp[1] = &cpi->mb.nmvcosts_hp[1][MV_MAX];
|
|
cpi->mb.nmvsadcost_hp[0] = &cpi->mb.nmvsadcosts_hp[0][MV_MAX];
|
|
cpi->mb.nmvsadcost_hp[1] = &cpi->mb.nmvsadcosts_hp[1][MV_MAX];
|
|
cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp);
|
|
|
|
for (i = 0; i < KEY_FRAME_CONTEXT; i++) {
|
|
cpi->prior_key_frame_distance[i] = (int)cpi->output_frame_rate;
|
|
}
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
yuv_file = fopen("bd.yuv", "ab");
|
|
#endif
|
|
#ifdef OUTPUT_YUV_REC
|
|
yuv_rec_file = fopen("rec.yuv", "wb");
|
|
#endif
|
|
|
|
#if 0
|
|
framepsnr = fopen("framepsnr.stt", "a");
|
|
kf_list = fopen("kf_list.stt", "w");
|
|
#endif
|
|
|
|
cpi->output_pkt_list = oxcf->output_pkt_list;
|
|
|
|
if (cpi->pass == 1) {
|
|
vp9_init_first_pass(cpi);
|
|
} else if (cpi->pass == 2) {
|
|
size_t packet_sz = sizeof(FIRSTPASS_STATS);
|
|
int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
|
|
|
|
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
|
|
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
|
|
cpi->twopass.stats_in_end = (void *)((char *)cpi->twopass.stats_in
|
|
+ (packets - 1) * packet_sz);
|
|
vp9_init_second_pass(cpi);
|
|
}
|
|
|
|
vp9_set_speed_features(cpi);
|
|
|
|
// Set starting values of RD threshold multipliers (128 = *1)
|
|
for (i = 0; i < MAX_MODES; i++) {
|
|
cpi->rd_thresh_mult[i] = 128;
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
init_mv_ref_counts();
|
|
#endif
|
|
|
|
#define BFP(BT, SDF, VF, SVF, SVFHH, SVFHV, SVFHHV, SDX3F, SDX8F, SDX4DF) \
|
|
cpi->fn_ptr[BT].sdf = SDF; \
|
|
cpi->fn_ptr[BT].vf = VF; \
|
|
cpi->fn_ptr[BT].svf = SVF; \
|
|
cpi->fn_ptr[BT].svf_halfpix_h = SVFHH; \
|
|
cpi->fn_ptr[BT].svf_halfpix_v = SVFHV; \
|
|
cpi->fn_ptr[BT].svf_halfpix_hv = SVFHHV; \
|
|
cpi->fn_ptr[BT].sdx3f = SDX3F; \
|
|
cpi->fn_ptr[BT].sdx8f = SDX8F; \
|
|
cpi->fn_ptr[BT].sdx4df = SDX4DF;
|
|
|
|
|
|
#if CONFIG_SUPERBLOCKS
|
|
BFP(BLOCK_32X32, vp9_sad32x32, vp9_variance32x32, vp9_sub_pixel_variance32x32,
|
|
vp9_variance_halfpixvar32x32_h, vp9_variance_halfpixvar32x32_v,
|
|
vp9_variance_halfpixvar32x32_hv, vp9_sad32x32x3, vp9_sad32x32x8,
|
|
vp9_sad32x32x4d)
|
|
#endif
|
|
|
|
BFP(BLOCK_16X16, vp9_sad16x16, vp9_variance16x16, vp9_sub_pixel_variance16x16,
|
|
vp9_variance_halfpixvar16x16_h, vp9_variance_halfpixvar16x16_v,
|
|
vp9_variance_halfpixvar16x16_hv, vp9_sad16x16x3, vp9_sad16x16x8,
|
|
vp9_sad16x16x4d)
|
|
|
|
BFP(BLOCK_16X8, vp9_sad16x8, vp9_variance16x8, vp9_sub_pixel_variance16x8,
|
|
NULL, NULL, NULL, vp9_sad16x8x3, vp9_sad16x8x8, vp9_sad16x8x4d)
|
|
|
|
BFP(BLOCK_8X16, vp9_sad8x16, vp9_variance8x16, vp9_sub_pixel_variance8x16,
|
|
NULL, NULL, NULL, vp9_sad8x16x3, vp9_sad8x16x8, vp9_sad8x16x4d)
|
|
|
|
BFP(BLOCK_8X8, vp9_sad8x8, vp9_variance8x8, vp9_sub_pixel_variance8x8,
|
|
NULL, NULL, NULL, vp9_sad8x8x3, vp9_sad8x8x8, vp9_sad8x8x4d)
|
|
|
|
BFP(BLOCK_4X4, vp9_sad4x4, vp9_variance4x4, vp9_sub_pixel_variance4x4,
|
|
NULL, NULL, NULL, vp9_sad4x4x3, vp9_sad4x4x8, vp9_sad4x4x4d)
|
|
|
|
#if ARCH_X86 || ARCH_X86_64
|
|
cpi->fn_ptr[BLOCK_16X16].copymem = vp9_copy32xn;
|
|
cpi->fn_ptr[BLOCK_16X8].copymem = vp9_copy32xn;
|
|
cpi->fn_ptr[BLOCK_8X16].copymem = vp9_copy32xn;
|
|
cpi->fn_ptr[BLOCK_8X8].copymem = vp9_copy32xn;
|
|
cpi->fn_ptr[BLOCK_4X4].copymem = vp9_copy32xn;
|
|
#endif
|
|
|
|
cpi->full_search_sad = vp9_full_search_sad;
|
|
cpi->diamond_search_sad = vp9_diamond_search_sad;
|
|
cpi->refining_search_sad = vp9_refining_search_sad;
|
|
|
|
// make sure frame 1 is okay
|
|
cpi->error_bins[0] = cpi->common.MBs;
|
|
|
|
/* vp9_init_quantizer() is first called here. Add check in
|
|
* vp9_frame_init_quantizer() so that vp9_init_quantizer is only
|
|
* called later when needed. This will avoid unnecessary calls of
|
|
* vp9_init_quantizer() for every frame.
|
|
*/
|
|
vp9_init_quantizer(cpi);
|
|
|
|
vp9_loop_filter_init(cm);
|
|
|
|
cpi->common.error.setjmp = 0;
|
|
|
|
vp9_zero(cpi->y_uv_mode_count)
|
|
|
|
return (VP9_PTR) cpi;
|
|
}
|
|
|
|
void vp9_remove_compressor(VP9_PTR *ptr) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(*ptr);
|
|
int i;
|
|
|
|
if (!cpi)
|
|
return;
|
|
|
|
if (cpi && (cpi->common.current_video_frame > 0)) {
|
|
if (cpi->pass == 2) {
|
|
vp9_end_second_pass(cpi);
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
if (cpi->pass != 1) {
|
|
print_context_counters();
|
|
print_tree_update_probs();
|
|
print_mode_context();
|
|
}
|
|
#endif
|
|
#ifdef NMV_STATS
|
|
if (cpi->pass != 1)
|
|
print_nmvstats();
|
|
#endif
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
|
|
vp9_clear_system_state();
|
|
|
|
// printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count);
|
|
if (cpi->pass != 1) {
|
|
FILE *f = fopen("opsnr.stt", "a");
|
|
double time_encoded = (cpi->last_end_time_stamp_seen
|
|
- cpi->first_time_stamp_ever) / 10000000.000;
|
|
double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
|
|
double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded;
|
|
#if defined(MODE_STATS)
|
|
print_mode_contexts(&cpi->common);
|
|
#endif
|
|
if (cpi->b_calculate_psnr) {
|
|
YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
|
|
double samples = 3.0 / 2 * cpi->count * lst_yv12->y_width * lst_yv12->y_height;
|
|
double total_psnr = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error);
|
|
double total_psnr2 = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error2);
|
|
double total_ssim = 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
|
|
|
|
fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\tVPXSSIM\t Time(ms)\n");
|
|
fprintf(f, "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n",
|
|
dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim,
|
|
total_encode_time);
|
|
// fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f %10ld\n",
|
|
// dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim,
|
|
// total_encode_time, cpi->tot_recode_hits);
|
|
}
|
|
|
|
if (cpi->b_calculate_ssimg) {
|
|
fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(ms)\n");
|
|
fprintf(f, "%7.2f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
|
|
cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
|
|
cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time);
|
|
// fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f %10ld\n", dr,
|
|
// cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
|
|
// cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time, cpi->tot_recode_hits);
|
|
}
|
|
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#ifdef MODE_STATS
|
|
{
|
|
extern int count_mb_seg[4];
|
|
char modes_stats_file[250];
|
|
FILE *f;
|
|
double dr = (double)cpi->oxcf.frame_rate * (double)cpi->bytes * (double)8 / (double)cpi->count / (double)1000;
|
|
sprintf(modes_stats_file, "modes_q%03d.stt", cpi->common.base_qindex);
|
|
f = fopen(modes_stats_file, "w");
|
|
fprintf(f, "intra_mode in Intra Frames:\n");
|
|
{
|
|
int i;
|
|
fprintf(f, "Y: ");
|
|
for (i = 0; i < VP9_YMODES; i++) fprintf(f, " %8d,", y_modes[i]);
|
|
fprintf(f, "\n");
|
|
}
|
|
{
|
|
int i;
|
|
fprintf(f, "I8: ");
|
|
for (i = 0; i < VP9_I8X8_MODES; i++) fprintf(f, " %8d,", i8x8_modes[i]);
|
|
fprintf(f, "\n");
|
|
}
|
|
{
|
|
int i;
|
|
fprintf(f, "UV: ");
|
|
for (i = 0; i < VP9_UV_MODES; i++) fprintf(f, " %8d,", uv_modes[i]);
|
|
fprintf(f, "\n");
|
|
}
|
|
{
|
|
int i, j;
|
|
fprintf(f, "KeyFrame Y-UV:\n");
|
|
for (i = 0; i < VP9_YMODES; i++) {
|
|
fprintf(f, "%2d:", i);
|
|
for (j = 0; j < VP9_UV_MODES; j++) fprintf(f, "%8d, ", uv_modes_y[i][j]);
|
|
fprintf(f, "\n");
|
|
}
|
|
}
|
|
{
|
|
int i, j;
|
|
fprintf(f, "Inter Y-UV:\n");
|
|
for (i = 0; i < VP9_YMODES; i++) {
|
|
fprintf(f, "%2d:", i);
|
|
for (j = 0; j < VP9_UV_MODES; j++) fprintf(f, "%8d, ", cpi->y_uv_mode_count[i][j]);
|
|
fprintf(f, "\n");
|
|
}
|
|
}
|
|
{
|
|
int i;
|
|
|
|
fprintf(f, "B: ");
|
|
for (i = 0; i < VP9_NKF_BINTRAMODES; i++)
|
|
fprintf(f, "%8d, ", b_modes[i]);
|
|
|
|
fprintf(f, "\n");
|
|
|
|
}
|
|
|
|
fprintf(f, "Modes in Inter Frames:\n");
|
|
{
|
|
int i;
|
|
fprintf(f, "Y: ");
|
|
for (i = 0; i < MB_MODE_COUNT; i++) fprintf(f, " %8d,", inter_y_modes[i]);
|
|
fprintf(f, "\n");
|
|
}
|
|
{
|
|
int i;
|
|
fprintf(f, "UV: ");
|
|
for (i = 0; i < VP9_UV_MODES; i++) fprintf(f, " %8d,", inter_uv_modes[i]);
|
|
fprintf(f, "\n");
|
|
}
|
|
{
|
|
int i;
|
|
fprintf(f, "B: ");
|
|
for (i = 0; i < B_MODE_COUNT; i++) fprintf(f, "%8d, ", inter_b_modes[i]);
|
|
fprintf(f, "\n");
|
|
}
|
|
fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], count_mb_seg[2], count_mb_seg[3]);
|
|
fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], inter_b_modes[NEW4X4]);
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
{
|
|
int i, j, k;
|
|
FILE *fmode = fopen("vp9_modecontext.c", "w");
|
|
|
|
fprintf(fmode, "\n#include \"vp9_entropymode.h\"\n\n");
|
|
fprintf(fmode, "const unsigned int vp9_kf_default_bmode_counts ");
|
|
fprintf(fmode, "[VP9_KF_BINTRAMODES][VP9_KF_BINTRAMODES]"
|
|
"[VP9_KF_BINTRAMODES] =\n{\n");
|
|
|
|
for (i = 0; i < VP9_KF_BINTRAMODES; i++) {
|
|
|
|
fprintf(fmode, " { // Above Mode : %d\n", i);
|
|
|
|
for (j = 0; j < VP9_KF_BINTRAMODES; j++) {
|
|
|
|
fprintf(fmode, " {");
|
|
|
|
for (k = 0; k < VP9_KF_BINTRAMODES; k++) {
|
|
if (!intra_mode_stats[i][j][k])
|
|
fprintf(fmode, " %5d, ", 1);
|
|
else
|
|
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
|
|
}
|
|
|
|
fprintf(fmode, "}, // left_mode %d\n", j);
|
|
|
|
}
|
|
|
|
fprintf(fmode, " },\n");
|
|
|
|
}
|
|
|
|
fprintf(fmode, "};\n");
|
|
fclose(fmode);
|
|
}
|
|
#endif
|
|
|
|
|
|
#if defined(SECTIONBITS_OUTPUT)
|
|
|
|
if (0) {
|
|
int i;
|
|
FILE *f = fopen("tokenbits.stt", "a");
|
|
|
|
for (i = 0; i < 28; i++)
|
|
fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
|
|
|
|
fprintf(f, "\n");
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
#if 0
|
|
{
|
|
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
|
|
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
|
|
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
dealloc_compressor_data(cpi);
|
|
vpx_free(cpi->mb.ss);
|
|
vpx_free(cpi->tok);
|
|
|
|
for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); i++) {
|
|
vpx_free(cpi->mbgraph_stats[i].mb_stats);
|
|
}
|
|
|
|
vp9_remove_common(&cpi->common);
|
|
vpx_free(cpi);
|
|
*ptr = 0;
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
fclose(yuv_file);
|
|
#endif
|
|
#ifdef OUTPUT_YUV_REC
|
|
fclose(yuv_rec_file);
|
|
#endif
|
|
|
|
#if 0
|
|
|
|
if (keyfile)
|
|
fclose(keyfile);
|
|
|
|
if (framepsnr)
|
|
fclose(framepsnr);
|
|
|
|
if (kf_list)
|
|
fclose(kf_list);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
static uint64_t calc_plane_error(unsigned char *orig, int orig_stride,
|
|
unsigned char *recon, int recon_stride,
|
|
unsigned int cols, unsigned int rows) {
|
|
unsigned int row, col;
|
|
uint64_t total_sse = 0;
|
|
int diff;
|
|
|
|
for (row = 0; row + 16 <= rows; row += 16) {
|
|
for (col = 0; col + 16 <= cols; col += 16) {
|
|
unsigned int sse;
|
|
|
|
vp9_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse);
|
|
total_sse += sse;
|
|
}
|
|
|
|
/* Handle odd-sized width */
|
|
if (col < cols) {
|
|
unsigned int border_row, border_col;
|
|
unsigned char *border_orig = orig;
|
|
unsigned char *border_recon = recon;
|
|
|
|
for (border_row = 0; border_row < 16; border_row++) {
|
|
for (border_col = col; border_col < cols; border_col++) {
|
|
diff = border_orig[border_col] - border_recon[border_col];
|
|
total_sse += diff * diff;
|
|
}
|
|
|
|
border_orig += orig_stride;
|
|
border_recon += recon_stride;
|
|
}
|
|
}
|
|
|
|
orig += orig_stride * 16;
|
|
recon += recon_stride * 16;
|
|
}
|
|
|
|
/* Handle odd-sized height */
|
|
for (; row < rows; row++) {
|
|
for (col = 0; col < cols; col++) {
|
|
diff = orig[col] - recon[col];
|
|
total_sse += diff * diff;
|
|
}
|
|
|
|
orig += orig_stride;
|
|
recon += recon_stride;
|
|
}
|
|
|
|
return total_sse;
|
|
}
|
|
|
|
|
|
static void generate_psnr_packet(VP9_COMP *cpi) {
|
|
YV12_BUFFER_CONFIG *orig = cpi->Source;
|
|
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
|
|
struct vpx_codec_cx_pkt pkt;
|
|
uint64_t sse;
|
|
int i;
|
|
unsigned int width = cpi->common.Width;
|
|
unsigned int height = cpi->common.Height;
|
|
|
|
pkt.kind = VPX_CODEC_PSNR_PKT;
|
|
sse = calc_plane_error(orig->y_buffer, orig->y_stride,
|
|
recon->y_buffer, recon->y_stride,
|
|
width, height);
|
|
pkt.data.psnr.sse[0] = sse;
|
|
pkt.data.psnr.sse[1] = sse;
|
|
pkt.data.psnr.samples[0] = width * height;
|
|
pkt.data.psnr.samples[1] = width * height;
|
|
|
|
width = (width + 1) / 2;
|
|
height = (height + 1) / 2;
|
|
|
|
sse = calc_plane_error(orig->u_buffer, orig->uv_stride,
|
|
recon->u_buffer, recon->uv_stride,
|
|
width, height);
|
|
pkt.data.psnr.sse[0] += sse;
|
|
pkt.data.psnr.sse[2] = sse;
|
|
pkt.data.psnr.samples[0] += width * height;
|
|
pkt.data.psnr.samples[2] = width * height;
|
|
|
|
sse = calc_plane_error(orig->v_buffer, orig->uv_stride,
|
|
recon->v_buffer, recon->uv_stride,
|
|
width, height);
|
|
pkt.data.psnr.sse[0] += sse;
|
|
pkt.data.psnr.sse[3] = sse;
|
|
pkt.data.psnr.samples[0] += width * height;
|
|
pkt.data.psnr.samples[3] = width * height;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
pkt.data.psnr.psnr[i] = vp9_mse2psnr(pkt.data.psnr.samples[i], 255.0,
|
|
(double)pkt.data.psnr.sse[i]);
|
|
|
|
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
|
|
}
|
|
|
|
|
|
int vp9_use_as_reference(VP9_PTR ptr, int ref_frame_flags) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
|
|
if (ref_frame_flags > 7)
|
|
return -1;
|
|
|
|
cpi->ref_frame_flags = ref_frame_flags;
|
|
return 0;
|
|
}
|
|
int vp9_update_reference(VP9_PTR ptr, int ref_frame_flags) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
|
|
if (ref_frame_flags > 7)
|
|
return -1;
|
|
|
|
cpi->common.refresh_golden_frame = 0;
|
|
cpi->common.refresh_alt_ref_frame = 0;
|
|
cpi->common.refresh_last_frame = 0;
|
|
|
|
if (ref_frame_flags & VP9_LAST_FLAG)
|
|
cpi->common.refresh_last_frame = 1;
|
|
|
|
if (ref_frame_flags & VP9_GOLD_FLAG)
|
|
cpi->common.refresh_golden_frame = 1;
|
|
|
|
if (ref_frame_flags & VP9_ALT_FLAG)
|
|
cpi->common.refresh_alt_ref_frame = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp9_get_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag,
|
|
YV12_BUFFER_CONFIG *sd) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
VP9_COMMON *cm = &cpi->common;
|
|
int ref_fb_idx;
|
|
|
|
if (ref_frame_flag == VP9_LAST_FLAG)
|
|
ref_fb_idx = cm->lst_fb_idx;
|
|
else if (ref_frame_flag == VP9_GOLD_FLAG)
|
|
ref_fb_idx = cm->gld_fb_idx;
|
|
else if (ref_frame_flag == VP9_ALT_FLAG)
|
|
ref_fb_idx = cm->alt_fb_idx;
|
|
else
|
|
return -1;
|
|
|
|
vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp9_set_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag,
|
|
YV12_BUFFER_CONFIG *sd) {
|
|
VP9_COMP *cpi = (VP9_COMP *)(ptr);
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
int ref_fb_idx;
|
|
|
|
if (ref_frame_flag == VP9_LAST_FLAG)
|
|
ref_fb_idx = cm->lst_fb_idx;
|
|
else if (ref_frame_flag == VP9_GOLD_FLAG)
|
|
ref_fb_idx = cm->gld_fb_idx;
|
|
else if (ref_frame_flag == VP9_ALT_FLAG)
|
|
ref_fb_idx = cm->alt_fb_idx;
|
|
else
|
|
return -1;
|
|
|
|
vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]);
|
|
|
|
return 0;
|
|
}
|
|
int vp9_update_entropy(VP9_PTR comp, int update) {
|
|
VP9_COMP *cpi = (VP9_COMP *) comp;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
cm->refresh_entropy_probs = update;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s) {
|
|
unsigned char *src = s->y_buffer;
|
|
int h = s->y_height;
|
|
|
|
do {
|
|
fwrite(src, s->y_width, 1, yuv_file);
|
|
src += s->y_stride;
|
|
} while (--h);
|
|
|
|
src = s->u_buffer;
|
|
h = s->uv_height;
|
|
|
|
do {
|
|
fwrite(src, s->uv_width, 1, yuv_file);
|
|
src += s->uv_stride;
|
|
} while (--h);
|
|
|
|
src = s->v_buffer;
|
|
h = s->uv_height;
|
|
|
|
do {
|
|
fwrite(src, s->uv_width, 1, yuv_file);
|
|
src += s->uv_stride;
|
|
} while (--h);
|
|
}
|
|
#endif
|
|
|
|
#ifdef OUTPUT_YUV_REC
|
|
void vp9_write_yuv_rec_frame(VP9_COMMON *cm) {
|
|
YV12_BUFFER_CONFIG *s = cm->frame_to_show;
|
|
unsigned char *src = s->y_buffer;
|
|
int h = cm->Height;
|
|
|
|
do {
|
|
fwrite(src, s->y_width, 1, yuv_rec_file);
|
|
src += s->y_stride;
|
|
} while (--h);
|
|
|
|
src = s->u_buffer;
|
|
h = (cm->Height + 1) / 2;
|
|
|
|
do {
|
|
fwrite(src, s->uv_width, 1, yuv_rec_file);
|
|
src += s->uv_stride;
|
|
} while (--h);
|
|
|
|
src = s->v_buffer;
|
|
h = (cm->Height + 1) / 2;
|
|
|
|
do {
|
|
fwrite(src, s->uv_width, 1, yuv_rec_file);
|
|
src += s->uv_stride;
|
|
} while (--h);
|
|
}
|
|
#endif
|
|
|
|
static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
// Update data structure that monitors level of reference to last GF
|
|
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
|
|
// this frame refreshes means next frames don't unless specified by user
|
|
cpi->common.frames_since_golden = 0;
|
|
|
|
// Clear the alternate reference update pending flag.
|
|
cpi->source_alt_ref_pending = FALSE;
|
|
|
|
// Set the alternate refernce frame active flag
|
|
cpi->source_alt_ref_active = TRUE;
|
|
|
|
|
|
}
|
|
static void update_golden_frame_stats(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
// Update the Golden frame usage counts.
|
|
if (cm->refresh_golden_frame) {
|
|
// Update data structure that monitors level of reference to last GF
|
|
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
|
|
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
|
|
|
|
// this frame refreshes means next frames don't unless specified by user
|
|
cm->refresh_golden_frame = 0;
|
|
cpi->common.frames_since_golden = 0;
|
|
|
|
// if ( cm->frame_type == KEY_FRAME )
|
|
// {
|
|
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
|
|
// }
|
|
// else
|
|
// {
|
|
// // Carry a potrtion of count over to begining of next gf sequence
|
|
// cpi->recent_ref_frame_usage[INTRA_FRAME] >>= 5;
|
|
// cpi->recent_ref_frame_usage[LAST_FRAME] >>= 5;
|
|
// cpi->recent_ref_frame_usage[GOLDEN_FRAME] >>= 5;
|
|
// cpi->recent_ref_frame_usage[ALTREF_FRAME] >>= 5;
|
|
// }
|
|
|
|
// ******** Fixed Q test code only ************
|
|
// If we are going to use the ALT reference for the next group of frames set a flag to say so.
|
|
if (cpi->oxcf.fixed_q >= 0 &&
|
|
cpi->oxcf.play_alternate && !cpi->common.refresh_alt_ref_frame) {
|
|
cpi->source_alt_ref_pending = TRUE;
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
}
|
|
|
|
if (!cpi->source_alt_ref_pending)
|
|
cpi->source_alt_ref_active = FALSE;
|
|
|
|
// Decrement count down till next gf
|
|
if (cpi->frames_till_gf_update_due > 0)
|
|
cpi->frames_till_gf_update_due--;
|
|
|
|
} else if (!cpi->common.refresh_alt_ref_frame) {
|
|
// Decrement count down till next gf
|
|
if (cpi->frames_till_gf_update_due > 0)
|
|
cpi->frames_till_gf_update_due--;
|
|
|
|
if (cpi->common.frames_till_alt_ref_frame)
|
|
cpi->common.frames_till_alt_ref_frame--;
|
|
|
|
cpi->common.frames_since_golden++;
|
|
|
|
if (cpi->common.frames_since_golden > 1) {
|
|
cpi->recent_ref_frame_usage[INTRA_FRAME] += cpi->count_mb_ref_frame_usage[INTRA_FRAME];
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] += cpi->count_mb_ref_frame_usage[LAST_FRAME];
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] += cpi->count_mb_ref_frame_usage[GOLDEN_FRAME];
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME] += cpi->count_mb_ref_frame_usage[ALTREF_FRAME];
|
|
}
|
|
}
|
|
}
|
|
|
|
static int find_fp_qindex() {
|
|
int i;
|
|
|
|
for (i = 0; i < QINDEX_RANGE; i++) {
|
|
if (vp9_convert_qindex_to_q(i) >= 30.0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == QINDEX_RANGE)
|
|
i--;
|
|
|
|
return i;
|
|
}
|
|
|
|
static void Pass1Encode(VP9_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) {
|
|
(void) size;
|
|
(void) dest;
|
|
(void) frame_flags;
|
|
|
|
|
|
vp9_set_quantizer(cpi, find_fp_qindex());
|
|
vp9_first_pass(cpi);
|
|
}
|
|
|
|
#define WRITE_RECON_BUFFER 0
|
|
#if WRITE_RECON_BUFFER
|
|
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) {
|
|
|
|
// write the frame
|
|
FILE *yframe;
|
|
int i;
|
|
char filename[255];
|
|
|
|
sprintf(filename, "cx\\y%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->y_height; i++)
|
|
fwrite(frame->y_buffer + i * frame->y_stride,
|
|
frame->y_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
sprintf(filename, "cx\\u%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->uv_height; i++)
|
|
fwrite(frame->u_buffer + i * frame->uv_stride,
|
|
frame->uv_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
sprintf(filename, "cx\\v%04d.raw", this_frame);
|
|
yframe = fopen(filename, "wb");
|
|
|
|
for (i = 0; i < frame->uv_height; i++)
|
|
fwrite(frame->v_buffer + i * frame->uv_stride,
|
|
frame->uv_width, 1, yframe);
|
|
|
|
fclose(yframe);
|
|
}
|
|
#endif
|
|
|
|
static double compute_edge_pixel_proportion(YV12_BUFFER_CONFIG *frame) {
|
|
#define EDGE_THRESH 128
|
|
int i, j;
|
|
int num_edge_pels = 0;
|
|
int num_pels = (frame->y_height - 2) * (frame->y_width - 2);
|
|
unsigned char *prev = frame->y_buffer + 1;
|
|
unsigned char *curr = frame->y_buffer + 1 + frame->y_stride;
|
|
unsigned char *next = frame->y_buffer + 1 + 2 * frame->y_stride;
|
|
for (i = 1; i < frame->y_height - 1; i++) {
|
|
for (j = 1; j < frame->y_width - 1; j++) {
|
|
/* Sobel hor and ver gradients */
|
|
int v = 2 * (curr[1] - curr[-1]) + (prev[1] - prev[-1]) + (next[1] - next[-1]);
|
|
int h = 2 * (prev[0] - next[0]) + (prev[1] - next[1]) + (prev[-1] - next[-1]);
|
|
h = (h < 0 ? -h : h);
|
|
v = (v < 0 ? -v : v);
|
|
if (h > EDGE_THRESH || v > EDGE_THRESH) num_edge_pels++;
|
|
curr++;
|
|
prev++;
|
|
next++;
|
|
}
|
|
curr += frame->y_stride - frame->y_width + 2;
|
|
prev += frame->y_stride - frame->y_width + 2;
|
|
next += frame->y_stride - frame->y_width + 2;
|
|
}
|
|
return (double)num_edge_pels / (double)num_pels;
|
|
}
|
|
|
|
// Function to test for conditions that indicate we should loop
|
|
// back and recode a frame.
|
|
static BOOL recode_loop_test(VP9_COMP *cpi,
|
|
int high_limit, int low_limit,
|
|
int q, int maxq, int minq) {
|
|
BOOL force_recode = FALSE;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
// Is frame recode allowed at all
|
|
// Yes if either recode mode 1 is selected or mode two is selcted
|
|
// and the frame is a key frame. golden frame or alt_ref_frame
|
|
if ((cpi->sf.recode_loop == 1) ||
|
|
((cpi->sf.recode_loop == 2) &&
|
|
((cm->frame_type == KEY_FRAME) ||
|
|
cm->refresh_golden_frame ||
|
|
cm->refresh_alt_ref_frame))) {
|
|
// General over and under shoot tests
|
|
if (((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
|
|
((cpi->projected_frame_size < low_limit) && (q > minq))) {
|
|
force_recode = TRUE;
|
|
}
|
|
// Special Constrained quality tests
|
|
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
|
|
// Undershoot and below auto cq level
|
|
if ((q > cpi->cq_target_quality) &&
|
|
(cpi->projected_frame_size <
|
|
((cpi->this_frame_target * 7) >> 3))) {
|
|
force_recode = TRUE;
|
|
}
|
|
// Severe undershoot and between auto and user cq level
|
|
else if ((q > cpi->oxcf.cq_level) &&
|
|
(cpi->projected_frame_size < cpi->min_frame_bandwidth) &&
|
|
(cpi->active_best_quality > cpi->oxcf.cq_level)) {
|
|
force_recode = TRUE;
|
|
cpi->active_best_quality = cpi->oxcf.cq_level;
|
|
}
|
|
}
|
|
}
|
|
|
|
return force_recode;
|
|
}
|
|
|
|
static void update_reference_frames(VP9_COMMON *cm) {
|
|
YV12_BUFFER_CONFIG *yv12_fb = cm->yv12_fb;
|
|
|
|
// At this point the new frame has been encoded.
|
|
// If any buffer copy / swapping is signaled it should be done here.
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
yv12_fb[cm->new_fb_idx].flags |= VP9_GOLD_FLAG | VP9_ALT_FLAG;
|
|
|
|
yv12_fb[cm->gld_fb_idx].flags &= ~VP9_GOLD_FLAG;
|
|
yv12_fb[cm->alt_fb_idx].flags &= ~VP9_ALT_FLAG;
|
|
|
|
cm->alt_fb_idx = cm->gld_fb_idx = cm->new_fb_idx;
|
|
} else { /* For non key frames */
|
|
if (cm->refresh_alt_ref_frame) {
|
|
assert(!cm->copy_buffer_to_arf);
|
|
|
|
cm->yv12_fb[cm->new_fb_idx].flags |= VP9_ALT_FLAG;
|
|
cm->yv12_fb[cm->alt_fb_idx].flags &= ~VP9_ALT_FLAG;
|
|
cm->alt_fb_idx = cm->new_fb_idx;
|
|
} else if (cm->copy_buffer_to_arf) {
|
|
assert(!(cm->copy_buffer_to_arf & ~0x3));
|
|
|
|
if (cm->copy_buffer_to_arf == 1) {
|
|
if (cm->alt_fb_idx != cm->lst_fb_idx) {
|
|
yv12_fb[cm->lst_fb_idx].flags |= VP9_ALT_FLAG;
|
|
yv12_fb[cm->alt_fb_idx].flags &= ~VP9_ALT_FLAG;
|
|
cm->alt_fb_idx = cm->lst_fb_idx;
|
|
}
|
|
} else { /* if (cm->copy_buffer_to_arf == 2) */
|
|
if (cm->alt_fb_idx != cm->gld_fb_idx) {
|
|
yv12_fb[cm->gld_fb_idx].flags |= VP9_ALT_FLAG;
|
|
yv12_fb[cm->alt_fb_idx].flags &= ~VP9_ALT_FLAG;
|
|
cm->alt_fb_idx = cm->gld_fb_idx;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cm->refresh_golden_frame) {
|
|
assert(!cm->copy_buffer_to_gf);
|
|
|
|
cm->yv12_fb[cm->new_fb_idx].flags |= VP9_GOLD_FLAG;
|
|
cm->yv12_fb[cm->gld_fb_idx].flags &= ~VP9_GOLD_FLAG;
|
|
cm->gld_fb_idx = cm->new_fb_idx;
|
|
} else if (cm->copy_buffer_to_gf) {
|
|
assert(!(cm->copy_buffer_to_arf & ~0x3));
|
|
|
|
if (cm->copy_buffer_to_gf == 1) {
|
|
if (cm->gld_fb_idx != cm->lst_fb_idx) {
|
|
yv12_fb[cm->lst_fb_idx].flags |= VP9_GOLD_FLAG;
|
|
yv12_fb[cm->gld_fb_idx].flags &= ~VP9_GOLD_FLAG;
|
|
cm->gld_fb_idx = cm->lst_fb_idx;
|
|
}
|
|
} else { /* if (cm->copy_buffer_to_gf == 2) */
|
|
if (cm->alt_fb_idx != cm->gld_fb_idx) {
|
|
yv12_fb[cm->alt_fb_idx].flags |= VP9_GOLD_FLAG;
|
|
yv12_fb[cm->gld_fb_idx].flags &= ~VP9_GOLD_FLAG;
|
|
cm->gld_fb_idx = cm->alt_fb_idx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cm->refresh_last_frame) {
|
|
cm->yv12_fb[cm->new_fb_idx].flags |= VP9_LAST_FLAG;
|
|
cm->yv12_fb[cm->lst_fb_idx].flags &= ~VP9_LAST_FLAG;
|
|
cm->lst_fb_idx = cm->new_fb_idx;
|
|
}
|
|
}
|
|
|
|
static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
|
|
if (cm->no_lpf) {
|
|
cm->filter_level = 0;
|
|
}
|
|
#if CONFIG_LOSSLESS
|
|
else if (cpi->oxcf.lossless) {
|
|
cm->filter_level = 0;
|
|
}
|
|
#endif
|
|
else {
|
|
struct vpx_usec_timer timer;
|
|
|
|
vp9_clear_system_state();
|
|
|
|
vpx_usec_timer_start(&timer);
|
|
if (cpi->sf.auto_filter == 0)
|
|
vp9_pick_filter_level_fast(cpi->Source, cpi);
|
|
else
|
|
vp9_pick_filter_level(cpi->Source, cpi);
|
|
|
|
vpx_usec_timer_mark(&timer);
|
|
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
|
|
}
|
|
|
|
if (cm->filter_level > 0) {
|
|
vp9_set_alt_lf_level(cpi, cm->filter_level);
|
|
vp9_loop_filter_frame(cm, &cpi->mb.e_mbd);
|
|
}
|
|
|
|
vp8_yv12_extend_frame_borders(cm->frame_to_show);
|
|
|
|
}
|
|
|
|
#if CONFIG_PRED_FILTER
|
|
void select_pred_filter_mode(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
int prob_pred_filter_off = cm->prob_pred_filter_off;
|
|
|
|
// Force filter on/off if probability is extreme
|
|
if (prob_pred_filter_off >= 255 * 0.95)
|
|
cm->pred_filter_mode = 0; // Off at the frame level
|
|
else if (prob_pred_filter_off <= 255 * 0.05)
|
|
cm->pred_filter_mode = 1; // On at the frame level
|
|
else
|
|
cm->pred_filter_mode = 2; // Selectable at the MB level
|
|
}
|
|
|
|
void update_pred_filt_prob(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
int prob_pred_filter_off;
|
|
|
|
// Based on the selection in the previous frame determine what mode
|
|
// to use for the current frame and work out the signaling probability
|
|
if (cpi->pred_filter_on_count + cpi->pred_filter_off_count) {
|
|
prob_pred_filter_off = cpi->pred_filter_off_count * 256 /
|
|
(cpi->pred_filter_on_count + cpi->pred_filter_off_count);
|
|
|
|
if (prob_pred_filter_off < 1)
|
|
prob_pred_filter_off = 1;
|
|
|
|
if (prob_pred_filter_off > 255)
|
|
prob_pred_filter_off = 255;
|
|
|
|
cm->prob_pred_filter_off = prob_pred_filter_off;
|
|
} else
|
|
cm->prob_pred_filter_off = 128;
|
|
/*
|
|
{
|
|
FILE *fp = fopen("filt_use.txt", "a");
|
|
fprintf (fp, "%d %d prob=%d\n", cpi->pred_filter_off_count,
|
|
cpi->pred_filter_on_count, cm->prob_pred_filter_off);
|
|
fclose(fp);
|
|
}
|
|
*/
|
|
}
|
|
#endif
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
static void select_interintra_mode(VP9_COMP *cpi) {
|
|
static const double threshold = 0.01;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
// FIXME(debargha): Make this RD based
|
|
int sum = cpi->interintra_select_count[1] + cpi->interintra_select_count[0];
|
|
if (sum) {
|
|
double fraction = (double) cpi->interintra_select_count[1] / sum;
|
|
// printf("fraction: %f\n", fraction);
|
|
cm->use_interintra = (fraction > threshold);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void encode_frame_to_data_rate
|
|
(
|
|
VP9_COMP *cpi,
|
|
unsigned long *size,
|
|
unsigned char *dest,
|
|
unsigned int *frame_flags
|
|
) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
|
|
int Q;
|
|
int frame_over_shoot_limit;
|
|
int frame_under_shoot_limit;
|
|
|
|
int Loop = FALSE;
|
|
int loop_count;
|
|
int this_q;
|
|
int last_zbin_oq;
|
|
|
|
int q_low;
|
|
int q_high;
|
|
int zbin_oq_high;
|
|
int zbin_oq_low = 0;
|
|
|
|
int top_index;
|
|
int bottom_index;
|
|
int active_worst_qchanged = FALSE;
|
|
|
|
int overshoot_seen = FALSE;
|
|
int undershoot_seen = FALSE;
|
|
|
|
int loop_size_estimate = 0;
|
|
|
|
SPEED_FEATURES *sf = &cpi->sf;
|
|
#if RESET_FOREACH_FILTER
|
|
int q_low0;
|
|
int q_high0;
|
|
int zbin_oq_high0;
|
|
int zbin_oq_low0 = 0;
|
|
int Q0;
|
|
int last_zbin_oq0;
|
|
int active_best_quality0;
|
|
int active_worst_quality0;
|
|
double rate_correction_factor0;
|
|
double gf_rate_correction_factor0;
|
|
#endif
|
|
|
|
/* list of filters to search over */
|
|
int mcomp_filters_to_search[] = {
|
|
EIGHTTAP, EIGHTTAP_SHARP, SIXTAP, SWITCHABLE
|
|
};
|
|
int mcomp_filters = sizeof(mcomp_filters_to_search) /
|
|
sizeof(*mcomp_filters_to_search);
|
|
int mcomp_filter_index = 0;
|
|
INT64 mcomp_filter_cost[4];
|
|
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp9_clear_system_state();
|
|
|
|
|
|
// For an alt ref frame in 2 pass we skip the call to the second
|
|
// pass function that sets the target bandwidth so must set it here
|
|
if (cpi->common.refresh_alt_ref_frame) {
|
|
cpi->per_frame_bandwidth = cpi->twopass.gf_bits; // Per frame bit target for the alt ref frame
|
|
// per second target bitrate
|
|
cpi->target_bandwidth = (int)(cpi->twopass.gf_bits *
|
|
cpi->output_frame_rate);
|
|
}
|
|
|
|
// Default turn off buffer to buffer copying
|
|
cm->copy_buffer_to_gf = 0;
|
|
cm->copy_buffer_to_arf = 0;
|
|
|
|
// Clear zbin over-quant value and mode boost values.
|
|
cpi->zbin_over_quant = 0;
|
|
cpi->zbin_mode_boost = 0;
|
|
|
|
// Enable or disable mode based tweaking of the zbin
|
|
// For 2 Pass Only used where GF/ARF prediction quality
|
|
// is above a threshold
|
|
cpi->zbin_mode_boost = 0;
|
|
#if CONFIG_LOSSLESS
|
|
cpi->zbin_mode_boost_enabled = FALSE;
|
|
#else
|
|
cpi->zbin_mode_boost_enabled = TRUE;
|
|
#endif
|
|
if (cpi->gfu_boost <= 400) {
|
|
cpi->zbin_mode_boost_enabled = FALSE;
|
|
}
|
|
|
|
// Current default encoder behaviour for the altref sign bias
|
|
if (cpi->source_alt_ref_active)
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
|
|
else
|
|
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0;
|
|
|
|
// Check to see if a key frame is signalled
|
|
// For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass.
|
|
if ((cm->current_video_frame == 0) ||
|
|
(cm->frame_flags & FRAMEFLAGS_KEY) ||
|
|
(cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0))) {
|
|
// Key frame from VFW/auto-keyframe/first frame
|
|
cm->frame_type = KEY_FRAME;
|
|
}
|
|
|
|
// Set default state for segment based loop filter update flags
|
|
xd->mode_ref_lf_delta_update = 0;
|
|
|
|
#if CONFIG_NEW_MVREF
|
|
// Temp defaults probabilities for ecnoding the MV ref id signal
|
|
vpx_memset(xd->mb_mv_ref_id_probs, 192,
|
|
sizeof(xd->mb_mv_ref_id_probs));
|
|
#endif
|
|
|
|
// Set various flags etc to special state if it is a key frame
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
int i;
|
|
|
|
// Reset the loop filter deltas and segmentation map
|
|
setup_features(cpi);
|
|
|
|
// If segmentation is enabled force a map update for key frames
|
|
if (xd->segmentation_enabled) {
|
|
xd->update_mb_segmentation_map = 1;
|
|
xd->update_mb_segmentation_data = 1;
|
|
}
|
|
|
|
// The alternate reference frame cannot be active for a key frame
|
|
cpi->source_alt_ref_active = FALSE;
|
|
|
|
// Reset the RD threshold multipliers to default of * 1 (128)
|
|
for (i = 0; i < MAX_MODES; i++) {
|
|
cpi->rd_thresh_mult[i] = 128;
|
|
}
|
|
}
|
|
|
|
// Test code for new segment features
|
|
init_seg_features(cpi);
|
|
|
|
// Decide how big to make the frame
|
|
vp9_pick_frame_size(cpi);
|
|
|
|
vp9_clear_system_state();
|
|
|
|
// Set an active best quality and if necessary active worst quality
|
|
Q = cpi->active_worst_quality;
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
int high = 2000;
|
|
int low = 400;
|
|
|
|
if (cpi->kf_boost > high)
|
|
cpi->active_best_quality = kf_low_motion_minq[Q];
|
|
else if (cpi->kf_boost < low)
|
|
cpi->active_best_quality = kf_high_motion_minq[Q];
|
|
else {
|
|
int gap = high - low;
|
|
int offset = high - cpi->kf_boost;
|
|
int qdiff = kf_high_motion_minq[Q] - kf_low_motion_minq[Q];
|
|
int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
|
|
|
|
cpi->active_best_quality = kf_low_motion_minq[Q] + adjustment;
|
|
}
|
|
|
|
// Make an adjustment based on the %s static
|
|
// The main impact of this is at lower Q to prevent overly large key
|
|
// frames unless a lot of the image is static.
|
|
if (cpi->kf_zeromotion_pct < 64)
|
|
cpi->active_best_quality += 4 - (cpi->kf_zeromotion_pct >> 4);
|
|
|
|
// Special case for key frames forced because we have reached
|
|
// the maximum key frame interval. Here force the Q to a range
|
|
// based on the ambient Q to reduce the risk of popping
|
|
if (cpi->this_key_frame_forced) {
|
|
int delta_qindex;
|
|
int qindex = cpi->last_boosted_qindex;
|
|
|
|
delta_qindex = compute_qdelta(cpi, qindex,
|
|
(qindex * 0.75));
|
|
|
|
cpi->active_best_quality = qindex + delta_qindex;
|
|
if (cpi->active_best_quality < cpi->best_quality)
|
|
cpi->active_best_quality = cpi->best_quality;
|
|
}
|
|
}
|
|
|
|
else if (cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame) {
|
|
int high = 2000;
|
|
int low = 400;
|
|
|
|
// Use the lower of cpi->active_worst_quality and recent
|
|
// average Q as basis for GF/ARF Q limit unless last frame was
|
|
// a key frame.
|
|
if ((cpi->frames_since_key > 1) &&
|
|
(cpi->avg_frame_qindex < cpi->active_worst_quality)) {
|
|
Q = cpi->avg_frame_qindex;
|
|
}
|
|
|
|
// For constrained quality dont allow Q less than the cq level
|
|
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(Q < cpi->cq_target_quality)) {
|
|
Q = cpi->cq_target_quality;
|
|
}
|
|
|
|
if (cpi->gfu_boost > high)
|
|
cpi->active_best_quality = gf_low_motion_minq[Q];
|
|
else if (cpi->gfu_boost < low)
|
|
cpi->active_best_quality = gf_high_motion_minq[Q];
|
|
else {
|
|
int gap = high - low;
|
|
int offset = high - cpi->gfu_boost;
|
|
int qdiff = gf_high_motion_minq[Q] - gf_low_motion_minq[Q];
|
|
int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
|
|
|
|
cpi->active_best_quality = gf_low_motion_minq[Q] + adjustment;
|
|
}
|
|
|
|
// Constrained quality use slightly lower active best.
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
|
|
cpi->active_best_quality =
|
|
cpi->active_best_quality * 15 / 16;
|
|
}
|
|
} else {
|
|
cpi->active_best_quality = inter_minq[Q];
|
|
|
|
// For the constant/constrained quality mode we dont want
|
|
// q to fall below the cq level.
|
|
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(cpi->active_best_quality < cpi->cq_target_quality)) {
|
|
// If we are strongly undershooting the target rate in the last
|
|
// frames then use the user passed in cq value not the auto
|
|
// cq value.
|
|
if (cpi->rolling_actual_bits < cpi->min_frame_bandwidth)
|
|
cpi->active_best_quality = cpi->oxcf.cq_level;
|
|
else
|
|
cpi->active_best_quality = cpi->cq_target_quality;
|
|
}
|
|
}
|
|
|
|
// Clip the active best and worst quality values to limits
|
|
if (cpi->active_worst_quality > cpi->worst_quality)
|
|
cpi->active_worst_quality = cpi->worst_quality;
|
|
|
|
if (cpi->active_best_quality < cpi->best_quality)
|
|
cpi->active_best_quality = cpi->best_quality;
|
|
|
|
if (cpi->active_best_quality > cpi->worst_quality)
|
|
cpi->active_best_quality = cpi->worst_quality;
|
|
|
|
if (cpi->active_worst_quality < cpi->active_best_quality)
|
|
cpi->active_worst_quality = cpi->active_best_quality;
|
|
|
|
// Specuial case code to try and match quality with forced key frames
|
|
if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
|
|
Q = cpi->last_boosted_qindex;
|
|
} else {
|
|
// Determine initial Q to try
|
|
Q = vp9_regulate_q(cpi, cpi->this_frame_target);
|
|
}
|
|
last_zbin_oq = cpi->zbin_over_quant;
|
|
|
|
// Set highest allowed value for Zbin over quant
|
|
if (cm->frame_type == KEY_FRAME)
|
|
zbin_oq_high = 0; // ZBIN_OQ_MAX/16
|
|
else if (cm->refresh_alt_ref_frame || (cm->refresh_golden_frame && !cpi->source_alt_ref_active))
|
|
zbin_oq_high = 16;
|
|
else
|
|
zbin_oq_high = ZBIN_OQ_MAX;
|
|
|
|
vp9_compute_frame_size_bounds(cpi, &frame_under_shoot_limit,
|
|
&frame_over_shoot_limit);
|
|
|
|
// Limit Q range for the adaptive loop.
|
|
bottom_index = cpi->active_best_quality;
|
|
top_index = cpi->active_worst_quality;
|
|
q_low = cpi->active_best_quality;
|
|
q_high = cpi->active_worst_quality;
|
|
|
|
loop_count = 0;
|
|
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
/* TODO: Decide this more intelligently */
|
|
if (sf->search_best_filter) {
|
|
cm->mcomp_filter_type = mcomp_filters_to_search[0];
|
|
mcomp_filter_index = 0;
|
|
} else {
|
|
cm->mcomp_filter_type = DEFAULT_INTERP_FILTER;
|
|
}
|
|
/* TODO: Decide this more intelligently */
|
|
xd->allow_high_precision_mv = (Q < HIGH_PRECISION_MV_QTHRESH);
|
|
set_mvcost(&cpi->mb);
|
|
}
|
|
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
if (cm->current_video_frame == 0) {
|
|
cm->use_interintra = 1;
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_POSTPROC
|
|
|
|
if (cpi->oxcf.noise_sensitivity > 0) {
|
|
unsigned char *src;
|
|
int l = 0;
|
|
|
|
switch (cpi->oxcf.noise_sensitivity) {
|
|
case 1:
|
|
l = 20;
|
|
break;
|
|
case 2:
|
|
l = 40;
|
|
break;
|
|
case 3:
|
|
l = 60;
|
|
break;
|
|
case 4:
|
|
|
|
case 5:
|
|
l = 100;
|
|
break;
|
|
case 6:
|
|
l = 150;
|
|
break;
|
|
}
|
|
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
vp9_de_noise(cpi->Source, cpi->Source, l, 1, 0);
|
|
} else {
|
|
vp9_de_noise(cpi->Source, cpi->Source, l, 1, 0);
|
|
|
|
src = cpi->Source->y_buffer;
|
|
|
|
if (cpi->Source->y_stride < 0) {
|
|
src += cpi->Source->y_stride * (cpi->Source->y_height - 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef OUTPUT_YUV_SRC
|
|
vp9_write_yuv_frame(cpi->Source);
|
|
#endif
|
|
|
|
#if RESET_FOREACH_FILTER
|
|
if (sf->search_best_filter) {
|
|
q_low0 = q_low;
|
|
q_high0 = q_high;
|
|
Q0 = Q;
|
|
zbin_oq_low0 = zbin_oq_low;
|
|
zbin_oq_high0 = zbin_oq_high;
|
|
last_zbin_oq0 = last_zbin_oq;
|
|
rate_correction_factor0 = cpi->rate_correction_factor;
|
|
gf_rate_correction_factor0 = cpi->gf_rate_correction_factor;
|
|
active_best_quality0 = cpi->active_best_quality;
|
|
active_worst_quality0 = cpi->active_worst_quality;
|
|
}
|
|
#endif
|
|
do {
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
vp9_set_quantizer(cpi, Q);
|
|
this_q = Q;
|
|
|
|
if (loop_count == 0) {
|
|
|
|
// setup skip prob for costing in mode/mv decision
|
|
if (cpi->common.mb_no_coeff_skip) {
|
|
int k;
|
|
for (k = 0; k < MBSKIP_CONTEXTS; k++)
|
|
cm->mbskip_pred_probs[k] = cpi->base_skip_false_prob[Q][k];
|
|
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
if (cpi->common.refresh_alt_ref_frame) {
|
|
for (k = 0; k < MBSKIP_CONTEXTS; k++) {
|
|
if (cpi->last_skip_false_probs[2][k] != 0)
|
|
cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[2][k];
|
|
}
|
|
} else if (cpi->common.refresh_golden_frame) {
|
|
for (k = 0; k < MBSKIP_CONTEXTS; k++) {
|
|
if (cpi->last_skip_false_probs[1][k] != 0)
|
|
cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[1][k];
|
|
}
|
|
} else {
|
|
int k;
|
|
for (k = 0; k < MBSKIP_CONTEXTS; k++) {
|
|
if (cpi->last_skip_false_probs[0][k] != 0)
|
|
cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[0][k];
|
|
}
|
|
}
|
|
|
|
// as this is for cost estimate, let's make sure it does not
|
|
// get extreme either way
|
|
{
|
|
int k;
|
|
for (k = 0; k < MBSKIP_CONTEXTS; ++k) {
|
|
if (cm->mbskip_pred_probs[k] < 5)
|
|
cm->mbskip_pred_probs[k] = 5;
|
|
|
|
if (cm->mbskip_pred_probs[k] > 250)
|
|
cm->mbskip_pred_probs[k] = 250;
|
|
|
|
if (cpi->is_src_frame_alt_ref)
|
|
cm->mbskip_pred_probs[k] = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set up entropy depending on frame type.
|
|
if (cm->frame_type == KEY_FRAME)
|
|
vp9_setup_key_frame(cpi);
|
|
else
|
|
vp9_setup_inter_frame(cpi);
|
|
}
|
|
|
|
// transform / motion compensation build reconstruction frame
|
|
|
|
vp9_encode_frame(cpi);
|
|
|
|
// Update the skip mb flag probabilities based on the distribution
|
|
// seen in the last encoder iteration.
|
|
update_base_skip_probs(cpi);
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
#if CONFIG_PRED_FILTER
|
|
// Update prediction filter on/off probability based on
|
|
// selection made for the current frame
|
|
if (cm->frame_type != KEY_FRAME)
|
|
update_pred_filt_prob(cpi);
|
|
#endif
|
|
|
|
// Dummy pack of the bitstream using up to date stats to get an
|
|
// accurate estimate of output frame size to determine if we need
|
|
// to recode.
|
|
vp9_save_coding_context(cpi);
|
|
cpi->dummy_packing = 1;
|
|
vp9_pack_bitstream(cpi, dest, size);
|
|
cpi->projected_frame_size = (*size) << 3;
|
|
vp9_restore_coding_context(cpi);
|
|
|
|
if (frame_over_shoot_limit == 0)
|
|
frame_over_shoot_limit = 1;
|
|
active_worst_qchanged = FALSE;
|
|
|
|
// Special case handling for forced key frames
|
|
if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
|
|
int last_q = Q;
|
|
int kf_err = vp9_calc_ss_err(cpi->Source,
|
|
&cm->yv12_fb[cm->new_fb_idx]);
|
|
|
|
int high_err_target = cpi->ambient_err;
|
|
int low_err_target = (cpi->ambient_err >> 1);
|
|
|
|
// Prevent possible divide by zero error below for perfect KF
|
|
kf_err += (!kf_err);
|
|
|
|
// The key frame is not good enough or we can afford
|
|
// to make it better without undue risk of popping.
|
|
if (((kf_err > high_err_target) &&
|
|
(cpi->projected_frame_size <= frame_over_shoot_limit)) ||
|
|
((kf_err > low_err_target) &&
|
|
(cpi->projected_frame_size <= frame_under_shoot_limit))) {
|
|
// Lower q_high
|
|
q_high = (Q > q_low) ? (Q - 1) : q_low;
|
|
|
|
// Adjust Q
|
|
Q = (Q * high_err_target) / kf_err;
|
|
if (Q < ((q_high + q_low) >> 1))
|
|
Q = (q_high + q_low) >> 1;
|
|
}
|
|
// The key frame is much better than the previous frame
|
|
else if ((kf_err < low_err_target) &&
|
|
(cpi->projected_frame_size >= frame_under_shoot_limit)) {
|
|
// Raise q_low
|
|
q_low = (Q < q_high) ? (Q + 1) : q_high;
|
|
|
|
// Adjust Q
|
|
Q = (Q * low_err_target) / kf_err;
|
|
if (Q > ((q_high + q_low + 1) >> 1))
|
|
Q = (q_high + q_low + 1) >> 1;
|
|
}
|
|
|
|
// Clamp Q to upper and lower limits:
|
|
if (Q > q_high)
|
|
Q = q_high;
|
|
else if (Q < q_low)
|
|
Q = q_low;
|
|
|
|
Loop = ((Q != last_q)) ? TRUE : FALSE;
|
|
}
|
|
|
|
// Is the projected frame size out of range and are we allowed to attempt to recode.
|
|
else if (recode_loop_test(cpi,
|
|
frame_over_shoot_limit, frame_under_shoot_limit,
|
|
Q, top_index, bottom_index)) {
|
|
int last_q = Q;
|
|
int Retries = 0;
|
|
|
|
// Frame size out of permitted range:
|
|
// Update correction factor & compute new Q to try...
|
|
|
|
// Frame is too large
|
|
if (cpi->projected_frame_size > cpi->this_frame_target) {
|
|
q_low = (Q < q_high) ? (Q + 1) : q_high; // Raise Qlow as to at least the current value
|
|
|
|
if (cpi->zbin_over_quant > 0) // If we are using over quant do the same for zbin_oq_low
|
|
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
|
|
|
|
if (undershoot_seen || (loop_count > 1)) {
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp9_update_rate_correction_factors(cpi, 1);
|
|
|
|
Q = (q_high + q_low + 1) / 2;
|
|
|
|
// Adjust cpi->zbin_over_quant (only allowed when Q is max)
|
|
if (Q < MAXQ)
|
|
cpi->zbin_over_quant = 0;
|
|
else {
|
|
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
|
|
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
|
|
}
|
|
} else {
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp9_update_rate_correction_factors(cpi, 0);
|
|
|
|
Q = vp9_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
while (((Q < q_low) || (cpi->zbin_over_quant < zbin_oq_low)) && (Retries < 10)) {
|
|
vp9_update_rate_correction_factors(cpi, 0);
|
|
Q = vp9_regulate_q(cpi, cpi->this_frame_target);
|
|
Retries++;
|
|
}
|
|
}
|
|
|
|
overshoot_seen = TRUE;
|
|
}
|
|
// Frame is too small
|
|
else {
|
|
if (cpi->zbin_over_quant == 0)
|
|
q_high = (Q > q_low) ? (Q - 1) : q_low; // Lower q_high if not using over quant
|
|
else // else lower zbin_oq_high
|
|
zbin_oq_high = (cpi->zbin_over_quant > zbin_oq_low) ? (cpi->zbin_over_quant - 1) : zbin_oq_low;
|
|
|
|
if (overshoot_seen || (loop_count > 1)) {
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp9_update_rate_correction_factors(cpi, 1);
|
|
|
|
Q = (q_high + q_low) / 2;
|
|
|
|
// Adjust cpi->zbin_over_quant (only allowed when Q is max)
|
|
if (Q < MAXQ)
|
|
cpi->zbin_over_quant = 0;
|
|
else
|
|
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
|
|
} else {
|
|
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
|
|
if (!active_worst_qchanged)
|
|
vp9_update_rate_correction_factors(cpi, 0);
|
|
|
|
Q = vp9_regulate_q(cpi, cpi->this_frame_target);
|
|
|
|
// Special case reset for qlow for constrained quality.
|
|
// This should only trigger where there is very substantial
|
|
// undershoot on a frame and the auto cq level is above
|
|
// the user passsed in value.
|
|
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
|
|
(Q < q_low)) {
|
|
q_low = Q;
|
|
}
|
|
|
|
while (((Q > q_high) || (cpi->zbin_over_quant > zbin_oq_high)) && (Retries < 10)) {
|
|
vp9_update_rate_correction_factors(cpi, 0);
|
|
Q = vp9_regulate_q(cpi, cpi->this_frame_target);
|
|
Retries++;
|
|
}
|
|
}
|
|
|
|
undershoot_seen = TRUE;
|
|
}
|
|
|
|
// Clamp Q to upper and lower limits:
|
|
if (Q > q_high)
|
|
Q = q_high;
|
|
else if (Q < q_low)
|
|
Q = q_low;
|
|
|
|
// Clamp cpi->zbin_over_quant
|
|
cpi->zbin_over_quant = (cpi->zbin_over_quant < zbin_oq_low) ?
|
|
zbin_oq_low : (cpi->zbin_over_quant > zbin_oq_high) ?
|
|
zbin_oq_high : cpi->zbin_over_quant;
|
|
|
|
// Loop = ((Q != last_q) || (last_zbin_oq != cpi->zbin_over_quant)) ? TRUE : FALSE;
|
|
Loop = ((Q != last_q)) ? TRUE : FALSE;
|
|
last_zbin_oq = cpi->zbin_over_quant;
|
|
} else
|
|
Loop = FALSE;
|
|
|
|
if (cpi->is_src_frame_alt_ref)
|
|
Loop = FALSE;
|
|
|
|
if (cm->frame_type != KEY_FRAME &&
|
|
!sf->search_best_filter &&
|
|
cm->mcomp_filter_type == SWITCHABLE) {
|
|
int interp_factor = Q / 3; /* denominator is 256 */
|
|
int count[VP9_SWITCHABLE_FILTERS];
|
|
int tot_count = 0, c = 0, thr;
|
|
int i, j;
|
|
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
|
|
count[i] = 0;
|
|
for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) {
|
|
count[i] += cpi->switchable_interp_count[j][i];
|
|
}
|
|
tot_count += count[i];
|
|
}
|
|
|
|
thr = ((tot_count * interp_factor + 128) >> 8);
|
|
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
|
|
c += (count[i] >= thr);
|
|
}
|
|
if (c == 1) {
|
|
/* Mostly one filter is used. So set the filter at frame level */
|
|
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
|
|
if (count[i]) {
|
|
cm->mcomp_filter_type = vp9_switchable_interp[i];
|
|
Loop = TRUE; /* Make sure to loop since the filter changed */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Loop == FALSE && cm->frame_type != KEY_FRAME && sf->search_best_filter) {
|
|
if (mcomp_filter_index < mcomp_filters) {
|
|
INT64 err = vp9_calc_ss_err(cpi->Source,
|
|
&cm->yv12_fb[cm->new_fb_idx]);
|
|
INT64 rate = cpi->projected_frame_size << 8;
|
|
mcomp_filter_cost[mcomp_filter_index] =
|
|
(RDCOST(cpi->RDMULT, cpi->RDDIV, rate, err));
|
|
mcomp_filter_index++;
|
|
if (mcomp_filter_index < mcomp_filters) {
|
|
cm->mcomp_filter_type = mcomp_filters_to_search[mcomp_filter_index];
|
|
loop_count = -1;
|
|
Loop = TRUE;
|
|
} else {
|
|
int f;
|
|
INT64 best_cost = mcomp_filter_cost[0];
|
|
int mcomp_best_filter = mcomp_filters_to_search[0];
|
|
for (f = 1; f < mcomp_filters; f++) {
|
|
if (mcomp_filter_cost[f] < best_cost) {
|
|
mcomp_best_filter = mcomp_filters_to_search[f];
|
|
best_cost = mcomp_filter_cost[f];
|
|
}
|
|
}
|
|
if (mcomp_best_filter != mcomp_filters_to_search[mcomp_filters - 1]) {
|
|
loop_count = -1;
|
|
Loop = TRUE;
|
|
cm->mcomp_filter_type = mcomp_best_filter;
|
|
}
|
|
/*
|
|
printf(" best filter = %d, ( ", mcomp_best_filter);
|
|
for (f=0;f<mcomp_filters; f++) printf("%d ", mcomp_filter_cost[f]);
|
|
printf(")\n");
|
|
*/
|
|
}
|
|
#if RESET_FOREACH_FILTER
|
|
if (Loop == TRUE) {
|
|
overshoot_seen = FALSE;
|
|
undershoot_seen = FALSE;
|
|
zbin_oq_low = zbin_oq_low0;
|
|
zbin_oq_high = zbin_oq_high0;
|
|
q_low = q_low0;
|
|
q_high = q_high0;
|
|
Q = Q0;
|
|
cpi->zbin_over_quant = last_zbin_oq = last_zbin_oq0;
|
|
cpi->rate_correction_factor = rate_correction_factor0;
|
|
cpi->gf_rate_correction_factor = gf_rate_correction_factor0;
|
|
cpi->active_best_quality = active_best_quality0;
|
|
cpi->active_worst_quality = active_worst_quality0;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (Loop == TRUE) {
|
|
loop_count++;
|
|
#if CONFIG_INTERNAL_STATS
|
|
cpi->tot_recode_hits++;
|
|
#endif
|
|
}
|
|
} while (Loop == TRUE);
|
|
|
|
// Special case code to reduce pulsing when key frames are forced at a
|
|
// fixed interval. Note the reconstruction error if it is the frame before
|
|
// the force key frame
|
|
if (cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0)) {
|
|
cpi->ambient_err = vp9_calc_ss_err(cpi->Source,
|
|
&cm->yv12_fb[cm->new_fb_idx]);
|
|
}
|
|
|
|
// This frame's MVs are saved and will be used in next frame's MV
|
|
// prediction. Last frame has one more line(add to bottom) and one
|
|
// more column(add to right) than cm->mip. The edge elements are
|
|
// initialized to 0.
|
|
if (cm->show_frame) { // do not save for altref frame
|
|
int mb_row;
|
|
int mb_col;
|
|
MODE_INFO *tmp = cm->mip;
|
|
|
|
if (cm->frame_type != KEY_FRAME) {
|
|
for (mb_row = 0; mb_row < cm->mb_rows + 1; mb_row ++) {
|
|
for (mb_col = 0; mb_col < cm->mb_cols + 1; mb_col ++) {
|
|
if (tmp->mbmi.ref_frame != INTRA_FRAME)
|
|
cpi->lfmv[mb_col + mb_row * (cm->mode_info_stride + 1)].as_int = tmp->mbmi.mv[0].as_int;
|
|
|
|
cpi->lf_ref_frame_sign_bias[mb_col + mb_row * (cm->mode_info_stride + 1)] = cm->ref_frame_sign_bias[tmp->mbmi.ref_frame];
|
|
cpi->lf_ref_frame[mb_col + mb_row * (cm->mode_info_stride + 1)] = tmp->mbmi.ref_frame;
|
|
tmp++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update the GF useage maps.
|
|
// This is done after completing the compression of a frame when all modes
|
|
// etc. are finalized but before loop filter
|
|
vp9_update_gf_useage_maps(cpi, cm, &cpi->mb);
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
cm->refresh_last_frame = 1;
|
|
|
|
#if 0
|
|
{
|
|
FILE *f = fopen("gfactive.stt", "a");
|
|
fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame);
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
|
|
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
|
|
|
|
#if WRITE_RECON_BUFFER
|
|
if (cm->show_frame)
|
|
write_cx_frame_to_file(cm->frame_to_show,
|
|
cm->current_video_frame);
|
|
else
|
|
write_cx_frame_to_file(cm->frame_to_show,
|
|
cm->current_video_frame + 1000);
|
|
#endif
|
|
|
|
// Pick the loop filter level for the frame.
|
|
loopfilter_frame(cpi, cm);
|
|
|
|
// build the bitstream
|
|
cpi->dummy_packing = 0;
|
|
vp9_pack_bitstream(cpi, dest, size);
|
|
|
|
if (cpi->mb.e_mbd.update_mb_segmentation_map) {
|
|
update_reference_segmentation_map(cpi);
|
|
}
|
|
|
|
#if CONFIG_PRED_FILTER
|
|
// Select the prediction filtering mode to use for the
|
|
// next frame based on the current frame selections
|
|
if (cm->frame_type != KEY_FRAME)
|
|
select_pred_filter_mode(cpi);
|
|
#endif
|
|
|
|
update_reference_frames(cm);
|
|
vp9_copy(cpi->common.fc.coef_counts_4x4, cpi->coef_counts_4x4);
|
|
vp9_copy(cpi->common.fc.hybrid_coef_counts_4x4,
|
|
cpi->hybrid_coef_counts_4x4);
|
|
vp9_copy(cpi->common.fc.coef_counts_8x8, cpi->coef_counts_8x8);
|
|
vp9_copy(cpi->common.fc.hybrid_coef_counts_8x8,
|
|
cpi->hybrid_coef_counts_8x8);
|
|
vp9_copy(cpi->common.fc.coef_counts_16x16, cpi->coef_counts_16x16);
|
|
vp9_copy(cpi->common.fc.hybrid_coef_counts_16x16,
|
|
cpi->hybrid_coef_counts_16x16);
|
|
#if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS
|
|
vp9_copy(cpi->common.fc.coef_counts_32x32, cpi->coef_counts_32x32);
|
|
#endif
|
|
vp9_adapt_coef_probs(&cpi->common);
|
|
if (cpi->common.frame_type != KEY_FRAME) {
|
|
#if CONFIG_SUPERBLOCKS
|
|
vp9_copy(cpi->common.fc.sb_ymode_counts, cpi->sb_ymode_count);
|
|
#endif
|
|
vp9_copy(cpi->common.fc.ymode_counts, cpi->ymode_count);
|
|
vp9_copy(cpi->common.fc.uv_mode_counts, cpi->y_uv_mode_count);
|
|
vp9_copy(cpi->common.fc.bmode_counts, cpi->bmode_count);
|
|
vp9_copy(cpi->common.fc.i8x8_mode_counts, cpi->i8x8_mode_count);
|
|
vp9_copy(cpi->common.fc.sub_mv_ref_counts, cpi->sub_mv_ref_count);
|
|
vp9_copy(cpi->common.fc.mbsplit_counts, cpi->mbsplit_count);
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
vp9_copy(cpi->common.fc.interintra_counts, cpi->interintra_count);
|
|
#endif
|
|
vp9_adapt_mode_probs(&cpi->common);
|
|
|
|
cpi->common.fc.NMVcount = cpi->NMVcount;
|
|
/*
|
|
printf("2: %d %d %d %d\n", cpi->NMVcount.joints[0], cpi->NMVcount.joints[1],
|
|
cpi->NMVcount.joints[2], cpi->NMVcount.joints[3]);
|
|
*/
|
|
vp9_adapt_nmv_probs(&cpi->common, cpi->mb.e_mbd.allow_high_precision_mv);
|
|
}
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
if (cm->frame_type != KEY_FRAME)
|
|
select_interintra_mode(cpi);
|
|
#endif
|
|
|
|
/* Move storing frame_type out of the above loop since it is also
|
|
* needed in motion search besides loopfilter */
|
|
cm->last_frame_type = cm->frame_type;
|
|
|
|
// Keep a copy of the size estimate used in the loop
|
|
loop_size_estimate = cpi->projected_frame_size;
|
|
|
|
// Update rate control heuristics
|
|
cpi->total_byte_count += (*size);
|
|
cpi->projected_frame_size = (*size) << 3;
|
|
|
|
if (!active_worst_qchanged)
|
|
vp9_update_rate_correction_factors(cpi, 2);
|
|
|
|
cpi->last_q[cm->frame_type] = cm->base_qindex;
|
|
|
|
// Keep record of last boosted (KF/KF/ARF) Q value.
|
|
// If the current frame is coded at a lower Q then we also update it.
|
|
// If all mbs in this group are skipped only update if the Q value is
|
|
// better than that already stored.
|
|
// This is used to help set quality in forced key frames to reduce popping
|
|
if ((cm->base_qindex < cpi->last_boosted_qindex) ||
|
|
((cpi->static_mb_pct < 100) &&
|
|
((cm->frame_type == KEY_FRAME) ||
|
|
cm->refresh_alt_ref_frame ||
|
|
(cm->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) {
|
|
cpi->last_boosted_qindex = cm->base_qindex;
|
|
}
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
vp9_adjust_key_frame_context(cpi);
|
|
}
|
|
|
|
// Keep a record of ambient average Q.
|
|
if (cm->frame_type != KEY_FRAME)
|
|
cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
|
|
|
|
// Keep a record from which we can calculate the average Q excluding GF updates and key frames
|
|
if ((cm->frame_type != KEY_FRAME) && !cm->refresh_golden_frame && !cm->refresh_alt_ref_frame) {
|
|
cpi->ni_frames++;
|
|
cpi->tot_q += vp9_convert_qindex_to_q(Q);
|
|
cpi->avg_q = cpi->tot_q / (double)cpi->ni_frames;
|
|
|
|
// Calculate the average Q for normal inter frames (not key or GFU
|
|
// frames).
|
|
cpi->ni_tot_qi += Q;
|
|
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
|
|
}
|
|
|
|
// Update the buffer level variable.
|
|
// Non-viewable frames are a special case and are treated as pure overhead.
|
|
if (!cm->show_frame)
|
|
cpi->bits_off_target -= cpi->projected_frame_size;
|
|
else
|
|
cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
|
|
|
|
// Clip the buffer level at the maximum buffer size
|
|
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size)
|
|
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
|
|
|
|
// Rolling monitors of whether we are over or underspending used to help regulate min and Max Q in two pass.
|
|
cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
|
|
cpi->rolling_actual_bits = ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
|
|
cpi->long_rolling_target_bits = ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
|
|
cpi->long_rolling_actual_bits = ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / 32;
|
|
|
|
// Actual bits spent
|
|
cpi->total_actual_bits += cpi->projected_frame_size;
|
|
|
|
// Debug stats
|
|
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
|
|
|
|
cpi->buffer_level = cpi->bits_off_target;
|
|
|
|
// Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
cpi->twopass.kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
|
|
|
|
if (cpi->twopass.kf_group_bits < 0)
|
|
cpi->twopass.kf_group_bits = 0;
|
|
} else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame) {
|
|
cpi->twopass.gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
|
|
|
|
if (cpi->twopass.gf_group_bits < 0)
|
|
cpi->twopass.gf_group_bits = 0;
|
|
}
|
|
|
|
// Update the skip mb flag probabilities based on the distribution seen
|
|
// in this frame.
|
|
update_base_skip_probs(cpi);
|
|
|
|
#if 0 //CONFIG_NEW_MVREF && CONFIG_INTERNAL_STATS
|
|
{
|
|
FILE *f = fopen("mv_ref_dist.stt", "a");
|
|
unsigned int i;
|
|
for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) {
|
|
fprintf(f, "%10d", cpi->best_ref_index_counts[0][i]);
|
|
}
|
|
fprintf(f, "\n" );
|
|
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
|
|
#if 0// 1 && CONFIG_INTERNAL_STATS
|
|
{
|
|
FILE *f = fopen("tmp.stt", "a");
|
|
int recon_err;
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
recon_err = vp9_calc_ss_err(cpi->Source,
|
|
&cm->yv12_fb[cm->new_fb_idx]);
|
|
|
|
if (cpi->twopass.total_left_stats->coded_error != 0.0)
|
|
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d"
|
|
"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f"
|
|
"%6d %5d %5d %5d %8d %8.2f %10d %10.3f"
|
|
"%10.3f %8d %10d %10d %10d\n",
|
|
cpi->common.current_video_frame, cpi->this_frame_target,
|
|
cpi->projected_frame_size, loop_size_estimate,
|
|
(cpi->projected_frame_size - cpi->this_frame_target),
|
|
(int)cpi->total_target_vs_actual,
|
|
(cpi->oxcf.starting_buffer_level - cpi->bits_off_target),
|
|
(int)cpi->total_actual_bits,
|
|
vp9_convert_qindex_to_q(cm->base_qindex),
|
|
(double)vp9_dc_quant(cm->base_qindex, 0) / 4.0,
|
|
vp9_convert_qindex_to_q(cpi->active_best_quality),
|
|
vp9_convert_qindex_to_q(cpi->active_worst_quality),
|
|
cpi->avg_q,
|
|
vp9_convert_qindex_to_q(cpi->ni_av_qi),
|
|
vp9_convert_qindex_to_q(cpi->cq_target_quality),
|
|
cpi->zbin_over_quant,
|
|
// cpi->avg_frame_qindex, cpi->zbin_over_quant,
|
|
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
|
|
cm->frame_type, cpi->gfu_boost,
|
|
cpi->twopass.est_max_qcorrection_factor,
|
|
(int)cpi->twopass.bits_left,
|
|
cpi->twopass.total_left_stats->coded_error,
|
|
(double)cpi->twopass.bits_left /
|
|
cpi->twopass.total_left_stats->coded_error,
|
|
cpi->tot_recode_hits, recon_err, cpi->kf_boost,
|
|
cpi->kf_zeromotion_pct);
|
|
else
|
|
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d"
|
|
"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f"
|
|
"%6d %5d %5d %5d %8d %8.2f %10d %10.3f"
|
|
"%8d %10d %10d %10d\n",
|
|
cpi->common.current_video_frame,
|
|
cpi->this_frame_target, cpi->projected_frame_size,
|
|
loop_size_estimate,
|
|
(cpi->projected_frame_size - cpi->this_frame_target),
|
|
(int)cpi->total_target_vs_actual,
|
|
(cpi->oxcf.starting_buffer_level - cpi->bits_off_target),
|
|
(int)cpi->total_actual_bits,
|
|
vp9_convert_qindex_to_q(cm->base_qindex),
|
|
(double)vp9_dc_quant(cm->base_qindex, 0) / 4.0,
|
|
vp9_convert_qindex_to_q(cpi->active_best_quality),
|
|
vp9_convert_qindex_to_q(cpi->active_worst_quality),
|
|
cpi->avg_q,
|
|
vp9_convert_qindex_to_q(cpi->ni_av_qi),
|
|
vp9_convert_qindex_to_q(cpi->cq_target_quality),
|
|
cpi->zbin_over_quant,
|
|
// cpi->avg_frame_qindex, cpi->zbin_over_quant,
|
|
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
|
|
cm->frame_type, cpi->gfu_boost,
|
|
cpi->twopass.est_max_qcorrection_factor,
|
|
(int)cpi->twopass.bits_left,
|
|
cpi->twopass.total_left_stats->coded_error,
|
|
cpi->tot_recode_hits, recon_err, cpi->kf_boost,
|
|
cpi->kf_zeromotion_pct);
|
|
|
|
fclose(f);
|
|
|
|
if (0) {
|
|
FILE *fmodes = fopen("Modes.stt", "a");
|
|
int i;
|
|
|
|
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
|
|
cpi->common.current_video_frame,
|
|
cm->frame_type, cm->refresh_golden_frame,
|
|
cm->refresh_alt_ref_frame);
|
|
|
|
for (i = 0; i < MAX_MODES; i++)
|
|
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
|
|
|
|
fprintf(fmodes, "\n");
|
|
|
|
fclose(fmodes);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if 0
|
|
// Debug stats for segment feature experiments.
|
|
print_seg_map(cpi);
|
|
#endif
|
|
|
|
// If this was a kf or Gf note the Q
|
|
if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || cm->refresh_alt_ref_frame)
|
|
cm->last_kf_gf_q = cm->base_qindex;
|
|
|
|
if (cm->refresh_golden_frame == 1)
|
|
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
|
|
else
|
|
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN;
|
|
|
|
if (cm->refresh_alt_ref_frame == 1)
|
|
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
|
|
else
|
|
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF;
|
|
|
|
|
|
if (cm->refresh_last_frame & cm->refresh_golden_frame) // both refreshed
|
|
cpi->gold_is_last = 1;
|
|
else if (cm->refresh_last_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other
|
|
cpi->gold_is_last = 0;
|
|
|
|
if (cm->refresh_last_frame & cm->refresh_alt_ref_frame) // both refreshed
|
|
cpi->alt_is_last = 1;
|
|
else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame) // 1 refreshed but not the other
|
|
cpi->alt_is_last = 0;
|
|
|
|
if (cm->refresh_alt_ref_frame & cm->refresh_golden_frame) // both refreshed
|
|
cpi->gold_is_alt = 1;
|
|
else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other
|
|
cpi->gold_is_alt = 0;
|
|
|
|
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
|
|
|
|
if (cpi->gold_is_last)
|
|
cpi->ref_frame_flags &= ~VP9_GOLD_FLAG;
|
|
|
|
if (cpi->alt_is_last)
|
|
cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
|
|
|
|
if (cpi->gold_is_alt)
|
|
cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
|
|
|
|
if (cpi->oxcf.play_alternate && cm->refresh_alt_ref_frame && (cm->frame_type != KEY_FRAME))
|
|
// Update the alternate reference frame stats as appropriate.
|
|
update_alt_ref_frame_stats(cpi);
|
|
else
|
|
// Update the Golden frame stats as appropriate.
|
|
update_golden_frame_stats(cpi);
|
|
|
|
if (cm->frame_type == KEY_FRAME) {
|
|
// Tell the caller that the frame was coded as a key frame
|
|
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
|
|
|
|
// As this frame is a key frame the next defaults to an inter frame.
|
|
cm->frame_type = INTER_FRAME;
|
|
} else {
|
|
*frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY;
|
|
}
|
|
|
|
// Clear the one shot update flags for segmentation map and mode/ref loop filter deltas.
|
|
xd->update_mb_segmentation_map = 0;
|
|
xd->update_mb_segmentation_data = 0;
|
|
xd->mode_ref_lf_delta_update = 0;
|
|
|
|
|
|
// Dont increment frame counters if this was an altref buffer update not a real frame
|
|
if (cm->show_frame) {
|
|
cm->current_video_frame++;
|
|
cpi->frames_since_key++;
|
|
}
|
|
|
|
// reset to normal state now that we are done.
|
|
|
|
|
|
|
|
#if 0
|
|
{
|
|
char filename[512];
|
|
FILE *recon_file;
|
|
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
|
|
recon_file = fopen(filename, "wb");
|
|
fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc,
|
|
cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file);
|
|
fclose(recon_file);
|
|
}
|
|
#endif
|
|
#ifdef OUTPUT_YUV_REC
|
|
vp9_write_yuv_rec_frame(cm);
|
|
#endif
|
|
|
|
if (cm->show_frame) {
|
|
vpx_memcpy(cm->prev_mip, cm->mip,
|
|
(cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO));
|
|
} else {
|
|
vpx_memset(cm->prev_mip, 0,
|
|
(cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO));
|
|
}
|
|
}
|
|
|
|
static void Pass2Encode(VP9_COMP *cpi, unsigned long *size,
|
|
unsigned char *dest, unsigned int *frame_flags) {
|
|
|
|
if (!cpi->common.refresh_alt_ref_frame)
|
|
vp9_second_pass(cpi);
|
|
|
|
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
|
|
cpi->twopass.bits_left -= 8 * *size;
|
|
|
|
if (!cpi->common.refresh_alt_ref_frame) {
|
|
double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.frame_rate;
|
|
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
|
|
* cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
|
|
if (two_pass_min_rate < lower_bounds_min_rate)
|
|
two_pass_min_rate = lower_bounds_min_rate;
|
|
|
|
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->oxcf.frame_rate);
|
|
}
|
|
}
|
|
|
|
|
|
int vp9_receive_raw_frame(VP9_PTR ptr, unsigned int frame_flags,
|
|
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
|
|
int64_t end_time) {
|
|
VP9_COMP *cpi = (VP9_COMP *) ptr;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
struct vpx_usec_timer timer;
|
|
int res = 0;
|
|
|
|
vpx_usec_timer_start(&timer);
|
|
if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags,
|
|
cpi->active_map_enabled ? cpi->active_map : NULL))
|
|
res = -1;
|
|
cm->clr_type = sd->clrtype;
|
|
vpx_usec_timer_mark(&timer);
|
|
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
static int frame_is_reference(const VP9_COMP *cpi) {
|
|
const VP9_COMMON *cm = &cpi->common;
|
|
const MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
|
|
return cm->frame_type == KEY_FRAME || cm->refresh_last_frame
|
|
|| cm->refresh_golden_frame || cm->refresh_alt_ref_frame
|
|
|| cm->copy_buffer_to_gf || cm->copy_buffer_to_arf
|
|
|| cm->refresh_entropy_probs
|
|
|| xd->mode_ref_lf_delta_update
|
|
|| xd->update_mb_segmentation_map || xd->update_mb_segmentation_data;
|
|
}
|
|
|
|
|
|
int vp9_get_compressed_data(VP9_PTR ptr, unsigned int *frame_flags,
|
|
unsigned long *size, unsigned char *dest,
|
|
int64_t *time_stamp, int64_t *time_end, int flush) {
|
|
VP9_COMP *cpi = (VP9_COMP *) ptr;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
struct vpx_usec_timer cmptimer;
|
|
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
|
|
|
|
if (!cpi)
|
|
return -1;
|
|
|
|
vpx_usec_timer_start(&cmptimer);
|
|
|
|
cpi->source = NULL;
|
|
|
|
cpi->mb.e_mbd.allow_high_precision_mv = ALTREF_HIGH_PRECISION_MV;
|
|
set_mvcost(&cpi->mb);
|
|
|
|
// Should we code an alternate reference frame
|
|
if (cpi->oxcf.play_alternate &&
|
|
cpi->source_alt_ref_pending) {
|
|
if ((cpi->source = vp9_lookahead_peek(cpi->lookahead,
|
|
cpi->frames_till_gf_update_due))) {
|
|
cpi->alt_ref_source = cpi->source;
|
|
if (cpi->oxcf.arnr_max_frames > 0) {
|
|
vp9_temporal_filter_prepare(cpi, cpi->frames_till_gf_update_due);
|
|
force_src_buffer = &cpi->alt_ref_buffer;
|
|
}
|
|
cm->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due;
|
|
cm->refresh_alt_ref_frame = 1;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 0;
|
|
cm->show_frame = 0;
|
|
cpi->source_alt_ref_pending = FALSE; // Clear Pending altf Ref flag.
|
|
cpi->is_src_frame_alt_ref = 0;
|
|
}
|
|
}
|
|
|
|
if (!cpi->source) {
|
|
if ((cpi->source = vp9_lookahead_pop(cpi->lookahead, flush))) {
|
|
cm->show_frame = 1;
|
|
|
|
cpi->is_src_frame_alt_ref = cpi->alt_ref_source
|
|
&& (cpi->source == cpi->alt_ref_source);
|
|
|
|
if (cpi->is_src_frame_alt_ref)
|
|
cpi->alt_ref_source = NULL;
|
|
}
|
|
}
|
|
|
|
if (cpi->source) {
|
|
cpi->un_scaled_source =
|
|
cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img;
|
|
*time_stamp = cpi->source->ts_start;
|
|
*time_end = cpi->source->ts_end;
|
|
*frame_flags = cpi->source->flags;
|
|
} else {
|
|
*size = 0;
|
|
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) {
|
|
vp9_end_first_pass(cpi); /* get last stats packet */
|
|
cpi->twopass.first_pass_done = 1;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
if (cpi->source->ts_start < cpi->first_time_stamp_ever) {
|
|
cpi->first_time_stamp_ever = cpi->source->ts_start;
|
|
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
|
|
}
|
|
|
|
// adjust frame rates based on timestamps given
|
|
if (!cm->refresh_alt_ref_frame) {
|
|
int64_t this_duration;
|
|
int step = 0;
|
|
|
|
if (cpi->source->ts_start == cpi->first_time_stamp_ever) {
|
|
this_duration = cpi->source->ts_end - cpi->source->ts_start;
|
|
step = 1;
|
|
} else {
|
|
int64_t last_duration;
|
|
|
|
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
|
|
last_duration = cpi->last_end_time_stamp_seen
|
|
- cpi->last_time_stamp_seen;
|
|
// do a step update if the duration changes by 10%
|
|
if (last_duration)
|
|
step = (int)((this_duration - last_duration) * 10 / last_duration);
|
|
}
|
|
|
|
if (this_duration) {
|
|
if (step)
|
|
vp9_new_frame_rate(cpi, 10000000.0 / this_duration);
|
|
else {
|
|
double avg_duration, interval;
|
|
|
|
/* Average this frame's rate into the last second's average
|
|
* frame rate. If we haven't seen 1 second yet, then average
|
|
* over the whole interval seen.
|
|
*/
|
|
interval = (double)(cpi->source->ts_end
|
|
- cpi->first_time_stamp_ever);
|
|
if (interval > 10000000.0)
|
|
interval = 10000000;
|
|
|
|
avg_duration = 10000000.0 / cpi->oxcf.frame_rate;
|
|
avg_duration *= (interval - avg_duration + this_duration);
|
|
avg_duration /= interval;
|
|
|
|
vp9_new_frame_rate(cpi, 10000000.0 / avg_duration);
|
|
}
|
|
}
|
|
|
|
cpi->last_time_stamp_seen = cpi->source->ts_start;
|
|
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
|
|
}
|
|
|
|
// start with a 0 size frame
|
|
*size = 0;
|
|
|
|
// Clear down mmx registers
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
cm->frame_type = INTER_FRAME;
|
|
cm->frame_flags = *frame_flags;
|
|
|
|
#if 0
|
|
|
|
if (cm->refresh_alt_ref_frame) {
|
|
// cm->refresh_golden_frame = 1;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 0;
|
|
} else {
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
}
|
|
|
|
#endif
|
|
/* find a free buffer for the new frame */
|
|
{
|
|
int i = 0;
|
|
for (; i < NUM_YV12_BUFFERS; i++) {
|
|
if (!cm->yv12_fb[i].flags) {
|
|
cm->new_fb_idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(i < NUM_YV12_BUFFERS);
|
|
}
|
|
if (cpi->pass == 1) {
|
|
Pass1Encode(cpi, size, dest, frame_flags);
|
|
} else if (cpi->pass == 2) {
|
|
Pass2Encode(cpi, size, dest, frame_flags);
|
|
} else {
|
|
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
|
|
}
|
|
|
|
if (cm->refresh_entropy_probs) {
|
|
if (cm->refresh_alt_ref_frame)
|
|
vpx_memcpy(&cm->lfc_a, &cm->fc, sizeof(cm->fc));
|
|
else
|
|
vpx_memcpy(&cm->lfc, &cm->fc, sizeof(cm->fc));
|
|
}
|
|
|
|
// if its a dropped frame honor the requests on subsequent frames
|
|
if (*size > 0) {
|
|
cpi->droppable = !frame_is_reference(cpi);
|
|
|
|
// return to normal state
|
|
cm->refresh_entropy_probs = 1;
|
|
cm->refresh_alt_ref_frame = 0;
|
|
cm->refresh_golden_frame = 0;
|
|
cm->refresh_last_frame = 1;
|
|
cm->frame_type = INTER_FRAME;
|
|
|
|
}
|
|
|
|
vpx_usec_timer_mark(&cmptimer);
|
|
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
|
|
|
|
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame) {
|
|
generate_psnr_packet(cpi);
|
|
}
|
|
|
|
#if CONFIG_INTERNAL_STATS
|
|
|
|
if (cpi->pass != 1) {
|
|
cpi->bytes += *size;
|
|
|
|
if (cm->show_frame) {
|
|
|
|
cpi->count++;
|
|
|
|
if (cpi->b_calculate_psnr) {
|
|
double ye, ue, ve;
|
|
double frame_psnr;
|
|
YV12_BUFFER_CONFIG *orig = cpi->Source;
|
|
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
|
|
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
|
|
int y_samples = orig->y_height * orig->y_width;
|
|
int uv_samples = orig->uv_height * orig->uv_width;
|
|
int t_samples = y_samples + 2 * uv_samples;
|
|
double sq_error;
|
|
|
|
ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride,
|
|
recon->y_buffer, recon->y_stride, orig->y_width,
|
|
orig->y_height);
|
|
|
|
ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride,
|
|
recon->u_buffer, recon->uv_stride, orig->uv_width,
|
|
orig->uv_height);
|
|
|
|
ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride,
|
|
recon->v_buffer, recon->uv_stride, orig->uv_width,
|
|
orig->uv_height);
|
|
|
|
sq_error = ye + ue + ve;
|
|
|
|
frame_psnr = vp9_mse2psnr(t_samples, 255.0, sq_error);
|
|
|
|
cpi->total_y += vp9_mse2psnr(y_samples, 255.0, ye);
|
|
cpi->total_u += vp9_mse2psnr(uv_samples, 255.0, ue);
|
|
cpi->total_v += vp9_mse2psnr(uv_samples, 255.0, ve);
|
|
cpi->total_sq_error += sq_error;
|
|
cpi->total += frame_psnr;
|
|
{
|
|
double frame_psnr2, frame_ssim2 = 0;
|
|
double weight = 0;
|
|
#if CONFIG_POSTPROC
|
|
vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer,
|
|
cm->filter_level * 10 / 6, 1, 0);
|
|
#endif
|
|
vp9_clear_system_state();
|
|
|
|
ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride,
|
|
pp->y_buffer, pp->y_stride, orig->y_width,
|
|
orig->y_height);
|
|
|
|
ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride,
|
|
pp->u_buffer, pp->uv_stride, orig->uv_width,
|
|
orig->uv_height);
|
|
|
|
ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride,
|
|
pp->v_buffer, pp->uv_stride, orig->uv_width,
|
|
orig->uv_height);
|
|
|
|
sq_error = ye + ue + ve;
|
|
|
|
frame_psnr2 = vp9_mse2psnr(t_samples, 255.0, sq_error);
|
|
|
|
cpi->totalp_y += vp9_mse2psnr(y_samples, 255.0, ye);
|
|
cpi->totalp_u += vp9_mse2psnr(uv_samples, 255.0, ue);
|
|
cpi->totalp_v += vp9_mse2psnr(uv_samples, 255.0, ve);
|
|
cpi->total_sq_error2 += sq_error;
|
|
cpi->totalp += frame_psnr2;
|
|
|
|
frame_ssim2 = vp9_calc_ssim(cpi->Source,
|
|
&cm->post_proc_buffer, 1, &weight);
|
|
|
|
cpi->summed_quality += frame_ssim2 * weight;
|
|
cpi->summed_weights += weight;
|
|
#if 0
|
|
{
|
|
FILE *f = fopen("q_used.stt", "a");
|
|
fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
|
|
cpi->common.current_video_frame, y2, u2, v2,
|
|
frame_psnr2, frame_ssim2);
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (cpi->b_calculate_ssimg) {
|
|
double y, u, v, frame_all;
|
|
frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show,
|
|
&y, &u, &v);
|
|
cpi->total_ssimg_y += y;
|
|
cpi->total_ssimg_u += u;
|
|
cpi->total_ssimg_v += v;
|
|
cpi->total_ssimg_all += frame_all;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp9_get_preview_raw_frame(VP9_PTR comp, YV12_BUFFER_CONFIG *dest,
|
|
vp9_ppflags_t *flags) {
|
|
VP9_COMP *cpi = (VP9_COMP *) comp;
|
|
|
|
if (cpi->common.refresh_alt_ref_frame)
|
|
return -1;
|
|
else {
|
|
int ret;
|
|
#if CONFIG_POSTPROC
|
|
ret = vp9_post_proc_frame(&cpi->common, dest, flags);
|
|
#else
|
|
|
|
if (cpi->common.frame_to_show) {
|
|
*dest = *cpi->common.frame_to_show;
|
|
dest->y_width = cpi->common.Width;
|
|
dest->y_height = cpi->common.Height;
|
|
dest->uv_height = cpi->common.Height / 2;
|
|
ret = 0;
|
|
} else {
|
|
ret = -1;
|
|
}
|
|
|
|
#endif // !CONFIG_POSTPROC
|
|
vp9_clear_system_state();
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
int vp9_set_roimap(VP9_PTR comp, unsigned char *map, unsigned int rows,
|
|
unsigned int cols, int delta_q[4], int delta_lf[4],
|
|
unsigned int threshold[4]) {
|
|
VP9_COMP *cpi = (VP9_COMP *) comp;
|
|
signed char feature_data[SEG_LVL_MAX][MAX_MB_SEGMENTS];
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
int i;
|
|
|
|
if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols)
|
|
return -1;
|
|
|
|
if (!map) {
|
|
vp9_disable_segmentation((VP9_PTR)cpi);
|
|
return 0;
|
|
}
|
|
|
|
// Set the segmentation Map
|
|
vp9_set_segmentation_map((VP9_PTR)cpi, map);
|
|
|
|
// Activate segmentation.
|
|
vp9_enable_segmentation((VP9_PTR)cpi);
|
|
|
|
// Set up the quant segment data
|
|
feature_data[SEG_LVL_ALT_Q][0] = delta_q[0];
|
|
feature_data[SEG_LVL_ALT_Q][1] = delta_q[1];
|
|
feature_data[SEG_LVL_ALT_Q][2] = delta_q[2];
|
|
feature_data[SEG_LVL_ALT_Q][3] = delta_q[3];
|
|
|
|
// Set up the loop segment data s
|
|
feature_data[SEG_LVL_ALT_LF][0] = delta_lf[0];
|
|
feature_data[SEG_LVL_ALT_LF][1] = delta_lf[1];
|
|
feature_data[SEG_LVL_ALT_LF][2] = delta_lf[2];
|
|
feature_data[SEG_LVL_ALT_LF][3] = delta_lf[3];
|
|
|
|
cpi->segment_encode_breakout[0] = threshold[0];
|
|
cpi->segment_encode_breakout[1] = threshold[1];
|
|
cpi->segment_encode_breakout[2] = threshold[2];
|
|
cpi->segment_encode_breakout[3] = threshold[3];
|
|
|
|
// Enable the loop and quant changes in the feature mask
|
|
for (i = 0; i < 4; i++) {
|
|
if (delta_q[i])
|
|
vp9_enable_segfeature(xd, i, SEG_LVL_ALT_Q);
|
|
else
|
|
vp9_disable_segfeature(xd, i, SEG_LVL_ALT_Q);
|
|
|
|
if (delta_lf[i])
|
|
vp9_enable_segfeature(xd, i, SEG_LVL_ALT_LF);
|
|
else
|
|
vp9_disable_segfeature(xd, i, SEG_LVL_ALT_LF);
|
|
}
|
|
|
|
// Initialise the feature data structure
|
|
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
|
|
vp9_set_segment_data((VP9_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int vp9_set_active_map(VP9_PTR comp, unsigned char *map,
|
|
unsigned int rows, unsigned int cols) {
|
|
VP9_COMP *cpi = (VP9_COMP *) comp;
|
|
|
|
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
|
|
if (map) {
|
|
vpx_memcpy(cpi->active_map, map, rows * cols);
|
|
cpi->active_map_enabled = 1;
|
|
} else
|
|
cpi->active_map_enabled = 0;
|
|
|
|
return 0;
|
|
} else {
|
|
// cpi->active_map_enabled = 0;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int vp9_set_internal_size(VP9_PTR comp,
|
|
VPX_SCALING horiz_mode, VPX_SCALING vert_mode) {
|
|
VP9_COMP *cpi = (VP9_COMP *) comp;
|
|
|
|
if (horiz_mode <= ONETWO)
|
|
cpi->common.horiz_scale = horiz_mode;
|
|
else
|
|
return -1;
|
|
|
|
if (vert_mode <= ONETWO)
|
|
cpi->common.vert_scale = vert_mode;
|
|
else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
int vp9_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest) {
|
|
int i, j;
|
|
int Total = 0;
|
|
|
|
unsigned char *src = source->y_buffer;
|
|
unsigned char *dst = dest->y_buffer;
|
|
|
|
// Loop through the Y plane raw and reconstruction data summing (square differences)
|
|
for (i = 0; i < source->y_height; i += 16) {
|
|
for (j = 0; j < source->y_width; j += 16) {
|
|
unsigned int sse;
|
|
Total += vp9_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride,
|
|
&sse);
|
|
}
|
|
|
|
src += 16 * source->y_stride;
|
|
dst += 16 * dest->y_stride;
|
|
}
|
|
|
|
return Total;
|
|
}
|
|
|
|
|
|
int vp9_get_quantizer(VP9_PTR c) {
|
|
VP9_COMP *cpi = (VP9_COMP *) c;
|
|
return cpi->common.base_qindex;
|
|
}
|