vpx/vp8/decoder/decodframe.c
2012-10-30 12:49:40 -07:00

1338 lines
45 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "onyxd_int.h"
#include "vp8/common/header.h"
#include "vp8/common/reconintra.h"
#include "vp8/common/reconintra4x4.h"
#include "vp8/common/reconinter.h"
#include "detokenize.h"
#include "vp8/common/invtrans.h"
#include "vp8/common/alloccommon.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/quant_common.h"
#include "vpx_scale/vpxscale.h"
#include "vpx_scale/yv12extend.h"
#include "vp8/common/setupintrarecon.h"
#include "decodemv.h"
#include "vp8/common/extend.h"
#include "vp8/common/modecont.h"
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/idct.h"
#include "dboolhuff.h"
#include "vp8/common/seg_common.h"
#include "vp8/common/entropy.h"
#include "vpx_rtcd.h"
#include <assert.h>
#include <stdio.h>
#define COEFCOUNT_TESTING
static int merge_index(int v, int n, int modulus) {
int max1 = (n - 1 - modulus / 2) / modulus + 1;
if (v < max1) v = v * modulus + modulus / 2;
else {
int w;
v -= max1;
w = v;
v += (v + modulus - modulus / 2) / modulus;
while (v % modulus == modulus / 2 ||
w != v - (v + modulus - modulus / 2) / modulus) v++;
}
return v;
}
static int inv_remap_prob(int v, int m) {
const int n = 256;
const int modulus = MODULUS_PARAM;
int i;
v = merge_index(v, n - 1, modulus);
if ((m << 1) <= n) {
i = vp9_inv_recenter_nonneg(v + 1, m);
} else {
i = n - 1 - vp9_inv_recenter_nonneg(v + 1, n - 1 - m);
}
return i;
}
static vp8_prob read_prob_diff_update(vp8_reader *const bc, int oldp) {
int delp = vp8_decode_term_subexp(bc, SUBEXP_PARAM, 255);
return (vp8_prob)inv_remap_prob(delp, oldp);
}
void vp8cx_init_de_quantizer(VP8D_COMP *pbi) {
int i;
int Q;
VP8_COMMON *const pc = &pbi->common;
for (Q = 0; Q < QINDEX_RANGE; Q++) {
pc->Y1dequant[Q][0] = (short)vp8_dc_quant(Q, pc->y1dc_delta_q);
pc->Y2dequant[Q][0] = (short)vp8_dc2quant(Q, pc->y2dc_delta_q);
pc->UVdequant[Q][0] = (short)vp8_dc_uv_quant(Q, pc->uvdc_delta_q);
/* all the ac values =; */
for (i = 1; i < 16; i++) {
int rc = vp8_default_zig_zag1d[i];
pc->Y1dequant[Q][rc] = (short)vp8_ac_yquant(Q);
pc->Y2dequant[Q][rc] = (short)vp8_ac2quant(Q, pc->y2ac_delta_q);
pc->UVdequant[Q][rc] = (short)vp8_ac_uv_quant(Q, pc->uvac_delta_q);
}
}
}
static void mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd) {
int i;
int QIndex;
VP8_COMMON *const pc = &pbi->common;
int segment_id = xd->mode_info_context->mbmi.segment_id;
// Set the Q baseline allowing for any segment level adjustment
if (vp9_segfeature_active(xd, segment_id, SEG_LVL_ALT_Q)) {
/* Abs Value */
if (xd->mb_segment_abs_delta == SEGMENT_ABSDATA)
QIndex = vp9_get_segdata(xd, segment_id, SEG_LVL_ALT_Q);
/* Delta Value */
else {
QIndex = pc->base_qindex +
vp9_get_segdata(xd, segment_id, SEG_LVL_ALT_Q);
QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; /* Clamp to valid range */
}
} else
QIndex = pc->base_qindex;
xd->q_index = QIndex;
/* Set up the block level dequant pointers */
for (i = 0; i < 16; i++) {
xd->block[i].dequant = pc->Y1dequant[QIndex];
}
#if CONFIG_LOSSLESS
if (!QIndex) {
pbi->common.rtcd.idct.idct1 = vp8_short_inv_walsh4x4_1_x8_c;
pbi->common.rtcd.idct.idct16 = vp8_short_inv_walsh4x4_x8_c;
pbi->common.rtcd.idct.idct1_scalar_add = vp8_dc_only_inv_walsh_add_c;
pbi->common.rtcd.idct.iwalsh1 = vp8_short_inv_walsh4x4_1_lossless_c;
pbi->common.rtcd.idct.iwalsh16 = vp8_short_inv_walsh4x4_lossless_c;
pbi->idct_add = vp8_dequant_idct_add_lossless_c;
pbi->dc_idct_add = vp8_dequant_dc_idct_add_lossless_c;
pbi->dc_idct_add_y_block = vp8_dequant_dc_idct_add_y_block_lossless_c;
pbi->idct_add_y_block = vp8_dequant_idct_add_y_block_lossless_c;
pbi->idct_add_uv_block = vp8_dequant_idct_add_uv_block_lossless_c;
} else {
pbi->common.rtcd.idct.idct1 = vp8_short_idct4x4llm_1_c;
pbi->common.rtcd.idct.idct16 = vp8_short_idct4x4llm_c;
pbi->common.rtcd.idct.idct1_scalar_add = vp8_dc_only_idct_add_c;
pbi->common.rtcd.idct.iwalsh1 = vp8_short_inv_walsh4x4_1_c;
pbi->common.rtcd.idct.iwalsh16 = vp8_short_inv_walsh4x4_c;
pbi->idct_add = vp8_dequant_idct_add;
pbi->dc_idct_add = vp8_dequant_dc_idct_add;
pbi->dc_idct_add_y_block = vp8_dequant_dc_idct_add_y_block;
pbi->idct_add_y_block = vp8_dequant_idct_add_y_block;
pbi->idct_add_uv_block = vp8_dequant_idct_add_uv_block;
}
#else
pbi->idct_add = vp8_dequant_idct_add;
pbi->dc_idct_add = vp8_dequant_dc_idct_add;
pbi->dc_idct_add_y_block = vp8_dequant_dc_idct_add_y_block;
pbi->idct_add_y_block = vp8_dequant_idct_add_y_block;
pbi->idct_add_uv_block = vp8_dequant_idct_add_uv_block;
#endif
for (i = 16; i < 24; i++) {
xd->block[i].dequant = pc->UVdequant[QIndex];
}
xd->block[24].dequant = pc->Y2dequant[QIndex];
}
#if CONFIG_RUNTIME_CPU_DETECT
#define RTCD_VTABLE(x) (&(pbi)->common.rtcd.x)
#else
#define RTCD_VTABLE(x) NULL
#endif
/* skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it
* to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy.
*/
static void skip_recon_mb(VP8D_COMP *pbi, MACROBLOCKD *xd) {
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
vp8_build_intra_predictors_sbuv_s(xd);
vp8_build_intra_predictors_sby_s(xd);
} else {
#endif
vp8_build_intra_predictors_mbuv_s(xd);
vp8_build_intra_predictors_mby_s(xd);
#if CONFIG_SUPERBLOCKS
}
#endif
} else {
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
vp8_build_inter32x32_predictors_sb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
} else {
#endif
vp8_build_1st_inter16x16_predictors_mb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
if (xd->mode_info_context->mbmi.second_ref_frame) {
vp8_build_2nd_inter16x16_predictors_mb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
}
#if CONFIG_SUPERBLOCKS
}
#endif
}
}
static void decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd,
int mb_row, unsigned int mb_col,
BOOL_DECODER* const bc) {
int eobtotal = 0;
MB_PREDICTION_MODE mode;
int i;
int tx_size;
TX_TYPE tx_type;
VP8_COMMON *pc = &pbi->common;
#if CONFIG_SUPERBLOCKS
int orig_skip_flag = xd->mode_info_context->mbmi.mb_skip_coeff;
#endif
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
tx_size = xd->mode_info_context->mbmi.txfm_size;
mode = xd->mode_info_context->mbmi.mode;
if (xd->mode_info_context->mbmi.mb_skip_coeff) {
vp8_reset_mb_tokens_context(xd);
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb &&
(mb_col < pc->mb_cols - 1 || mb_row < pc->mb_rows - 1)) {
if (mb_col < pc->mb_cols - 1)
xd->above_context++;
if (mb_row < pc->mb_rows - 1)
xd->left_context++;
vp8_reset_mb_tokens_context(xd);
if (mb_col < pc->mb_cols - 1)
xd->above_context--;
if (mb_row < pc->mb_rows - 1)
xd->left_context--;
}
#endif
} else if (!vp8dx_bool_error(bc)) {
for (i = 0; i < 25; i++) {
xd->block[i].eob = 0;
xd->eobs[i] = 0;
}
if (tx_size == TX_16X16) {
eobtotal = vp8_decode_mb_tokens_16x16(pbi, xd, bc);
} else if (tx_size == TX_8X8) {
eobtotal = vp8_decode_mb_tokens_8x8(pbi, xd, bc);
} else {
eobtotal = vp8_decode_mb_tokens(pbi, xd, bc);
}
}
//mode = xd->mode_info_context->mbmi.mode;
if (pbi->common.frame_type != KEY_FRAME)
vp8_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter,
&pbi->common);
if (eobtotal == 0 && mode != B_PRED && mode != SPLITMV
&& mode != I8X8_PRED
&& !vp8dx_bool_error(bc)) {
/* Special case: Force the loopfilter to skip when eobtotal and
* mb_skip_coeff are zero.
* */
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
#if CONFIG_SUPERBLOCKS
if (!xd->mode_info_context->mbmi.encoded_as_sb || orig_skip_flag)
#endif
{
skip_recon_mb(pbi, xd);
return;
}
}
// moved to be performed before detokenization
// if (xd->segmentation_enabled)
// mb_init_dequantizer(pbi, xd);
/* do prediction */
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
vp8_build_intra_predictors_sby_s(xd);
vp8_build_intra_predictors_sbuv_s(xd);
} else
#endif
if (mode != I8X8_PRED) {
vp8_build_intra_predictors_mbuv(xd);
if (mode != B_PRED) {
vp8_build_intra_predictors_mby(xd);
}
}
} else {
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
vp8_build_inter32x32_predictors_sb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
} else
#endif
vp8_build_inter_predictors_mb(xd);
}
/* dequantization and idct */
if (mode == I8X8_PRED) {
for (i = 0; i < 4; i++) {
int ib = vp8_i8x8_block[i];
const int iblock[4] = {0, 1, 4, 5};
int j;
int i8x8mode;
BLOCKD *b;
int idx = (ib & 0x02) ? (ib + 2) : ib;
short *q = xd->block[idx].qcoeff;
short *dq = xd->block[0].dequant;
unsigned char *pre = xd->block[ib].predictor;
unsigned char *dst = *(xd->block[ib].base_dst) + xd->block[ib].dst;
int stride = xd->dst.y_stride;
b = &xd->block[ib];
i8x8mode = b->bmi.as_mode.first;
vp8_intra8x8_predict(b, i8x8mode, b->predictor);
if (xd->mode_info_context->mbmi.txfm_size == TX_8X8) {
tx_type = get_tx_type(xd, &xd->block[idx]);
if (tx_type != DCT_DCT) {
vp8_ht_dequant_idct_add_8x8_c(tx_type,
q, dq, pre, dst, 16, stride);
} else {
vp8_dequant_idct_add_8x8_c(q, dq, pre, dst, 16, stride);
}
q += 64;
} else {
for (j = 0; j < 4; j++) {
b = &xd->block[ib + iblock[j]];
vp8_dequant_idct_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
}
}
b = &xd->block[16 + i];
vp8_intra_uv4x4_predict(b, i8x8mode, b->predictor);
pbi->idct_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride);
b = &xd->block[20 + i];
vp8_intra_uv4x4_predict(b, i8x8mode, b->predictor);
pbi->idct_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride);
}
} else if (mode == B_PRED) {
for (i = 0; i < 16; i++) {
BLOCKD *b = &xd->block[i];
int b_mode = xd->mode_info_context->bmi[i].as_mode.first;
#if CONFIG_COMP_INTRA_PRED
int b_mode2 = xd->mode_info_context->bmi[i].as_mode.second;
if (b_mode2 == (B_PREDICTION_MODE)(B_DC_PRED - 1)) {
#endif
vp8_intra4x4_predict(b, b_mode, b->predictor);
#if CONFIG_COMP_INTRA_PRED
} else {
vp8_comp_intra4x4_predict(b, b_mode, b_mode2, b->predictor);
}
#endif
tx_type = get_tx_type(xd, b);
if (tx_type != DCT_DCT) {
vp8_ht_dequant_idct_add_c(tx_type, b->qcoeff,
b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
} else {
vp8_dequant_idct_add(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
}
}
} else if (mode == SPLITMV) {
if (tx_size == TX_8X8) {
vp8_dequant_idct_add_y_block_8x8(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs, xd);
} else {
pbi->idct_add_y_block(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs);
}
} else {
BLOCKD *b = &xd->block[24];
if (tx_size == TX_16X16) {
BLOCKD *bd = &xd->block[0];
tx_type = get_tx_type(xd, bd);
if (tx_type != DCT_DCT) {
vp8_ht_dequant_idct_add_16x16_c(tx_type, xd->qcoeff,
xd->block[0].dequant, xd->predictor,
xd->dst.y_buffer, 16, xd->dst.y_stride);
} else {
vp8_dequant_idct_add_16x16(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
16, xd->dst.y_stride);
}
} else if (tx_size == TX_8X8) {
#if CONFIG_SUPERBLOCKS
void *orig = xd->mode_info_context;
int n, num = xd->mode_info_context->mbmi.encoded_as_sb ? 4 : 1;
for (n = 0; n < num; n++) {
int x_idx = n & 1, y_idx = n >> 1;
if (num == 4 && (mb_col + x_idx >= pc->mb_cols ||
mb_row + y_idx >= pc->mb_rows))
continue;
if (n != 0) {
for (i = 0; i < 25; i++) {
xd->block[i].eob = 0;
xd->eobs[i] = 0;
}
xd->above_context = pc->above_context + mb_col + (n & 1);
xd->left_context = pc->left_context + (n >> 1);
xd->mode_info_context = orig;
xd->mode_info_context += (n & 1);
xd->mode_info_context += (n >> 1) * pc->mode_info_stride;
if (!orig_skip_flag) {
eobtotal = vp8_decode_mb_tokens_8x8(pbi, xd, bc);
if (eobtotal == 0) // skip loopfilter
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
} else {
vp8_reset_mb_tokens_context(xd);
}
}
if (xd->mode_info_context->mbmi.mb_skip_coeff)
continue; // only happens for SBs, which are already in dest buffer
#endif
vp8_dequantize_b_2x2(b);
IDCT_INVOKE(RTCD_VTABLE(idct), ihaar2)(&b->dqcoeff[0], b->diff, 8);
((int *)b->qcoeff)[0] = 0;// 2nd order block are set to 0 after inverse transform
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
vp8_dequant_dc_idct_add_y_block_8x8_inplace_c(xd->qcoeff,
xd->block[0].dequant,
xd->dst.y_buffer + (n >> 1) * 16 * xd->dst.y_stride + (n & 1) * 16,
xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd);
// do UV inline also
vp8_dequant_idct_add_uv_block_8x8_inplace_c(xd->qcoeff + 16 * 16,
xd->block[16].dequant,
xd->dst.u_buffer + (n >> 1) * 8 * xd->dst.uv_stride + (n & 1) * 8,
xd->dst.v_buffer + (n >> 1) * 8 * xd->dst.uv_stride + (n & 1) * 8,
xd->dst.uv_stride, xd->eobs + 16, xd);
} else
#endif
vp8_dequant_dc_idct_add_y_block_8x8(xd->qcoeff,
xd->block[0].dequant, xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd);
#if CONFIG_SUPERBLOCKS
}
xd->mode_info_context = orig;
#endif
} else {
vp8_dequantize_b(b);
if (xd->eobs[24] > 1) {
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
} else {
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
}
pbi->dc_idct_add_y_block(xd->qcoeff, xd->block[0].dequant, xd->predictor,
xd->dst.y_buffer, xd->dst.y_stride, xd->eobs,
xd->block[24].diff);
}
}
#if CONFIG_SUPERBLOCKS
if (!xd->mode_info_context->mbmi.encoded_as_sb) {
#endif
if ((tx_size == TX_8X8 &&
xd->mode_info_context->mbmi.mode != I8X8_PRED &&
xd->mode_info_context->mbmi.mode != SPLITMV)
|| tx_size == TX_16X16
)
vp8_dequant_idct_add_uv_block_8x8
(xd->qcoeff + 16 * 16, xd->block[16].dequant,
xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs + 16, xd); //
else if (xd->mode_info_context->mbmi.mode != I8X8_PRED)
pbi->idct_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant,
xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs + 16);
#if CONFIG_SUPERBLOCKS
}
#endif
}
static int get_delta_q(vp8_reader *bc, int prev, int *q_update) {
int ret_val = 0;
if (vp8_read_bit(bc)) {
ret_val = vp8_read_literal(bc, 4);
if (vp8_read_bit(bc))
ret_val = -ret_val;
}
/* Trigger a quantizer update if the delta-q value has changed */
if (ret_val != prev)
*q_update = 1;
return ret_val;
}
#ifdef PACKET_TESTING
#include <stdio.h>
FILE *vpxlog = 0;
#endif
/* Decode a row of Superblocks (2x2 region of MBs) */
static void
decode_sb_row(VP8D_COMP *pbi, VP8_COMMON *pc, int mbrow, MACROBLOCKD *xd,
BOOL_DECODER* const bc) {
int i;
int sb_col;
int mb_row, mb_col;
int recon_yoffset, recon_uvoffset;
int ref_fb_idx = pc->lst_fb_idx;
int dst_fb_idx = pc->new_fb_idx;
int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride;
int row_delta[4] = { 0, +1, 0, -1};
int col_delta[4] = { +1, -1, +1, +1};
int sb_cols = (pc->mb_cols + 1) >> 1;
// For a SB there are 2 left contexts, each pertaining to a MB row within
vpx_memset(pc->left_context, 0, sizeof(pc->left_context));
mb_row = mbrow;
mb_col = 0;
for (sb_col = 0; sb_col < sb_cols; sb_col++) {
MODE_INFO *mi = xd->mode_info_context;
#if CONFIG_SUPERBLOCKS
mi->mbmi.encoded_as_sb = vp8_read(bc, pc->sb_coded);
#endif
// Process the 4 MBs within the SB in the order:
// top-left, top-right, bottom-left, bottom-right
for (i = 0; i < 4; i++) {
int dy = row_delta[i];
int dx = col_delta[i];
int offset_extended = dy * xd->mode_info_stride + dx;
xd->mb_index = i;
mi = xd->mode_info_context;
if ((mb_row >= pc->mb_rows) || (mb_col >= pc->mb_cols)) {
// MB lies outside frame, skip on to next
mb_row += dy;
mb_col += dx;
xd->mode_info_context += offset_extended;
xd->prev_mode_info_context += offset_extended;
continue;
}
// Set above context pointer
xd->above_context = pc->above_context + mb_col;
xd->left_context = pc->left_context + (i >> 1);
/* Distance of Mb to the various image edges.
* These are specified to 8th pel as they are always compared to
* values that are in 1/8th pel units
*/
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
xd->up_available = (mb_row != 0);
xd->left_available = (mb_col != 0);
recon_yoffset = (mb_row * recon_y_stride * 16) + (mb_col * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8) + (mb_col * 8);
xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
#if CONFIG_SUPERBLOCKS
if (i)
mi->mbmi.encoded_as_sb = 0;
#endif
vpx_decode_mb_mode_mv(pbi, xd, mb_row, mb_col, bc);
update_blockd_bmi(xd);
/* Select the appropriate reference frame for this MB */
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = pc->gld_fb_idx;
else
ref_fb_idx = pc->alt_fb_idx;
xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
if (xd->mode_info_context->mbmi.second_ref_frame) {
int second_ref_fb_idx;
/* Select the appropriate reference frame for this MB */
if (xd->mode_info_context->mbmi.second_ref_frame == LAST_FRAME)
second_ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.second_ref_frame ==
GOLDEN_FRAME)
second_ref_fb_idx = pc->gld_fb_idx;
else
second_ref_fb_idx = pc->alt_fb_idx;
xd->second_pre.y_buffer =
pc->yv12_fb[second_ref_fb_idx].y_buffer + recon_yoffset;
xd->second_pre.u_buffer =
pc->yv12_fb[second_ref_fb_idx].u_buffer + recon_uvoffset;
xd->second_pre.v_buffer =
pc->yv12_fb[second_ref_fb_idx].v_buffer + recon_uvoffset;
}
if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) {
/* propagate errors from reference frames */
xd->corrupted |= pc->yv12_fb[ref_fb_idx].corrupted;
}
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
if (mb_col < pc->mb_cols - 1)
mi[1] = mi[0];
if (mb_row < pc->mb_rows - 1) {
mi[pc->mode_info_stride] = mi[0];
if (mb_col < pc->mb_cols - 1)
mi[pc->mode_info_stride + 1] = mi[0];
}
}
#endif
vp8_intra_prediction_down_copy(xd);
decode_macroblock(pbi, xd, mb_row, mb_col, bc);
/* check if the boolean decoder has suffered an error */
xd->corrupted |= vp8dx_bool_error(bc);
#if CONFIG_SUPERBLOCKS
if (mi->mbmi.encoded_as_sb) {
assert(!i);
mb_col += 2;
xd->mode_info_context += 2;
xd->prev_mode_info_context += 2;
break;
}
#endif
// skip to next MB
xd->mode_info_context += offset_extended;
xd->prev_mode_info_context += offset_extended;
mb_row += dy;
mb_col += dx;
}
}
/* skip prediction column */
xd->mode_info_context += 1 - (pc->mb_cols & 0x1) + xd->mode_info_stride;
xd->prev_mode_info_context += 1 - (pc->mb_cols & 0x1) + xd->mode_info_stride;
}
static unsigned int read_partition_size(const unsigned char *cx_size) {
const unsigned int size =
cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16);
return size;
}
static int read_is_valid(const unsigned char *start,
size_t len,
const unsigned char *end) {
return (start + len > start && start + len <= end);
}
static void setup_token_decoder(VP8D_COMP *pbi,
const unsigned char *cx_data,
BOOL_DECODER* const bool_decoder) {
VP8_COMMON *pc = &pbi->common;
const unsigned char *user_data_end = pbi->Source + pbi->source_sz;
const unsigned char *partition;
ptrdiff_t partition_size;
ptrdiff_t bytes_left;
// Set up pointers to token partition
partition = cx_data;
bytes_left = user_data_end - partition;
partition_size = bytes_left;
/* Validate the calculated partition length. If the buffer
* described by the partition can't be fully read, then restrict
* it to the portion that can be (for EC mode) or throw an error.
*/
if (!read_is_valid(partition, partition_size, user_data_end)) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", 1);
}
if (vp8dx_start_decode(bool_decoder, partition, partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
static void init_frame(VP8D_COMP *pbi) {
VP8_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
if (pc->frame_type == KEY_FRAME) {
/* Various keyframe initializations */
vp8_init_mv_probs(pc);
vp8_init_mbmode_probs(pc);
vp8_default_bmode_probs(pc->fc.bmode_prob);
vp8_default_coef_probs(pc);
vp8_kf_default_bmode_probs(pc->kf_bmode_prob);
// Reset the segment feature data to the default stats:
// Features disabled, 0, with delta coding (Default state).
vp9_clearall_segfeatures(xd);
xd->mb_segment_abs_delta = SEGMENT_DELTADATA;
/* reset the mode ref deltasa for loop filter */
vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
/* All buffers are implicitly updated on key frames. */
pc->refresh_golden_frame = 1;
pc->refresh_alt_ref_frame = 1;
pc->copy_buffer_to_gf = 0;
pc->copy_buffer_to_arf = 0;
/* Note that Golden and Altref modes cannot be used on a key frame so
* ref_frame_sign_bias[] is undefined and meaningless
*/
pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0;
pc->ref_frame_sign_bias[ALTREF_FRAME] = 0;
vp8_init_mode_contexts(&pbi->common);
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
vpx_memcpy(&pc->lfc_a, &pc->fc, sizeof(pc->fc));
vpx_memcpy(pbi->common.fc.vp8_mode_contexts,
pbi->common.fc.mode_context,
sizeof(pbi->common.fc.mode_context));
vpx_memset(pc->prev_mip, 0,
(pc->mb_cols + 1) * (pc->mb_rows + 1)* sizeof(MODE_INFO));
vpx_memset(pc->mip, 0,
(pc->mb_cols + 1) * (pc->mb_rows + 1)* sizeof(MODE_INFO));
vp9_update_mode_info_border(pc, pc->mip);
vp9_update_mode_info_in_image(pc, pc->mi);
} else {
if (!pc->use_bilinear_mc_filter)
pc->mcomp_filter_type = EIGHTTAP;
else
pc->mcomp_filter_type = BILINEAR;
/* To enable choice of different interpolation filters */
vp8_setup_interp_filters(xd, pc->mcomp_filter_type, pc);
}
xd->mode_info_context = pc->mi;
xd->prev_mode_info_context = pc->prev_mi;
xd->frame_type = pc->frame_type;
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_stride = pc->mode_info_stride;
xd->corrupted = 0; /* init without corruption */
xd->fullpixel_mask = 0xffffffff;
if (pc->full_pixel)
xd->fullpixel_mask = 0xfffffff8;
}
#if 0
static void read_coef_probs2(VP8D_COMP *pbi) {
const vp8_prob grpupd = 192;
int i, j, k, l;
vp8_reader *const bc = &pbi->bc;
VP8_COMMON *const pc = &pbi->common;
for (l = 0; l < ENTROPY_NODES; l++) {
if (vp8_read(bc, grpupd)) {
// printf("Decoding %d\n", l);
for (i = 0; i < BLOCK_TYPES; i++)
for (j = !i; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
if (k >= 3 && ((i == 0 && j == 1) ||
(i > 0 && j == 0)))
continue;
{
vp8_prob *const p = pc->fc.coef_probs [i][j][k] + l;
int u = vp8_read(bc, COEF_UPDATE_PROB);
if (u) *p = read_prob_diff_update(bc, *p);
}
}
}
}
if (pbi->common.txfm_mode == ALLOW_8X8) {
for (l = 0; l < ENTROPY_NODES; l++) {
if (vp8_read(bc, grpupd)) {
for (i = 0; i < BLOCK_TYPES_8X8; i++)
for (j = !i; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
if (k >= 3 && ((i == 0 && j == 1) ||
(i > 0 && j == 0)))
continue;
{
vp8_prob *const p = pc->fc.coef_probs_8x8 [i][j][k] + l;
int u = vp8_read(bc, COEF_UPDATE_PROB_8X8);
if (u) *p = read_prob_diff_update(bc, *p);
}
}
}
}
}
}
#endif
static void read_coef_probs_common(
BOOL_DECODER* const bc,
vp8_prob coef_probs[BLOCK_TYPES][COEF_BANDS]
[PREV_COEF_CONTEXTS][ENTROPY_NODES]) {
int i, j, k, l;
if (vp8_read_bit(bc)) {
for (i = 0; i < BLOCK_TYPES; i++) {
for (j = !i; j < COEF_BANDS; j++) {
/* NB: This j loop starts from 1 on block type i == 0 */
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
if (k >= 3 && ((i == 0 && j == 1) ||
(i > 0 && j == 0)))
continue;
for (l = 0; l < ENTROPY_NODES; l++) {
vp8_prob *const p = coef_probs[i][j][k] + l;
if (vp8_read(bc, COEF_UPDATE_PROB)) {
*p = read_prob_diff_update(bc, *p);
}
}
}
}
}
}
}
static void read_coef_probs(VP8D_COMP *pbi, BOOL_DECODER* const bc) {
VP8_COMMON *const pc = &pbi->common;
read_coef_probs_common(bc, pc->fc.coef_probs);
read_coef_probs_common(bc, pc->fc.hybrid_coef_probs);
if (pbi->common.txfm_mode != ONLY_4X4) {
read_coef_probs_common(bc, pc->fc.coef_probs_8x8);
read_coef_probs_common(bc, pc->fc.hybrid_coef_probs_8x8);
}
if (pbi->common.txfm_mode > ALLOW_8X8) {
read_coef_probs_common(bc, pc->fc.coef_probs_16x16);
read_coef_probs_common(bc, pc->fc.hybrid_coef_probs_16x16);
}
}
int vp8_decode_frame(VP8D_COMP *pbi) {
BOOL_DECODER header_bc, residual_bc;
VP8_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const unsigned char *data = (const unsigned char *)pbi->Source;
const unsigned char *data_end = data + pbi->source_sz;
ptrdiff_t first_partition_length_in_bytes = 0;
int mb_row;
int i, j;
int corrupt_tokens = 0;
/* start with no corruption of current frame */
xd->corrupted = 0;
pc->yv12_fb[pc->new_fb_idx].corrupted = 0;
if (data_end - data < 3) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet");
} else {
pc->last_frame_type = pc->frame_type;
pc->frame_type = (FRAME_TYPE)(data[0] & 1);
pc->version = (data[0] >> 1) & 7;
pc->show_frame = (data[0] >> 4) & 1;
first_partition_length_in_bytes =
(data[0] | (data[1] << 8) | (data[2] << 16)) >> 5;
if ((data + first_partition_length_in_bytes > data_end
|| data + first_partition_length_in_bytes < data))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
data += 3;
vp8_setup_version(pc);
if (pc->frame_type == KEY_FRAME) {
const int Width = pc->Width;
const int Height = pc->Height;
/* vet via sync code */
/* When error concealment is enabled we should only check the sync
* code if we have enough bits available
*/
if (data + 3 < data_end) {
if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a)
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
}
/* If error concealment is enabled we should only parse the new size
* if we have enough data. Otherwise we will end up with the wrong
* size.
*/
if (data + 6 < data_end) {
pc->Width = (data[3] | (data[4] << 8)) & 0x3fff;
pc->horiz_scale = data[4] >> 6;
pc->Height = (data[5] | (data[6] << 8)) & 0x3fff;
pc->vert_scale = data[6] >> 6;
}
data += 7;
if (Width != pc->Width || Height != pc->Height) {
if (pc->Width <= 0) {
pc->Width = Width;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame width");
}
if (pc->Height <= 0) {
pc->Height = Height;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame height");
}
if (vp8_alloc_frame_buffers(pc, pc->Width, pc->Height))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
}
}
}
if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) ||
pc->Width == 0 || pc->Height == 0) {
return -1;
}
init_frame(pbi);
if (vp8dx_start_decode(&header_bc, data, first_partition_length_in_bytes))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
if (pc->frame_type == KEY_FRAME) {
pc->clr_type = (YUV_TYPE)vp8_read_bit(&header_bc);
pc->clamp_type = (CLAMP_TYPE)vp8_read_bit(&header_bc);
}
/* Is segmentation enabled */
xd->segmentation_enabled = (unsigned char)vp8_read_bit(&header_bc);
if (xd->segmentation_enabled) {
// Read whether or not the segmentation map is being explicitly
// updated this frame.
xd->update_mb_segmentation_map = (unsigned char)vp8_read_bit(&header_bc);
// If so what method will be used.
if (xd->update_mb_segmentation_map) {
// Which macro block level features are enabled
// Read the probs used to decode the segment id for each macro
// block.
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) {
xd->mb_segment_tree_probs[i] = vp8_read_bit(&header_bc) ?
(vp8_prob)vp8_read_literal(&header_bc, 8) : 255;
}
// Read the prediction probs needed to decode the segment id
pc->temporal_update = (unsigned char)vp8_read_bit(&header_bc);
for (i = 0; i < PREDICTION_PROBS; i++) {
if (pc->temporal_update) {
pc->segment_pred_probs[i] = vp8_read_bit(&header_bc) ?
(vp8_prob)vp8_read_literal(&header_bc, 8) : 255;
} else {
pc->segment_pred_probs[i] = 255;
}
}
}
// Is the segment data being updated
xd->update_mb_segmentation_data = (unsigned char)vp8_read_bit(&header_bc);
if (xd->update_mb_segmentation_data) {
int data;
xd->mb_segment_abs_delta = (unsigned char)vp8_read_bit(&header_bc);
vp9_clearall_segfeatures(xd);
// For each segmentation...
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
// For each of the segments features...
for (j = 0; j < SEG_LVL_MAX; j++) {
// Is the feature enabled
if (vp8_read_bit(&header_bc)) {
// Update the feature data and mask
vp9_enable_segfeature(xd, i, j);
data = (signed char)vp8_read_literal(
&header_bc, vp9_seg_feature_data_bits(j));
// Is the segment data signed..
if (vp9_is_segfeature_signed(j)) {
if (vp8_read_bit(&header_bc))
data = - data;
}
} else
data = 0;
vp9_set_segdata(xd, i, j, data);
}
}
}
}
// Read common prediction model status flag probability updates for the
// reference frame
if (pc->frame_type == KEY_FRAME) {
// Set the prediction probabilities to defaults
pc->ref_pred_probs[0] = 120;
pc->ref_pred_probs[1] = 80;
pc->ref_pred_probs[2] = 40;
} else {
for (i = 0; i < PREDICTION_PROBS; i++) {
if (vp8_read_bit(&header_bc))
pc->ref_pred_probs[i] = (vp8_prob)vp8_read_literal(&header_bc, 8);
}
}
#if CONFIG_SUPERBLOCKS
pc->sb_coded = vp8_read_literal(&header_bc, 8);
#endif
/* Read the loop filter level and type */
pc->txfm_mode = vp8_read_literal(&header_bc, 2);
if (pc->txfm_mode == TX_MODE_SELECT) {
pc->prob_tx[0] = vp8_read_literal(&header_bc, 8);
pc->prob_tx[1] = vp8_read_literal(&header_bc, 8);
}
pc->filter_type = (LOOPFILTERTYPE) vp8_read_bit(&header_bc);
pc->filter_level = vp8_read_literal(&header_bc, 6);
pc->sharpness_level = vp8_read_literal(&header_bc, 3);
/* Read in loop filter deltas applied at the MB level based on mode or ref frame. */
xd->mode_ref_lf_delta_update = 0;
xd->mode_ref_lf_delta_enabled = (unsigned char)vp8_read_bit(&header_bc);
if (xd->mode_ref_lf_delta_enabled) {
/* Do the deltas need to be updated */
xd->mode_ref_lf_delta_update = (unsigned char)vp8_read_bit(&header_bc);
if (xd->mode_ref_lf_delta_update) {
/* Send update */
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
if (vp8_read_bit(&header_bc)) {
/*sign = vp8_read_bit( &header_bc );*/
xd->ref_lf_deltas[i] = (signed char)vp8_read_literal(&header_bc, 6);
if (vp8_read_bit(&header_bc)) /* Apply sign */
xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1;
}
}
/* Send update */
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
if (vp8_read_bit(&header_bc)) {
/*sign = vp8_read_bit( &header_bc );*/
xd->mode_lf_deltas[i] = (signed char)vp8_read_literal(&header_bc, 6);
if (vp8_read_bit(&header_bc)) /* Apply sign */
xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1;
}
}
}
}
// Dummy read for now
vp8_read_literal(&header_bc, 2);
setup_token_decoder(pbi, data + first_partition_length_in_bytes,
&residual_bc);
/* Read the default quantizers. */
{
int Q, q_update;
Q = vp8_read_literal(&header_bc, QINDEX_BITS);
pc->base_qindex = Q;
q_update = 0;
/* AC 1st order Q = default */
pc->y1dc_delta_q = get_delta_q(&header_bc, pc->y1dc_delta_q, &q_update);
pc->y2dc_delta_q = get_delta_q(&header_bc, pc->y2dc_delta_q, &q_update);
pc->y2ac_delta_q = get_delta_q(&header_bc, pc->y2ac_delta_q, &q_update);
pc->uvdc_delta_q = get_delta_q(&header_bc, pc->uvdc_delta_q, &q_update);
pc->uvac_delta_q = get_delta_q(&header_bc, pc->uvac_delta_q, &q_update);
if (q_update)
vp8cx_init_de_quantizer(pbi);
/* MB level dequantizer setup */
mb_init_dequantizer(pbi, &pbi->mb);
}
/* Determine if the golden frame or ARF buffer should be updated and how.
* For all non key frames the GF and ARF refresh flags and sign bias
* flags must be set explicitly.
*/
if (pc->frame_type != KEY_FRAME) {
/* Should the GF or ARF be updated from the current frame */
pc->refresh_golden_frame = vp8_read_bit(&header_bc);
pc->refresh_alt_ref_frame = vp8_read_bit(&header_bc);
if (pc->refresh_alt_ref_frame) {
vpx_memcpy(&pc->fc, &pc->lfc_a, sizeof(pc->fc));
vpx_memcpy(pc->fc.vp8_mode_contexts,
pc->fc.mode_context_a,
sizeof(pc->fc.vp8_mode_contexts));
} else {
vpx_memcpy(&pc->fc, &pc->lfc, sizeof(pc->fc));
vpx_memcpy(pc->fc.vp8_mode_contexts,
pc->fc.mode_context,
sizeof(pc->fc.vp8_mode_contexts));
}
/* Buffer to buffer copy flags. */
pc->copy_buffer_to_gf = 0;
if (!pc->refresh_golden_frame)
pc->copy_buffer_to_gf = vp8_read_literal(&header_bc, 2);
pc->copy_buffer_to_arf = 0;
if (!pc->refresh_alt_ref_frame)
pc->copy_buffer_to_arf = vp8_read_literal(&header_bc, 2);
pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp8_read_bit(&header_bc);
pc->ref_frame_sign_bias[ALTREF_FRAME] = vp8_read_bit(&header_bc);
/* Is high precision mv allowed */
xd->allow_high_precision_mv = (unsigned char)vp8_read_bit(&header_bc);
// Read the type of subpel filter to use
if (vp8_read_bit(&header_bc)) {
pc->mcomp_filter_type = SWITCHABLE;
} else {
pc->mcomp_filter_type = vp8_read_literal(&header_bc, 2);
}
/* To enable choice of different interploation filters */
vp8_setup_interp_filters(xd, pc->mcomp_filter_type, pc);
}
pc->refresh_entropy_probs = vp8_read_bit(&header_bc);
if (pc->refresh_entropy_probs == 0) {
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
}
pc->refresh_last_frame = (pc->frame_type == KEY_FRAME)
|| vp8_read_bit(&header_bc);
if (0) {
FILE *z = fopen("decodestats.stt", "a");
fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n",
pc->current_video_frame,
pc->frame_type,
pc->refresh_golden_frame,
pc->refresh_alt_ref_frame,
pc->refresh_last_frame,
pc->base_qindex);
fclose(z);
}
vp8_copy(pbi->common.fc.pre_coef_probs,
pbi->common.fc.coef_probs);
vp8_copy(pbi->common.fc.pre_hybrid_coef_probs,
pbi->common.fc.hybrid_coef_probs);
vp8_copy(pbi->common.fc.pre_coef_probs_8x8,
pbi->common.fc.coef_probs_8x8);
vp8_copy(pbi->common.fc.pre_hybrid_coef_probs_8x8,
pbi->common.fc.hybrid_coef_probs_8x8);
vp8_copy(pbi->common.fc.pre_coef_probs_16x16,
pbi->common.fc.coef_probs_16x16);
vp8_copy(pbi->common.fc.pre_hybrid_coef_probs_16x16,
pbi->common.fc.hybrid_coef_probs_16x16);
vp8_copy(pbi->common.fc.pre_ymode_prob, pbi->common.fc.ymode_prob);
vp8_copy(pbi->common.fc.pre_uv_mode_prob, pbi->common.fc.uv_mode_prob);
vp8_copy(pbi->common.fc.pre_bmode_prob, pbi->common.fc.bmode_prob);
vp8_copy(pbi->common.fc.pre_i8x8_mode_prob, pbi->common.fc.i8x8_mode_prob);
vp8_copy(pbi->common.fc.pre_sub_mv_ref_prob, pbi->common.fc.sub_mv_ref_prob);
vp8_copy(pbi->common.fc.pre_mbsplit_prob, pbi->common.fc.mbsplit_prob);
pbi->common.fc.pre_nmvc = pbi->common.fc.nmvc;
vp8_zero(pbi->common.fc.coef_counts);
vp8_zero(pbi->common.fc.hybrid_coef_counts);
vp8_zero(pbi->common.fc.coef_counts_8x8);
vp8_zero(pbi->common.fc.hybrid_coef_counts_8x8);
vp8_zero(pbi->common.fc.coef_counts_16x16);
vp8_zero(pbi->common.fc.hybrid_coef_counts_16x16);
vp8_zero(pbi->common.fc.ymode_counts);
vp8_zero(pbi->common.fc.uv_mode_counts);
vp8_zero(pbi->common.fc.bmode_counts);
vp8_zero(pbi->common.fc.i8x8_mode_counts);
vp8_zero(pbi->common.fc.sub_mv_ref_counts);
vp8_zero(pbi->common.fc.mbsplit_counts);
vp8_zero(pbi->common.fc.NMVcount);
vp8_zero(pbi->common.fc.mv_ref_ct);
vp8_zero(pbi->common.fc.mv_ref_ct_a);
read_coef_probs(pbi, &header_bc);
vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->lst_fb_idx], sizeof(YV12_BUFFER_CONFIG));
vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx], sizeof(YV12_BUFFER_CONFIG));
// Create the segmentation map structure and set to 0
if (!pc->last_frame_seg_map)
CHECK_MEM_ERROR(pc->last_frame_seg_map,
vpx_calloc((pc->mb_rows * pc->mb_cols), 1));
/* set up frame new frame for intra coded blocks */
vp8_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]);
vp8_setup_block_dptrs(xd);
vp8_build_block_doffsets(xd);
/* clear out the coeff buffer */
vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff));
/* Read the mb_no_coeff_skip flag */
pc->mb_no_coeff_skip = (int)vp8_read_bit(&header_bc);
vpx_decode_mode_mvs_init(pbi, &header_bc);
vpx_memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols);
// Resset the macroblock mode info context to the start of the list
xd->mode_info_context = pc->mi;
xd->prev_mode_info_context = pc->prev_mi;
/* Decode a row of superblocks */
for (mb_row = 0; mb_row < pc->mb_rows; mb_row += 2) {
decode_sb_row(pbi, pc, mb_row, xd, &residual_bc);
}
corrupt_tokens |= xd->corrupted;
/* Collect information about decoder corruption. */
/* 1. Check first boolean decoder for errors. */
pc->yv12_fb[pc->new_fb_idx].corrupted = vp8dx_bool_error(&header_bc);
/* 2. Check the macroblock information */
pc->yv12_fb[pc->new_fb_idx].corrupted |= corrupt_tokens;
if (!pbi->decoded_key_frame) {
if (pc->frame_type == KEY_FRAME &&
!pc->yv12_fb[pc->new_fb_idx].corrupted)
pbi->decoded_key_frame = 1;
else
vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME,
"A stream must start with a complete key frame");
}
vp8_adapt_coef_probs(pc);
if (pc->frame_type != KEY_FRAME) {
vp8_adapt_mode_probs(pc);
vp8_adapt_nmv_probs(pc, xd->allow_high_precision_mv);
vp8_update_mode_context(&pbi->common);
}
/* If this was a kf or Gf note the Q used */
if ((pc->frame_type == KEY_FRAME) ||
pc->refresh_golden_frame || pc->refresh_alt_ref_frame) {
pc->last_kf_gf_q = pc->base_qindex;
}
if (pc->refresh_entropy_probs) {
if (pc->refresh_alt_ref_frame)
vpx_memcpy(&pc->lfc_a, &pc->fc, sizeof(pc->fc));
else
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
}
#ifdef PACKET_TESTING
{
FILE *f = fopen("decompressor.VP8", "ab");
unsigned int size = residual_bc.pos + header_bc.pos + 8;
fwrite((void *) &size, 4, 1, f);
fwrite((void *) pbi->Source, size, 1, f);
fclose(f);
}
#endif
// printf("Frame %d Done\n", frame_count++);
return 0;
}