c09f652590
Change-Id: Iff35d4b2f8f65511f80c594958c01fb4673fa033
387 lines
13 KiB
C
387 lines
13 KiB
C
|
|
/*
|
|
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <limits.h>
|
|
|
|
#include "vp9/common/vp9_common.h"
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
#include "vp9/common/vp9_treecoder.h"
|
|
|
|
// TBD prediction functions for various bitstream signals
|
|
|
|
// Returns a context number for the given MB prediction signal
|
|
unsigned char vp9_get_pred_context(const VP9_COMMON *const cm,
|
|
const MACROBLOCKD *const xd,
|
|
PRED_ID pred_id) {
|
|
int pred_context;
|
|
MODE_INFO *m = xd->mode_info_context;
|
|
|
|
// Note:
|
|
// The mode info data structure has a one element border above and to the
|
|
// left of the entries correpsonding to real macroblocks.
|
|
// The prediction flags in these dummy entries are initialised to 0.
|
|
switch (pred_id) {
|
|
case PRED_SEG_ID:
|
|
pred_context = (m - cm->mode_info_stride)->mbmi.seg_id_predicted;
|
|
if (xd->left_available)
|
|
pred_context += (m - 1)->mbmi.seg_id_predicted;
|
|
break;
|
|
|
|
case PRED_REF:
|
|
pred_context = (m - cm->mode_info_stride)->mbmi.ref_predicted;
|
|
if (xd->left_available)
|
|
pred_context += (m - 1)->mbmi.ref_predicted;
|
|
break;
|
|
|
|
case PRED_COMP:
|
|
// Context based on use of comp pred flag by neighbours
|
|
// pred_context =
|
|
// ((m - 1)->mbmi.second_ref_frame > INTRA_FRAME) +
|
|
// ((m - cm->mode_info_stride)->mbmi.second_ref_frame > INTRA_FRAME);
|
|
|
|
// Context based on mode and reference frame
|
|
// if ( m->mbmi.ref_frame == LAST_FRAME )
|
|
// pred_context = 0 + (m->mbmi.mode != ZEROMV);
|
|
// else if ( m->mbmi.ref_frame == GOLDEN_FRAME )
|
|
// pred_context = 2 + (m->mbmi.mode != ZEROMV);
|
|
// else
|
|
// pred_context = 4 + (m->mbmi.mode != ZEROMV);
|
|
|
|
if (m->mbmi.ref_frame == LAST_FRAME)
|
|
pred_context = 0;
|
|
else
|
|
pred_context = 1;
|
|
|
|
break;
|
|
|
|
case PRED_MBSKIP:
|
|
pred_context = (m - cm->mode_info_stride)->mbmi.mb_skip_coeff;
|
|
if (xd->left_available)
|
|
pred_context += (m - 1)->mbmi.mb_skip_coeff;
|
|
break;
|
|
|
|
case PRED_SWITCHABLE_INTERP:
|
|
{
|
|
int left_in_image = xd->left_available && (m - 1)->mbmi.mb_in_image;
|
|
int above_in_image = (m - cm->mode_info_stride)->mbmi.mb_in_image;
|
|
int left_mode = (m - 1)->mbmi.mode;
|
|
int above_mode = (m - cm->mode_info_stride)->mbmi.mode;
|
|
int left_interp, above_interp;
|
|
if (left_in_image && left_mode >= NEARESTMV && left_mode <= SPLITMV)
|
|
left_interp = vp9_switchable_interp_map[(m - 1)->mbmi.interp_filter];
|
|
else
|
|
left_interp = VP9_SWITCHABLE_FILTERS;
|
|
assert(left_interp != -1);
|
|
if (above_in_image && above_mode >= NEARESTMV && above_mode <= SPLITMV)
|
|
above_interp = vp9_switchable_interp_map[
|
|
(m - cm->mode_info_stride)->mbmi.interp_filter];
|
|
else
|
|
above_interp = VP9_SWITCHABLE_FILTERS;
|
|
assert(above_interp != -1);
|
|
|
|
if (left_interp == above_interp)
|
|
pred_context = left_interp;
|
|
else if (left_interp == VP9_SWITCHABLE_FILTERS &&
|
|
above_interp != VP9_SWITCHABLE_FILTERS)
|
|
pred_context = above_interp;
|
|
else if (left_interp != VP9_SWITCHABLE_FILTERS &&
|
|
above_interp == VP9_SWITCHABLE_FILTERS)
|
|
pred_context = left_interp;
|
|
else
|
|
pred_context = VP9_SWITCHABLE_FILTERS;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
pred_context = 0; // *** add error trap code.
|
|
break;
|
|
}
|
|
|
|
return pred_context;
|
|
}
|
|
|
|
// This function returns a context probability for coding a given
|
|
// prediction signal
|
|
vp9_prob vp9_get_pred_prob(const VP9_COMMON *const cm,
|
|
const MACROBLOCKD *const xd,
|
|
PRED_ID pred_id) {
|
|
const int pred_context = vp9_get_pred_context(cm, xd, pred_id);
|
|
|
|
switch (pred_id) {
|
|
case PRED_SEG_ID:
|
|
return cm->segment_pred_probs[pred_context];
|
|
case PRED_REF:
|
|
return cm->ref_pred_probs[pred_context];
|
|
case PRED_COMP:
|
|
// In keeping with convention elsewhre the probability returned is
|
|
// the probability of a "0" outcome which in this case means the
|
|
// probability of comp pred off.
|
|
return cm->prob_comppred[pred_context];
|
|
case PRED_MBSKIP:
|
|
return cm->mbskip_pred_probs[pred_context];
|
|
default:
|
|
return 128; // *** add error trap code.
|
|
}
|
|
}
|
|
|
|
// This function returns a context probability ptr for coding a given
|
|
// prediction signal
|
|
const vp9_prob *vp9_get_pred_probs(const VP9_COMMON *const cm,
|
|
const MACROBLOCKD *const xd,
|
|
PRED_ID pred_id) {
|
|
const int pred_context = vp9_get_pred_context(cm, xd, pred_id);
|
|
|
|
switch (pred_id) {
|
|
case PRED_SEG_ID:
|
|
return &cm->segment_pred_probs[pred_context];
|
|
case PRED_REF:
|
|
return &cm->ref_pred_probs[pred_context];
|
|
case PRED_COMP:
|
|
// In keeping with convention elsewhre the probability returned is
|
|
// the probability of a "0" outcome which in this case means the
|
|
// probability of comp pred off.
|
|
return &cm->prob_comppred[pred_context];
|
|
case PRED_MBSKIP:
|
|
return &cm->mbskip_pred_probs[pred_context];
|
|
case PRED_SWITCHABLE_INTERP:
|
|
return &cm->fc.switchable_interp_prob[pred_context][0];
|
|
default:
|
|
return NULL; // *** add error trap code.
|
|
}
|
|
}
|
|
|
|
// This function returns the status of the given prediction signal.
|
|
// I.e. is the predicted value for the given signal correct.
|
|
unsigned char vp9_get_pred_flag(const MACROBLOCKD *const xd,
|
|
PRED_ID pred_id) {
|
|
switch (pred_id) {
|
|
case PRED_SEG_ID:
|
|
return xd->mode_info_context->mbmi.seg_id_predicted;
|
|
case PRED_REF:
|
|
return xd->mode_info_context->mbmi.ref_predicted;
|
|
case PRED_MBSKIP:
|
|
return xd->mode_info_context->mbmi.mb_skip_coeff;
|
|
default:
|
|
return 0; // *** add error trap code.
|
|
}
|
|
}
|
|
|
|
// This function sets the status of the given prediction signal.
|
|
// I.e. is the predicted value for the given signal correct.
|
|
void vp9_set_pred_flag(MACROBLOCKD *const xd,
|
|
PRED_ID pred_id,
|
|
unsigned char pred_flag) {
|
|
const int mis = xd->mode_info_stride;
|
|
BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type;
|
|
const int bh = 1 << mb_height_log2(bsize);
|
|
const int bw = 1 << mb_width_log2(bsize);
|
|
#define sub(a, b) (b) < 0 ? (a) + (b) : (a)
|
|
const int x_mbs = sub(bw, xd->mb_to_right_edge >> 7);
|
|
const int y_mbs = sub(bh, xd->mb_to_bottom_edge >> 7);
|
|
#undef sub
|
|
int x, y;
|
|
|
|
switch (pred_id) {
|
|
case PRED_SEG_ID:
|
|
for (y = 0; y < y_mbs; y++) {
|
|
for (x = 0; x < x_mbs; x++) {
|
|
xd->mode_info_context[y * mis + x].mbmi.seg_id_predicted =
|
|
pred_flag;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PRED_REF:
|
|
for (y = 0; y < y_mbs; y++) {
|
|
for (x = 0; x < x_mbs; x++) {
|
|
xd->mode_info_context[y * mis + x].mbmi.ref_predicted = pred_flag;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PRED_MBSKIP:
|
|
for (y = 0; y < y_mbs; y++) {
|
|
for (x = 0; x < x_mbs; x++) {
|
|
xd->mode_info_context[y * mis + x].mbmi.mb_skip_coeff = pred_flag;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// *** add error trap code.
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
// The following contain the guts of the prediction code used to
|
|
// peredict various bitstream signals.
|
|
|
|
// Macroblock segment id prediction function
|
|
int vp9_get_pred_mb_segid(VP9_COMMON *cm, BLOCK_SIZE_TYPE sb_type,
|
|
int mb_row, int mb_col) {
|
|
const int mb_index = mb_row * cm->mb_cols + mb_col;
|
|
if (sb_type) {
|
|
const int bw = 1 << mb_width_log2(sb_type);
|
|
const int bh = 1 << mb_height_log2(sb_type);
|
|
const int ymbs = MIN(cm->mb_rows - mb_row, bh);
|
|
const int xmbs = MIN(cm->mb_cols - mb_col, bw);
|
|
int segment_id = INT_MAX;
|
|
int x, y;
|
|
|
|
for (y = 0; y < ymbs; y++) {
|
|
for (x = 0; x < xmbs; x++) {
|
|
const int index = mb_index + (y * cm->mb_cols + x);
|
|
segment_id = MIN(segment_id, cm->last_frame_seg_map[index]);
|
|
}
|
|
}
|
|
return segment_id;
|
|
} else {
|
|
return cm->last_frame_seg_map[mb_index];
|
|
}
|
|
}
|
|
|
|
MV_REFERENCE_FRAME vp9_get_pred_ref(const VP9_COMMON *const cm,
|
|
const MACROBLOCKD *const xd) {
|
|
MODE_INFO *m = xd->mode_info_context;
|
|
|
|
MV_REFERENCE_FRAME left;
|
|
MV_REFERENCE_FRAME above;
|
|
MV_REFERENCE_FRAME above_left;
|
|
MV_REFERENCE_FRAME pred_ref = LAST_FRAME;
|
|
|
|
int segment_id = xd->mode_info_context->mbmi.segment_id;
|
|
int i;
|
|
|
|
unsigned char frame_allowed[MAX_REF_FRAMES] = {1, 1, 1, 1};
|
|
unsigned char ref_score[MAX_REF_FRAMES];
|
|
unsigned char best_score = 0;
|
|
unsigned char left_in_image;
|
|
unsigned char above_in_image;
|
|
unsigned char above_left_in_image;
|
|
|
|
// Is segment coding ennabled
|
|
int seg_ref_active = vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME);
|
|
|
|
// Special case treatment if segment coding is enabled.
|
|
// Dont allow prediction of a reference frame that the segment
|
|
// does not allow
|
|
if (seg_ref_active) {
|
|
for (i = 0; i < MAX_REF_FRAMES; i++) {
|
|
frame_allowed[i] =
|
|
vp9_check_segref(xd, segment_id, i);
|
|
|
|
// Score set to 0 if ref frame not allowed
|
|
ref_score[i] = cm->ref_scores[i] * frame_allowed[i];
|
|
}
|
|
} else
|
|
vpx_memcpy(ref_score, cm->ref_scores, sizeof(ref_score));
|
|
|
|
// Reference frames used by neighbours
|
|
left = (m - 1)->mbmi.ref_frame;
|
|
above = (m - cm->mode_info_stride)->mbmi.ref_frame;
|
|
above_left = (m - 1 - cm->mode_info_stride)->mbmi.ref_frame;
|
|
|
|
// Are neighbours in image
|
|
left_in_image = (m - 1)->mbmi.mb_in_image && xd->left_available;
|
|
above_in_image = (m - cm->mode_info_stride)->mbmi.mb_in_image;
|
|
above_left_in_image = (m - 1 - cm->mode_info_stride)->mbmi.mb_in_image &&
|
|
xd->left_available;
|
|
|
|
// Adjust scores for candidate reference frames based on neigbours
|
|
if (frame_allowed[left] && left_in_image) {
|
|
ref_score[left] += 16;
|
|
if (above_left_in_image && (left == above_left))
|
|
ref_score[left] += 4;
|
|
}
|
|
if (frame_allowed[above] && above_in_image) {
|
|
ref_score[above] += 16;
|
|
if (above_left_in_image && (above == above_left))
|
|
ref_score[above] += 4;
|
|
}
|
|
|
|
// Now choose the candidate with the highest score
|
|
for (i = 0; i < MAX_REF_FRAMES; i++) {
|
|
if (ref_score[i] > best_score) {
|
|
pred_ref = i;
|
|
best_score = ref_score[i];
|
|
}
|
|
}
|
|
|
|
return pred_ref;
|
|
}
|
|
|
|
// Functions to computes a set of modified reference frame probabilities
|
|
// to use when the prediction of the reference frame value fails
|
|
void vp9_calc_ref_probs(int *count, vp9_prob *probs) {
|
|
int tot_count = count[0] + count[1] + count[2] + count[3];
|
|
probs[0] = get_prob(count[0], tot_count);
|
|
|
|
tot_count -= count[0];
|
|
probs[1] = get_prob(count[1], tot_count);
|
|
|
|
tot_count -= count[1];
|
|
probs[2] = get_prob(count[2], tot_count);
|
|
}
|
|
|
|
// Computes a set of modified conditional probabilities for the reference frame
|
|
// Values willbe set to 0 for reference frame options that are not possible
|
|
// because wither they were predicted and prediction has failed or because
|
|
// they are not allowed for a given segment.
|
|
void vp9_compute_mod_refprobs(VP9_COMMON *const cm) {
|
|
int norm_cnt[MAX_REF_FRAMES];
|
|
const int intra_count = cm->prob_intra_coded;
|
|
const int inter_count = (255 - intra_count);
|
|
const int last_count = (inter_count * cm->prob_last_coded) / 255;
|
|
const int gfarf_count = inter_count - last_count;
|
|
const int gf_count = (gfarf_count * cm->prob_gf_coded) / 255;
|
|
const int arf_count = gfarf_count - gf_count;
|
|
|
|
// Work out modified reference frame probabilities to use where prediction
|
|
// of the reference frame fails
|
|
norm_cnt[0] = 0;
|
|
norm_cnt[1] = last_count;
|
|
norm_cnt[2] = gf_count;
|
|
norm_cnt[3] = arf_count;
|
|
vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[INTRA_FRAME]);
|
|
cm->mod_refprobs[INTRA_FRAME][0] = 0; // This branch implicit
|
|
|
|
norm_cnt[0] = intra_count;
|
|
norm_cnt[1] = 0;
|
|
norm_cnt[2] = gf_count;
|
|
norm_cnt[3] = arf_count;
|
|
vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[LAST_FRAME]);
|
|
cm->mod_refprobs[LAST_FRAME][1] = 0; // This branch implicit
|
|
|
|
norm_cnt[0] = intra_count;
|
|
norm_cnt[1] = last_count;
|
|
norm_cnt[2] = 0;
|
|
norm_cnt[3] = arf_count;
|
|
vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[GOLDEN_FRAME]);
|
|
cm->mod_refprobs[GOLDEN_FRAME][2] = 0; // This branch implicit
|
|
|
|
norm_cnt[0] = intra_count;
|
|
norm_cnt[1] = last_count;
|
|
norm_cnt[2] = gf_count;
|
|
norm_cnt[3] = 0;
|
|
vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[ALTREF_FRAME]);
|
|
cm->mod_refprobs[ALTREF_FRAME][2] = 0; // This branch implicit
|
|
|
|
// Score the reference frames based on overal frequency.
|
|
// These scores contribute to the prediction choices.
|
|
// Max score 17 min 1
|
|
cm->ref_scores[INTRA_FRAME] = 1 + (intra_count * 16 / 255);
|
|
cm->ref_scores[LAST_FRAME] = 1 + (last_count * 16 / 255);
|
|
cm->ref_scores[GOLDEN_FRAME] = 1 + (gf_count * 16 / 255);
|
|
cm->ref_scores[ALTREF_FRAME] = 1 + (arf_count * 16 / 255);
|
|
}
|