vpx/test/fdct4x4_test.cc
James Zern 771dd6ef5e fdct4x4_test.cc: remove unused param warnings
Change-Id: Id3db2ae8e88f9ac64a00f7d989c1ec3ff0c8ef84
2014-08-22 12:47:42 -07:00

380 lines
11 KiB
C++

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "./vp9_rtcd.h"
#include "vp9/common/vp9_entropy.h"
#include "vpx/vpx_integer.h"
extern "C" {
void vp9_idct4x4_16_add_c(const int16_t *input, uint8_t *output, int pitch);
}
using libvpx_test::ACMRandom;
namespace {
const int kNumCoeffs = 16;
typedef void (*FdctFunc)(const int16_t *in, int16_t *out, int stride);
typedef void (*IdctFunc)(const int16_t *in, uint8_t *out, int stride);
typedef void (*FhtFunc)(const int16_t *in, int16_t *out, int stride,
int tx_type);
typedef void (*IhtFunc)(const int16_t *in, uint8_t *out, int stride,
int tx_type);
typedef std::tr1::tuple<FdctFunc, IdctFunc, int> Dct4x4Param;
typedef std::tr1::tuple<FhtFunc, IhtFunc, int> Ht4x4Param;
void fdct4x4_ref(const int16_t *in, int16_t *out, int stride, int /*tx_type*/) {
vp9_fdct4x4_c(in, out, stride);
}
void fht4x4_ref(const int16_t *in, int16_t *out, int stride, int tx_type) {
vp9_fht4x4_c(in, out, stride, tx_type);
}
void fwht4x4_ref(const int16_t *in, int16_t *out, int stride, int /*tx_type*/) {
vp9_fwht4x4_c(in, out, stride);
}
class Trans4x4TestBase {
public:
virtual ~Trans4x4TestBase() {}
protected:
virtual void RunFwdTxfm(const int16_t *in, int16_t *out, int stride) = 0;
virtual void RunInvTxfm(const int16_t *out, uint8_t *dst, int stride) = 0;
void RunAccuracyCheck(int limit) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
uint32_t max_error = 0;
int64_t total_error = 0;
const int count_test_block = 10000;
for (int i = 0; i < count_test_block; ++i) {
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
test_input_block[j] = src[j] - dst[j];
}
ASM_REGISTER_STATE_CHECK(RunFwdTxfm(test_input_block,
test_temp_block, pitch_));
ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_));
for (int j = 0; j < kNumCoeffs; ++j) {
const uint32_t diff = dst[j] - src[j];
const uint32_t error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
}
}
EXPECT_GE(static_cast<uint32_t>(limit), max_error)
<< "Error: 4x4 FHT/IHT has an individual round trip error > "
<< limit;
EXPECT_GE(count_test_block * limit, total_error)
<< "Error: 4x4 FHT/IHT has average round trip error > " << limit
<< " per block";
}
void RunCoeffCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 5000;
DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j)
input_block[j] = rnd.Rand8() - rnd.Rand8();
fwd_txfm_ref(input_block, output_ref_block, pitch_, tx_type_);
ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, pitch_));
// The minimum quant value is 4.
for (int j = 0; j < kNumCoeffs; ++j)
EXPECT_EQ(output_block[j], output_ref_block[j]);
}
}
void RunMemCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 5000;
DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
input_block[j] = rnd.Rand8() - rnd.Rand8();
input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
}
if (i == 0) {
for (int j = 0; j < kNumCoeffs; ++j)
input_extreme_block[j] = 255;
} else if (i == 1) {
for (int j = 0; j < kNumCoeffs; ++j)
input_extreme_block[j] = -255;
}
fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_);
ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_extreme_block,
output_block, pitch_));
// The minimum quant value is 4.
for (int j = 0; j < kNumCoeffs; ++j) {
EXPECT_EQ(output_block[j], output_ref_block[j]);
EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_block[j]))
<< "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE";
}
}
}
void RunInvAccuracyCheck(int limit) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, coeff, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
in[j] = src[j] - dst[j];
}
fwd_txfm_ref(in, coeff, pitch_, tx_type_);
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_));
for (int j = 0; j < kNumCoeffs; ++j) {
const uint32_t diff = dst[j] - src[j];
const uint32_t error = diff * diff;
EXPECT_GE(static_cast<uint32_t>(limit), error)
<< "Error: 4x4 IDCT has error " << error
<< " at index " << j;
}
}
}
int pitch_;
int tx_type_;
FhtFunc fwd_txfm_ref;
};
class Trans4x4DCT
: public Trans4x4TestBase,
public ::testing::TestWithParam<Dct4x4Param> {
public:
virtual ~Trans4x4DCT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
tx_type_ = GET_PARAM(2);
pitch_ = 4;
fwd_txfm_ref = fdct4x4_ref;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
void RunFwdTxfm(const int16_t *in, int16_t *out, int stride) {
fwd_txfm_(in, out, stride);
}
void RunInvTxfm(const int16_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride);
}
FdctFunc fwd_txfm_;
IdctFunc inv_txfm_;
};
TEST_P(Trans4x4DCT, AccuracyCheck) {
RunAccuracyCheck(1);
}
TEST_P(Trans4x4DCT, CoeffCheck) {
RunCoeffCheck();
}
TEST_P(Trans4x4DCT, MemCheck) {
RunMemCheck();
}
TEST_P(Trans4x4DCT, InvAccuracyCheck) {
RunInvAccuracyCheck(1);
}
class Trans4x4HT
: public Trans4x4TestBase,
public ::testing::TestWithParam<Ht4x4Param> {
public:
virtual ~Trans4x4HT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
tx_type_ = GET_PARAM(2);
pitch_ = 4;
fwd_txfm_ref = fht4x4_ref;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
void RunFwdTxfm(const int16_t *in, int16_t *out, int stride) {
fwd_txfm_(in, out, stride, tx_type_);
}
void RunInvTxfm(const int16_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride, tx_type_);
}
FhtFunc fwd_txfm_;
IhtFunc inv_txfm_;
};
TEST_P(Trans4x4HT, AccuracyCheck) {
RunAccuracyCheck(1);
}
TEST_P(Trans4x4HT, CoeffCheck) {
RunCoeffCheck();
}
TEST_P(Trans4x4HT, MemCheck) {
RunMemCheck();
}
TEST_P(Trans4x4HT, InvAccuracyCheck) {
RunInvAccuracyCheck(1);
}
class Trans4x4WHT
: public Trans4x4TestBase,
public ::testing::TestWithParam<Dct4x4Param> {
public:
virtual ~Trans4x4WHT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
tx_type_ = GET_PARAM(2);
pitch_ = 4;
fwd_txfm_ref = fwht4x4_ref;
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
void RunFwdTxfm(const int16_t *in, int16_t *out, int stride) {
fwd_txfm_(in, out, stride);
}
void RunInvTxfm(const int16_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride);
}
FdctFunc fwd_txfm_;
IdctFunc inv_txfm_;
};
TEST_P(Trans4x4WHT, AccuracyCheck) {
RunAccuracyCheck(0);
}
TEST_P(Trans4x4WHT, CoeffCheck) {
RunCoeffCheck();
}
TEST_P(Trans4x4WHT, MemCheck) {
RunMemCheck();
}
TEST_P(Trans4x4WHT, InvAccuracyCheck) {
RunInvAccuracyCheck(0);
}
using std::tr1::make_tuple;
INSTANTIATE_TEST_CASE_P(
C, Trans4x4DCT,
::testing::Values(
make_tuple(&vp9_fdct4x4_c, &vp9_idct4x4_16_add_c, 0)));
INSTANTIATE_TEST_CASE_P(
C, Trans4x4HT,
::testing::Values(
make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_c, 0),
make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_c, 1),
make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_c, 2),
make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_c, 3)));
INSTANTIATE_TEST_CASE_P(
C, Trans4x4WHT,
::testing::Values(
make_tuple(&vp9_fwht4x4_c, &vp9_iwht4x4_16_add_c, 0)));
#if HAVE_NEON_ASM
INSTANTIATE_TEST_CASE_P(
NEON, Trans4x4DCT,
::testing::Values(
make_tuple(&vp9_fdct4x4_c,
&vp9_idct4x4_16_add_neon, 0)));
INSTANTIATE_TEST_CASE_P(
DISABLED_NEON, Trans4x4HT,
::testing::Values(
make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_neon, 0),
make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_neon, 1),
make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_neon, 2),
make_tuple(&vp9_fht4x4_c, &vp9_iht4x4_16_add_neon, 3)));
#endif
#if CONFIG_USE_X86INC && HAVE_MMX
INSTANTIATE_TEST_CASE_P(
MMX, Trans4x4WHT,
::testing::Values(
make_tuple(&vp9_fwht4x4_mmx, &vp9_iwht4x4_16_add_c, 0)));
#endif
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(
SSE2, Trans4x4DCT,
::testing::Values(
make_tuple(&vp9_fdct4x4_sse2,
&vp9_idct4x4_16_add_sse2, 0)));
INSTANTIATE_TEST_CASE_P(
SSE2, Trans4x4HT,
::testing::Values(
make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 0),
make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 1),
make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 2),
make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 3)));
#endif
} // namespace