vpx/vp8/decoder/decodemv.c
Ronald S. Bultje b066bb4306 seg_common: give all exported symbols a vp9_ prefix.
Change-Id: Ie8ba934a757acec1c80ac37ab9307c9a2783254e
2012-10-29 22:15:27 -07:00

1202 lines
41 KiB
C

/*
Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "treereader.h"
#include "vp8/common/entropymv.h"
#include "vp8/common/entropymode.h"
#include "onyxd_int.h"
#include "vp8/common/findnearmv.h"
#include "vp8/common/seg_common.h"
#include "vp8/common/pred_common.h"
#include "vp8/common/entropy.h"
#include "vp8/decoder/decodemv.h"
#if CONFIG_DEBUG
#include <assert.h>
#endif
// #define DEBUG_DEC_MV
#ifdef DEBUG_DEC_MV
int dec_mvcount = 0;
#endif
static int vp8_read_bmode(vp8_reader *bc, const vp8_prob *p) {
return vp8_treed_read(bc, vp8_bmode_tree, p);
}
static int vp8_read_ymode(vp8_reader *bc, const vp8_prob *p) {
return vp8_treed_read(bc, vp8_ymode_tree, p);
}
#if CONFIG_SUPERBLOCKS
static int vp8_sb_kfread_ymode(vp8_reader *bc, const vp8_prob *p) {
return vp8_treed_read(bc, vp8_uv_mode_tree, p);
}
#endif
static int vp8_kfread_ymode(vp8_reader *bc, const vp8_prob *p) {
return vp8_treed_read(bc, vp8_kf_ymode_tree, p);
}
static int vp8_read_i8x8_mode(vp8_reader *bc, const vp8_prob *p) {
return vp8_treed_read(bc, vp8_i8x8_mode_tree, p);
}
static int vp8_read_uv_mode(vp8_reader *bc, const vp8_prob *p) {
return vp8_treed_read(bc, vp8_uv_mode_tree, p);
}
// This function reads the current macro block's segnent id from the bitstream
// It should only be called if a segment map update is indicated.
static void vp8_read_mb_segid(vp8_reader *r, MB_MODE_INFO *mi,
MACROBLOCKD *xd) {
/* Is segmentation enabled */
if (xd->segmentation_enabled && xd->update_mb_segmentation_map) {
/* If so then read the segment id. */
if (vp8_read(r, xd->mb_segment_tree_probs[0]))
mi->segment_id =
(unsigned char)(2 + vp8_read(r, xd->mb_segment_tree_probs[2]));
else
mi->segment_id =
(unsigned char)(vp8_read(r, xd->mb_segment_tree_probs[1]));
}
}
#if CONFIG_NEW_MVREF
int vp8_read_mv_ref_id(vp8_reader *r,
vp8_prob * ref_id_probs) {
int ref_index = 0;
if (vp8_read(r, ref_id_probs[0])) {
ref_index++;
if (vp8_read(r, ref_id_probs[1])) {
ref_index++;
if (vp8_read(r, ref_id_probs[2]))
ref_index++;
}
}
return ref_index;
}
#endif
extern const int vp8_i8x8_block[4];
static void kfread_modes(VP8D_COMP *pbi,
MODE_INFO *m,
int mb_row,
int mb_col,
BOOL_DECODER* const bc) {
VP8_COMMON *const cm = &pbi->common;
const int mis = pbi->common.mode_info_stride;
int map_index = mb_row * pbi->common.mb_cols + mb_col;
MB_PREDICTION_MODE y_mode;
// Read the Macroblock segmentation map if it is being updated explicitly
// this frame (reset to 0 by default).
m->mbmi.segment_id = 0;
if (pbi->mb.update_mb_segmentation_map) {
vp8_read_mb_segid(bc, &m->mbmi, &pbi->mb);
pbi->common.last_frame_seg_map[map_index] = m->mbmi.segment_id;
}
m->mbmi.mb_skip_coeff = 0;
if (pbi->common.mb_no_coeff_skip &&
(!vp9_segfeature_active(&pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB) ||
(vp9_get_segdata(&pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB) != 0))) {
MACROBLOCKD *const xd = &pbi->mb;
m->mbmi.mb_skip_coeff =
vp8_read(bc, vp9_get_pred_prob(cm, xd, PRED_MBSKIP));
} else {
if (vp9_segfeature_active(&pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB) &&
(vp9_get_segdata(&pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB) == 0)) {
m->mbmi.mb_skip_coeff = 1;
} else
m->mbmi.mb_skip_coeff = 0;
}
#if CONFIG_SUPERBLOCKS
if (m->mbmi.encoded_as_sb) {
y_mode = (MB_PREDICTION_MODE) vp8_sb_kfread_ymode(bc,
pbi->common.sb_kf_ymode_prob[pbi->common.kf_ymode_probs_index]);
} else
#endif
y_mode = (MB_PREDICTION_MODE) vp8_kfread_ymode(bc,
pbi->common.kf_ymode_prob[pbi->common.kf_ymode_probs_index]);
#if CONFIG_COMP_INTRA_PRED
m->mbmi.second_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
m->mbmi.ref_frame = INTRA_FRAME;
if ((m->mbmi.mode = y_mode) == B_PRED) {
int i = 0;
#if CONFIG_COMP_INTRA_PRED
int use_comp_pred = vp8_read(bc, 128);
#endif
do {
const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
const B_PREDICTION_MODE L = left_block_mode(m, i);
m->bmi[i].as_mode.first =
(B_PREDICTION_MODE) vp8_read_bmode(
bc, pbi->common.kf_bmode_prob [A] [L]);
#if CONFIG_COMP_INTRA_PRED
if (use_comp_pred) {
m->bmi[i].as_mode.second =
(B_PREDICTION_MODE) vp8_read_bmode(
bc, pbi->common.kf_bmode_prob [A] [L]);
} else {
m->bmi[i].as_mode.second = (B_PREDICTION_MODE)(B_DC_PRED - 1);
}
#endif
} while (++i < 16);
}
if ((m->mbmi.mode = y_mode) == I8X8_PRED) {
int i;
int mode8x8;
for (i = 0; i < 4; i++) {
int ib = vp8_i8x8_block[i];
mode8x8 = vp8_read_i8x8_mode(bc, pbi->common.fc.i8x8_mode_prob);
m->bmi[ib + 0].as_mode.first = mode8x8;
m->bmi[ib + 1].as_mode.first = mode8x8;
m->bmi[ib + 4].as_mode.first = mode8x8;
m->bmi[ib + 5].as_mode.first = mode8x8;
#if CONFIG_COMP_INTRA_PRED
m->bmi[ib + 0].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
m->bmi[ib + 1].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
m->bmi[ib + 4].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
m->bmi[ib + 5].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
}
} else
m->mbmi.uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(bc,
pbi->common.kf_uv_mode_prob[m->mbmi.mode]);
#if CONFIG_COMP_INTRA_PRED
m->mbmi.second_uv_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
#if CONFIG_SUPERBLOCKS
if (m->mbmi.encoded_as_sb)
m->mbmi.txfm_size = TX_8X8;
else
#endif
if (cm->txfm_mode == TX_MODE_SELECT && m->mbmi.mb_skip_coeff == 0 &&
m->mbmi.mode <= I8X8_PRED) {
// FIXME(rbultje) code ternary symbol once all experiments are merged
m->mbmi.txfm_size = vp8_read(bc, cm->prob_tx[0]);
if (m->mbmi.txfm_size != TX_4X4 && m->mbmi.mode != I8X8_PRED)
m->mbmi.txfm_size += vp8_read(bc, cm->prob_tx[1]);
} else if (cm->txfm_mode >= ALLOW_16X16 && m->mbmi.mode <= TM_PRED) {
m->mbmi.txfm_size = TX_16X16;
} else if (cm->txfm_mode >= ALLOW_8X8 && m->mbmi.mode != B_PRED) {
m->mbmi.txfm_size = TX_8X8;
} else {
m->mbmi.txfm_size = TX_4X4;
}
}
static int read_nmv_component(vp8_reader *r,
int rv,
const nmv_component *mvcomp) {
int v, s, z, c, o, d;
s = vp8_read(r, mvcomp->sign);
c = vp8_treed_read(r, vp8_mv_class_tree, mvcomp->classes);
if (c == MV_CLASS_0) {
d = vp8_treed_read(r, vp8_mv_class0_tree, mvcomp->class0);
} else {
int i, b;
d = 0;
b = c + CLASS0_BITS - 1; /* number of bits */
for (i = 0; i < b; ++i)
d |= (vp8_read(r, mvcomp->bits[i]) << i);
}
o = d << 3;
z = vp8_get_mv_mag(c, o);
v = (s ? -(z + 8) : (z + 8));
return v;
}
static int read_nmv_component_fp(vp8_reader *r,
int v,
int rv,
const nmv_component *mvcomp,
int usehp) {
int s, z, c, o, d, e, f;
s = v < 0;
z = (s ? -v : v) - 1; /* magnitude - 1 */
z &= ~7;
c = vp8_get_mv_class(z, &o);
d = o >> 3;
if (c == MV_CLASS_0) {
f = vp8_treed_read(r, vp8_mv_fp_tree, mvcomp->class0_fp[d]);
} else {
f = vp8_treed_read(r, vp8_mv_fp_tree, mvcomp->fp);
}
o += (f << 1);
if (usehp) {
if (c == MV_CLASS_0) {
e = vp8_read(r, mvcomp->class0_hp);
} else {
e = vp8_read(r, mvcomp->hp);
}
o += e;
} else {
++o; /* Note if hp is not used, the default value of the hp bit is 1 */
}
z = vp8_get_mv_mag(c, o);
v = (s ? -(z + 1) : (z + 1));
return v;
}
static void read_nmv(vp8_reader *r, MV *mv, const MV *ref,
const nmv_context *mvctx) {
MV_JOINT_TYPE j = vp8_treed_read(r, vp8_mv_joint_tree, mvctx->joints);
mv->row = mv-> col = 0;
if (j == MV_JOINT_HZVNZ || j == MV_JOINT_HNZVNZ) {
mv->row = read_nmv_component(r, ref->row, &mvctx->comps[0]);
}
if (j == MV_JOINT_HNZVZ || j == MV_JOINT_HNZVNZ) {
mv->col = read_nmv_component(r, ref->col, &mvctx->comps[1]);
}
}
static void read_nmv_fp(vp8_reader *r, MV *mv, const MV *ref,
const nmv_context *mvctx, int usehp) {
MV_JOINT_TYPE j = vp8_get_mv_joint(*mv);
usehp = usehp && vp8_use_nmv_hp(ref);
if (j == MV_JOINT_HZVNZ || j == MV_JOINT_HNZVNZ) {
mv->row = read_nmv_component_fp(r, mv->row, ref->row, &mvctx->comps[0],
usehp);
}
if (j == MV_JOINT_HNZVZ || j == MV_JOINT_HNZVNZ) {
mv->col = read_nmv_component_fp(r, mv->col, ref->col, &mvctx->comps[1],
usehp);
}
//printf(" %d: %d %d ref: %d %d\n", usehp, mv->row, mv-> col, ref->row, ref->col);
}
static void update_nmv(vp8_reader *bc, vp8_prob *const p,
const vp8_prob upd_p) {
if (vp8_read(bc, upd_p)) {
#ifdef LOW_PRECISION_MV_UPDATE
*p = (vp8_read_literal(bc, 7) << 1) | 1;
#else
*p = (vp8_read_literal(bc, 8));
#endif
}
}
static void read_nmvprobs(vp8_reader *bc, nmv_context *mvctx,
int usehp) {
int i, j, k;
#ifdef MV_GROUP_UPDATE
if (!vp8_read_bit(bc)) return;
#endif
for (j = 0; j < MV_JOINTS - 1; ++j) {
update_nmv(bc, &mvctx->joints[j],
VP8_NMV_UPDATE_PROB);
}
for (i = 0; i < 2; ++i) {
update_nmv(bc, &mvctx->comps[i].sign,
VP8_NMV_UPDATE_PROB);
for (j = 0; j < MV_CLASSES - 1; ++j) {
update_nmv(bc, &mvctx->comps[i].classes[j],
VP8_NMV_UPDATE_PROB);
}
for (j = 0; j < CLASS0_SIZE - 1; ++j) {
update_nmv(bc, &mvctx->comps[i].class0[j],
VP8_NMV_UPDATE_PROB);
}
for (j = 0; j < MV_OFFSET_BITS; ++j) {
update_nmv(bc, &mvctx->comps[i].bits[j],
VP8_NMV_UPDATE_PROB);
}
}
for (i = 0; i < 2; ++i) {
for (j = 0; j < CLASS0_SIZE; ++j) {
for (k = 0; k < 3; ++k)
update_nmv(bc, &mvctx->comps[i].class0_fp[j][k],
VP8_NMV_UPDATE_PROB);
}
for (j = 0; j < 3; ++j) {
update_nmv(bc, &mvctx->comps[i].fp[j],
VP8_NMV_UPDATE_PROB);
}
}
if (usehp) {
for (i = 0; i < 2; ++i) {
update_nmv(bc, &mvctx->comps[i].class0_hp,
VP8_NMV_UPDATE_PROB);
update_nmv(bc, &mvctx->comps[i].hp,
VP8_NMV_UPDATE_PROB);
}
}
}
// Read the referncence frame
static MV_REFERENCE_FRAME read_ref_frame(VP8D_COMP *pbi,
vp8_reader *const bc,
unsigned char segment_id) {
MV_REFERENCE_FRAME ref_frame;
int seg_ref_active;
int seg_ref_count = 0;
VP8_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
seg_ref_active = vp9_segfeature_active(xd,
segment_id,
SEG_LVL_REF_FRAME);
// If segment coding enabled does the segment allow for more than one
// possible reference frame
if (seg_ref_active) {
seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) +
vp9_check_segref(xd, segment_id, LAST_FRAME) +
vp9_check_segref(xd, segment_id, GOLDEN_FRAME) +
vp9_check_segref(xd, segment_id, ALTREF_FRAME);
}
// Segment reference frame features not available or allows for
// multiple reference frame options
if (!seg_ref_active || (seg_ref_count > 1)) {
// Values used in prediction model coding
unsigned char prediction_flag;
vp8_prob pred_prob;
MV_REFERENCE_FRAME pred_ref;
// Get the context probability the prediction flag
pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF);
// Read the prediction status flag
prediction_flag = (unsigned char)vp8_read(bc, pred_prob);
// Store the prediction flag.
vp9_set_pred_flag(xd, PRED_REF, prediction_flag);
// Get the predicted reference frame.
pred_ref = vp9_get_pred_ref(cm, xd);
// If correctly predicted then use the predicted value
if (prediction_flag) {
ref_frame = pred_ref;
}
// else decode the explicitly coded value
else {
vp8_prob mod_refprobs[PREDICTION_PROBS];
vpx_memcpy(mod_refprobs,
cm->mod_refprobs[pred_ref], sizeof(mod_refprobs));
// If segment coding enabled blank out options that cant occur by
// setting the branch probability to 0.
if (seg_ref_active) {
mod_refprobs[INTRA_FRAME] *=
vp9_check_segref(xd, segment_id, INTRA_FRAME);
mod_refprobs[LAST_FRAME] *=
vp9_check_segref(xd, segment_id, LAST_FRAME);
mod_refprobs[GOLDEN_FRAME] *=
(vp9_check_segref(xd, segment_id, GOLDEN_FRAME) *
vp9_check_segref(xd, segment_id, ALTREF_FRAME));
}
// Default to INTRA_FRAME (value 0)
ref_frame = INTRA_FRAME;
// Do we need to decode the Intra/Inter branch
if (mod_refprobs[0])
ref_frame = (MV_REFERENCE_FRAME) vp8_read(bc, mod_refprobs[0]);
else
ref_frame++;
if (ref_frame) {
// Do we need to decode the Last/Gf_Arf branch
if (mod_refprobs[1])
ref_frame += vp8_read(bc, mod_refprobs[1]);
else
ref_frame++;
if (ref_frame > 1) {
// Do we need to decode the GF/Arf branch
if (mod_refprobs[2])
ref_frame += vp8_read(bc, mod_refprobs[2]);
else {
if (seg_ref_active) {
if ((pred_ref == GOLDEN_FRAME) ||
!vp9_check_segref(xd, segment_id, GOLDEN_FRAME)) {
ref_frame = ALTREF_FRAME;
} else
ref_frame = GOLDEN_FRAME;
} else
ref_frame = (pred_ref == GOLDEN_FRAME)
? ALTREF_FRAME : GOLDEN_FRAME;
}
}
}
}
}
// Segment reference frame features are enabled
else {
// The reference frame for the mb is considered as correclty predicted
// if it is signaled at the segment level for the purposes of the
// common prediction model
vp9_set_pred_flag(xd, PRED_REF, 1);
ref_frame = vp9_get_pred_ref(cm, xd);
}
return (MV_REFERENCE_FRAME)ref_frame;
}
#if CONFIG_SUPERBLOCKS
static MB_PREDICTION_MODE read_sb_mv_ref(vp8_reader *bc, const vp8_prob *p) {
return (MB_PREDICTION_MODE) vp8_treed_read(bc, vp8_sb_mv_ref_tree, p);
}
#endif
static MB_PREDICTION_MODE read_mv_ref(vp8_reader *bc, const vp8_prob *p) {
return (MB_PREDICTION_MODE) vp8_treed_read(bc, vp8_mv_ref_tree, p);
}
static B_PREDICTION_MODE sub_mv_ref(vp8_reader *bc, const vp8_prob *p) {
return (B_PREDICTION_MODE) vp8_treed_read(bc, vp8_sub_mv_ref_tree, p);
}
#ifdef VPX_MODE_COUNT
unsigned int vp8_mv_cont_count[5][4] = {
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 }
};
#endif
static const unsigned char mbsplit_fill_count[4] = {8, 8, 4, 1};
static const unsigned char mbsplit_fill_offset[4][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{ 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15},
{ 0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15},
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
};
static void read_switchable_interp_probs(VP8D_COMP* const pbi,
BOOL_DECODER* const bc) {
VP8_COMMON *const cm = &pbi->common;
int i, j;
for (j = 0; j <= VP8_SWITCHABLE_FILTERS; ++j) {
for (i = 0; i < VP8_SWITCHABLE_FILTERS - 1; ++i) {
cm->fc.switchable_interp_prob[j][i] = vp8_read_literal(bc, 8);
}
}
//printf("DECODER: %d %d\n", cm->fc.switchable_interp_prob[0],
//cm->fc.switchable_interp_prob[1]);
}
static void mb_mode_mv_init(VP8D_COMP *pbi, vp8_reader *bc) {
VP8_COMMON *const cm = &pbi->common;
nmv_context *const nmvc = &pbi->common.fc.nmvc;
MACROBLOCKD *const xd = &pbi->mb;
if (cm->frame_type == KEY_FRAME) {
if (!cm->kf_ymode_probs_update)
cm->kf_ymode_probs_index = vp8_read_literal(bc, 3);
} else {
#if CONFIG_PRED_FILTER
cm->pred_filter_mode = (vp8_prob)vp8_read_literal(bc, 2);
if (cm->pred_filter_mode == 2)
cm->prob_pred_filter_off = (vp8_prob)vp8_read_literal(bc, 8);
#endif
if (cm->mcomp_filter_type == SWITCHABLE)
read_switchable_interp_probs(pbi, bc);
// Decode the baseline probabilities for decoding reference frame
cm->prob_intra_coded = (vp8_prob)vp8_read_literal(bc, 8);
cm->prob_last_coded = (vp8_prob)vp8_read_literal(bc, 8);
cm->prob_gf_coded = (vp8_prob)vp8_read_literal(bc, 8);
// Computes a modified set of probabilities for use when reference
// frame prediction fails.
vp9_compute_mod_refprobs(cm);
pbi->common.comp_pred_mode = vp8_read(bc, 128);
if (cm->comp_pred_mode)
cm->comp_pred_mode += vp8_read(bc, 128);
if (cm->comp_pred_mode == HYBRID_PREDICTION) {
int i;
for (i = 0; i < COMP_PRED_CONTEXTS; i++)
cm->prob_comppred[i] = (vp8_prob)vp8_read_literal(bc, 8);
}
if (vp8_read_bit(bc)) {
int i = 0;
do {
cm->fc.ymode_prob[i] = (vp8_prob) vp8_read_literal(bc, 8);
} while (++i < VP8_YMODES - 1);
}
#if CONFIG_NEW_MVREF
// Temp defaults probabilities for ecnoding the MV ref id signal
vpx_memset(xd->mb_mv_ref_id_probs, 192, sizeof(xd->mb_mv_ref_id_probs));
#endif
read_nmvprobs(bc, nmvc, xd->allow_high_precision_mv);
}
}
// This function either reads the segment id for the current macroblock from
// the bitstream or if the value is temporally predicted asserts the predicted
// value
static void read_mb_segment_id(VP8D_COMP *pbi,
int mb_row, int mb_col,
BOOL_DECODER* const bc) {
VP8_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *mbmi = &mi->mbmi;
int index = mb_row * pbi->common.mb_cols + mb_col;
if (xd->segmentation_enabled) {
if (xd->update_mb_segmentation_map) {
// Is temporal coding of the segment id for this mb enabled.
if (cm->temporal_update) {
// Get the context based probability for reading the
// prediction status flag
vp8_prob pred_prob =
vp9_get_pred_prob(cm, xd, PRED_SEG_ID);
// Read the prediction status flag
unsigned char seg_pred_flag =
(unsigned char)vp8_read(bc, pred_prob);
// Store the prediction flag.
vp9_set_pred_flag(xd, PRED_SEG_ID, seg_pred_flag);
// If the value is flagged as correctly predicted
// then use the predicted value
if (seg_pred_flag) {
mbmi->segment_id = vp9_get_pred_mb_segid(cm, xd, index);
}
// Else .... decode it explicitly
else {
vp8_read_mb_segid(bc, mbmi, xd);
}
}
// Normal unpredicted coding mode
else {
vp8_read_mb_segid(bc, mbmi, xd);
}
#if CONFIG_SUPERBLOCKS
if (mbmi->encoded_as_sb) {
cm->last_frame_seg_map[index] = mbmi->segment_id;
if (mb_col + 1 < cm->mb_cols)
cm->last_frame_seg_map[index + 1] = mbmi->segment_id;
if (mb_row + 1 < cm->mb_rows) {
cm->last_frame_seg_map[index + cm->mb_cols] = mbmi->segment_id;
if (mb_col + 1 < cm->mb_cols)
cm->last_frame_seg_map[index + cm->mb_cols + 1] = mbmi->segment_id;
}
} else
#endif
{
cm->last_frame_seg_map[index] = mbmi->segment_id;
}
} else {
#if CONFIG_SUPERBLOCKS
if (mbmi->encoded_as_sb) {
mbmi->segment_id = cm->last_frame_seg_map[index];
if (mb_col < cm->mb_cols - 1)
mbmi->segment_id = mbmi->segment_id &&
cm->last_frame_seg_map[index + 1];
if (mb_row < cm->mb_rows - 1) {
mbmi->segment_id = mbmi->segment_id &&
cm->last_frame_seg_map[index + cm->mb_cols];
if (mb_col < cm->mb_cols - 1)
mbmi->segment_id = mbmi->segment_id &&
cm->last_frame_seg_map[index + cm->mb_cols + 1];
}
} else
#endif
{
mbmi->segment_id = cm->last_frame_seg_map[index];
}
}
} else {
// The encoder explicitly sets the segment_id to 0
// when segmentation is disabled
mbmi->segment_id = 0;
}
}
static void read_mb_modes_mv(VP8D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi,
MODE_INFO *prev_mi,
int mb_row, int mb_col,
BOOL_DECODER* const bc) {
VP8_COMMON *const cm = &pbi->common;
nmv_context *const nmvc = &pbi->common.fc.nmvc;
const int mis = pbi->common.mode_info_stride;
MACROBLOCKD *const xd = &pbi->mb;
int_mv *const mv = &mbmi->mv;
int mb_to_left_edge;
int mb_to_right_edge;
int mb_to_top_edge;
int mb_to_bottom_edge;
mb_to_top_edge = xd->mb_to_top_edge;
mb_to_bottom_edge = xd->mb_to_bottom_edge;
mb_to_top_edge -= LEFT_TOP_MARGIN;
mb_to_bottom_edge += RIGHT_BOTTOM_MARGIN;
mbmi->need_to_clamp_mvs = 0;
mbmi->need_to_clamp_secondmv = 0;
mbmi->second_ref_frame = 0;
/* Distance of Mb to the various image edges.
* These specified to 8th pel as they are always compared to MV values that are in 1/8th pel units
*/
xd->mb_to_left_edge =
mb_to_left_edge = -((mb_col * 16) << 3);
mb_to_left_edge -= LEFT_TOP_MARGIN;
xd->mb_to_right_edge =
mb_to_right_edge = ((pbi->common.mb_cols - 1 - mb_col) * 16) << 3;
mb_to_right_edge += RIGHT_BOTTOM_MARGIN;
// Make sure the MACROBLOCKD mode info pointer is pointed at the
// correct entry for the current macroblock.
xd->mode_info_context = mi;
xd->prev_mode_info_context = prev_mi;
// Read the macroblock segment id.
read_mb_segment_id(pbi, mb_row, mb_col, bc);
if (pbi->common.mb_no_coeff_skip &&
(!vp9_segfeature_active(xd,
mbmi->segment_id, SEG_LVL_EOB) ||
(vp9_get_segdata(xd, mbmi->segment_id, SEG_LVL_EOB) != 0))) {
// Read the macroblock coeff skip flag if this feature is in use,
// else default to 0
mbmi->mb_skip_coeff = vp8_read(bc, vp9_get_pred_prob(cm, xd, PRED_MBSKIP));
} else {
if (vp9_segfeature_active(xd,
mbmi->segment_id, SEG_LVL_EOB) &&
(vp9_get_segdata(xd, mbmi->segment_id, SEG_LVL_EOB) == 0)) {
mbmi->mb_skip_coeff = 1;
} else
mbmi->mb_skip_coeff = 0;
}
// Read the reference frame
mbmi->ref_frame = read_ref_frame(pbi, bc, mbmi->segment_id);
// If reference frame is an Inter frame
if (mbmi->ref_frame) {
int rct[4];
int_mv nearest, nearby, best_mv;
int_mv nearest_second, nearby_second, best_mv_second;
vp8_prob mv_ref_p [VP8_MVREFS - 1];
#if CONFIG_NEWBESTREFMV
int recon_y_stride, recon_yoffset;
int recon_uv_stride, recon_uvoffset;
#endif
vp8_find_near_mvs(xd, mi,
prev_mi,
&nearest, &nearby, &best_mv, rct,
mbmi->ref_frame, cm->ref_frame_sign_bias);
#if CONFIG_NEWBESTREFMV
{
int ref_fb_idx;
MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame;
/* Select the appropriate reference frame for this MB */
if (ref_frame == LAST_FRAME)
ref_fb_idx = cm->lst_fb_idx;
else if (ref_frame == GOLDEN_FRAME)
ref_fb_idx = cm->gld_fb_idx;
else
ref_fb_idx = cm->alt_fb_idx;
recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride ;
recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride;
recon_yoffset = (mb_row * recon_y_stride * 16) + (mb_col * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8) + (mb_col * 8);
xd->pre.y_buffer = cm->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = cm->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = cm->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
vp9_find_mv_refs(xd, mi, prev_mi,
ref_frame, mbmi->ref_mvs[ref_frame],
cm->ref_frame_sign_bias);
vp8_find_best_ref_mvs(xd,
xd->pre.y_buffer,
recon_y_stride,
mbmi->ref_mvs[ref_frame],
&best_mv, &nearest, &nearby);
}
#endif
vp8_mv_ref_probs(&pbi->common, mv_ref_p, rct);
// Is the segment level mode feature enabled for this segment
if (vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_MODE)) {
mbmi->mode =
vp9_get_segdata(xd, mbmi->segment_id, SEG_LVL_MODE);
} else {
#if CONFIG_SUPERBLOCKS
if (mbmi->encoded_as_sb) {
mbmi->mode = read_sb_mv_ref(bc, mv_ref_p);
} else
#endif
mbmi->mode = read_mv_ref(bc, mv_ref_p);
vp8_accum_mv_refs(&pbi->common, mbmi->mode, rct);
}
#if CONFIG_PRED_FILTER
if (mbmi->mode >= NEARESTMV && mbmi->mode < SPLITMV) {
// Is the prediction filter enabled
if (cm->pred_filter_mode == 2)
mbmi->pred_filter_enabled =
vp8_read(bc, cm->prob_pred_filter_off);
else
mbmi->pred_filter_enabled = cm->pred_filter_mode;
}
#endif
if (mbmi->mode >= NEARESTMV && mbmi->mode <= SPLITMV)
{
if (cm->mcomp_filter_type == SWITCHABLE) {
mbmi->interp_filter = vp8_switchable_interp[
vp8_treed_read(bc, vp8_switchable_interp_tree,
vp9_get_pred_probs(cm, xd, PRED_SWITCHABLE_INTERP))];
} else {
mbmi->interp_filter = cm->mcomp_filter_type;
}
}
if (cm->comp_pred_mode == COMP_PREDICTION_ONLY ||
(cm->comp_pred_mode == HYBRID_PREDICTION &&
vp8_read(bc, vp9_get_pred_prob(cm, xd, PRED_COMP)))) {
/* Since we have 3 reference frames, we can only have 3 unique
* combinations of combinations of 2 different reference frames
* (A-G, G-L or A-L). In the bitstream, we use this to simply
* derive the second reference frame from the first reference
* frame, by saying it's the next one in the enumerator, and
* if that's > n_refs, then the second reference frame is the
* first one in the enumerator. */
mbmi->second_ref_frame = mbmi->ref_frame + 1;
if (mbmi->second_ref_frame == 4)
mbmi->second_ref_frame = 1;
#if CONFIG_NEWBESTREFMV
if (mbmi->second_ref_frame) {
int second_ref_fb_idx;
/* Select the appropriate reference frame for this MB */
if (mbmi->second_ref_frame == LAST_FRAME)
second_ref_fb_idx = cm->lst_fb_idx;
else if (mbmi->second_ref_frame ==
GOLDEN_FRAME)
second_ref_fb_idx = cm->gld_fb_idx;
else
second_ref_fb_idx = cm->alt_fb_idx;
xd->second_pre.y_buffer =
cm->yv12_fb[second_ref_fb_idx].y_buffer + recon_yoffset;
xd->second_pre.u_buffer =
cm->yv12_fb[second_ref_fb_idx].u_buffer + recon_uvoffset;
xd->second_pre.v_buffer =
cm->yv12_fb[second_ref_fb_idx].v_buffer + recon_uvoffset;
vp8_find_near_mvs(xd, mi, prev_mi,
&nearest_second, &nearby_second, &best_mv_second,
rct,
mbmi->second_ref_frame,
cm->ref_frame_sign_bias);
vp9_find_mv_refs(xd, mi, prev_mi,
mbmi->second_ref_frame,
mbmi->ref_mvs[mbmi->second_ref_frame],
cm->ref_frame_sign_bias);
vp8_find_best_ref_mvs(xd,
xd->second_pre.y_buffer,
recon_y_stride,
mbmi->ref_mvs[mbmi->second_ref_frame],
&best_mv_second,
&nearest_second,
&nearby_second);
}
#else
vp8_find_near_mvs(xd, mi, prev_mi,
&nearest_second, &nearby_second, &best_mv_second,
rct,
mbmi->second_ref_frame,
pbi->common.ref_frame_sign_bias);
#endif
} else {
mbmi->second_ref_frame = 0;
}
mbmi->uv_mode = DC_PRED;
switch (mbmi->mode) {
case SPLITMV: {
const int s = mbmi->partitioning =
vp8_treed_read(bc, vp8_mbsplit_tree, cm->fc.mbsplit_prob);
const int num_p = vp8_mbsplit_count [s];
int j = 0;
cm->fc.mbsplit_counts[s]++;
mbmi->need_to_clamp_mvs = 0;
do { /* for each subset j */
int_mv leftmv, abovemv, second_leftmv, second_abovemv;
int_mv blockmv, secondmv;
int k; /* first block in subset j */
int mv_contz;
int blockmode;
k = vp8_mbsplit_offset[s][j];
leftmv.as_int = left_block_mv(mi, k);
abovemv.as_int = above_block_mv(mi, k, mis);
if (mbmi->second_ref_frame) {
second_leftmv.as_int = left_block_second_mv(mi, k);
second_abovemv.as_int = above_block_second_mv(mi, k, mis);
}
mv_contz = vp8_mv_cont(&leftmv, &abovemv);
blockmode = sub_mv_ref(bc, cm->fc.sub_mv_ref_prob [mv_contz]);
cm->fc.sub_mv_ref_counts[mv_contz][blockmode - LEFT4X4]++;
switch (blockmode) {
case NEW4X4:
read_nmv(bc, &blockmv.as_mv, &best_mv.as_mv, nmvc);
read_nmv_fp(bc, &blockmv.as_mv, &best_mv.as_mv, nmvc,
xd->allow_high_precision_mv);
vp8_increment_nmv(&blockmv.as_mv, &best_mv.as_mv,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
blockmv.as_mv.row += best_mv.as_mv.row;
blockmv.as_mv.col += best_mv.as_mv.col;
if (mbmi->second_ref_frame) {
read_nmv(bc, &secondmv.as_mv, &best_mv_second.as_mv, nmvc);
read_nmv_fp(bc, &secondmv.as_mv, &best_mv_second.as_mv, nmvc,
xd->allow_high_precision_mv);
vp8_increment_nmv(&secondmv.as_mv, &best_mv_second.as_mv,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
secondmv.as_mv.row += best_mv_second.as_mv.row;
secondmv.as_mv.col += best_mv_second.as_mv.col;
}
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][3]++;
#endif
break;
case LEFT4X4:
blockmv.as_int = leftmv.as_int;
if (mbmi->second_ref_frame)
secondmv.as_int = second_leftmv.as_int;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][0]++;
#endif
break;
case ABOVE4X4:
blockmv.as_int = abovemv.as_int;
if (mbmi->second_ref_frame)
secondmv.as_int = second_abovemv.as_int;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][1]++;
#endif
break;
case ZERO4X4:
blockmv.as_int = 0;
if (mbmi->second_ref_frame)
secondmv.as_int = 0;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][2]++;
#endif
break;
default:
break;
}
mbmi->need_to_clamp_mvs |= vp8_check_mv_bounds(&blockmv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->second_ref_frame) {
mbmi->need_to_clamp_mvs |= vp8_check_mv_bounds(&secondmv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
}
{
/* Fill (uniform) modes, mvs of jth subset.
Must do it here because ensuing subsets can
refer back to us via "left" or "above". */
const unsigned char *fill_offset;
unsigned int fill_count = mbsplit_fill_count[s];
fill_offset = &mbsplit_fill_offset[s][(unsigned char)j * mbsplit_fill_count[s]];
do {
mi->bmi[ *fill_offset].as_mv.first.as_int = blockmv.as_int;
if (mbmi->second_ref_frame)
mi->bmi[ *fill_offset].as_mv.second.as_int = secondmv.as_int;
fill_offset++;
} while (--fill_count);
}
} while (++j < num_p);
}
mv->as_int = mi->bmi[15].as_mv.first.as_int;
mbmi->mv[1].as_int = mi->bmi[15].as_mv.second.as_int;
break; /* done with SPLITMV */
case NEARMV:
mv->as_int = nearby.as_int;
/* Clip "next_nearest" so that it does not extend to far out of image */
vp8_clamp_mv(mv, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
if (mbmi->second_ref_frame) {
mbmi->mv[1].as_int = nearby_second.as_int;
vp8_clamp_mv(&mbmi->mv[1], mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
}
break;
case NEARESTMV:
mv->as_int = nearest.as_int;
/* Clip "next_nearest" so that it does not extend to far out of image */
vp8_clamp_mv(mv, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
if (mbmi->second_ref_frame) {
mbmi->mv[1].as_int = nearest_second.as_int;
vp8_clamp_mv(&mbmi->mv[1], mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
}
break;
case ZEROMV:
mv->as_int = 0;
if (mbmi->second_ref_frame)
mbmi->mv[1].as_int = 0;
break;
case NEWMV:
#if CONFIG_NEW_MVREF
{
int best_index;
MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame;
// Encode the index of the choice.
best_index =
vp8_read_mv_ref_id(bc, xd->mb_mv_ref_id_probs[ref_frame]);
best_mv.as_int = mbmi->ref_mvs[ref_frame][best_index].as_int;
}
#endif
read_nmv(bc, &mv->as_mv, &best_mv.as_mv, nmvc);
read_nmv_fp(bc, &mv->as_mv, &best_mv.as_mv, nmvc,
xd->allow_high_precision_mv);
vp8_increment_nmv(&mv->as_mv, &best_mv.as_mv, &cm->fc.NMVcount,
xd->allow_high_precision_mv);
mv->as_mv.row += best_mv.as_mv.row;
mv->as_mv.col += best_mv.as_mv.col;
/* Don't need to check this on NEARMV and NEARESTMV modes
* since those modes clamp the MV. The NEWMV mode does not,
* so signal to the prediction stage whether special
* handling may be required.
*/
mbmi->need_to_clamp_mvs = vp8_check_mv_bounds(mv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->second_ref_frame) {
#if CONFIG_NEW_MVREF
{
int best_index;
MV_REFERENCE_FRAME ref_frame = mbmi->second_ref_frame;
// Encode the index of the choice.
best_index =
vp8_read_mv_ref_id(bc, xd->mb_mv_ref_id_probs[ref_frame]);
best_mv_second.as_int = mbmi->ref_mvs[ref_frame][best_index].as_int;
}
#endif
read_nmv(bc, &mbmi->mv[1].as_mv, &best_mv_second.as_mv, nmvc);
read_nmv_fp(bc, &mbmi->mv[1].as_mv, &best_mv_second.as_mv, nmvc,
xd->allow_high_precision_mv);
vp8_increment_nmv(&mbmi->mv[1].as_mv, &best_mv_second.as_mv,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
mbmi->mv[1].as_mv.row += best_mv_second.as_mv.row;
mbmi->mv[1].as_mv.col += best_mv_second.as_mv.col;
mbmi->need_to_clamp_secondmv |=
vp8_check_mv_bounds(&mbmi->mv[1],
mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
}
break;
default:
;
#if CONFIG_DEBUG
assert(0);
#endif
}
} else {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
if (vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_MODE))
mbmi->mode = (MB_PREDICTION_MODE)
vp9_get_segdata(xd, mbmi->segment_id, SEG_LVL_MODE);
else {
// FIXME write using SB mode tree
mbmi->mode = (MB_PREDICTION_MODE)
vp8_read_ymode(bc, pbi->common.fc.ymode_prob);
pbi->common.fc.ymode_counts[mbmi->mode]++;
}
#if CONFIG_COMP_INTRA_PRED
mbmi->second_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
// If MB mode is BPRED read the block modes
if (mbmi->mode == B_PRED) {
int j = 0;
#if CONFIG_COMP_INTRA_PRED
int use_comp_pred = vp8_read(bc, 128);
#endif
do {
mi->bmi[j].as_mode.first = (B_PREDICTION_MODE)vp8_read_bmode(bc, pbi->common.fc.bmode_prob);
/*
{
int p;
for (p = 0; p < VP8_BINTRAMODES - 1; ++p)
printf(" %d", pbi->common.fc.bmode_prob[p]);
printf("\nbmode[%d][%d]: %d\n", pbi->common.current_video_frame, j, mi->bmi[j].as_mode.first);
}
*/
pbi->common.fc.bmode_counts[mi->bmi[j].as_mode.first]++;
#if CONFIG_COMP_INTRA_PRED
if (use_comp_pred) {
mi->bmi[j].as_mode.second = (B_PREDICTION_MODE)vp8_read_bmode(bc, pbi->common.fc.bmode_prob);
} else {
mi->bmi[j].as_mode.second = (B_PREDICTION_MODE)(B_DC_PRED - 1);
}
#endif
} while (++j < 16);
}
if (mbmi->mode == I8X8_PRED) {
int i;
int mode8x8;
for (i = 0; i < 4; i++) {
int ib = vp8_i8x8_block[i];
mode8x8 = vp8_read_i8x8_mode(bc, pbi->common.fc.i8x8_mode_prob);
mi->bmi[ib + 0].as_mode.first = mode8x8;
mi->bmi[ib + 1].as_mode.first = mode8x8;
mi->bmi[ib + 4].as_mode.first = mode8x8;
mi->bmi[ib + 5].as_mode.first = mode8x8;
pbi->common.fc.i8x8_mode_counts[mode8x8]++;
#if CONFIG_COMP_INTRA_PRED
mi->bmi[ib + 0].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
mi->bmi[ib + 1].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
mi->bmi[ib + 4].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
mi->bmi[ib + 5].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
}
} else {
mbmi->uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(
bc, pbi->common.fc.uv_mode_prob[mbmi->mode]);
pbi->common.fc.uv_mode_counts[mbmi->mode][mbmi->uv_mode]++;
}
#if CONFIG_COMP_INTRA_PRED
mbmi->second_uv_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
}
#if CONFIG_SUPERBLOCKS
if (mbmi->encoded_as_sb)
mbmi->txfm_size = TX_8X8;
else
#endif
if (cm->txfm_mode == TX_MODE_SELECT && mbmi->mb_skip_coeff == 0 &&
((mbmi->ref_frame == INTRA_FRAME && mbmi->mode <= I8X8_PRED) ||
(mbmi->ref_frame != INTRA_FRAME && !(mbmi->mode == SPLITMV &&
mbmi->partitioning == PARTITIONING_4X4)))) {
// FIXME(rbultje) code ternary symbol once all experiments are merged
mbmi->txfm_size = vp8_read(bc, cm->prob_tx[0]);
if (mbmi->txfm_size != TX_4X4 && mbmi->mode != I8X8_PRED &&
mbmi->mode != SPLITMV)
mbmi->txfm_size += vp8_read(bc, cm->prob_tx[1]);
} else if (cm->txfm_mode >= ALLOW_16X16 &&
((mbmi->ref_frame == INTRA_FRAME && mbmi->mode <= TM_PRED) ||
(mbmi->ref_frame != INTRA_FRAME && mbmi->mode != SPLITMV))) {
mbmi->txfm_size = TX_16X16;
} else if (cm->txfm_mode >= ALLOW_8X8 &&
(!(mbmi->ref_frame == INTRA_FRAME && mbmi->mode == B_PRED) &&
!(mbmi->ref_frame != INTRA_FRAME && mbmi->mode == SPLITMV &&
mbmi->partitioning == PARTITIONING_4X4))) {
mbmi->txfm_size = TX_8X8;
} else {
mbmi->txfm_size = TX_4X4;
}
}
void vpx_decode_mode_mvs_init(VP8D_COMP *pbi, BOOL_DECODER* const bc) {
VP8_COMMON *cm = &pbi->common;
vpx_memset(cm->mbskip_pred_probs, 0, sizeof(cm->mbskip_pred_probs));
if (pbi->common.mb_no_coeff_skip) {
int k;
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
cm->mbskip_pred_probs[k] = (vp8_prob)vp8_read_literal(bc, 8);
}
mb_mode_mv_init(pbi, bc);
}
void vpx_decode_mb_mode_mv(VP8D_COMP *pbi,
MACROBLOCKD *xd,
int mb_row,
int mb_col,
BOOL_DECODER* const bc) {
MODE_INFO *mi = xd->mode_info_context;
MODE_INFO *prev_mi = xd->prev_mode_info_context;
if (pbi->common.frame_type == KEY_FRAME)
kfread_modes(pbi, mi, mb_row, mb_col, bc);
else
read_mb_modes_mv(pbi, mi, &mi->mbmi, prev_mi, mb_row, mb_col, bc);
}