vpx/vp9/common/vp9_reconinter.c
John Koleszar a443447b8b Move pre, second_pre to per-plane MACROBLOCKD data
Continue moving framebuffers to per-plane data.

Change-Id: I237e5a998b364c4ec20316e7249206c0bff8631a
2013-04-22 12:05:24 -07:00

1237 lines
49 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "./vpx_config.h"
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
void vp9_setup_scale_factors_for_frame(struct scale_factors *scale,
YV12_BUFFER_CONFIG *other,
int this_w, int this_h) {
int other_h = other->y_crop_height;
int other_w = other->y_crop_width;
scale->x_num = other_w;
scale->x_den = this_w;
scale->x_offset_q4 = 0; // calculated per-mb
scale->x_step_q4 = 16 * other_w / this_w;
scale->y_num = other_h;
scale->y_den = this_h;
scale->y_offset_q4 = 0; // calculated per-mb
scale->y_step_q4 = 16 * other_h / this_h;
if (scale->x_num == scale->x_den && scale->y_num == scale->y_den) {
scale->scale_value_x = unscaled_value;
scale->scale_value_y = unscaled_value;
scale->set_scaled_offsets = set_offsets_without_scaling;
scale->scale_motion_vector_q3_to_q4 =
motion_vector_q3_to_q4_without_scaling;
scale->scale_motion_vector_component_q4 =
motion_vector_component_q4_without_scaling;
} else {
scale->scale_value_x = scale_value_x_with_scaling;
scale->scale_value_y = scale_value_y_with_scaling;
scale->set_scaled_offsets = set_offsets_with_scaling;
scale->scale_motion_vector_q3_to_q4 =
motion_vector_q3_to_q4_with_scaling;
scale->scale_motion_vector_component_q4 =
motion_vector_component_q4_with_scaling;
}
// TODO(agrange): Investigate the best choice of functions to use here
// for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what
// to do at full-pel offsets. The current selection, where the filter is
// applied in one direction only, and not at all for 0,0, seems to give the
// best quality, but it may be worth trying an additional mode that does
// do the filtering on full-pel.
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
if (scale->x_step_q4 == 16) {
if (scale->y_step_q4 == 16) {
// No scaling in either direction.
scale->predict[0][0][0] = vp9_convolve_copy;
scale->predict[0][0][1] = vp9_convolve_1by8;
scale->predict[0][0][2] = vp9_convolve_qtr;
scale->predict[0][0][3] = vp9_convolve_3by8;
scale->predict[0][0][4] = vp9_convolve_avg;
scale->predict[0][0][5] = vp9_convolve_5by8;
scale->predict[0][0][6] = vp9_convolve_3qtr;
scale->predict[0][0][7] = vp9_convolve_7by8;
scale->predict[0][1][0] = vp9_convolve8_vert;
scale->predict[0][1][1] = vp9_convolve8_1by8_vert;
scale->predict[0][1][2] = vp9_convolve8_qtr_vert;
scale->predict[0][1][3] = vp9_convolve8_3by8_vert;
scale->predict[0][1][4] = vp9_convolve8_avg_vert;
scale->predict[0][1][5] = vp9_convolve8_5by8_vert;
scale->predict[0][1][6] = vp9_convolve8_3qtr_vert;
scale->predict[0][1][7] = vp9_convolve8_7by8_vert;
scale->predict[1][0][0] = vp9_convolve8_horiz;
scale->predict[1][0][1] = vp9_convolve8_1by8_horiz;
scale->predict[1][0][2] = vp9_convolve8_qtr_horiz;
scale->predict[1][0][3] = vp9_convolve8_3by8_horiz;
scale->predict[1][0][4] = vp9_convolve8_avg_horiz;
scale->predict[1][0][5] = vp9_convolve8_5by8_horiz;
scale->predict[1][0][6] = vp9_convolve8_3qtr_horiz;
scale->predict[1][0][7] = vp9_convolve8_7by8_horiz;
} else {
// No scaling in x direction. Must always scale in the y direction.
scale->predict[0][0][0] = vp9_convolve8_vert;
scale->predict[0][0][1] = vp9_convolve8_1by8_vert;
scale->predict[0][0][2] = vp9_convolve8_qtr_vert;
scale->predict[0][0][3] = vp9_convolve8_3by8_vert;
scale->predict[0][0][4] = vp9_convolve8_avg_vert;
scale->predict[0][0][5] = vp9_convolve8_5by8_vert;
scale->predict[0][0][6] = vp9_convolve8_3qtr_vert;
scale->predict[0][0][7] = vp9_convolve8_7by8_vert;
scale->predict[0][1][0] = vp9_convolve8_vert;
scale->predict[0][1][1] = vp9_convolve8_1by8_vert;
scale->predict[0][1][2] = vp9_convolve8_qtr_vert;
scale->predict[0][1][3] = vp9_convolve8_3by8_vert;
scale->predict[0][1][4] = vp9_convolve8_avg_vert;
scale->predict[0][1][5] = vp9_convolve8_5by8_vert;
scale->predict[0][1][6] = vp9_convolve8_3qtr_vert;
scale->predict[0][1][7] = vp9_convolve8_7by8_vert;
scale->predict[1][0][0] = vp9_convolve8;
scale->predict[1][0][1] = vp9_convolve8_1by8;
scale->predict[1][0][2] = vp9_convolve8_qtr;
scale->predict[1][0][3] = vp9_convolve8_3by8;
scale->predict[1][0][4] = vp9_convolve8_avg;
scale->predict[1][0][5] = vp9_convolve8_5by8;
scale->predict[1][0][6] = vp9_convolve8_3qtr;
scale->predict[1][0][7] = vp9_convolve8_7by8;
}
} else {
if (scale->y_step_q4 == 16) {
// No scaling in the y direction. Must always scale in the x direction.
scale->predict[0][0][0] = vp9_convolve8_horiz;
scale->predict[0][0][1] = vp9_convolve8_1by8_horiz;
scale->predict[0][0][2] = vp9_convolve8_qtr_horiz;
scale->predict[0][0][3] = vp9_convolve8_3by8_horiz;
scale->predict[0][0][4] = vp9_convolve8_avg_horiz;
scale->predict[0][0][5] = vp9_convolve8_5by8_horiz;
scale->predict[0][0][6] = vp9_convolve8_3qtr_horiz;
scale->predict[0][0][7] = vp9_convolve8_7by8_horiz;
scale->predict[0][1][0] = vp9_convolve8;
scale->predict[0][1][1] = vp9_convolve8_1by8;
scale->predict[0][1][2] = vp9_convolve8_qtr;
scale->predict[0][1][3] = vp9_convolve8_3by8;
scale->predict[0][1][4] = vp9_convolve8_avg;
scale->predict[0][1][5] = vp9_convolve8_5by8;
scale->predict[0][1][6] = vp9_convolve8_3qtr;
scale->predict[0][1][7] = vp9_convolve8_7by8;
scale->predict[1][0][0] = vp9_convolve8_horiz;
scale->predict[1][0][1] = vp9_convolve8_1by8_horiz;
scale->predict[1][0][2] = vp9_convolve8_qtr_horiz;
scale->predict[1][0][3] = vp9_convolve8_3by8_horiz;
scale->predict[1][0][4] = vp9_convolve8_avg_horiz;
scale->predict[1][0][5] = vp9_convolve8_5by8_horiz;
scale->predict[1][0][6] = vp9_convolve8_3qtr_horiz;
scale->predict[1][0][7] = vp9_convolve8_7by8_horiz;
} else {
// Must always scale in both directions.
scale->predict[0][0][0] = vp9_convolve8;
scale->predict[0][0][1] = vp9_convolve8_1by8;
scale->predict[0][0][2] = vp9_convolve8_qtr;
scale->predict[0][0][3] = vp9_convolve8_3by8;
scale->predict[0][0][4] = vp9_convolve8_avg;
scale->predict[0][0][5] = vp9_convolve8_5by8;
scale->predict[0][0][6] = vp9_convolve8_3qtr;
scale->predict[0][0][7] = vp9_convolve8_7by8;
scale->predict[0][1][0] = vp9_convolve8;
scale->predict[0][1][1] = vp9_convolve8_1by8;
scale->predict[0][1][2] = vp9_convolve8_qtr;
scale->predict[0][1][3] = vp9_convolve8_3by8;
scale->predict[0][1][4] = vp9_convolve8_avg;
scale->predict[0][1][5] = vp9_convolve8_5by8;
scale->predict[0][1][6] = vp9_convolve8_3qtr;
scale->predict[0][1][7] = vp9_convolve8_7by8;
scale->predict[1][0][0] = vp9_convolve8;
scale->predict[1][0][1] = vp9_convolve8_1by8;
scale->predict[1][0][2] = vp9_convolve8_qtr;
scale->predict[1][0][3] = vp9_convolve8_3by8;
scale->predict[1][0][4] = vp9_convolve8_avg;
scale->predict[1][0][5] = vp9_convolve8_5by8;
scale->predict[1][0][6] = vp9_convolve8_3qtr;
scale->predict[1][0][7] = vp9_convolve8_7by8;
}
}
// 2D subpel motion always gets filtered in both directions
scale->predict[1][1][0] = vp9_convolve8;
scale->predict[1][1][1] = vp9_convolve8_1by8;
scale->predict[1][1][2] = vp9_convolve8_qtr;
scale->predict[1][1][3] = vp9_convolve8_3by8;
scale->predict[1][1][4] = vp9_convolve8_avg;
scale->predict[1][1][5] = vp9_convolve8_5by8;
scale->predict[1][1][6] = vp9_convolve8_3qtr;
scale->predict[1][1][7] = vp9_convolve8_7by8;
}
#else
if (scale->x_step_q4 == 16) {
if (scale->y_step_q4 == 16) {
// No scaling in either direction.
scale->predict[0][0][0] = vp9_convolve_copy;
scale->predict[0][0][1] = vp9_convolve_avg;
scale->predict[0][1][0] = vp9_convolve8_vert;
scale->predict[0][1][1] = vp9_convolve8_avg_vert;
scale->predict[1][0][0] = vp9_convolve8_horiz;
scale->predict[1][0][1] = vp9_convolve8_avg_horiz;
} else {
// No scaling in x direction. Must always scale in the y direction.
scale->predict[0][0][0] = vp9_convolve8_vert;
scale->predict[0][0][1] = vp9_convolve8_avg_vert;
scale->predict[0][1][0] = vp9_convolve8_vert;
scale->predict[0][1][1] = vp9_convolve8_avg_vert;
scale->predict[1][0][0] = vp9_convolve8;
scale->predict[1][0][1] = vp9_convolve8_avg;
}
} else {
if (scale->y_step_q4 == 16) {
// No scaling in the y direction. Must always scale in the x direction.
scale->predict[0][0][0] = vp9_convolve8_horiz;
scale->predict[0][0][1] = vp9_convolve8_avg_horiz;
scale->predict[0][1][0] = vp9_convolve8;
scale->predict[0][1][1] = vp9_convolve8_avg;
scale->predict[1][0][0] = vp9_convolve8_horiz;
scale->predict[1][0][1] = vp9_convolve8_avg_horiz;
} else {
// Must always scale in both directions.
scale->predict[0][0][0] = vp9_convolve8;
scale->predict[0][0][1] = vp9_convolve8_avg;
scale->predict[0][1][0] = vp9_convolve8;
scale->predict[0][1][1] = vp9_convolve8_avg;
scale->predict[1][0][0] = vp9_convolve8;
scale->predict[1][0][1] = vp9_convolve8_avg;
}
}
// 2D subpel motion always gets filtered in both directions
scale->predict[1][1][0] = vp9_convolve8;
scale->predict[1][1][1] = vp9_convolve8_avg;
}
#endif
void vp9_setup_interp_filters(MACROBLOCKD *xd,
INTERPOLATIONFILTERTYPE mcomp_filter_type,
VP9_COMMON *cm) {
if (xd->mode_info_context) {
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
set_scale_factors(xd,
mbmi->ref_frame - 1,
mbmi->second_ref_frame - 1,
cm->active_ref_scale);
}
switch (mcomp_filter_type) {
case EIGHTTAP:
case SWITCHABLE:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8;
break;
case EIGHTTAP_SMOOTH:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8lp;
break;
case EIGHTTAP_SHARP:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8s;
break;
case BILINEAR:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_bilinear_filters;
break;
#if CONFIG_ENABLE_6TAP
case SIXTAP:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_6;
break;
#endif
}
assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0);
}
void vp9_copy_mem16x16_c(const uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 16; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
dst[8] = src[8];
dst[9] = src[9];
dst[10] = src[10];
dst[11] = src[11];
dst[12] = src[12];
dst[13] = src[13];
dst[14] = src[14];
dst[15] = src[15];
#else
((uint32_t *)dst)[0] = ((const uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((const uint32_t *)src)[1];
((uint32_t *)dst)[2] = ((const uint32_t *)src)[2];
((uint32_t *)dst)[3] = ((const uint32_t *)src)[3];
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp9_copy_mem8x8_c(const uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 8; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
#else
((uint32_t *)dst)[0] = ((const uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((const uint32_t *)src)[1];
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp9_copy_mem8x4_c(const uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 4; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
#else
((uint32_t *)dst)[0] = ((const uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((const uint32_t *)src)[1];
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp9_build_inter_predictor(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const int_mv *mv_q3,
const struct scale_factors *scale,
int w, int h, int weight,
const struct subpix_fn_table *subpix) {
int_mv32 mv = scale->scale_motion_vector_q3_to_q4(mv_q3, scale);
src += (mv.as_mv.row >> 4) * src_stride + (mv.as_mv.col >> 4);
scale->predict[!!(mv.as_mv.col & 15)][!!(mv.as_mv.row & 15)][weight](
src, src_stride, dst, dst_stride,
subpix->filter_x[mv.as_mv.col & 15], scale->x_step_q4,
subpix->filter_y[mv.as_mv.row & 15], scale->y_step_q4,
w, h);
}
void vp9_build_inter_predictor_q4(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const int_mv *mv_q4,
const struct scale_factors *scale,
int w, int h, int weight,
const struct subpix_fn_table *subpix) {
const int scaled_mv_row_q4 =
scale->scale_motion_vector_component_q4(mv_q4->as_mv.row,
scale->y_num, scale->y_den,
scale->y_offset_q4);
const int scaled_mv_col_q4 =
scale->scale_motion_vector_component_q4(mv_q4->as_mv.col,
scale->x_num, scale->x_den,
scale->x_offset_q4);
const int subpel_x = scaled_mv_col_q4 & 15;
const int subpel_y = scaled_mv_row_q4 & 15;
src += (scaled_mv_row_q4 >> 4) * src_stride + (scaled_mv_col_q4 >> 4);
scale->predict[!!subpel_x][!!subpel_y][weight](
src, src_stride, dst, dst_stride,
subpix->filter_x[subpel_x], scale->x_step_q4,
subpix->filter_y[subpel_y], scale->y_step_q4,
w, h);
}
static void build_2x1_inter_predictor_wh(const BLOCKD *d0, const BLOCKD *d1,
struct scale_factors *s,
uint8_t *predictor,
int block_size, int stride,
int which_mv, int weight,
int width, int height,
const struct subpix_fn_table *subpix,
int row, int col) {
struct scale_factors * scale = &s[which_mv];
assert(d1->dst - d0->dst == block_size);
assert(d1->pre == d0->pre + block_size);
scale->set_scaled_offsets(scale, row, col);
if (d0->bmi.as_mv[which_mv].as_int == d1->bmi.as_mv[which_mv].as_int) {
uint8_t **base_pre = which_mv ? d0->base_second_pre : d0->base_pre;
vp9_build_inter_predictor(*base_pre + d0->pre,
d0->pre_stride,
predictor, stride,
&d0->bmi.as_mv[which_mv],
scale,
width, height,
weight, subpix);
} else {
uint8_t **base_pre0 = which_mv ? d0->base_second_pre : d0->base_pre;
uint8_t **base_pre1 = which_mv ? d1->base_second_pre : d1->base_pre;
vp9_build_inter_predictor(*base_pre0 + d0->pre,
d0->pre_stride,
predictor, stride,
&d0->bmi.as_mv[which_mv],
scale,
width > block_size ? block_size : width, height,
weight, subpix);
if (width <= block_size) return;
scale->set_scaled_offsets(scale, row, col + block_size);
vp9_build_inter_predictor(*base_pre1 + d1->pre,
d1->pre_stride,
predictor + block_size, stride,
&d1->bmi.as_mv[which_mv],
scale,
width - block_size, height,
weight, subpix);
}
}
#if !CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
static INLINE int round_mv_comp_q4(int value) {
return (value < 0 ? value - 2 : value + 2) / 4;
}
static int mi_mv_pred_row_q4(MACROBLOCKD *mb, int off, int idx) {
const int temp = mb->mode_info_context->bmi[off + 0].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[off + 1].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[off + 4].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[off + 5].as_mv[idx].as_mv.row;
return round_mv_comp_q4(temp);
}
static int mi_mv_pred_col_q4(MACROBLOCKD *mb, int off, int idx) {
const int temp = mb->mode_info_context->bmi[off + 0].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[off + 1].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[off + 4].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[off + 5].as_mv[idx].as_mv.col;
return round_mv_comp_q4(temp);
}
// TODO(jkoleszar): yet another mv clamping function :-(
MV clamp_mv_to_umv_border_sb(const MV *src_mv,
int bwl, int bhl, int ss_x, int ss_y,
int mb_to_left_edge, int mb_to_top_edge,
int mb_to_right_edge, int mb_to_bottom_edge) {
/* If the MV points so far into the UMV border that no visible pixels
* are used for reconstruction, the subpel part of the MV can be
* discarded and the MV limited to 16 pixels with equivalent results.
*/
const int spel_left = (VP9_INTERP_EXTEND + (4 << bwl)) << 4;
const int spel_right = spel_left - (1 << 4);
const int spel_top = (VP9_INTERP_EXTEND + (4 << bhl)) << 4;
const int spel_bottom = spel_top - (1 << 4);
MV clamped_mv;
assert(ss_x <= 1);
assert(ss_y <= 1);
clamped_mv.col = clamp(src_mv->col << (1 - ss_x),
(mb_to_left_edge << (1 - ss_x)) - spel_left,
(mb_to_right_edge << (1 - ss_x)) + spel_right);
clamped_mv.row = clamp(src_mv->row << (1 - ss_y),
(mb_to_top_edge << (1 - ss_y)) - spel_top,
(mb_to_bottom_edge << (1 - ss_y)) + spel_bottom);
return clamped_mv;
}
// TODO(jkoleszar): In principle, nothing has to depend on this, but it's
// currently required. Some users look at the mi->bmi, some look at the
// xd->bmi.
static void duplicate_splitmv_bmi(MACROBLOCKD *xd) {
int i;
for (i = 0; i < 16; i += 2) {
xd->block[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
xd->block[i + 1].bmi = xd->mode_info_context->bmi[i + 1];
}
}
struct build_inter_predictors_args {
MACROBLOCKD *xd;
int x;
int y;
uint8_t* dst[MAX_MB_PLANE];
int dst_stride[MAX_MB_PLANE];
uint8_t* pre[2][MAX_MB_PLANE];
int pre_stride[2][MAX_MB_PLANE];
};
static void build_inter_predictors(int plane, int block,
BLOCK_SIZE_TYPE bsize,
int pred_w, int pred_h,
void *argv) {
const struct build_inter_predictors_args* const arg = argv;
MACROBLOCKD * const xd = arg->xd;
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
const int bh = 4 << bhl, bw = 4 << bwl;
const int x_idx = block & ((1 << bwl) - 1), y_idx = block >> bwl;
const int x = x_idx * 4, y = y_idx * 4;
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
int which_mv;
assert(x < bw);
assert(y < bh);
assert(xd->mode_info_context->mbmi.mode == SPLITMV || 4 << pred_w == bw);
assert(xd->mode_info_context->mbmi.mode == SPLITMV || 4 << pred_h == bh);
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
// source
const uint8_t * const base_pre = arg->pre[which_mv][plane];
const int pre_stride = arg->pre_stride[which_mv][plane];
const uint8_t *const pre = base_pre +
scaled_buffer_offset(x, y, pre_stride, &xd->scale_factor[which_mv]);
struct scale_factors * const scale =
plane == 0 ? &xd->scale_factor[which_mv] : &xd->scale_factor_uv[which_mv];
// dest
uint8_t *const dst = arg->dst[plane] + arg->dst_stride[plane] * y + x;
// motion vector
const MV *mv;
MV split_chroma_mv;
int_mv clamped_mv;
if (xd->mode_info_context->mbmi.mode == SPLITMV) {
if (plane == 0) {
mv = &xd->block[block].bmi.as_mv[which_mv].as_mv;
} else {
const int y_block = (block & 2) * 4 + (block & 1) * 2;
split_chroma_mv.row = mi_mv_pred_row_q4(xd, y_block, which_mv);
split_chroma_mv.col = mi_mv_pred_col_q4(xd, y_block, which_mv);
mv = &split_chroma_mv;
}
} else {
mv = &xd->mode_info_context->mbmi.mv[which_mv].as_mv;
}
/* TODO(jkoleszar): This clamping is done in the incorrect place for the
* scaling case. It needs to be done on the scaled MV, not the pre-scaling
* MV. Note however that it performs the subsampling aware scaling so
* that the result is always q4.
*/
clamped_mv.as_mv = clamp_mv_to_umv_border_sb(mv, bwl, bhl,
xd->plane[plane].subsampling_x,
xd->plane[plane].subsampling_y,
xd->mb_to_left_edge,
xd->mb_to_top_edge,
xd->mb_to_right_edge,
xd->mb_to_bottom_edge);
scale->set_scaled_offsets(scale, arg->y + y, arg->x + x);
vp9_build_inter_predictor_q4(pre, pre_stride,
dst, arg->dst_stride[plane],
&clamped_mv, &xd->scale_factor[which_mv],
4 << pred_w, 4 << pred_h, which_mv,
&xd->subpix);
}
}
void vp9_build_inter_predictors_sby(MACROBLOCKD *xd,
int mb_row,
int mb_col,
BLOCK_SIZE_TYPE bsize) {
struct build_inter_predictors_args args = {
xd, mb_col * 16, mb_row * 16,
{xd->plane[0].dst.buf, NULL, NULL}, {xd->plane[0].dst.stride, 0, 0},
{{xd->plane[0].pre[0].buf, NULL, NULL},
{xd->plane[0].pre[1].buf, NULL, NULL}},
{{xd->plane[0].pre[0].stride, 0, 0}, {xd->plane[0].pre[1].stride, 0, 0}},
};
// TODO(jkoleszar): This is a hack no matter where you put it, but does it
// belong here?
if (xd->mode_info_context->mbmi.mode == SPLITMV)
duplicate_splitmv_bmi(xd);
foreach_predicted_block_in_plane(xd, bsize, 0, build_inter_predictors, &args);
}
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd,
int mb_row,
int mb_col,
BLOCK_SIZE_TYPE bsize) {
struct build_inter_predictors_args args = {
xd, mb_col * 16, mb_row * 16,
{NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf},
{0, xd->plane[1].dst.stride, xd->plane[1].dst.stride},
{{NULL, xd->plane[1].pre[0].buf, xd->plane[2].pre[0].buf},
{NULL, xd->plane[1].pre[1].buf, xd->plane[2].pre[1].buf}},
{{0, xd->plane[1].pre[0].stride, xd->plane[1].pre[0].stride},
{0, xd->plane[1].pre[1].stride, xd->plane[1].pre[1].stride}},
};
foreach_predicted_block_uv(xd, bsize, build_inter_predictors, &args);
}
void vp9_build_inter_predictors_sb(MACROBLOCKD *xd,
int mb_row, int mb_col,
BLOCK_SIZE_TYPE bsize) {
#if CONFIG_COMP_INTERINTRA_PRED
uint8_t *const y = xd->plane[0].dst.buf;
uint8_t *const u = xd->plane[1].dst.buf;
uint8_t *const v = xd->plane[2].dst.buf;
const int y_stride = xd->plane[0].dst.stride;
const int uv_stride = xd->plane[1].dst.stride;
#endif
vp9_build_inter_predictors_sby(xd, mb_row, mb_col, bsize);
vp9_build_inter_predictors_sbuv(xd, mb_row, mb_col, bsize);
#if CONFIG_COMP_INTERINTRA_PRED
if (xd->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) {
if (bsize == BLOCK_SIZE_SB32X32)
vp9_build_interintra_32x32_predictors_sb(xd, y, u, v,
y_stride, uv_stride);
else
vp9_build_interintra_64x64_predictors_sb(xd, y, u, v,
y_stride, uv_stride);
}
#endif
}
#endif // !CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
#define AVERAGE_WEIGHT (1 << (2 * CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT))
#if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) {
/* If the MV points so far into the UMV border that no visible pixels
* are used for reconstruction, the subpel part of the MV can be
* discarded and the MV limited to 16 pixels with equivalent results.
*
* This limit kicks in at 19 pixels for the top and left edges, for
* the 16 pixels plus 3 taps right of the central pixel when subpel
* filtering. The bottom and right edges use 16 pixels plus 2 pixels
* left of the central pixel when filtering.
*/
if (mv->col < (xd->mb_to_left_edge - ((16 + VP9_INTERP_EXTEND) << 3)))
mv->col = xd->mb_to_left_edge - (16 << 3);
else if (mv->col > xd->mb_to_right_edge + ((15 + VP9_INTERP_EXTEND) << 3))
mv->col = xd->mb_to_right_edge + (16 << 3);
if (mv->row < (xd->mb_to_top_edge - ((16 + VP9_INTERP_EXTEND) << 3)))
mv->row = xd->mb_to_top_edge - (16 << 3);
else if (mv->row > xd->mb_to_bottom_edge + ((15 + VP9_INTERP_EXTEND) << 3))
mv->row = xd->mb_to_bottom_edge + (16 << 3);
}
// Whether to use implicit weighting for UV
#define USE_IMPLICIT_WEIGHT_UV
// Whether to use implicit weighting for SplitMV
// #define USE_IMPLICIT_WEIGHT_SPLITMV
// #define SEARCH_MIN3
static int64_t get_consistency_metric(MACROBLOCKD *xd,
uint8_t *tmp_y, int tmp_ystride) {
int block_size = 16 << xd->mode_info_context->mbmi.sb_type;
uint8_t *rec_y = xd->plane[0].dst.buf;
int rec_ystride = xd->plane[0].dst.stride;
int64_t metric = 0;
int i;
if (xd->up_available) {
for (i = 0; i < block_size; ++i) {
int diff = abs(*(rec_y - rec_ystride + i) -
*(tmp_y + i));
#ifdef SEARCH_MIN3
// Searches for the min abs diff among 3 pixel neighbors in the border
int diff1 = xd->left_available ?
abs(*(rec_y - rec_ystride + i - 1) - *(tmp_y + i)) : diff;
int diff2 = i < block_size - 1 ?
abs(*(rec_y - rec_ystride + i + 1) - *(tmp_y + i)) : diff;
diff = diff <= diff1 ? diff : diff1;
diff = diff <= diff2 ? diff : diff2;
#endif
metric += diff;
}
}
if (xd->left_available) {
for (i = 0; i < block_size; ++i) {
int diff = abs(*(rec_y - 1 + i * rec_ystride) -
*(tmp_y + i * tmp_ystride));
#ifdef SEARCH_MIN3
// Searches for the min abs diff among 3 pixel neighbors in the border
int diff1 = xd->up_available ?
abs(*(rec_y - 1 + (i - 1) * rec_ystride) -
*(tmp_y + i * tmp_ystride)) : diff;
int diff2 = i < block_size - 1 ?
abs(*(rec_y - 1 + (i + 1) * rec_ystride) -
*(tmp_y + i * tmp_ystride)) : diff;
diff = diff <= diff1 ? diff : diff1;
diff = diff <= diff2 ? diff : diff2;
#endif
metric += diff;
}
}
return metric;
}
static int get_weight(MACROBLOCKD *xd, int64_t metric_1, int64_t metric_2) {
int weight = AVERAGE_WEIGHT;
if (2 * metric_1 < metric_2)
weight = 6;
else if (4 * metric_1 < 3 * metric_2)
weight = 5;
else if (2 * metric_2 < metric_1)
weight = 2;
else if (4 * metric_2 < 3 * metric_1)
weight = 3;
return weight;
}
#ifdef USE_IMPLICIT_WEIGHT_SPLITMV
static int get_implicit_compoundinter_weight_splitmv(
MACROBLOCKD *xd, int mb_row, int mb_col) {
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
BLOCKD *blockd = xd->block;
const int use_second_ref = mbmi->second_ref_frame > 0;
int64_t metric_2 = 0, metric_1 = 0;
int i, which_mv, weight;
uint8_t tmp_y[256];
const int tmp_ystride = 16;
if (!use_second_ref) return 0;
if (!(xd->up_available || xd->left_available))
return AVERAGE_WEIGHT;
assert(xd->mode_info_context->mbmi.mode == SPLITMV);
which_mv = 1; // second predictor
if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) {
for (i = 0; i < 16; i += 8) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 2];
const int y = i & 8;
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
blockd[i + 2].bmi = xd->mode_info_context->bmi[i + 2];
if (mbmi->need_to_clamp_mvs) {
clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv[which_mv].as_mv, xd);
clamp_mv_to_umv_border(&blockd[i + 2].bmi.as_mv[which_mv].as_mv, xd);
}
if (i == 0) {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16,
which_mv, 0, 16, 1,
&xd->subpix, mb_row * 16 + y, mb_col * 16);
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16,
which_mv, 0, 1, 8,
&xd->subpix, mb_row * 16 + y, mb_col * 16);
} else {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + 8 * 16,
8, 16, which_mv, 0, 1, 8,
&xd->subpix, mb_row * 16 + y, mb_col * 16);
}
}
} else {
for (i = 0; i < 16; i += 2) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
const int x = (i & 3) * 4;
const int y = (i >> 2) * 4;
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1];
if (i >= 4 && (i & 3) != 0) continue;
if (i == 0) {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16,
which_mv, 0, 8, 1, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16,
which_mv, 0, 1, 4, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
} else if (i < 4) {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + x, 4, 16,
which_mv, 0, 8, 1, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
} else {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + y * 16,
4, 16, which_mv, 0, 1, 4, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
}
}
}
metric_2 = get_consistency_metric(xd, tmp_y, tmp_ystride);
which_mv = 0; // first predictor
if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) {
for (i = 0; i < 16; i += 8) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 2];
const int y = i & 8;
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
blockd[i + 2].bmi = xd->mode_info_context->bmi[i + 2];
if (mbmi->need_to_clamp_mvs) {
clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv[which_mv].as_mv, xd);
clamp_mv_to_umv_border(&blockd[i + 2].bmi.as_mv[which_mv].as_mv, xd);
}
if (i == 0) {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16,
which_mv, 0, 16, 1,
&xd->subpix, mb_row * 16 + y, mb_col * 16);
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16,
which_mv, 0, 1, 8,
&xd->subpix, mb_row * 16 + y, mb_col * 16);
} else {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + 8 * 16,
8, 16, which_mv, 0, 1, 8,
&xd->subpix, mb_row * 16 + y, mb_col * 16);
}
}
} else {
for (i = 0; i < 16; i += 2) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
const int x = (i & 3) * 4;
const int y = (i >> 2) * 4;
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1];
if (i >= 4 && (i & 3) != 0) continue;
if (i == 0) {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16,
which_mv, 0, 8, 1, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16,
which_mv, 0, 1, 4, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
} else if (i < 4) {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + x, 4, 16,
which_mv, 0, 8, 1, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
} else {
build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + y * 16,
4, 16, which_mv, 0, 1, 4, &xd->subpix,
mb_row * 16 + y, mb_col * 16 + x);
}
}
}
metric_1 = get_consistency_metric(xd, tmp_y, tmp_ystride);
// Choose final weight for averaging
weight = get_weight(xd, metric_1, metric_2);
return weight;
}
#endif
static int get_implicit_compoundinter_weight(MACROBLOCKD *xd,
int mb_row,
int mb_col) {
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
int64_t metric_2 = 0, metric_1 = 0;
int n, clamp_mvs, pre_stride;
uint8_t *base_pre;
int_mv ymv;
uint8_t tmp_y[4096];
const int tmp_ystride = 64;
int weight;
int edge[4];
int block_size = 16 << xd->mode_info_context->mbmi.sb_type;
struct scale_factors *scale;
if (!use_second_ref) return 0;
if (!(xd->up_available || xd->left_available))
return AVERAGE_WEIGHT;
edge[0] = xd->mb_to_top_edge;
edge[1] = xd->mb_to_bottom_edge;
edge[2] = xd->mb_to_left_edge;
edge[3] = xd->mb_to_right_edge;
clamp_mvs = xd->mode_info_context->mbmi.need_to_clamp_secondmv;
base_pre = xd->plane[0].pre[1].buf;
pre_stride = xd->plane[0].pre[1].stride;
ymv.as_int = xd->mode_info_context->mbmi.mv[1].as_int;
// First generate the second predictor
scale = &xd->scale_factor[1];
for (n = 0; n < block_size; n += 16) {
xd->mb_to_left_edge = edge[2] - (n << 3);
xd->mb_to_right_edge = edge[3] + ((16 - n) << 3);
if (clamp_mvs)
clamp_mv_to_umv_border(&ymv.as_mv, xd);
scale->set_scaled_offsets(scale, mb_row * 16, mb_col * 16 + n);
// predict a single row of pixels
vp9_build_inter_predictor(base_pre +
scaled_buffer_offset(n, 0, pre_stride, scale),
pre_stride, tmp_y + n, tmp_ystride, &ymv, scale, 16, 1, 0, &xd->subpix);
}
xd->mb_to_left_edge = edge[2];
xd->mb_to_right_edge = edge[3];
for (n = 0; n < block_size; n += 16) {
xd->mb_to_top_edge = edge[0] - (n << 3);
xd->mb_to_bottom_edge = edge[1] + ((16 - n) << 3);
if (clamp_mvs)
clamp_mv_to_umv_border(&ymv.as_mv, xd);
scale->set_scaled_offsets(scale, mb_row * 16 + n, mb_col * 16);
// predict a single col of pixels
vp9_build_inter_predictor(base_pre +
scaled_buffer_offset(0, n, pre_stride, scale),
pre_stride, tmp_y + n * tmp_ystride, tmp_ystride, &ymv,
scale, 1, 16, 0, &xd->subpix);
}
xd->mb_to_top_edge = edge[0];
xd->mb_to_bottom_edge = edge[1];
// Compute consistency metric
metric_2 = get_consistency_metric(xd, tmp_y, tmp_ystride);
clamp_mvs = xd->mode_info_context->mbmi.need_to_clamp_mvs;
base_pre = xd->plane[0].pre[0].buf;
pre_stride = xd->plane[0].pre[0].stride;
ymv.as_int = xd->mode_info_context->mbmi.mv[0].as_int;
// Now generate the first predictor
scale = &xd->scale_factor[0];
for (n = 0; n < block_size; n += 16) {
xd->mb_to_left_edge = edge[2] - (n << 3);
xd->mb_to_right_edge = edge[3] + ((16 - n) << 3);
if (clamp_mvs)
clamp_mv_to_umv_border(&ymv.as_mv, xd);
scale->set_scaled_offsets(scale, mb_row * 16, mb_col * 16 + n);
// predict a single row of pixels
vp9_build_inter_predictor(base_pre +
scaled_buffer_offset(n, 0, pre_stride, scale),
pre_stride, tmp_y + n, tmp_ystride, &ymv, scale, 16, 1, 0, &xd->subpix);
}
xd->mb_to_left_edge = edge[2];
xd->mb_to_right_edge = edge[3];
for (n = 0; n < block_size; n += 16) {
xd->mb_to_top_edge = edge[0] - (n << 3);
xd->mb_to_bottom_edge = edge[1] + ((16 - n) << 3);
if (clamp_mvs)
clamp_mv_to_umv_border(&ymv.as_mv, xd);
scale->set_scaled_offsets(scale, mb_row * 16 + n, mb_col * 16);
// predict a single col of pixels
vp9_build_inter_predictor(base_pre +
scaled_buffer_offset(0, n, pre_stride, scale),
pre_stride, tmp_y + n * tmp_ystride, tmp_ystride, &ymv,
scale, 1, 16, 0, &xd->subpix);
}
xd->mb_to_top_edge = edge[0];
xd->mb_to_bottom_edge = edge[1];
metric_1 = get_consistency_metric(xd, tmp_y, tmp_ystride);
// Choose final weight for averaging
weight = get_weight(xd, metric_1, metric_2);
return weight;
}
static void build_inter16x16_predictors_mby_w(MACROBLOCKD *xd,
uint8_t *dst_y,
int dst_ystride,
int weight,
int mb_row,
int mb_col) {
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
int which_mv;
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
const int clamp_mvs = which_mv ?
xd->mode_info_context->mbmi.need_to_clamp_secondmv :
xd->mode_info_context->mbmi.need_to_clamp_mvs;
uint8_t *base_pre = xd->plane[0].pre[which_mv].buf;
int pre_stride = xd->plane[0].pre[which_mv].stride;
int_mv ymv;
struct scale_factors *scale = &xd->scale_factor[which_mv];
ymv.as_int = xd->mode_info_context->mbmi.mv[which_mv].as_int;
if (clamp_mvs)
clamp_mv_to_umv_border(&ymv.as_mv, xd);
scale->set_scaled_offsets(scale, mb_row * 16, mb_col * 16);
vp9_build_inter_predictor(base_pre, pre_stride, dst_y, dst_ystride,
&ymv, scale, 16, 16,
which_mv ? weight : 0, &xd->subpix);
}
}
static void build_inter16x16_predictors_mbuv_w(MACROBLOCKD *xd,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride,
int weight,
int mb_row,
int mb_col) {
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
int which_mv;
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
const int clamp_mvs =
which_mv ? xd->mode_info_context->mbmi.need_to_clamp_secondmv
: xd->mode_info_context->mbmi.need_to_clamp_mvs;
uint8_t *uptr, *vptr;
int pre_stride = which_mv ? xd->plane[1].pre[1].stride
: xd->plane[1].pre[0].stride;
int_mv mv;
struct scale_factors *scale = &xd->scale_factor_uv[which_mv];
mv.as_int = xd->mode_info_context->mbmi.mv[which_mv].as_int;
if (clamp_mvs)
clamp_mv_to_umv_border(&mv.as_mv, xd);
uptr = (which_mv ? xd->plane[1].pre[1].buf : xd->plane[1].pre[0].buf);
vptr = (which_mv ? xd->plane[2].pre[1].buf : xd->plane[2].pre[0].buf);
scale->set_scaled_offsets(scale, mb_row * 16, mb_col * 16);
vp9_build_inter_predictor_q4(
uptr, pre_stride, dst_u, dst_uvstride, &mv,
scale, 8, 8, which_mv ? weight : 0, &xd->subpix);
vp9_build_inter_predictor_q4(
vptr, pre_stride, dst_v, dst_uvstride, &mv,
scale, 8, 8, which_mv ? weight : 0, &xd->subpix);
}
}
static void build_inter_predictors_sby_w(MACROBLOCKD *x,
uint8_t *dst_y,
int dst_ystride,
int weight,
int mb_row,
int mb_col,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bw = 1 << bwl;
const int bhl = mb_height_log2(bsize), bh = 1 << bhl;
uint8_t *y1 = x->plane[0].pre[0].buf;
uint8_t *y2 = x->plane[0].pre[1].buf;
int edge[4], n;
edge[0] = x->mb_to_top_edge;
edge[1] = x->mb_to_bottom_edge;
edge[2] = x->mb_to_left_edge;
edge[3] = x->mb_to_right_edge;
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
x->mb_to_top_edge = edge[0] - ((y_idx * 16) << 3);
x->mb_to_bottom_edge = edge[1] + (((bh - 1 - y_idx) * 16) << 3);
x->mb_to_left_edge = edge[2] - ((x_idx * 16) << 3);
x->mb_to_right_edge = edge[3] + (((bw - 1 - x_idx) * 16) << 3);
x->plane[0].pre[0].buf = y1 + scaled_buffer_offset(x_idx * 16,
y_idx * 16,
x->plane[0].pre[0].stride,
&x->scale_factor[0]);
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->plane[0].pre[1].buf = y2 +
scaled_buffer_offset(x_idx * 16,
y_idx * 16,
x->plane[0].pre[1].stride,
&x->scale_factor[1]);
}
build_inter16x16_predictors_mby_w(x,
dst_y + y_idx * 16 * dst_ystride + x_idx * 16,
dst_ystride, weight, mb_row + y_idx, mb_col + x_idx);
}
x->mb_to_top_edge = edge[0];
x->mb_to_bottom_edge = edge[1];
x->mb_to_left_edge = edge[2];
x->mb_to_right_edge = edge[3];
x->plane[0].pre[0].buf = y1;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->plane[0].pre[1].buf = y2;
}
}
void vp9_build_inter_predictors_sby(MACROBLOCKD *x,
int mb_row,
int mb_col,
BLOCK_SIZE_TYPE bsize) {
uint8_t * const dst_y = x->plane[0].dst.buf;
const int dst_ystride = x->plane[0].dst.stride;
int weight = get_implicit_compoundinter_weight(x, mb_row, mb_col);
build_inter_predictors_sby_w(x, dst_y, dst_ystride, weight,
mb_row, mb_col, bsize);
}
static void build_inter_predictors_sbuv_w(MACROBLOCKD *x,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride,
int weight,
int mb_row,
int mb_col,
BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bw = 1 << bwl;
const int bhl = mb_height_log2(bsize), bh = 1 << bhl;
uint8_t *u1 = x->plane[1].pre[0].buf, *v1 = x->plane[2].pre[0].buf;
uint8_t *u2 = x->plane[1].pre[1].buf, *v2 = x->plane[2].pre[1].buf;
int edge[4], n;
edge[0] = x->mb_to_top_edge;
edge[1] = x->mb_to_bottom_edge;
edge[2] = x->mb_to_left_edge;
edge[3] = x->mb_to_right_edge;
for (n = 0; n < bw * bh; n++) {
int scaled_uv_offset;
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
x->mb_to_top_edge = edge[0] - ((y_idx * 16) << 3);
x->mb_to_bottom_edge = edge[1] + (((bh - 1 - y_idx) * 16) << 3);
x->mb_to_left_edge = edge[2] - ((x_idx * 16) << 3);
x->mb_to_right_edge = edge[3] + (((bw - 1 - x_idx) * 16) << 3);
scaled_uv_offset = scaled_buffer_offset(x_idx * 8,
y_idx * 8,
x->plane[1].pre[0].stride,
&x->scale_factor_uv[0]);
x->plane[1].pre[0].buf = u1 + scaled_uv_offset;
x->plane[2].pre[0].buf = v1 + scaled_uv_offset;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
scaled_uv_offset = scaled_buffer_offset(x_idx * 8,
y_idx * 8,
x->plane[1].pre[1].stride,
&x->scale_factor_uv[1]);
x->plane[1].pre[1].buf = u2 + scaled_uv_offset;
x->plane[2].pre[1].buf = v2 + scaled_uv_offset;
}
build_inter16x16_predictors_mbuv_w(x,
dst_u + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_v + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_uvstride, weight, mb_row + y_idx, mb_col + x_idx);
}
x->mb_to_top_edge = edge[0];
x->mb_to_bottom_edge = edge[1];
x->mb_to_left_edge = edge[2];
x->mb_to_right_edge = edge[3];
x->plane[1].pre[0].buf = u1;
x->plane[2].pre[0].buf = v1;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->plane[1].pre[1].buf = u2;
x->plane[2].pre[1].buf = v2;
}
}
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd,
int mb_row,
int mb_col,
BLOCK_SIZE_TYPE bsize) {
uint8_t *const dst_u = xd->plane[1].dst.buf;
uint8_t *const dst_v = xd->plane[2].dst.buf;
const int dst_uvstride = xd->plane[1].dst.stride;
#ifdef USE_IMPLICIT_WEIGHT_UV
int weight = get_implicit_compoundinter_weight(xd, mb_row, mb_col);
#else
int weight = AVERAGE_WEIGHT;
#endif
build_inter_predictors_sbuv_w(xd, dst_u, dst_v, dst_uvstride,
weight, mb_row, mb_col, bsize);
}
void vp9_build_inter_predictors_sb(MACROBLOCKD *mb,
int mb_row, int mb_col,
BLOCK_SIZE_TYPE bsize) {
#if CONFIG_COMP_INTERINTRA_PRED
uint8_t *const y = mb->plane[0].dst.buf;
uint8_t *const u = mb->plane[1].dst.buf;
uint8_t *const v = mb->plane[2].dst.buf;
const int y_stride = mb->plane[0].dst.stride;
const int uv_stride = mb->plane[1].dst.stride;
#endif
vp9_build_inter_predictors_sby(mb, mb_row, mb_col, bsize);
vp9_build_inter_predictors_sbuv(mb, mb_row, mb_col, bsize);
#if CONFIG_COMP_INTERINTRA_PRED
if (mb->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) {
if (bsize == BLOCK_SIZE_SB32X32)
vp9_build_interintra_32x32_predictors_sb(mb, y, u, v,
y_stride, uv_stride);
else
vp9_build_interintra_64x64_predictors_sb(mb, y, u, v,
y_stride, uv_stride);
}
#endif
}
#endif // CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT
static INLINE int round_mv_comp(int value) {
return (value < 0 ? value - 2 : value + 2) / 4;
}
static int mi_mv_pred_row(MACROBLOCKD *mb, int off, int idx) {
const int temp = mb->mode_info_context->bmi[off + 0].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[off + 1].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[off + 4].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[off + 5].as_mv[idx].as_mv.row;
return round_mv_comp(temp);
}
static int mi_mv_pred_col(MACROBLOCKD *mb, int off, int idx) {
const int temp = mb->mode_info_context->bmi[off + 0].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[off + 1].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[off + 4].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[off + 5].as_mv[idx].as_mv.col;
return round_mv_comp(temp);
}
/*encoder only*/
void vp9_build_inter4x4_predictors_mbuv(MACROBLOCKD *xd,
int mb_row, int mb_col) {
vp9_build_inter_predictors_sbuv(xd, mb_row, mb_col,
BLOCK_SIZE_MB16X16);
}