vpx/vp8/decoder/decodemv.c
Paul Wilkins 1335ac3071 Implementation of new prediction model for reference frame coding.
This check in uses the common prediction interface functions
to code reference frame.

Some updates made regarding the impact of the new code in rd loop
but there remain TODOs in this regard.

Change-Id: I9da3ed5dfdaa489e0903ab33258b0767a585567f
2012-01-31 12:54:05 +00:00

1038 lines
33 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "treereader.h"
#include "vp8/common/entropymv.h"
#include "vp8/common/entropymode.h"
#include "onyxd_int.h"
#include "vp8/common/findnearmv.h"
//#if CONFIG_SEGFEATURES
#include "vp8/common/seg_common.h"
#include "vp8/common/pred_common.h"
#if CONFIG_DEBUG
#include <assert.h>
#endif
static int vp8_read_bmode(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_bmode_tree, p);
return i;
}
static int vp8_read_ymode(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_ymode_tree, p);
return i;
}
static int vp8_kfread_ymode(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_kf_ymode_tree, p);
return i;
}
static int vp8_read_i8x8_mode(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_i8x8_mode_tree, p);
return i;
}
static int vp8_read_uv_mode(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_uv_mode_tree, p);
return i;
}
// This function reads the current macro block's segnment id to from bitstream
// It should only be called if a segment map update is indicated.
static void vp8_read_mb_segid(vp8_reader *r, MB_MODE_INFO *mi, MACROBLOCKD *x)
{
/* Is segmentation enabled */
if (x->segmentation_enabled && x->update_mb_segmentation_map)
{
/* If so then read the segment id. */
if (vp8_read(r, x->mb_segment_tree_probs[0]))
mi->segment_id = (unsigned char)(2 + vp8_read(r, x->mb_segment_tree_probs[2]));
else
mi->segment_id = (unsigned char)(vp8_read(r, x->mb_segment_tree_probs[1]));
}
}
extern const int vp8_i8x8_block[4];
static void vp8_kfread_modes(VP8D_COMP *pbi,
MODE_INFO *m,
int mb_row,
int mb_col)
{
vp8_reader *const bc = & pbi->bc;
const int mis = pbi->common.mode_info_stride;
int map_index = mb_row * pbi->common.mb_cols + mb_col;
MB_PREDICTION_MODE y_mode;
// Read the Macroblock segmentation map if it is being updated explicitly
// this frame (reset to 0 by default).
m->mbmi.segment_id = 0;
if (pbi->mb.update_mb_segmentation_map)
{
vp8_read_mb_segid(bc, &m->mbmi, &pbi->mb);
pbi->common.last_frame_seg_map[map_index] = m->mbmi.segment_id;
}
//#if CONFIG_SEGFEATURES
if ( pbi->common.mb_no_coeff_skip &&
( !segfeature_active( &pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB ) ||
( get_segdata( &pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB ) != 0 ) ) )
{
m->mbmi.mb_skip_coeff = vp8_read(bc, pbi->prob_skip_false);
}
else
{
//#if CONFIG_SEGFEATURES
if ( segfeature_active( &pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB ) &&
( get_segdata( &pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB ) == 0 ) )
{
m->mbmi.mb_skip_coeff = 1;
}
else
m->mbmi.mb_skip_coeff = 0;
}
#if CONFIG_QIMODE
y_mode = (MB_PREDICTION_MODE) vp8_kfread_ymode(bc,
pbi->common.kf_ymode_prob[pbi->common.kf_ymode_probs_index]);
#else
y_mode = (MB_PREDICTION_MODE) vp8_kfread_ymode(
bc, pbi->common.kf_ymode_prob);
#endif
m->mbmi.ref_frame = INTRA_FRAME;
if ((m->mbmi.mode = y_mode) == B_PRED)
{
int i = 0;
do
{
const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
const B_PREDICTION_MODE L = left_block_mode(m, i);
m->bmi[i].as_mode =
(B_PREDICTION_MODE) vp8_read_bmode(
bc, pbi->common.kf_bmode_prob [A] [L]);
}
while (++i < 16);
}
if((m->mbmi.mode = y_mode) == I8X8_PRED)
{
int i;
int mode8x8;
for(i=0;i<4;i++)
{
int ib = vp8_i8x8_block[i];
mode8x8 = vp8_read_i8x8_mode(bc, pbi->common.i8x8_mode_prob);
m->bmi[ib+0].as_mode= mode8x8;
m->bmi[ib+1].as_mode= mode8x8;
m->bmi[ib+4].as_mode= mode8x8;
m->bmi[ib+5].as_mode= mode8x8;
}
}
else
#if CONFIG_UVINTRA
m->mbmi.uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(bc,
pbi->common.kf_uv_mode_prob[m->mbmi.mode]);
#else
m->mbmi.uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(bc,
pbi->common.kf_uv_mode_prob);
#endif
}
static int read_mvcomponent(vp8_reader *r, const MV_CONTEXT *mvc)
{
const vp8_prob *const p = (const vp8_prob *) mvc;
int x = 0;
if (vp8_read(r, p [mvpis_short])) /* Large */
{
int i = 0;
do
{
x += vp8_read(r, p [MVPbits + i]) << i;
}
while (++i < 3);
i = mvlong_width - 1; /* Skip bit 3, which is sometimes implicit */
do
{
x += vp8_read(r, p [MVPbits + i]) << i;
}
while (--i > 3);
if (!(x & 0xFFF0) || vp8_read(r, p [MVPbits + 3]))
x += 8;
}
else /* small */
x = vp8_treed_read(r, vp8_small_mvtree, p + MVPshort);
if (x && vp8_read(r, p [MVPsign]))
x = -x;
return x;
}
static void read_mv(vp8_reader *r, MV *mv, const MV_CONTEXT *mvc)
{
mv->row = (short)(read_mvcomponent(r, mvc) << 1);
mv->col = (short)(read_mvcomponent(r, ++mvc) << 1);
}
static void read_mvcontexts(vp8_reader *bc, MV_CONTEXT *mvc)
{
int i = 0;
do
{
const vp8_prob *up = vp8_mv_update_probs[i].prob;
vp8_prob *p = (vp8_prob *)(mvc + i);
vp8_prob *const pstop = p + MVPcount;
do
{
if (vp8_read(bc, *up++))
{
const vp8_prob x = (vp8_prob)vp8_read_literal(bc, 7);
*p = x ? x << 1 : 1;
}
}
while (++p < pstop);
}
while (++i < 2);
}
// Read the referncence frame
static MV_REFERENCE_FRAME read_ref_frame( VP8D_COMP *pbi,
vp8_reader *const bc,
unsigned char segment_id )
{
MV_REFERENCE_FRAME ref_frame;
int seg_ref_active;
//#if CONFIG_SEGFEATURES
VP8_COMMON *const cm = & pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
seg_ref_active = segfeature_active( xd,
segment_id,
SEG_LVL_REF_FRAME );
// Segment reference frame features not available
if ( !seg_ref_active )
{
#if CONFIG_COMPRED
// Values used in prediction model coding
unsigned char prediction_flag;
vp8_prob pred_prob;
MV_REFERENCE_FRAME pred_ref;
// Get the context probability the prediction flag
pred_prob = get_pred_prob( cm, xd, PRED_REF );
// Read the prediction status flag
prediction_flag = (unsigned char)vp8_read( bc, pred_prob );
// Store the prediction flag.
set_pred_flag( xd, PRED_REF, prediction_flag );
// Get the predicted reference frame.
pred_ref = get_pred_ref( cm, xd );
// If correctly predicted then use the predicted value
if ( prediction_flag )
{
ref_frame = pred_ref;
}
// else decode the explicitly coded value
else
{
vp8_prob * mod_refprobs = cm->mod_refprobs[pred_ref];
// Default to INTRA_FRAME (value 0)
ref_frame = INTRA_FRAME;
// Do we need to decode the Intra/Inter branch
if ( mod_refprobs[0] )
ref_frame = (MV_REFERENCE_FRAME) vp8_read(bc, mod_refprobs[0]);
else
ref_frame ++;
if (ref_frame)
{
// Do we need to decode the Last/Gf_Arf branch
if ( mod_refprobs[1] )
ref_frame += vp8_read(bc, mod_refprobs[1]);
else
ref_frame++;
if ( ref_frame > 1 )
{
// Do we need to decode the GF/Arf branch
if ( mod_refprobs[2] )
ref_frame += vp8_read(bc, mod_refprobs[2]);
else
{
ref_frame = (pred_ref == GOLDEN_FRAME)
? ALTREF_FRAME : GOLDEN_FRAME;
}
}
}
}
#else
ref_frame =
(MV_REFERENCE_FRAME) vp8_read(bc, cm->prob_intra_coded);
if (ref_frame)
{
if (vp8_read(bc, cm->prob_last_coded))
{
ref_frame = (MV_REFERENCE_FRAME)((int)ref_frame +
(int)(1 + vp8_read(bc, cm->prob_gf_coded)));
}
}
#endif
}
//#if CONFIG_SEGFEATURES
// Segment reference frame features are enabled
else
{
#if CONFIG_COMPRED
// The reference frame for the mb is considered as correclty predicted
// if it is signaled at the segment level for the purposes of the
// common prediction model
set_pred_flag( xd, PRED_REF, 1 );
#endif
// If there are no inter reference frames enabled we can set INTRA
if ( !check_segref_inter(xd, segment_id) )
{
ref_frame = INTRA_FRAME;
}
else
{
// Else if there are both intra and inter options we need to read
// the inter / intra flag, else mark as inter.
if ( check_segref( xd, segment_id, INTRA_FRAME ) )
ref_frame =
(MV_REFERENCE_FRAME) vp8_read(bc, cm->prob_intra_coded);
else
ref_frame = LAST_FRAME;
if ( ref_frame == LAST_FRAME )
{
// Now consider last vs (golden or alt) flag....
// If Last is not enabled
if ( !check_segref( xd, segment_id, LAST_FRAME ) )
{
// If not golden then it must be altref
if (!check_segref( xd, segment_id, GOLDEN_FRAME ))
{
ref_frame = ALTREF_FRAME;
}
// Not Altref therefore must be Golden
else if (!check_segref( xd, segment_id,
ALTREF_FRAME ))
{
ref_frame = GOLDEN_FRAME;
}
// Else we must read bit to decide.
else
{
ref_frame =
(MV_REFERENCE_FRAME)((int)ref_frame +
(int)(1 + vp8_read(bc, cm->prob_gf_coded)));
}
}
// Both last and at least one of alt or golden are enabled
else if ( check_segref( xd, segment_id, GOLDEN_FRAME ) ||
check_segref( xd, segment_id, ALTREF_FRAME ) )
{
// Read flag to indicate (golden or altref) vs last
if (vp8_read(bc, cm->prob_last_coded))
{
// If not golden then it must be altref
if (!check_segref( xd, segment_id, GOLDEN_FRAME ))
{
ref_frame = ALTREF_FRAME;
}
// Not Altref therefore must be Golden
else if (!check_segref( xd, segment_id,
ALTREF_FRAME ))
{
ref_frame = GOLDEN_FRAME;
}
else
{
ref_frame =
(MV_REFERENCE_FRAME)((int)ref_frame +
(int)(1 + vp8_read(bc, cm->prob_gf_coded)));
}
}
// ELSE LAST
}
}
}
}
return (MV_REFERENCE_FRAME)ref_frame;
}
static MB_PREDICTION_MODE read_mv_ref(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_mv_ref_tree, p);
return (MB_PREDICTION_MODE)i;
}
static B_PREDICTION_MODE sub_mv_ref(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_sub_mv_ref_tree, p);
return (B_PREDICTION_MODE)i;
}
#ifdef VPX_MODE_COUNT
unsigned int vp8_mv_cont_count[5][4] =
{
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 }
};
#endif
static const unsigned char mbsplit_fill_count[4] = {8, 8, 4, 1};
static const unsigned char mbsplit_fill_offset[4][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{ 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15},
{ 0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15},
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
};
static void mb_mode_mv_init(VP8D_COMP *pbi)
{
VP8_COMMON *const cm = & pbi->common;
vp8_reader *const bc = & pbi->bc;
MV_CONTEXT *const mvc = pbi->common.fc.mvc;
#if CONFIG_ERROR_CONCEALMENT
/* Default is that no macroblock is corrupt, therefore we initialize
* mvs_corrupt_from_mb to something very big, which we can be sure is
* outside the frame. */
pbi->mvs_corrupt_from_mb = UINT_MAX;
#endif
pbi->prob_skip_false = 0;
if (pbi->common.mb_no_coeff_skip)
pbi->prob_skip_false = (vp8_prob)vp8_read_literal(bc, 8);
if(pbi->common.frame_type != KEY_FRAME)
{
// Decode the baseline probabilities for decoding reference frame
cm->prob_intra_coded = (vp8_prob)vp8_read_literal(bc, 8);
cm->prob_last_coded = (vp8_prob)vp8_read_literal(bc, 8);
cm->prob_gf_coded = (vp8_prob)vp8_read_literal(bc, 8);
#if CONFIG_COMPRED
// Computes a modified set of probabilities for use when reference
// frame prediction fails.
compute_mod_refprobs( cm );
#endif
#if CONFIG_DUALPRED
pbi->common.dual_pred_mode = vp8_read(bc, 128);
if (cm->dual_pred_mode)
cm->dual_pred_mode += vp8_read(bc, 128);
if (cm->dual_pred_mode == HYBRID_PREDICTION)
{
pbi->prob_dualpred[0] = (vp8_prob)vp8_read_literal(bc, 8);
pbi->prob_dualpred[1] = (vp8_prob)vp8_read_literal(bc, 8);
pbi->prob_dualpred[2] = (vp8_prob)vp8_read_literal(bc, 8);
}
#endif /* CONFIG_DUALPRED */
if (vp8_read_bit(bc))
{
int i = 0;
do
{
cm->fc.ymode_prob[i] = (vp8_prob) vp8_read_literal(bc, 8);
}
while (++i < 4);
}
#if CONFIG_UVINTRA
//vp8_read_bit(bc);
#else
if (vp8_read_bit(bc))
{
int i = 0;
do
{
cm->fc.uv_mode_prob[i] = (vp8_prob) vp8_read_literal(bc, 8);
}
while (++i < 3);
}
#endif /* CONFIG_UVINTRA */
read_mvcontexts(bc, mvc);
}
}
// This function either reads the segment id for the current macroblock from
// the bitstream or if the value is temporally predicted asserts the predicted
// value
static void read_mb_segment_id ( VP8D_COMP *pbi,
int mb_row, int mb_col )
{
vp8_reader *const bc = & pbi->bc;
VP8_COMMON *const cm = & pbi->common;
MACROBLOCKD *const xd = & pbi->mb;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *mbmi = &mi->mbmi;
int index = mb_row * pbi->common.mb_cols + mb_col;
if (xd->segmentation_enabled)
{
if (xd->update_mb_segmentation_map)
{
// Is temporal coding of the segment id for this mb enabled.
if (cm->temporal_update)
{
// Get the context based probability for reading the
// prediction status flag
vp8_prob pred_prob =
get_pred_prob( cm, xd, PRED_SEG_ID );
// Read the prediction status flag
unsigned char seg_pred_flag =
(unsigned char)vp8_read(bc, pred_prob );
// Store the prediction flag.
set_pred_flag( xd, PRED_SEG_ID, seg_pred_flag );
// If the value is flagged as correctly predicted
// then use the predicted value
if ( seg_pred_flag )
{
mbmi->segment_id = get_pred_mb_segid( cm, index );
}
// Else .... decode it explicitly
else
{
vp8_read_mb_segid(bc, mbmi, xd );
cm->last_frame_seg_map[index] = mbmi->segment_id;
}
}
// Normal unpredicted coding mode
else
{
vp8_read_mb_segid(bc, mbmi, xd);
cm->last_frame_seg_map[index] = mbmi->segment_id;
}
}
}
else
{
// The encoder explicitly sets the segment_id to 0
// when segmentation is disabled
mbmi->segment_id = 0;
}
}
static void read_mb_modes_mv(VP8D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi,
#if CONFIG_NEWNEAR
MODE_INFO *prev_mi,
#endif
int mb_row, int mb_col)
{
VP8_COMMON *const cm = & pbi->common;
vp8_reader *const bc = & pbi->bc;
MV_CONTEXT *const mvc = pbi->common.fc.mvc;
const int mis = pbi->common.mode_info_stride;
MACROBLOCKD *const xd = & pbi->mb;
int pred_context;
int index = mb_row * pbi->common.mb_cols + mb_col;
int_mv *const mv = & mbmi->mv;
int mb_to_left_edge;
int mb_to_right_edge;
int mb_to_top_edge;
int mb_to_bottom_edge;
mb_to_top_edge = xd->mb_to_top_edge;
mb_to_bottom_edge = xd->mb_to_bottom_edge;
mb_to_top_edge -= LEFT_TOP_MARGIN;
mb_to_bottom_edge += RIGHT_BOTTOM_MARGIN;
mbmi->need_to_clamp_mvs = 0;
#if CONFIG_DUALPRED
mbmi->second_ref_frame = 0;
#endif /* CONFIG_DUALPRED */
/* Distance of Mb to the various image edges.
* These specified to 8th pel as they are always compared to MV values that are in 1/8th pel units
*/
xd->mb_to_left_edge =
mb_to_left_edge = -((mb_col * 16) << 3);
mb_to_left_edge -= LEFT_TOP_MARGIN;
xd->mb_to_right_edge =
mb_to_right_edge = ((pbi->common.mb_cols - 1 - mb_col) * 16) << 3;
mb_to_right_edge += RIGHT_BOTTOM_MARGIN;
// Make sure the MACROBLOCKD mode info pointer is pointed at the
// correct entry for the current macroblock.
xd->mode_info_context = mi;
// Read the macroblock segment id.
read_mb_segment_id ( pbi, mb_row, mb_col );
//#if CONFIG_SEGFEATURES
if ( pbi->common.mb_no_coeff_skip &&
( !segfeature_active( xd,
mbmi->segment_id, SEG_LVL_EOB ) ||
(get_segdata( xd, mbmi->segment_id, SEG_LVL_EOB ) != 0) ) )
{
// Read the macroblock coeff skip flag if this feature is in use,
// else default to 0
mbmi->mb_skip_coeff = vp8_read(bc, pbi->prob_skip_false);
}
else
{
//#if CONFIG_SEGFEATURES
if ( segfeature_active( xd,
mbmi->segment_id, SEG_LVL_EOB ) &&
(get_segdata( xd, mbmi->segment_id, SEG_LVL_EOB ) == 0) )
{
mbmi->mb_skip_coeff = 1;
}
else
mbmi->mb_skip_coeff = 0;
}
// Read the reference frame
mbmi->ref_frame = read_ref_frame( pbi, bc, mbmi->segment_id );
// If reference frame is an Inter frame
if (mbmi->ref_frame)
{
int rct[4];
int_mv nearest, nearby, best_mv;
vp8_prob mv_ref_p [VP8_MVREFS-1];
vp8_find_near_mvs(xd, mi,
#if CONFIG_NEWNEAR
prev_mi,
#endif
&nearest, &nearby, &best_mv, rct,
mbmi->ref_frame, pbi->common.ref_frame_sign_bias);
vp8_mv_ref_probs(&pbi->common, mv_ref_p, rct);
//#if CONFIG_SEGFEATURES
// Is the segment level mode feature enabled for this segment
if ( segfeature_active( xd, mbmi->segment_id, SEG_LVL_MODE ) )
{
mbmi->mode =
get_segdata( xd, mbmi->segment_id, SEG_LVL_MODE );
}
else
{
mbmi->mode = read_mv_ref(bc, mv_ref_p);
#if CONFIG_NEWNEAR
vp8_accum_mv_refs(&pbi->common, mbmi->mode, rct);
#endif
}
mbmi->uv_mode = DC_PRED;
switch (mbmi->mode)
{
case SPLITMV:
{
const int s = mbmi->partitioning =
vp8_treed_read(bc, vp8_mbsplit_tree, vp8_mbsplit_probs);
const int num_p = vp8_mbsplit_count [s];
int j = 0;
do /* for each subset j */
{
int_mv leftmv, abovemv;
int_mv blockmv;
int k; /* first block in subset j */
int mv_contz;
k = vp8_mbsplit_offset[s][j];
leftmv.as_int = left_block_mv(mi, k);
abovemv.as_int = above_block_mv(mi, k, mis);
mv_contz = vp8_mv_cont(&leftmv, &abovemv);
switch (sub_mv_ref(bc, vp8_sub_mv_ref_prob2 [mv_contz])) /*pc->fc.sub_mv_ref_prob))*/
{
case NEW4X4:
read_mv(bc, &blockmv.as_mv, (const MV_CONTEXT *) mvc);
blockmv.as_mv.row += best_mv.as_mv.row;
blockmv.as_mv.col += best_mv.as_mv.col;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][3]++;
#endif
break;
case LEFT4X4:
blockmv.as_int = leftmv.as_int;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][0]++;
#endif
break;
case ABOVE4X4:
blockmv.as_int = abovemv.as_int;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][1]++;
#endif
break;
case ZERO4X4:
blockmv.as_int = 0;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][2]++;
#endif
break;
default:
break;
}
mbmi->need_to_clamp_mvs = vp8_check_mv_bounds(&blockmv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
{
/* Fill (uniform) modes, mvs of jth subset.
Must do it here because ensuing subsets can
refer back to us via "left" or "above". */
const unsigned char *fill_offset;
unsigned int fill_count = mbsplit_fill_count[s];
fill_offset = &mbsplit_fill_offset[s][(unsigned char)j * mbsplit_fill_count[s]];
do {
mi->bmi[ *fill_offset].mv.as_int = blockmv.as_int;
fill_offset++;
}while (--fill_count);
}
}
while (++j < num_p);
}
mv->as_int = mi->bmi[15].mv.as_int;
break; /* done with SPLITMV */
case NEARMV:
mv->as_int = nearby.as_int;
/* Clip "next_nearest" so that it does not extend to far out of image */
vp8_clamp_mv(mv, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
goto propagate_mv;
case NEARESTMV:
mv->as_int = nearest.as_int;
/* Clip "next_nearest" so that it does not extend to far out of image */
vp8_clamp_mv(mv, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
goto propagate_mv;
case ZEROMV:
mv->as_int = 0;
goto propagate_mv;
case NEWMV:
read_mv(bc, &mv->as_mv, (const MV_CONTEXT *) mvc);
mv->as_mv.row += best_mv.as_mv.row;
mv->as_mv.col += best_mv.as_mv.col;
/* Don't need to check this on NEARMV and NEARESTMV modes
* since those modes clamp the MV. The NEWMV mode does not,
* so signal to the prediction stage whether special
* handling may be required.
*/
mbmi->need_to_clamp_mvs = vp8_check_mv_bounds(mv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
propagate_mv: /* same MV throughout */
#if CONFIG_DUALPRED
if (pbi->common.dual_pred_mode == DUAL_PREDICTION_ONLY ||
(pbi->common.dual_pred_mode == HYBRID_PREDICTION &&
vp8_read(bc, pbi->prob_dualpred[(mi[-1].mbmi.second_ref_frame != INTRA_FRAME) +
(mi[-mis].mbmi.second_ref_frame != INTRA_FRAME)])))
{
mbmi->second_ref_frame = mbmi->ref_frame + 1;
if (mbmi->second_ref_frame == 4)
mbmi->second_ref_frame = 1;
}
if (mbmi->second_ref_frame)
{
vp8_find_near_mvs(xd, mi,
#if CONFIG_NEWNEAR
prev_mi,
#endif
&nearest, &nearby, &best_mv, rct,
(int)mbmi->second_ref_frame,
pbi->common.ref_frame_sign_bias);
switch (mbmi->mode) {
case ZEROMV:
mbmi->second_mv.as_int = 0;
break;
case NEARMV:
mbmi->second_mv.as_int = nearby.as_int;
vp8_clamp_mv(&mbmi->second_mv, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
break;
case NEARESTMV:
mbmi->second_mv.as_int = nearest.as_int;
vp8_clamp_mv(&mbmi->second_mv, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
break;
case NEWMV:
read_mv(bc, &mbmi->second_mv.as_mv, (const MV_CONTEXT *) mvc);
mbmi->second_mv.as_mv.row += best_mv.as_mv.row;
mbmi->second_mv.as_mv.col += best_mv.as_mv.col;
mbmi->need_to_clamp_mvs |= vp8_check_mv_bounds(&mbmi->second_mv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
break;
default:
break;
}
}
#endif /* CONFIG_DUALPRED */
#if CONFIG_ERROR_CONCEALMENT
if(pbi->ec_enabled)
{
mi->bmi[ 0].mv.as_int =
mi->bmi[ 1].mv.as_int =
mi->bmi[ 2].mv.as_int =
mi->bmi[ 3].mv.as_int =
mi->bmi[ 4].mv.as_int =
mi->bmi[ 5].mv.as_int =
mi->bmi[ 6].mv.as_int =
mi->bmi[ 7].mv.as_int =
mi->bmi[ 8].mv.as_int =
mi->bmi[ 9].mv.as_int =
mi->bmi[10].mv.as_int =
mi->bmi[11].mv.as_int =
mi->bmi[12].mv.as_int =
mi->bmi[13].mv.as_int =
mi->bmi[14].mv.as_int =
mi->bmi[15].mv.as_int = mv->as_int;
}
#endif
break;
default:;
#if CONFIG_DEBUG
assert(0);
#endif
}
}
else
{
/* required for left and above block mv */
mbmi->mv.as_int = 0;
//#if CONFIG_SEGFEATURES
if ( segfeature_active( xd, mbmi->segment_id, SEG_LVL_MODE ) )
mbmi->mode = (MB_PREDICTION_MODE)
get_segdata( xd, mbmi->segment_id, SEG_LVL_MODE );
else
{
mbmi->mode = (MB_PREDICTION_MODE)
vp8_read_ymode(bc, pbi->common.fc.ymode_prob);
}
// If MB mode is BPRED read the block modes
if (mbmi->mode == B_PRED)
{
int j = 0;
do
{
mi->bmi[j].as_mode = (B_PREDICTION_MODE)vp8_read_bmode(bc, pbi->common.fc.bmode_prob);
}
while (++j < 16);
}
if(mbmi->mode == I8X8_PRED)
{
int i;
int mode8x8;
for(i=0;i<4;i++)
{
int ib = vp8_i8x8_block[i];
mode8x8 = vp8_read_i8x8_mode(bc, pbi->common.i8x8_mode_prob);
mi->bmi[ib+0].as_mode= mode8x8;
mi->bmi[ib+1].as_mode= mode8x8;
mi->bmi[ib+4].as_mode= mode8x8;
mi->bmi[ib+5].as_mode= mode8x8;
}
}
else
#if CONFIG_UVINTRA
mbmi->uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(bc,
pbi->common.fc.uv_mode_prob[mbmi->mode]);
#else
mbmi->uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(bc,
pbi->common.fc.uv_mode_prob);
#endif /*CONFIG_UVINTRA*/
}
}
void vp8_decode_mode_mvs(VP8D_COMP *pbi)
{
MODE_INFO *mi = pbi->common.mi;
#if CONFIG_NEWNEAR
MODE_INFO *prev_mi = pbi->common.prev_mi;
#endif
int mb_row = -1;
//#if CONFIG_SEGFEATURES
#if 0
FILE *statsfile;
statsfile = fopen("decsegmap.stt", "a");
fprintf(statsfile, "\n" );
#endif
mb_mode_mv_init(pbi);
#if CONFIG_QIMODE
if(pbi->common.frame_type==KEY_FRAME && !pbi->common.kf_ymode_probs_update)
{
pbi->common.kf_ymode_probs_index = vp8_read_literal(&pbi->bc, 3);
}
#endif
while (++mb_row < pbi->common.mb_rows)
{
int mb_col = -1;
int mb_to_top_edge;
int mb_to_bottom_edge;
pbi->mb.mb_to_top_edge =
mb_to_top_edge = -((mb_row * 16)) << 3;
mb_to_top_edge -= LEFT_TOP_MARGIN;
pbi->mb.mb_to_bottom_edge =
mb_to_bottom_edge = ((pbi->common.mb_rows - 1 - mb_row) * 16) << 3;
mb_to_bottom_edge += RIGHT_BOTTOM_MARGIN;
//#if CONFIG_SEGFEATURES
#if 0
fprintf(statsfile, "\n" );
#endif
while (++mb_col < pbi->common.mb_cols)
{
#if CONFIG_ERROR_CONCEALMENT
int mb_num = mb_row * pbi->common.mb_cols + mb_col;
#endif
/*read_mb_modes_mv(pbi, xd->mode_info_context, &xd->mode_info_context->mbmi, mb_row, mb_col);*/
if(pbi->common.frame_type == KEY_FRAME)
vp8_kfread_modes(pbi, mi, mb_row, mb_col);
else
read_mb_modes_mv(pbi, mi, &mi->mbmi,
#if CONFIG_NEWNEAR
prev_mi,
#endif
mb_row, mb_col);
//printf("%3d", mi->mbmi.mode);
/*
if(pbi->common.current_video_frame==7)
{
FILE *fmode=fopen("kfmode.txt", "a");
fprintf(fmode, "%3d:%3d:%d\n",mb_row, mb_col, mi->mbmi.mode);
fclose(fmode);
}*/
/*
if(mi->mbmi.mode==I8X8_PRED)
{
printf("F%3d:%d:%d\n", pbi->common.current_video_frame, mb_row, mb_col);
}
*/
#if CONFIG_ERROR_CONCEALMENT
/* look for corruption. set mvs_corrupt_from_mb to the current
* mb_num if the frame is corrupt from this macroblock. */
if (vp8dx_bool_error(&pbi->bc) && mb_num < pbi->mvs_corrupt_from_mb)
{
pbi->mvs_corrupt_from_mb = mb_num;
/* no need to continue since the partition is corrupt from
* here on.
*/
return;
}
#endif
//#if CONFIG_SEGFEATURES
#if 0
fprintf(statsfile, "%2d%2d%2d ",
mi->mbmi.segment_id, mi->mbmi.ref_frame, mi->mbmi.mode );
#endif
#if CONFIG_NEWNEAR
prev_mi++;
#endif
mi++; /* next macroblock */
}
// printf("\n");
#if CONFIG_NEWNEAR
prev_mi++;
#endif
mi++; /* skip left predictor each row */
}
//#if CONFIG_SEGFEATURES
#if 0
fclose(statsfile);
#endif
}