vpx/vp9/encoder/vp9_onyx_if.c

4067 lines
128 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_firstpass.h"
#include "vp9/encoder/vp9_psnr.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "./vp9_rtcd.h"
#include "./vpx_scale_rtcd.h"
#if CONFIG_POSTPROC
#include "vp9/common/vp9_postproc.h"
#endif
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_swapyv12buffer.h"
#include "vpx_ports/vpx_timer.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/encoder/vp9_mbgraph.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_bitstream.h"
#include "vp9/encoder/vp9_picklpf.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/encoder/vp9_temporal_filter.h"
#include <math.h>
#include <stdio.h>
#include <limits.h>
extern void print_tree_update_probs();
static void set_default_lf_deltas(VP9_COMP *cpi);
#define DEFAULT_INTERP_FILTER SWITCHABLE
#define SEARCH_BEST_FILTER 0 /* to search exhaustively for
best filter */
#define RESET_FOREACH_FILTER 0 /* whether to reset the encoder state
before trying each new filter */
#define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */
#define ALTREF_HIGH_PRECISION_MV 1 /* whether to use high precision mv
for altref computation */
#define HIGH_PRECISION_MV_QTHRESH 200 /* Q threshold for use of high precision
mv. Choose a very high value for
now so that HIGH_PRECISION is always
chosen */
#if CONFIG_INTERNAL_STATS
#include "math.h"
extern double vp9_calc_ssim(YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest, int lumamask,
double *weight);
extern double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest, double *ssim_y,
double *ssim_u, double *ssim_v);
#endif
// #define OUTPUT_YUV_REC
#ifdef OUTPUT_YUV_SRC
FILE *yuv_file;
#endif
#ifdef OUTPUT_YUV_REC
FILE *yuv_rec_file;
#endif
#if 0
FILE *framepsnr;
FILE *kf_list;
FILE *keyfile;
#endif
#if 0
extern int skip_true_count;
extern int skip_false_count;
#endif
#ifdef ENTROPY_STATS
extern int intra_mode_stats[VP9_KF_BINTRAMODES]
[VP9_KF_BINTRAMODES]
[VP9_KF_BINTRAMODES];
#endif
#ifdef NMV_STATS
extern void init_nmvstats();
extern void print_nmvstats();
#endif
#ifdef SPEEDSTATS
unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
#endif
#if defined(SECTIONBITS_OUTPUT)
extern unsigned __int64 Sectionbits[500];
#endif
#ifdef MODE_STATS
extern int64_t Sectionbits[500];
extern unsigned int y_modes[VP9_YMODES];
extern unsigned int i8x8_modes[VP9_I8X8_MODES];
extern unsigned int uv_modes[VP9_UV_MODES];
extern unsigned int uv_modes_y[VP9_YMODES][VP9_UV_MODES];
extern unsigned int b_modes[B_MODE_COUNT];
extern unsigned int inter_y_modes[MB_MODE_COUNT];
extern unsigned int inter_uv_modes[VP9_UV_MODES];
extern unsigned int inter_b_modes[B_MODE_COUNT];
#endif
extern void vp9_init_quantizer(VP9_COMP *cpi);
static int base_skip_false_prob[QINDEX_RANGE][3];
// Tables relating active max Q to active min Q
static int kf_low_motion_minq[QINDEX_RANGE];
static int kf_high_motion_minq[QINDEX_RANGE];
static int gf_low_motion_minq[QINDEX_RANGE];
static int gf_high_motion_minq[QINDEX_RANGE];
static int inter_minq[QINDEX_RANGE];
// Functions to compute the active minq lookup table entries based on a
// formulaic approach to facilitate easier adjustment of the Q tables.
// The formulae were derived from computing a 3rd order polynomial best
// fit to the original data (after plotting real maxq vs minq (not q index))
static int calculate_minq_index(double maxq,
double x3, double x2, double x, double c) {
int i;
double minqtarget;
minqtarget = ((x3 * maxq * maxq * maxq) +
(x2 * maxq * maxq) +
(x * maxq) +
c);
if (minqtarget > maxq)
minqtarget = maxq;
for (i = 0; i < QINDEX_RANGE; i++) {
if (minqtarget <= vp9_convert_qindex_to_q(i))
return i;
}
return QINDEX_RANGE - 1;
}
static void init_minq_luts(void) {
int i;
double maxq;
for (i = 0; i < QINDEX_RANGE; i++) {
maxq = vp9_convert_qindex_to_q(i);
kf_low_motion_minq[i] = calculate_minq_index(maxq,
0.0000003,
-0.000015,
0.074,
0.0);
kf_high_motion_minq[i] = calculate_minq_index(maxq,
0.0000004,
-0.000125,
0.14,
0.0);
gf_low_motion_minq[i] = calculate_minq_index(maxq,
0.0000015,
-0.0009,
0.33,
0.0);
gf_high_motion_minq[i] = calculate_minq_index(maxq,
0.0000021,
-0.00125,
0.45,
0.0);
inter_minq[i] = calculate_minq_index(maxq,
0.00000271,
-0.00113,
0.697,
0.0);
}
}
static void set_mvcost(MACROBLOCK *mb) {
if (mb->e_mbd.allow_high_precision_mv) {
mb->mvcost = mb->nmvcost_hp;
mb->mvsadcost = mb->nmvsadcost_hp;
} else {
mb->mvcost = mb->nmvcost;
mb->mvsadcost = mb->nmvsadcost;
}
}
static void init_base_skip_probs(void) {
int i;
double q;
int t;
for (i = 0; i < QINDEX_RANGE; i++) {
q = vp9_convert_qindex_to_q(i);
// Exponential decay caluclation of baseline skip prob with clamping
// Based on crude best fit of old table.
t = (int)(564.25 * pow(2.71828, (-0.012 * q)));
base_skip_false_prob[i][1] = clip_prob(t);
base_skip_false_prob[i][2] = clip_prob(t * 3 / 4);
base_skip_false_prob[i][0] = clip_prob(t * 5 / 4);
}
}
static void update_base_skip_probs(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
if (cm->frame_type != KEY_FRAME) {
vp9_update_skip_probs(cpi);
if (cpi->refresh_alt_ref_frame) {
int k;
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
cpi->last_skip_false_probs[2][k] = cm->mbskip_pred_probs[k];
cpi->last_skip_probs_q[2] = cm->base_qindex;
} else if (cpi->refresh_golden_frame) {
int k;
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
cpi->last_skip_false_probs[1][k] = cm->mbskip_pred_probs[k];
cpi->last_skip_probs_q[1] = cm->base_qindex;
} else {
int k;
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
cpi->last_skip_false_probs[0][k] = cm->mbskip_pred_probs[k];
cpi->last_skip_probs_q[0] = cm->base_qindex;
// update the baseline table for the current q
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
cpi->base_skip_false_prob[cm->base_qindex][k] =
cm->mbskip_pred_probs[k];
}
}
}
void vp9_initialize_enc() {
static int init_done = 0;
if (!init_done) {
vp9_initialize_common();
vp9_tokenize_initialize();
vp9_init_quant_tables();
vp9_init_me_luts();
init_minq_luts();
init_base_skip_probs();
init_done = 1;
}
}
#ifdef PACKET_TESTING
extern FILE *vpxlogc;
#endif
static void setup_features(VP9_COMP *cpi) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
// Set up default state for MB feature flags
xd->segmentation_enabled = 0; // Default segmentation disabled
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs));
vp9_clearall_segfeatures(xd);
xd->mode_ref_lf_delta_enabled = 0;
xd->mode_ref_lf_delta_update = 0;
vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
vpx_memset(xd->last_ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
vpx_memset(xd->last_mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
set_default_lf_deltas(cpi);
}
static void dealloc_compressor_data(VP9_COMP *cpi) {
vpx_free(cpi->tplist);
cpi->tplist = NULL;
// Delete last frame MV storage buffers
vpx_free(cpi->lfmv);
cpi->lfmv = 0;
vpx_free(cpi->lf_ref_frame_sign_bias);
cpi->lf_ref_frame_sign_bias = 0;
vpx_free(cpi->lf_ref_frame);
cpi->lf_ref_frame = 0;
// Delete sementation map
vpx_free(cpi->segmentation_map);
cpi->segmentation_map = 0;
vpx_free(cpi->common.last_frame_seg_map);
cpi->common.last_frame_seg_map = 0;
vpx_free(cpi->coding_context.last_frame_seg_map_copy);
cpi->coding_context.last_frame_seg_map_copy = 0;
vpx_free(cpi->active_map);
cpi->active_map = 0;
vp9_de_alloc_frame_buffers(&cpi->common);
vp8_yv12_de_alloc_frame_buffer(&cpi->last_frame_uf);
vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source);
#if VP9_TEMPORAL_ALT_REF
vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer);
#endif
vp9_lookahead_destroy(cpi->lookahead);
vpx_free(cpi->tok);
cpi->tok = 0;
// Structure used to monitor GF usage
vpx_free(cpi->gf_active_flags);
cpi->gf_active_flags = 0;
// Activity mask based per mb zbin adjustments
vpx_free(cpi->mb_activity_map);
cpi->mb_activity_map = 0;
vpx_free(cpi->mb_norm_activity_map);
cpi->mb_norm_activity_map = 0;
vpx_free(cpi->mb.pip);
cpi->mb.pip = 0;
vpx_free(cpi->twopass.total_stats);
cpi->twopass.total_stats = 0;
vpx_free(cpi->twopass.total_left_stats);
cpi->twopass.total_left_stats = 0;
vpx_free(cpi->twopass.this_frame_stats);
cpi->twopass.this_frame_stats = 0;
}
// Computes a q delta (in "q index" terms) to get from a starting q value
// to a target value
// target q value
static int compute_qdelta(VP9_COMP *cpi, double qstart, double qtarget) {
int i;
int start_index = cpi->worst_quality;
int target_index = cpi->worst_quality;
// Convert the average q value to an index.
for (i = cpi->best_quality; i < cpi->worst_quality; i++) {
start_index = i;
if (vp9_convert_qindex_to_q(i) >= qstart)
break;
}
// Convert the q target to an index
for (i = cpi->best_quality; i < cpi->worst_quality; i++) {
target_index = i;
if (vp9_convert_qindex_to_q(i) >= qtarget)
break;
}
return target_index - start_index;
}
static void configure_static_seg_features(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int high_q = (int)(cpi->avg_q > 48.0);
int qi_delta;
// Disable and clear down for KF
if (cm->frame_type == KEY_FRAME) {
// Clear down the global segmentation map
vpx_memset(cpi->segmentation_map, 0, (cm->mb_rows * cm->mb_cols));
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation
vp9_disable_segmentation((VP9_PTR)cpi);
// Clear down the segment features.
vp9_clearall_segfeatures(xd);
} else if (cpi->refresh_alt_ref_frame) {
// If this is an alt ref frame
// Clear down the global segmentation map
vpx_memset(cpi->segmentation_map, 0, (cm->mb_rows * cm->mb_cols));
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation and individual segment features by default
vp9_disable_segmentation((VP9_PTR)cpi);
vp9_clearall_segfeatures(xd);
// Scan frames from current to arf frame.
// This function re-enables segmentation if appropriate.
vp9_update_mbgraph_stats(cpi);
// If segmentation was enabled set those features needed for the
// arf itself.
if (xd->segmentation_enabled) {
xd->update_mb_segmentation_map = 1;
xd->update_mb_segmentation_data = 1;
qi_delta = compute_qdelta(cpi, cpi->avg_q, (cpi->avg_q * 0.875));
vp9_set_segdata(xd, 1, SEG_LVL_ALT_Q, (qi_delta - 2));
vp9_set_segdata(xd, 1, SEG_LVL_ALT_LF, -2);
vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_Q);
vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_LF);
// Where relevant assume segment data is delta data
xd->mb_segment_abs_delta = SEGMENT_DELTADATA;
}
}
// All other frames if segmentation has been enabled
else if (xd->segmentation_enabled) {
// First normal frame in a valid gf or alt ref group
if (cpi->common.frames_since_golden == 0) {
// Set up segment features for normal frames in an arf group
if (cpi->source_alt_ref_active) {
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 1;
xd->mb_segment_abs_delta = SEGMENT_DELTADATA;
qi_delta = compute_qdelta(cpi, cpi->avg_q,
(cpi->avg_q * 1.125));
vp9_set_segdata(xd, 1, SEG_LVL_ALT_Q, (qi_delta + 2));
vp9_set_segdata(xd, 1, SEG_LVL_ALT_Q, 0);
vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_Q);
vp9_set_segdata(xd, 1, SEG_LVL_ALT_LF, -2);
vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_LF);
// Segment coding disabled for compred testing
if (high_q || (cpi->static_mb_pct == 100)) {
vp9_set_segref(xd, 1, ALTREF_FRAME);
vp9_enable_segfeature(xd, 1, SEG_LVL_REF_FRAME);
vp9_enable_segfeature(xd, 1, SEG_LVL_SKIP);
}
}
// Disable segmentation and clear down features if alt ref
// is not active for this group
else {
vp9_disable_segmentation((VP9_PTR)cpi);
vpx_memset(cpi->segmentation_map, 0,
(cm->mb_rows * cm->mb_cols));
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
vp9_clearall_segfeatures(xd);
}
}
// Special case where we are coding over the top of a previous
// alt ref frame.
// Segment coding disabled for compred testing
else if (cpi->is_src_frame_alt_ref) {
// Enable ref frame features for segment 0 as well
vp9_enable_segfeature(xd, 0, SEG_LVL_REF_FRAME);
vp9_enable_segfeature(xd, 1, SEG_LVL_REF_FRAME);
// All mbs should use ALTREF_FRAME
vp9_clear_segref(xd, 0);
vp9_set_segref(xd, 0, ALTREF_FRAME);
vp9_clear_segref(xd, 1);
vp9_set_segref(xd, 1, ALTREF_FRAME);
// Skip all MBs if high Q (0,0 mv and skip coeffs)
if (high_q) {
vp9_enable_segfeature(xd, 0, SEG_LVL_SKIP);
vp9_enable_segfeature(xd, 1, SEG_LVL_SKIP);
}
// Enable data udpate
xd->update_mb_segmentation_data = 1;
}
// All other frames.
else {
// No updates.. leave things as they are.
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
}
}
}
// DEBUG: Print out the segment id of each MB in the current frame.
static void print_seg_map(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
int row, col;
int map_index = 0;
FILE *statsfile;
statsfile = fopen("segmap.stt", "a");
fprintf(statsfile, "%10d\n",
cm->current_video_frame);
for (row = 0; row < cpi->common.mb_rows; row++) {
for (col = 0; col < cpi->common.mb_cols; col++) {
fprintf(statsfile, "%10d",
cpi->segmentation_map[map_index]);
map_index++;
}
fprintf(statsfile, "\n");
}
fprintf(statsfile, "\n");
fclose(statsfile);
}
static void update_reference_segmentation_map(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int row, col;
MODE_INFO *mi, *mi_ptr = cm->mi;
uint8_t *cache_ptr = cm->last_frame_seg_map, *cache;
for (row = 0; row < cm->mb_rows; row++) {
mi = mi_ptr;
cache = cache_ptr;
for (col = 0; col < cm->mb_cols; col++, mi++, cache++) {
cache[0] = mi->mbmi.segment_id;
}
mi_ptr += cm->mode_info_stride;
cache_ptr += cm->mb_cols;
}
}
static void set_default_lf_deltas(VP9_COMP *cpi) {
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 1;
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
// Test of ref frame deltas
cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2;
cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0;
cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2;
cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2;
cpi->mb.e_mbd.mode_lf_deltas[0] = 4; // BPRED
cpi->mb.e_mbd.mode_lf_deltas[1] = -2; // Zero
cpi->mb.e_mbd.mode_lf_deltas[2] = 2; // New mv
cpi->mb.e_mbd.mode_lf_deltas[3] = 4; // Split mv
}
static void set_rd_speed_thresholds(VP9_COMP *cpi, int mode, int speed) {
SPEED_FEATURES *sf = &cpi->sf;
int speed_multiplier = speed + 1;
int i;
// Set baseline threshold values
for (i = 0; i < MAX_MODES; ++i) {
sf->thresh_mult[i] = (mode == 0) ? -500 : 0;
}
sf->thresh_mult[THR_ZEROMV ] = 0;
sf->thresh_mult[THR_ZEROG ] = 0;
sf->thresh_mult[THR_ZEROA ] = 0;
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_NEARESTG ] = 0;
sf->thresh_mult[THR_NEARESTA ] = 0;
sf->thresh_mult[THR_NEARMV ] += speed_multiplier * 1000;
sf->thresh_mult[THR_NEARG ] += speed_multiplier * 1000;
sf->thresh_mult[THR_NEARA ] += speed_multiplier * 1000;
sf->thresh_mult[THR_DC ] = 0;
sf->thresh_mult[THR_TM ] += speed_multiplier * 1000;
sf->thresh_mult[THR_V_PRED ] += speed_multiplier * 1000;
sf->thresh_mult[THR_H_PRED ] += speed_multiplier * 1000;
sf->thresh_mult[THR_D45_PRED ] += speed_multiplier * 1500;
sf->thresh_mult[THR_D135_PRED] += speed_multiplier * 1500;
sf->thresh_mult[THR_D117_PRED] += speed_multiplier * 1500;
sf->thresh_mult[THR_D153_PRED] += speed_multiplier * 1500;
sf->thresh_mult[THR_D27_PRED ] += speed_multiplier * 1500;
sf->thresh_mult[THR_D63_PRED ] += speed_multiplier * 1500;
sf->thresh_mult[THR_B_PRED ] += speed_multiplier * 2500;
sf->thresh_mult[THR_I8X8_PRED] += speed_multiplier * 2500;
sf->thresh_mult[THR_NEWMV ] += speed_multiplier * 1000;
sf->thresh_mult[THR_NEWG ] += speed_multiplier * 1000;
sf->thresh_mult[THR_NEWA ] += speed_multiplier * 1000;
sf->thresh_mult[THR_SPLITMV ] += speed_multiplier * 2500;
sf->thresh_mult[THR_SPLITG ] += speed_multiplier * 2500;
sf->thresh_mult[THR_SPLITA ] += speed_multiplier * 2500;
sf->thresh_mult[THR_COMP_ZEROLG ] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_ZEROLA ] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_ZEROGA ] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_NEARESTLG] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_NEARESTLA] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_NEARESTGA] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_NEARLG ] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_NEARLA ] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_NEARGA ] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_NEWLG ] += speed_multiplier * 2000;
sf->thresh_mult[THR_COMP_NEWLA ] += speed_multiplier * 2000;
sf->thresh_mult[THR_COMP_NEWGA ] += speed_multiplier * 2000;
sf->thresh_mult[THR_COMP_SPLITLA ] += speed_multiplier * 4500;
sf->thresh_mult[THR_COMP_SPLITGA ] += speed_multiplier * 4500;
sf->thresh_mult[THR_COMP_SPLITLG ] += speed_multiplier * 4500;
#if CONFIG_COMP_INTERINTRA_PRED
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROL ] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROG ] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROA ] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTL] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTG] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTA] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_INTERINTRA_NEARL ] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_INTERINTRA_NEARG ] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_INTERINTRA_NEARA ] += speed_multiplier * 1500;
sf->thresh_mult[THR_COMP_INTERINTRA_NEWL ] += speed_multiplier * 2000;
sf->thresh_mult[THR_COMP_INTERINTRA_NEWG ] += speed_multiplier * 2000;
sf->thresh_mult[THR_COMP_INTERINTRA_NEWA ] += speed_multiplier * 2000;
#endif
/* disable frame modes if flags not set */
if (!(cpi->ref_frame_flags & VP9_LAST_FLAG)) {
sf->thresh_mult[THR_NEWMV ] = INT_MAX;
sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
sf->thresh_mult[THR_NEARMV ] = INT_MAX;
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
#if CONFIG_COMP_INTERINTRA_PRED
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROL ] = INT_MAX;
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTL] = INT_MAX;
sf->thresh_mult[THR_COMP_INTERINTRA_NEARL ] = INT_MAX;
sf->thresh_mult[THR_COMP_INTERINTRA_NEWL ] = INT_MAX;
#endif
}
if (!(cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
sf->thresh_mult[THR_ZEROG ] = INT_MAX;
sf->thresh_mult[THR_NEARG ] = INT_MAX;
sf->thresh_mult[THR_NEWG ] = INT_MAX;
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
#if CONFIG_COMP_INTERINTRA_PRED
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROG ] = INT_MAX;
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTG] = INT_MAX;
sf->thresh_mult[THR_COMP_INTERINTRA_NEARG ] = INT_MAX;
sf->thresh_mult[THR_COMP_INTERINTRA_NEWG ] = INT_MAX;
#endif
}
if (!(cpi->ref_frame_flags & VP9_ALT_FLAG)) {
sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
sf->thresh_mult[THR_ZEROA ] = INT_MAX;
sf->thresh_mult[THR_NEARA ] = INT_MAX;
sf->thresh_mult[THR_NEWA ] = INT_MAX;
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
#if CONFIG_COMP_INTERINTRA_PRED
sf->thresh_mult[THR_COMP_INTERINTRA_ZEROA ] = INT_MAX;
sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTA] = INT_MAX;
sf->thresh_mult[THR_COMP_INTERINTRA_NEARA ] = INT_MAX;
sf->thresh_mult[THR_COMP_INTERINTRA_NEWA ] = INT_MAX;
#endif
}
if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_GOLD_FLAG)) !=
(VP9_LAST_FLAG | VP9_GOLD_FLAG)) {
sf->thresh_mult[THR_COMP_ZEROLG ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARESTLG] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARLG ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEWLG ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITLG ] = INT_MAX;
}
if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_ALT_FLAG)) !=
(VP9_LAST_FLAG | VP9_ALT_FLAG)) {
sf->thresh_mult[THR_COMP_ZEROLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARESTLA] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEWLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITLA ] = INT_MAX;
}
if ((cpi->ref_frame_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) !=
(VP9_GOLD_FLAG | VP9_ALT_FLAG)) {
sf->thresh_mult[THR_COMP_ZEROGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARESTGA] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEWGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITGA ] = INT_MAX;
}
}
void vp9_set_speed_features(VP9_COMP *cpi) {
SPEED_FEATURES *sf = &cpi->sf;
int mode = cpi->compressor_speed;
int speed = cpi->Speed;
int i;
VP9_COMMON *cm = &cpi->common;
// Only modes 0 and 1 supported for now in experimental code basae
if (mode > 1)
mode = 1;
// Initialise default mode frequency sampling variables
for (i = 0; i < MAX_MODES; i ++) {
cpi->mode_check_freq[i] = 0;
cpi->mode_test_hit_counts[i] = 0;
cpi->mode_chosen_counts[i] = 0;
}
// best quality defaults
sf->RD = 1;
sf->search_method = NSTEP;
sf->improved_dct = 1;
sf->auto_filter = 1;
sf->recode_loop = 1;
sf->quarter_pixel_search = 1;
sf->half_pixel_search = 1;
sf->iterative_sub_pixel = 1;
sf->no_skip_block4x4_search = 1;
if (cpi->oxcf.lossless)
sf->optimize_coefficients = 0;
else
sf->optimize_coefficients = 1;
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
sf->static_segmentation = 1;
sf->splitmode_breakout = 0;
sf->mb16_breakout = 0;
switch (mode) {
case 0: // best quality mode
sf->search_best_filter = SEARCH_BEST_FILTER;
break;
case 1:
sf->static_segmentation = 1;
sf->splitmode_breakout = 1;
sf->mb16_breakout = 0;
if (speed > 0) {
/* Disable coefficient optimization above speed 0 */
sf->optimize_coefficients = 0;
sf->no_skip_block4x4_search = 0;
sf->first_step = 1;
cpi->mode_check_freq[THR_SPLITG] = 2;
cpi->mode_check_freq[THR_SPLITA] = 2;
cpi->mode_check_freq[THR_SPLITMV] = 0;
cpi->mode_check_freq[THR_COMP_SPLITGA] = 2;
cpi->mode_check_freq[THR_COMP_SPLITLG] = 2;
cpi->mode_check_freq[THR_COMP_SPLITLA] = 0;
}
if (speed > 1) {
cpi->mode_check_freq[THR_SPLITG] = 4;
cpi->mode_check_freq[THR_SPLITA] = 4;
cpi->mode_check_freq[THR_SPLITMV] = 2;
cpi->mode_check_freq[THR_COMP_SPLITGA] = 4;
cpi->mode_check_freq[THR_COMP_SPLITLG] = 4;
cpi->mode_check_freq[THR_COMP_SPLITLA] = 2;
}
if (speed > 2) {
cpi->mode_check_freq[THR_SPLITG] = 15;
cpi->mode_check_freq[THR_SPLITA] = 15;
cpi->mode_check_freq[THR_SPLITMV] = 7;
cpi->mode_check_freq[THR_COMP_SPLITGA] = 15;
cpi->mode_check_freq[THR_COMP_SPLITLG] = 15;
cpi->mode_check_freq[THR_COMP_SPLITLA] = 7;
sf->improved_dct = 0;
// Only do recode loop on key frames, golden frames and
// alt ref frames
sf->recode_loop = 2;
}
break;
}; /* switch */
// Set rd thresholds based on mode and speed setting
set_rd_speed_thresholds(cpi, mode, speed);
// Slow quant, dct and trellis not worthwhile for first pass
// so make sure they are always turned off.
if (cpi->pass == 1) {
sf->optimize_coefficients = 0;
sf->improved_dct = 0;
}
{
int y_stride = cm->yv12_fb[cm->active_ref_idx[cpi->lst_fb_idx]].y_stride;
if (cpi->sf.search_method == NSTEP) {
vp9_init3smotion_compensation(&cpi->mb, y_stride);
} else if (cpi->sf.search_method == DIAMOND) {
vp9_init_dsmotion_compensation(&cpi->mb, y_stride);
}
}
cpi->mb.fwd_txm16x16 = vp9_short_fdct16x16;
cpi->mb.fwd_txm8x8 = vp9_short_fdct8x8;
cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4;
cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4;
if (cpi->oxcf.lossless || cpi->mb.e_mbd.lossless) {
cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4_x8;
cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4_x8;
}
cpi->mb.quantize_b_4x4 = vp9_regular_quantize_b_4x4;
cpi->mb.quantize_b_4x4_pair = vp9_regular_quantize_b_4x4_pair;
cpi->mb.quantize_b_8x8 = vp9_regular_quantize_b_8x8;
cpi->mb.quantize_b_16x16 = vp9_regular_quantize_b_16x16;
vp9_init_quantizer(cpi);
if (cpi->sf.iterative_sub_pixel == 1) {
cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_step_iteratively;
} else if (cpi->sf.quarter_pixel_search) {
cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_step;
} else if (cpi->sf.half_pixel_search) {
cpi->find_fractional_mv_step = vp9_find_best_half_pixel_step;
}
if (cpi->sf.optimize_coefficients == 1 && cpi->pass != 1)
cpi->mb.optimize = 1;
else
cpi->mb.optimize = 0;
#ifdef SPEEDSTATS
frames_at_speed[cpi->Speed]++;
#endif
}
static void alloc_raw_frame_buffers(VP9_COMP *cpi) {
int width = (cpi->oxcf.Width + 15) & ~15;
int height = (cpi->oxcf.Height + 15) & ~15;
cpi->lookahead = vp9_lookahead_init(cpi->oxcf.Width, cpi->oxcf.Height,
cpi->oxcf.lag_in_frames);
if (!cpi->lookahead)
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
#if VP9_TEMPORAL_ALT_REF
if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer,
width, height, VP9BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
#endif
}
static int alloc_partition_data(VP9_COMP *cpi) {
vpx_free(cpi->mb.pip);
cpi->mb.pip = vpx_calloc((cpi->common.mb_cols + 1) *
(cpi->common.mb_rows + 1),
sizeof(PARTITION_INFO));
if (!cpi->mb.pip)
return 1;
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
return 0;
}
void vp9_alloc_compressor_data(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
int width = cm->Width;
int height = cm->Height;
if (vp9_alloc_frame_buffers(cm, width, height))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
if (alloc_partition_data(cpi))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate partition data");
if ((width & 0xf) != 0)
width += 16 - (width & 0xf);
if ((height & 0xf) != 0)
height += 16 - (height & 0xf);
if (vp8_yv12_alloc_frame_buffer(&cpi->last_frame_uf,
width, height, VP9BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source,
width, height, VP9BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
vpx_free(cpi->tok);
{
unsigned int tokens = cm->mb_rows * cm->mb_cols * (24 * 16 + 1);
CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
}
// Data used for real time vc mode to see if gf needs refreshing
cpi->inter_zz_count = 0;
cpi->gf_bad_count = 0;
cpi->gf_update_recommended = 0;
// Structures used to minitor GF usage
vpx_free(cpi->gf_active_flags);
CHECK_MEM_ERROR(cpi->gf_active_flags,
vpx_calloc(1, cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
vpx_free(cpi->mb_activity_map);
CHECK_MEM_ERROR(cpi->mb_activity_map,
vpx_calloc(sizeof(unsigned int),
cm->mb_rows * cm->mb_cols));
vpx_free(cpi->mb_norm_activity_map);
CHECK_MEM_ERROR(cpi->mb_norm_activity_map,
vpx_calloc(sizeof(unsigned int),
cm->mb_rows * cm->mb_cols));
vpx_free(cpi->twopass.total_stats);
cpi->twopass.total_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS));
vpx_free(cpi->twopass.total_left_stats);
cpi->twopass.total_left_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS));
vpx_free(cpi->twopass.this_frame_stats);
cpi->twopass.this_frame_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS));
if (!cpi->twopass.total_stats ||
!cpi->twopass.total_left_stats ||
!cpi->twopass.this_frame_stats)
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate firstpass stats");
vpx_free(cpi->tplist);
CHECK_MEM_ERROR(cpi->tplist,
vpx_malloc(sizeof(TOKENLIST) * (cpi->common.mb_rows)));
}
static void update_frame_size(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
/* our internal buffers are always multiples of 16 */
int width = (cm->Width + 15) & ~15;
int height = (cm->Height + 15) & ~15;
cm->mb_rows = height >> 4;
cm->mb_cols = width >> 4;
cm->MBs = cm->mb_rows * cm->mb_cols;
cm->mode_info_stride = cm->mb_cols + 1;
memset(cm->mip, 0,
(cm->mb_cols + 1) * (cm->mb_rows + 1) * sizeof(MODE_INFO));
vp9_update_mode_info_border(cm, cm->mip);
cm->mi = cm->mip + cm->mode_info_stride + 1;
cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1;
vp9_update_mode_info_in_image(cm, cm->mi);
/* Update size of buffers local to this frame */
if (vp8_yv12_realloc_frame_buffer(&cpi->last_frame_uf,
width, height, VP9BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to reallocate last frame buffer");
if (vp8_yv12_realloc_frame_buffer(&cpi->scaled_source,
width, height, VP9BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to reallocate scaled source buffer");
}
// TODO perhaps change number of steps expose to outside world when setting
// max and min limits. Also this will likely want refining for the extended Q
// range.
//
// Table that converts 0-63 Q range values passed in outside to the Qindex
// range used internally.
static const int q_trans[] = {
0, 4, 8, 12, 16, 20, 24, 28,
32, 36, 40, 44, 48, 52, 56, 60,
64, 68, 72, 76, 80, 84, 88, 92,
96, 100, 104, 108, 112, 116, 120, 124,
128, 132, 136, 140, 144, 148, 152, 156,
160, 164, 168, 172, 176, 180, 184, 188,
192, 196, 200, 204, 208, 212, 216, 220,
224, 228, 232, 236, 240, 244, 249, 255,
};
int vp9_reverse_trans(int x) {
int i;
for (i = 0; i < 64; i++)
if (q_trans[i] >= x)
return i;
return 63;
};
void vp9_new_frame_rate(VP9_COMP *cpi, double framerate) {
if (framerate < .1)
framerate = 30;
cpi->oxcf.frame_rate = framerate;
cpi->output_frame_rate = cpi->oxcf.frame_rate;
cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate);
cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate);
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
if (cpi->min_frame_bandwidth < FRAME_OVERHEAD_BITS)
cpi->min_frame_bandwidth = FRAME_OVERHEAD_BITS;
// Set Maximum gf/arf interval
cpi->max_gf_interval = ((int)(cpi->output_frame_rate / 2.0) + 2);
if (cpi->max_gf_interval < 12)
cpi->max_gf_interval = 12;
// Extended interval for genuinely static scenes
cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
// Special conditions when altr ref frame enabled in lagged compress mode
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) {
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
}
if (cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval)
cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
}
static int
rescale(int val, int num, int denom) {
int64_t llnum = num;
int64_t llden = denom;
int64_t llval = val;
return (int)(llval * llnum / llden);
}
static void set_tile_limits(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
int min_log2_tiles, max_log2_tiles;
cm->log2_tile_columns = cpi->oxcf.tile_columns;
cm->log2_tile_rows = cpi->oxcf.tile_rows;
vp9_get_tile_n_bits(cm, &min_log2_tiles, &max_log2_tiles);
max_log2_tiles += min_log2_tiles;
if (cm->log2_tile_columns < min_log2_tiles)
cm->log2_tile_columns = min_log2_tiles;
else if (cm->log2_tile_columns > max_log2_tiles)
cm->log2_tile_columns = max_log2_tiles;
cm->tile_columns = 1 << cm->log2_tile_columns;
cm->tile_rows = 1 << cm->log2_tile_rows;
}
static void init_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *const cm = &cpi->common;
cpi->oxcf = *oxcf;
cpi->goldfreq = 7;
cm->version = oxcf->Version;
vp9_setup_version(cm);
// change includes all joint functionality
vp9_change_config(ptr, oxcf);
// Initialize active best and worst q and average q values.
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
// Initialise the starting buffer levels
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->total_actual_bits = 0;
cpi->total_target_vs_actual = 0;
cpi->static_mb_pct = 0;
cpi->lst_fb_idx = 0;
cpi->gld_fb_idx = 1;
cpi->alt_fb_idx = 2;
set_tile_limits(cpi);
#if VP9_TEMPORAL_ALT_REF
{
int i;
cpi->fixed_divide[0] = 0;
for (i = 1; i < 512; i++)
cpi->fixed_divide[i] = 0x80000 / i;
}
#endif
}
void vp9_change_config(VP9_PTR ptr, VP9_CONFIG *oxcf) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *const cm = &cpi->common;
if (!cpi)
return;
if (!oxcf)
return;
if (cm->version != oxcf->Version) {
cm->version = oxcf->Version;
vp9_setup_version(cm);
}
cpi->oxcf = *oxcf;
switch (cpi->oxcf.Mode) {
// Real time and one pass deprecated in test code base
case MODE_FIRSTPASS:
cpi->pass = 1;
cpi->compressor_speed = 1;
break;
case MODE_SECONDPASS:
cpi->pass = 2;
cpi->compressor_speed = 1;
if (cpi->oxcf.cpu_used < -5) {
cpi->oxcf.cpu_used = -5;
}
if (cpi->oxcf.cpu_used > 5)
cpi->oxcf.cpu_used = 5;
break;
case MODE_SECONDPASS_BEST:
cpi->pass = 2;
cpi->compressor_speed = 0;
break;
}
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
cpi->oxcf.lossless = oxcf->lossless;
if (cpi->oxcf.lossless) {
cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_inv_walsh4x4_1_x8;
cpi->mb.e_mbd.inv_txm4x4 = vp9_short_inv_walsh4x4_x8;
} else {
cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_idct4x4llm_1;
cpi->mb.e_mbd.inv_txm4x4 = vp9_short_idct4x4llm;
}
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
// cpi->use_golden_frame_only = 0;
// cpi->use_last_frame_only = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 1;
cm->refresh_entropy_probs = 1;
setup_features(cpi);
cpi->mb.e_mbd.allow_high_precision_mv = 0; // Default mv precision adaptation
set_mvcost(&cpi->mb);
{
int i;
for (i = 0; i < MAX_MB_SEGMENTS; i++)
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
// At the moment the first order values may not be > MAXQ
if (cpi->oxcf.fixed_q > MAXQ)
cpi->oxcf.fixed_q = MAXQ;
// local file playback mode == really big buffer
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) {
cpi->oxcf.starting_buffer_level = 60000;
cpi->oxcf.optimal_buffer_level = 60000;
cpi->oxcf.maximum_buffer_size = 240000;
}
// Convert target bandwidth from Kbit/s to Bit/s
cpi->oxcf.target_bandwidth *= 1000;
cpi->oxcf.starting_buffer_level =
rescale(cpi->oxcf.starting_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
// Set or reset optimal and maximum buffer levels.
if (cpi->oxcf.optimal_buffer_level == 0)
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.optimal_buffer_level =
rescale(cpi->oxcf.optimal_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
if (cpi->oxcf.maximum_buffer_size == 0)
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.maximum_buffer_size =
rescale(cpi->oxcf.maximum_buffer_size,
cpi->oxcf.target_bandwidth, 1000);
// Set up frame rate and related parameters rate control values.
vp9_new_frame_rate(cpi, cpi->oxcf.frame_rate);
// Set absolute upper and lower quality limits
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
cpi->best_quality = cpi->oxcf.best_allowed_q;
// active values should only be modified if out of new range
if (cpi->active_worst_quality > cpi->oxcf.worst_allowed_q) {
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
}
// less likely
else if (cpi->active_worst_quality < cpi->oxcf.best_allowed_q) {
cpi->active_worst_quality = cpi->oxcf.best_allowed_q;
}
if (cpi->active_best_quality < cpi->oxcf.best_allowed_q) {
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
}
// less likely
else if (cpi->active_best_quality > cpi->oxcf.worst_allowed_q) {
cpi->active_best_quality = cpi->oxcf.worst_allowed_q;
}
cpi->buffered_mode = (cpi->oxcf.optimal_buffer_level > 0) ? TRUE : FALSE;
cpi->cq_target_quality = cpi->oxcf.cq_level;
if (!cm->use_bilinear_mc_filter)
cm->mcomp_filter_type = DEFAULT_INTERP_FILTER;
else
cm->mcomp_filter_type = BILINEAR;
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
cm->Width = cpi->oxcf.Width;
cm->Height = cpi->oxcf.Height;
cm->horiz_scale = cpi->horiz_scale;
cm->vert_scale = cpi->vert_scale;
// VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs)
if (cpi->oxcf.Sharpness > 7)
cpi->oxcf.Sharpness = 7;
cm->sharpness_level = cpi->oxcf.Sharpness;
if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL) {
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
// always go to the next whole number
cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs;
cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs;
}
// Increasing the size of the frame beyond the first seen frame, or some
// otherwise signalled maximum size, is not supported.
// TODO(jkoleszar): exit gracefully.
if (!cpi->initial_width) {
alloc_raw_frame_buffers(cpi);
vp9_alloc_compressor_data(cpi);
cpi->initial_width = cm->Width;
cpi->initial_height = cm->Height;
}
assert(cm->Width <= cpi->initial_width);
assert(cm->Height <= cpi->initial_height);
update_frame_size(cpi);
if (cpi->oxcf.fixed_q >= 0) {
cpi->last_q[0] = cpi->oxcf.fixed_q;
cpi->last_q[1] = cpi->oxcf.fixed_q;
cpi->last_boosted_qindex = cpi->oxcf.fixed_q;
}
cpi->Speed = cpi->oxcf.cpu_used;
// force to allowlag to 0 if lag_in_frames is 0;
if (cpi->oxcf.lag_in_frames == 0) {
cpi->oxcf.allow_lag = 0;
}
// Limit on lag buffers as these are not currently dynamically allocated
else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS)
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
// YX Temp
cpi->alt_ref_source = NULL;
cpi->is_src_frame_alt_ref = 0;
#if 0
// Experimental RD Code
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
set_tile_limits(cpi);
}
#define M_LOG2_E 0.693147180559945309417
#define log2f(x) (log (x) / (float) M_LOG2_E)
static void cal_nmvjointsadcost(int *mvjointsadcost) {
mvjointsadcost[0] = 600;
mvjointsadcost[1] = 300;
mvjointsadcost[2] = 300;
mvjointsadcost[0] = 300;
}
static void cal_nmvsadcosts(int *mvsadcost[2]) {
int i = 1;
mvsadcost [0] [0] = 0;
mvsadcost [1] [0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost [0][i] = (int) z;
mvsadcost [1][i] = (int) z;
mvsadcost [0][-i] = (int) z;
mvsadcost [1][-i] = (int) z;
} while (++i <= MV_MAX);
}
static void cal_nmvsadcosts_hp(int *mvsadcost[2]) {
int i = 1;
mvsadcost [0] [0] = 0;
mvsadcost [1] [0] = 0;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost [0][i] = (int) z;
mvsadcost [1][i] = (int) z;
mvsadcost [0][-i] = (int) z;
mvsadcost [1][-i] = (int) z;
} while (++i <= MV_MAX);
}
VP9_PTR vp9_create_compressor(VP9_CONFIG *oxcf) {
int i;
volatile union {
VP9_COMP *cpi;
VP9_PTR ptr;
} ctx;
VP9_COMP *cpi;
VP9_COMMON *cm;
cpi = ctx.cpi = vpx_memalign(32, sizeof(VP9_COMP));
// Check that the CPI instance is valid
if (!cpi)
return 0;
cm = &cpi->common;
vpx_memset(cpi, 0, sizeof(VP9_COMP));
if (setjmp(cm->error.jmp)) {
VP9_PTR ptr = ctx.ptr;
ctx.cpi->common.error.setjmp = 0;
vp9_remove_compressor(&ptr);
return 0;
}
cpi->common.error.setjmp = 1;
CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1));
vp9_create_common(&cpi->common);
init_config((VP9_PTR)cpi, oxcf);
memcpy(cpi->base_skip_false_prob, base_skip_false_prob, sizeof(base_skip_false_prob));
cpi->common.current_video_frame = 0;
cpi->kf_overspend_bits = 0;
cpi->kf_bitrate_adjustment = 0;
cpi->frames_till_gf_update_due = 0;
cpi->gf_overspend_bits = 0;
cpi->non_gf_bitrate_adjustment = 0;
cm->prob_last_coded = 128;
cm->prob_gf_coded = 128;
cm->prob_intra_coded = 63;
cm->sb32_coded = 200;
cm->sb64_coded = 200;
for (i = 0; i < COMP_PRED_CONTEXTS; i++)
cm->prob_comppred[i] = 128;
for (i = 0; i < TX_SIZE_MAX_SB - 1; i++)
cm->prob_tx[i] = 128;
// Prime the recent reference frame useage counters.
// Hereafter they will be maintained as a sort of moving average
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
// Set reference frame sign bias for ALTREF frame to 1 (for now)
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->gold_is_last = 0;
cpi->alt_is_last = 0;
cpi->gold_is_alt = 0;
// allocate memory for storing last frame's MVs for MV prediction.
CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cpi->common.mb_rows + 2) * (cpi->common.mb_cols + 2), sizeof(int_mv)));
CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias, vpx_calloc((cpi->common.mb_rows + 2) * (cpi->common.mb_cols + 2), sizeof(int)));
CHECK_MEM_ERROR(cpi->lf_ref_frame, vpx_calloc((cpi->common.mb_rows + 2) * (cpi->common.mb_cols + 2), sizeof(int)));
// Create the encoder segmentation map and set all entries to 0
CHECK_MEM_ERROR(cpi->segmentation_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
// And a copy in common for temporal coding
CHECK_MEM_ERROR(cm->last_frame_seg_map,
vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
// And a place holder structure is the coding context
// for use if we want to save and restore it
CHECK_MEM_ERROR(cpi->coding_context.last_frame_seg_map_copy,
vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
vpx_memset(cpi->active_map, 1, (cpi->common.mb_rows * cpi->common.mb_cols));
cpi->active_map_enabled = 0;
for (i = 0; i < (sizeof(cpi->mbgraph_stats) /
sizeof(cpi->mbgraph_stats[0])); i++) {
CHECK_MEM_ERROR(cpi->mbgraph_stats[i].mb_stats,
vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols *
sizeof(*cpi->mbgraph_stats[i].mb_stats),
1));
}
#ifdef ENTROPY_STATS
if (cpi->pass != 1)
init_context_counters();
#endif
#ifdef MODE_STATS
vp9_zero(y_modes);
vp9_zero(i8x8_modes);
vp9_zero(uv_modes);
vp9_zero(uv_modes_y);
vp9_zero(b_modes);
vp9_zero(inter_y_modes);
vp9_zero(inter_uv_modes);
vp9_zero(inter_b_modes);
#endif
#ifdef NMV_STATS
init_nmvstats();
#endif
/*Initialize the feed-forward activity masking.*/
cpi->activity_avg = 90 << 12;
cpi->frames_since_key = 8; // Give a sensible default for the first frame.
cpi->key_frame_frequency = cpi->oxcf.key_freq;
cpi->this_key_frame_forced = FALSE;
cpi->next_key_frame_forced = FALSE;
cpi->source_alt_ref_pending = FALSE;
cpi->source_alt_ref_active = FALSE;
cpi->refresh_alt_ref_frame = 0;
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
cpi->b_calculate_ssimg = 0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr) {
cpi->total_sq_error = 0.0;
cpi->total_sq_error2 = 0.0;
cpi->total_y = 0.0;
cpi->total_u = 0.0;
cpi->total_v = 0.0;
cpi->total = 0.0;
cpi->totalp_y = 0.0;
cpi->totalp_u = 0.0;
cpi->totalp_v = 0.0;
cpi->totalp = 0.0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
}
if (cpi->b_calculate_ssimg) {
cpi->total_ssimg_y = 0;
cpi->total_ssimg_u = 0;
cpi->total_ssimg_v = 0;
cpi->total_ssimg_all = 0;
}
#endif
cpi->first_time_stamp_ever = INT64_MAX;
cpi->frames_till_gf_update_due = 0;
cpi->key_frame_count = 1;
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
cpi->ni_tot_qi = 0;
cpi->ni_frames = 0;
cpi->tot_q = 0.0;
cpi->avg_q = vp9_convert_qindex_to_q(cpi->oxcf.worst_allowed_q);
cpi->total_byte_count = 0;
cpi->rate_correction_factor = 1.0;
cpi->key_frame_rate_correction_factor = 1.0;
cpi->gf_rate_correction_factor = 1.0;
cpi->twopass.est_max_qcorrection_factor = 1.0;
cal_nmvjointsadcost(cpi->mb.nmvjointsadcost);
cpi->mb.nmvcost[0] = &cpi->mb.nmvcosts[0][MV_MAX];
cpi->mb.nmvcost[1] = &cpi->mb.nmvcosts[1][MV_MAX];
cpi->mb.nmvsadcost[0] = &cpi->mb.nmvsadcosts[0][MV_MAX];
cpi->mb.nmvsadcost[1] = &cpi->mb.nmvsadcosts[1][MV_MAX];
cal_nmvsadcosts(cpi->mb.nmvsadcost);
cpi->mb.nmvcost_hp[0] = &cpi->mb.nmvcosts_hp[0][MV_MAX];
cpi->mb.nmvcost_hp[1] = &cpi->mb.nmvcosts_hp[1][MV_MAX];
cpi->mb.nmvsadcost_hp[0] = &cpi->mb.nmvsadcosts_hp[0][MV_MAX];
cpi->mb.nmvsadcost_hp[1] = &cpi->mb.nmvsadcosts_hp[1][MV_MAX];
cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp);
for (i = 0; i < KEY_FRAME_CONTEXT; i++) {
cpi->prior_key_frame_distance[i] = (int)cpi->output_frame_rate;
}
#ifdef OUTPUT_YUV_SRC
yuv_file = fopen("bd.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_REC
yuv_rec_file = fopen("rec.yuv", "wb");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
#endif
cpi->output_pkt_list = oxcf->output_pkt_list;
if (cpi->pass == 1) {
vp9_init_first_pass(cpi);
} else if (cpi->pass == 2) {
size_t packet_sz = sizeof(FIRSTPASS_STATS);
int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = (void *)((char *)cpi->twopass.stats_in
+ (packets - 1) * packet_sz);
vp9_init_second_pass(cpi);
}
vp9_set_speed_features(cpi);
// Set starting values of RD threshold multipliers (128 = *1)
for (i = 0; i < MAX_MODES; i++) {
cpi->rd_thresh_mult[i] = 128;
}
#define BFP(BT, SDF, VF, SVF, SVFHH, SVFHV, SVFHHV, SDX3F, SDX8F, SDX4DF) \
cpi->fn_ptr[BT].sdf = SDF; \
cpi->fn_ptr[BT].vf = VF; \
cpi->fn_ptr[BT].svf = SVF; \
cpi->fn_ptr[BT].svf_halfpix_h = SVFHH; \
cpi->fn_ptr[BT].svf_halfpix_v = SVFHV; \
cpi->fn_ptr[BT].svf_halfpix_hv = SVFHHV; \
cpi->fn_ptr[BT].sdx3f = SDX3F; \
cpi->fn_ptr[BT].sdx8f = SDX8F; \
cpi->fn_ptr[BT].sdx4df = SDX4DF;
BFP(BLOCK_32X32, vp9_sad32x32, vp9_variance32x32, vp9_sub_pixel_variance32x32,
vp9_variance_halfpixvar32x32_h, vp9_variance_halfpixvar32x32_v,
vp9_variance_halfpixvar32x32_hv, vp9_sad32x32x3, vp9_sad32x32x8,
vp9_sad32x32x4d)
BFP(BLOCK_64X64, vp9_sad64x64, vp9_variance64x64, vp9_sub_pixel_variance64x64,
vp9_variance_halfpixvar64x64_h, vp9_variance_halfpixvar64x64_v,
vp9_variance_halfpixvar64x64_hv, vp9_sad64x64x3, vp9_sad64x64x8,
vp9_sad64x64x4d)
BFP(BLOCK_16X16, vp9_sad16x16, vp9_variance16x16, vp9_sub_pixel_variance16x16,
vp9_variance_halfpixvar16x16_h, vp9_variance_halfpixvar16x16_v,
vp9_variance_halfpixvar16x16_hv, vp9_sad16x16x3, vp9_sad16x16x8,
vp9_sad16x16x4d)
BFP(BLOCK_16X8, vp9_sad16x8, vp9_variance16x8, vp9_sub_pixel_variance16x8,
NULL, NULL, NULL, vp9_sad16x8x3, vp9_sad16x8x8, vp9_sad16x8x4d)
BFP(BLOCK_8X16, vp9_sad8x16, vp9_variance8x16, vp9_sub_pixel_variance8x16,
NULL, NULL, NULL, vp9_sad8x16x3, vp9_sad8x16x8, vp9_sad8x16x4d)
BFP(BLOCK_8X8, vp9_sad8x8, vp9_variance8x8, vp9_sub_pixel_variance8x8,
NULL, NULL, NULL, vp9_sad8x8x3, vp9_sad8x8x8, vp9_sad8x8x4d)
BFP(BLOCK_4X4, vp9_sad4x4, vp9_variance4x4, vp9_sub_pixel_variance4x4,
NULL, NULL, NULL, vp9_sad4x4x3, vp9_sad4x4x8, vp9_sad4x4x4d)
#if ARCH_X86 || ARCH_X86_64
cpi->fn_ptr[BLOCK_16X16].copymem = vp9_copy32xn;
cpi->fn_ptr[BLOCK_16X8].copymem = vp9_copy32xn;
cpi->fn_ptr[BLOCK_8X16].copymem = vp9_copy32xn;
cpi->fn_ptr[BLOCK_8X8].copymem = vp9_copy32xn;
cpi->fn_ptr[BLOCK_4X4].copymem = vp9_copy32xn;
#endif
cpi->full_search_sad = vp9_full_search_sad;
cpi->diamond_search_sad = vp9_diamond_search_sad;
cpi->refining_search_sad = vp9_refining_search_sad;
// make sure frame 1 is okay
cpi->error_bins[0] = cpi->common.MBs;
/* vp9_init_quantizer() is first called here. Add check in
* vp9_frame_init_quantizer() so that vp9_init_quantizer is only
* called later when needed. This will avoid unnecessary calls of
* vp9_init_quantizer() for every frame.
*/
vp9_init_quantizer(cpi);
vp9_loop_filter_init(cm);
cpi->common.error.setjmp = 0;
vp9_zero(cpi->y_uv_mode_count)
return (VP9_PTR) cpi;
}
void vp9_remove_compressor(VP9_PTR *ptr) {
VP9_COMP *cpi = (VP9_COMP *)(*ptr);
int i;
if (!cpi)
return;
if (cpi && (cpi->common.current_video_frame > 0)) {
if (cpi->pass == 2) {
vp9_end_second_pass(cpi);
}
#ifdef ENTROPY_STATS
if (cpi->pass != 1) {
print_context_counters();
print_tree_update_probs();
print_mode_context(&cpi->common);
}
#endif
#ifdef NMV_STATS
if (cpi->pass != 1)
print_nmvstats();
#endif
#if CONFIG_INTERNAL_STATS
vp9_clear_system_state();
// printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count);
if (cpi->pass != 1) {
FILE *f = fopen("opsnr.stt", "a");
double time_encoded = (cpi->last_end_time_stamp_seen
- cpi->first_time_stamp_ever) / 10000000.000;
double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded;
#if defined(MODE_STATS)
print_mode_contexts(&cpi->common);
#endif
if (cpi->b_calculate_psnr) {
YV12_BUFFER_CONFIG *lst_yv12 =
&cpi->common.yv12_fb[cpi->common.active_ref_idx[cpi->lst_fb_idx]];
double samples = 3.0 / 2 * cpi->count * lst_yv12->y_width * lst_yv12->y_height;
double total_psnr = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error);
double total_psnr2 = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error2);
double total_ssim = 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\tVPXSSIM\t Time(ms)\n");
fprintf(f, "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n",
dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim,
total_encode_time);
// fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f %10ld\n",
// dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim,
// total_encode_time, cpi->tot_recode_hits);
}
if (cpi->b_calculate_ssimg) {
fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(ms)\n");
fprintf(f, "%7.2f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time);
// fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f %10ld\n", dr,
// cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
// cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time, cpi->tot_recode_hits);
}
fclose(f);
}
#endif
#ifdef MODE_STATS
{
extern int count_mb_seg[4];
char modes_stats_file[250];
FILE *f;
double dr = (double)cpi->oxcf.frame_rate * (double)cpi->bytes * (double)8 / (double)cpi->count / (double)1000;
sprintf(modes_stats_file, "modes_q%03d.stt", cpi->common.base_qindex);
f = fopen(modes_stats_file, "w");
fprintf(f, "intra_mode in Intra Frames:\n");
{
int i;
fprintf(f, "Y: ");
for (i = 0; i < VP9_YMODES; i++) fprintf(f, " %8d,", y_modes[i]);
fprintf(f, "\n");
}
{
int i;
fprintf(f, "I8: ");
for (i = 0; i < VP9_I8X8_MODES; i++) fprintf(f, " %8d,", i8x8_modes[i]);
fprintf(f, "\n");
}
{
int i;
fprintf(f, "UV: ");
for (i = 0; i < VP9_UV_MODES; i++) fprintf(f, " %8d,", uv_modes[i]);
fprintf(f, "\n");
}
{
int i, j;
fprintf(f, "KeyFrame Y-UV:\n");
for (i = 0; i < VP9_YMODES; i++) {
fprintf(f, "%2d:", i);
for (j = 0; j < VP9_UV_MODES; j++) fprintf(f, "%8d, ", uv_modes_y[i][j]);
fprintf(f, "\n");
}
}
{
int i, j;
fprintf(f, "Inter Y-UV:\n");
for (i = 0; i < VP9_YMODES; i++) {
fprintf(f, "%2d:", i);
for (j = 0; j < VP9_UV_MODES; j++) fprintf(f, "%8d, ", cpi->y_uv_mode_count[i][j]);
fprintf(f, "\n");
}
}
{
int i;
fprintf(f, "B: ");
for (i = 0; i < VP9_NKF_BINTRAMODES; i++)
fprintf(f, "%8d, ", b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "Modes in Inter Frames:\n");
{
int i;
fprintf(f, "Y: ");
for (i = 0; i < MB_MODE_COUNT; i++) fprintf(f, " %8d,", inter_y_modes[i]);
fprintf(f, "\n");
}
{
int i;
fprintf(f, "UV: ");
for (i = 0; i < VP9_UV_MODES; i++) fprintf(f, " %8d,", inter_uv_modes[i]);
fprintf(f, "\n");
}
{
int i;
fprintf(f, "B: ");
for (i = 0; i < B_MODE_COUNT; i++) fprintf(f, "%8d, ", inter_b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], count_mb_seg[2], count_mb_seg[3]);
fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], inter_b_modes[NEW4X4]);
fclose(f);
}
#endif
#ifdef ENTROPY_STATS
{
int i, j, k;
FILE *fmode = fopen("vp9_modecontext.c", "w");
fprintf(fmode, "\n#include \"vp9_entropymode.h\"\n\n");
fprintf(fmode, "const unsigned int vp9_kf_default_bmode_counts ");
fprintf(fmode, "[VP9_KF_BINTRAMODES][VP9_KF_BINTRAMODES]"
"[VP9_KF_BINTRAMODES] =\n{\n");
for (i = 0; i < VP9_KF_BINTRAMODES; i++) {
fprintf(fmode, " { // Above Mode : %d\n", i);
for (j = 0; j < VP9_KF_BINTRAMODES; j++) {
fprintf(fmode, " {");
for (k = 0; k < VP9_KF_BINTRAMODES; k++) {
if (!intra_mode_stats[i][j][k])
fprintf(fmode, " %5d, ", 1);
else
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
}
fprintf(fmode, "}, // left_mode %d\n", j);
}
fprintf(fmode, " },\n");
}
fprintf(fmode, "};\n");
fclose(fmode);
}
#endif
#if defined(SECTIONBITS_OUTPUT)
if (0) {
int i;
FILE *f = fopen("tokenbits.stt", "a");
for (i = 0; i < 28; i++)
fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
fprintf(f, "\n");
fclose(f);
}
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
#endif
}
dealloc_compressor_data(cpi);
vpx_free(cpi->mb.ss);
vpx_free(cpi->tok);
for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); i++) {
vpx_free(cpi->mbgraph_stats[i].mb_stats);
}
vp9_remove_common(&cpi->common);
vpx_free(cpi);
*ptr = 0;
#ifdef OUTPUT_YUV_SRC
fclose(yuv_file);
#endif
#ifdef OUTPUT_YUV_REC
fclose(yuv_rec_file);
#endif
#if 0
if (keyfile)
fclose(keyfile);
if (framepsnr)
fclose(framepsnr);
if (kf_list)
fclose(kf_list);
#endif
}
static uint64_t calc_plane_error(uint8_t *orig, int orig_stride,
uint8_t *recon, int recon_stride,
unsigned int cols, unsigned int rows) {
unsigned int row, col;
uint64_t total_sse = 0;
int diff;
for (row = 0; row + 16 <= rows; row += 16) {
for (col = 0; col + 16 <= cols; col += 16) {
unsigned int sse;
vp9_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse);
total_sse += sse;
}
/* Handle odd-sized width */
if (col < cols) {
unsigned int border_row, border_col;
uint8_t *border_orig = orig;
uint8_t *border_recon = recon;
for (border_row = 0; border_row < 16; border_row++) {
for (border_col = col; border_col < cols; border_col++) {
diff = border_orig[border_col] - border_recon[border_col];
total_sse += diff * diff;
}
border_orig += orig_stride;
border_recon += recon_stride;
}
}
orig += orig_stride * 16;
recon += recon_stride * 16;
}
/* Handle odd-sized height */
for (; row < rows; row++) {
for (col = 0; col < cols; col++) {
diff = orig[col] - recon[col];
total_sse += diff * diff;
}
orig += orig_stride;
recon += recon_stride;
}
return total_sse;
}
static void generate_psnr_packet(VP9_COMP *cpi) {
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
struct vpx_codec_cx_pkt pkt;
uint64_t sse;
int i;
unsigned int width = cpi->common.Width;
unsigned int height = cpi->common.Height;
pkt.kind = VPX_CODEC_PSNR_PKT;
sse = calc_plane_error(orig->y_buffer, orig->y_stride,
recon->y_buffer, recon->y_stride,
width, height);
pkt.data.psnr.sse[0] = sse;
pkt.data.psnr.sse[1] = sse;
pkt.data.psnr.samples[0] = width * height;
pkt.data.psnr.samples[1] = width * height;
width = (width + 1) / 2;
height = (height + 1) / 2;
sse = calc_plane_error(orig->u_buffer, orig->uv_stride,
recon->u_buffer, recon->uv_stride,
width, height);
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[2] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[2] = width * height;
sse = calc_plane_error(orig->v_buffer, orig->uv_stride,
recon->v_buffer, recon->uv_stride,
width, height);
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[3] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[3] = width * height;
for (i = 0; i < 4; i++)
pkt.data.psnr.psnr[i] = vp9_mse2psnr(pkt.data.psnr.samples[i], 255.0,
(double)pkt.data.psnr.sse[i]);
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int vp9_use_as_reference(VP9_PTR ptr, int ref_frame_flags) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
if (ref_frame_flags > 7)
return -1;
cpi->ref_frame_flags = ref_frame_flags;
return 0;
}
int vp9_update_reference(VP9_PTR ptr, int ref_frame_flags) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
if (ref_frame_flags > 7)
return -1;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
cpi->refresh_last_frame = 0;
if (ref_frame_flags & VP9_LAST_FLAG)
cpi->refresh_last_frame = 1;
if (ref_frame_flags & VP9_GOLD_FLAG)
cpi->refresh_golden_frame = 1;
if (ref_frame_flags & VP9_ALT_FLAG)
cpi->refresh_alt_ref_frame = 1;
return 0;
}
int vp9_get_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP9_LAST_FLAG)
ref_fb_idx = cm->active_ref_idx[cpi->lst_fb_idx];
else if (ref_frame_flag == VP9_GOLD_FLAG)
ref_fb_idx = cm->active_ref_idx[cpi->gld_fb_idx];
else if (ref_frame_flag == VP9_ALT_FLAG)
ref_fb_idx = cm->active_ref_idx[cpi->alt_fb_idx];
else
return -1;
vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd);
return 0;
}
int vp9_set_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
VP9_COMP *cpi = (VP9_COMP *)(ptr);
VP9_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP9_LAST_FLAG)
ref_fb_idx = cm->active_ref_idx[cpi->lst_fb_idx];
else if (ref_frame_flag == VP9_GOLD_FLAG)
ref_fb_idx = cm->active_ref_idx[cpi->gld_fb_idx];
else if (ref_frame_flag == VP9_ALT_FLAG)
ref_fb_idx = cm->active_ref_idx[cpi->alt_fb_idx];
else
return -1;
vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]);
return 0;
}
int vp9_update_entropy(VP9_PTR comp, int update) {
VP9_COMP *cpi = (VP9_COMP *) comp;
VP9_COMMON *cm = &cpi->common;
cm->refresh_entropy_probs = update;
return 0;
}
#ifdef OUTPUT_YUV_SRC
void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s) {
uint8_t *src = s->y_buffer;
int h = s->y_height;
do {
fwrite(src, s->y_width, 1, yuv_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
} while (--h);
}
#endif
#ifdef OUTPUT_YUV_REC
void vp9_write_yuv_rec_frame(VP9_COMMON *cm) {
YV12_BUFFER_CONFIG *s = cm->frame_to_show;
uint8_t *src = s->y_buffer;
int h = cm->Height;
do {
fwrite(src, s->y_width, 1, yuv_rec_file);
src += s->y_stride;
} while (--h);
src = s->u_buffer;
h = (cm->Height + 1) / 2;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
src = s->v_buffer;
h = (cm->Height + 1) / 2;
do {
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
} while (--h);
fflush(yuv_rec_file);
}
#endif
static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
// Update data structure that monitors level of reference to last GF
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
// this frame refreshes means next frames don't unless specified by user
cpi->common.frames_since_golden = 0;
// Clear the alternate reference update pending flag.
cpi->source_alt_ref_pending = FALSE;
// Set the alternate refernce frame active flag
cpi->source_alt_ref_active = TRUE;
}
static void update_golden_frame_stats(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
// Update the Golden frame usage counts.
if (cpi->refresh_golden_frame) {
// Update data structure that monitors level of reference to last GF
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
// this frame refreshes means next frames don't unless specified by user
cpi->refresh_golden_frame = 0;
cpi->common.frames_since_golden = 0;
// if ( cm->frame_type == KEY_FRAME )
// {
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
// }
// else
// {
// // Carry a potrtion of count over to begining of next gf sequence
// cpi->recent_ref_frame_usage[INTRA_FRAME] >>= 5;
// cpi->recent_ref_frame_usage[LAST_FRAME] >>= 5;
// cpi->recent_ref_frame_usage[GOLDEN_FRAME] >>= 5;
// cpi->recent_ref_frame_usage[ALTREF_FRAME] >>= 5;
// }
// ******** Fixed Q test code only ************
// If we are going to use the ALT reference for the next group of frames set a flag to say so.
if (cpi->oxcf.fixed_q >= 0 &&
cpi->oxcf.play_alternate && !cpi->refresh_alt_ref_frame) {
cpi->source_alt_ref_pending = TRUE;
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
}
if (!cpi->source_alt_ref_pending)
cpi->source_alt_ref_active = FALSE;
// Decrement count down till next gf
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
} else if (!cpi->refresh_alt_ref_frame) {
// Decrement count down till next gf
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
if (cpi->common.frames_till_alt_ref_frame)
cpi->common.frames_till_alt_ref_frame--;
cpi->common.frames_since_golden++;
if (cpi->common.frames_since_golden > 1) {
cpi->recent_ref_frame_usage[INTRA_FRAME] += cpi->count_mb_ref_frame_usage[INTRA_FRAME];
cpi->recent_ref_frame_usage[LAST_FRAME] += cpi->count_mb_ref_frame_usage[LAST_FRAME];
cpi->recent_ref_frame_usage[GOLDEN_FRAME] += cpi->count_mb_ref_frame_usage[GOLDEN_FRAME];
cpi->recent_ref_frame_usage[ALTREF_FRAME] += cpi->count_mb_ref_frame_usage[ALTREF_FRAME];
}
}
}
static int find_fp_qindex() {
int i;
for (i = 0; i < QINDEX_RANGE; i++) {
if (vp9_convert_qindex_to_q(i) >= 30.0) {
break;
}
}
if (i == QINDEX_RANGE)
i--;
return i;
}
static void Pass1Encode(VP9_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) {
(void) size;
(void) dest;
(void) frame_flags;
vp9_set_quantizer(cpi, find_fp_qindex());
vp9_first_pass(cpi);
}
#define WRITE_RECON_BUFFER 0
#if WRITE_RECON_BUFFER
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) {
// write the frame
FILE *yframe;
int i;
char filename[255];
sprintf(filename, "cx\\y%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->y_height; i++)
fwrite(frame->y_buffer + i * frame->y_stride,
frame->y_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\u%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->u_buffer + i * frame->uv_stride,
frame->uv_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\v%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->v_buffer + i * frame->uv_stride,
frame->uv_width, 1, yframe);
fclose(yframe);
}
#endif
static double compute_edge_pixel_proportion(YV12_BUFFER_CONFIG *frame) {
#define EDGE_THRESH 128
int i, j;
int num_edge_pels = 0;
int num_pels = (frame->y_height - 2) * (frame->y_width - 2);
uint8_t *prev = frame->y_buffer + 1;
uint8_t *curr = frame->y_buffer + 1 + frame->y_stride;
uint8_t *next = frame->y_buffer + 1 + 2 * frame->y_stride;
for (i = 1; i < frame->y_height - 1; i++) {
for (j = 1; j < frame->y_width - 1; j++) {
/* Sobel hor and ver gradients */
int v = 2 * (curr[1] - curr[-1]) + (prev[1] - prev[-1]) + (next[1] - next[-1]);
int h = 2 * (prev[0] - next[0]) + (prev[1] - next[1]) + (prev[-1] - next[-1]);
h = (h < 0 ? -h : h);
v = (v < 0 ? -v : v);
if (h > EDGE_THRESH || v > EDGE_THRESH) num_edge_pels++;
curr++;
prev++;
next++;
}
curr += frame->y_stride - frame->y_width + 2;
prev += frame->y_stride - frame->y_width + 2;
next += frame->y_stride - frame->y_width + 2;
}
return (double)num_edge_pels / (double)num_pels;
}
// Function to test for conditions that indicate we should loop
// back and recode a frame.
static int recode_loop_test(VP9_COMP *cpi,
int high_limit, int low_limit,
int q, int maxq, int minq) {
int force_recode = FALSE;
VP9_COMMON *cm = &cpi->common;
// Is frame recode allowed at all
// Yes if either recode mode 1 is selected or mode two is selcted
// and the frame is a key frame. golden frame or alt_ref_frame
if ((cpi->sf.recode_loop == 1) ||
((cpi->sf.recode_loop == 2) &&
((cm->frame_type == KEY_FRAME) ||
cpi->refresh_golden_frame ||
cpi->refresh_alt_ref_frame))) {
// General over and under shoot tests
if (((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
((cpi->projected_frame_size < low_limit) && (q > minq))) {
force_recode = TRUE;
}
// Special Constrained quality tests
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
// Undershoot and below auto cq level
if ((q > cpi->cq_target_quality) &&
(cpi->projected_frame_size <
((cpi->this_frame_target * 7) >> 3))) {
force_recode = TRUE;
}
// Severe undershoot and between auto and user cq level
else if ((q > cpi->oxcf.cq_level) &&
(cpi->projected_frame_size < cpi->min_frame_bandwidth) &&
(cpi->active_best_quality > cpi->oxcf.cq_level)) {
force_recode = TRUE;
cpi->active_best_quality = cpi->oxcf.cq_level;
}
}
}
return force_recode;
}
static void update_reference_frames(VP9_COMP * const cpi) {
VP9_COMMON * const cm = &cpi->common;
// At this point the new frame has been encoded.
// If any buffer copy / swapping is signaled it should be done here.
if (cm->frame_type == KEY_FRAME) {
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->active_ref_idx[cpi->gld_fb_idx], cm->new_fb_idx);
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->active_ref_idx[cpi->alt_fb_idx], cm->new_fb_idx);
} else if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) {
/* Preserve the previously existing golden frame and update the frame in
* the alt ref slot instead. This is highly specific to the current use of
* alt-ref as a forward reference, and this needs to be generalized as
* other uses are implemented (like RTC/temporal scaling)
*
* The update to the buffer in the alt ref slot was signalled in
* vp9_pack_bitstream(), now swap the buffer pointers so that it's treated
* as the golden frame next time.
*/
int tmp;
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->active_ref_idx[cpi->alt_fb_idx], cm->new_fb_idx);
tmp = cpi->alt_fb_idx;
cpi->alt_fb_idx = cpi->gld_fb_idx;
cpi->gld_fb_idx = tmp;
} else { /* For non key/golden frames */
if (cpi->refresh_alt_ref_frame) {
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->active_ref_idx[cpi->alt_fb_idx], cm->new_fb_idx);
}
if (cpi->refresh_golden_frame) {
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->active_ref_idx[cpi->gld_fb_idx], cm->new_fb_idx);
}
}
if (cpi->refresh_last_frame) {
ref_cnt_fb(cm->fb_idx_ref_cnt,
&cm->active_ref_idx[cpi->lst_fb_idx], cm->new_fb_idx);
}
}
static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
if (cm->no_lpf || cpi->mb.e_mbd.lossless) {
cm->filter_level = 0;
} else {
struct vpx_usec_timer timer;
vp9_clear_system_state();
vpx_usec_timer_start(&timer);
if (cpi->sf.auto_filter == 0)
vp9_pick_filter_level_fast(cpi->Source, cpi);
else
vp9_pick_filter_level(cpi->Source, cpi);
vpx_usec_timer_mark(&timer);
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
}
if (cm->filter_level > 0) {
vp9_set_alt_lf_level(cpi, cm->filter_level);
vp9_loop_filter_frame(cm, &cpi->mb.e_mbd, cm->filter_level, 0);
}
vp8_yv12_extend_frame_borders(cm->frame_to_show);
}
void select_interp_filter_type(VP9_COMP *cpi) {
int i;
int high_filter_index = 0;
unsigned int thresh;
unsigned int high_count = 0;
unsigned int count_sum = 0;
unsigned int *hist = cpi->best_switchable_interp_count;
if (DEFAULT_INTERP_FILTER != SWITCHABLE) {
cpi->common.mcomp_filter_type = DEFAULT_INTERP_FILTER;
return;
}
// TODO(agrange): Look at using RD criteria to select the interpolation
// filter to use for the next frame rather than this simpler counting scheme.
// Select the interpolation filter mode for the next frame
// based on the selection frequency seen in the current frame.
for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) {
unsigned int count = hist[i];
count_sum += count;
if (count > high_count) {
high_count = count;
high_filter_index = i;
}
}
thresh = (unsigned int)(0.80 * count_sum);
if (high_count > thresh) {
// One filter accounts for 80+% of cases so force the next
// frame to use this filter exclusively using frame-level flag.
cpi->common.mcomp_filter_type = vp9_switchable_interp[high_filter_index];
} else {
// Use a MB-level switchable filter selection strategy.
cpi->common.mcomp_filter_type = SWITCHABLE;
}
}
#if CONFIG_COMP_INTERINTRA_PRED
static void select_interintra_mode(VP9_COMP *cpi) {
static const double threshold = 0.01;
VP9_COMMON *cm = &cpi->common;
// FIXME(debargha): Make this RD based
int sum = cpi->interintra_select_count[1] + cpi->interintra_select_count[0];
if (sum) {
double fraction = (double) cpi->interintra_select_count[1] / sum;
// printf("fraction: %f\n", fraction);
cm->use_interintra = (fraction > threshold);
}
}
#endif
static void encode_frame_to_data_rate(VP9_COMP *cpi,
unsigned long *size,
unsigned char *dest,
unsigned int *frame_flags) {
VP9_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int Q;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
int Loop = FALSE;
int loop_count;
int q_low;
int q_high;
int top_index;
int bottom_index;
int active_worst_qchanged = FALSE;
int overshoot_seen = FALSE;
int undershoot_seen = FALSE;
SPEED_FEATURES *sf = &cpi->sf;
#if RESET_FOREACH_FILTER
int q_low0;
int q_high0;
int Q0;
int active_best_quality0;
int active_worst_quality0;
double rate_correction_factor0;
double gf_rate_correction_factor0;
#endif
/* list of filters to search over */
int mcomp_filters_to_search[] = {
#if CONFIG_ENABLE_6TAP
EIGHTTAP, EIGHTTAP_SHARP, SIXTAP, SWITCHABLE
#else
EIGHTTAP, EIGHTTAP_SHARP, EIGHTTAP_SMOOTH, SWITCHABLE
#endif
};
int mcomp_filters = sizeof(mcomp_filters_to_search) /
sizeof(*mcomp_filters_to_search);
int mcomp_filter_index = 0;
int64_t mcomp_filter_cost[4];
// Clear down mmx registers to allow floating point in what follows
vp9_clear_system_state();
// For an alt ref frame in 2 pass we skip the call to the second
// pass function that sets the target bandwidth so must set it here
if (cpi->refresh_alt_ref_frame) {
cpi->per_frame_bandwidth = cpi->twopass.gf_bits; // Per frame bit target for the alt ref frame
// per second target bitrate
cpi->target_bandwidth = (int)(cpi->twopass.gf_bits *
cpi->output_frame_rate);
}
// Clear zbin over-quant value and mode boost values.
cpi->zbin_mode_boost = 0;
// Enable or disable mode based tweaking of the zbin
// For 2 Pass Only used where GF/ARF prediction quality
// is above a threshold
cpi->zbin_mode_boost = 0;
if (cpi->oxcf.lossless)
cpi->zbin_mode_boost_enabled = FALSE;
else
cpi->zbin_mode_boost_enabled = TRUE;
if (cpi->gfu_boost <= 400) {
cpi->zbin_mode_boost_enabled = FALSE;
}
// Current default encoder behaviour for the altref sign bias
if (cpi->source_alt_ref_active)
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
else
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0;
// Check to see if a key frame is signalled
// For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass.
if ((cm->current_video_frame == 0) ||
(cm->frame_flags & FRAMEFLAGS_KEY) ||
(cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0))) {
// Key frame from VFW/auto-keyframe/first frame
cm->frame_type = KEY_FRAME;
}
// Set default state for segment based loop filter update flags
xd->mode_ref_lf_delta_update = 0;
// Set various flags etc to special state if it is a key frame
if (cm->frame_type == KEY_FRAME) {
int i;
// Reset the loop filter deltas and segmentation map
setup_features(cpi);
// If segmentation is enabled force a map update for key frames
if (xd->segmentation_enabled) {
xd->update_mb_segmentation_map = 1;
xd->update_mb_segmentation_data = 1;
}
// The alternate reference frame cannot be active for a key frame
cpi->source_alt_ref_active = FALSE;
// Reset the RD threshold multipliers to default of * 1 (128)
for (i = 0; i < MAX_MODES; i++) {
cpi->rd_thresh_mult[i] = 128;
}
cm->error_resilient_mode = (cpi->oxcf.error_resilient_mode != 0);
cm->frame_parallel_decoding_mode =
(cpi->oxcf.frame_parallel_decoding_mode != 0);
if (cm->error_resilient_mode) {
cm->frame_parallel_decoding_mode = 1;
cm->refresh_entropy_probs = 0;
}
}
// Configure use of segmentation for enhanced coding of static regions.
// Only allowed for now in second pass of two pass (as requires lagged coding)
// and if the relevent speed feature flag is set.
if ((cpi->pass == 2) && (cpi->sf.static_segmentation)) {
configure_static_seg_features(cpi);
}
// Decide how big to make the frame
vp9_pick_frame_size(cpi);
vp9_clear_system_state();
// Set an active best quality and if necessary active worst quality
Q = cpi->active_worst_quality;
if (cm->frame_type == KEY_FRAME) {
int high = 2000;
int low = 400;
if (cpi->kf_boost > high)
cpi->active_best_quality = kf_low_motion_minq[Q];
else if (cpi->kf_boost < low)
cpi->active_best_quality = kf_high_motion_minq[Q];
else {
int gap = high - low;
int offset = high - cpi->kf_boost;
int qdiff = kf_high_motion_minq[Q] - kf_low_motion_minq[Q];
int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
cpi->active_best_quality = kf_low_motion_minq[Q] + adjustment;
}
// Make an adjustment based on the %s static
// The main impact of this is at lower Q to prevent overly large key
// frames unless a lot of the image is static.
if (cpi->kf_zeromotion_pct < 64)
cpi->active_best_quality += 4 - (cpi->kf_zeromotion_pct >> 4);
// Special case for key frames forced because we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping
if (cpi->this_key_frame_forced) {
int delta_qindex;
int qindex = cpi->last_boosted_qindex;
delta_qindex = compute_qdelta(cpi, qindex,
(qindex * 0.75));
cpi->active_best_quality = qindex + delta_qindex;
if (cpi->active_best_quality < cpi->best_quality)
cpi->active_best_quality = cpi->best_quality;
}
} else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
int high = 2000;
int low = 400;
// Use the lower of cpi->active_worst_quality and recent
// average Q as basis for GF/ARF Q limit unless last frame was
// a key frame.
if ((cpi->frames_since_key > 1) &&
(cpi->avg_frame_qindex < cpi->active_worst_quality)) {
Q = cpi->avg_frame_qindex;
}
// For constrained quality dont allow Q less than the cq level
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < cpi->cq_target_quality)) {
Q = cpi->cq_target_quality;
}
if (cpi->gfu_boost > high)
cpi->active_best_quality = gf_low_motion_minq[Q];
else if (cpi->gfu_boost < low)
cpi->active_best_quality = gf_high_motion_minq[Q];
else {
int gap = high - low;
int offset = high - cpi->gfu_boost;
int qdiff = gf_high_motion_minq[Q] - gf_low_motion_minq[Q];
int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
cpi->active_best_quality = gf_low_motion_minq[Q] + adjustment;
}
// Constrained quality use slightly lower active best.
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
cpi->active_best_quality =
cpi->active_best_quality * 15 / 16;
}
} else {
cpi->active_best_quality = inter_minq[Q];
// For the constant/constrained quality mode we dont want
// q to fall below the cq level.
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(cpi->active_best_quality < cpi->cq_target_quality)) {
// If we are strongly undershooting the target rate in the last
// frames then use the user passed in cq value not the auto
// cq value.
if (cpi->rolling_actual_bits < cpi->min_frame_bandwidth)
cpi->active_best_quality = cpi->oxcf.cq_level;
else
cpi->active_best_quality = cpi->cq_target_quality;
}
}
// Clip the active best and worst quality values to limits
if (cpi->active_worst_quality > cpi->worst_quality)
cpi->active_worst_quality = cpi->worst_quality;
if (cpi->active_best_quality < cpi->best_quality)
cpi->active_best_quality = cpi->best_quality;
if (cpi->active_best_quality > cpi->worst_quality)
cpi->active_best_quality = cpi->worst_quality;
if (cpi->active_worst_quality < cpi->active_best_quality)
cpi->active_worst_quality = cpi->active_best_quality;
// Special case code to try and match quality with forced key frames
if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
Q = cpi->last_boosted_qindex;
} else {
// Determine initial Q to try
Q = vp9_regulate_q(cpi, cpi->this_frame_target);
}
vp9_compute_frame_size_bounds(cpi, &frame_under_shoot_limit,
&frame_over_shoot_limit);
// Limit Q range for the adaptive loop.
bottom_index = cpi->active_best_quality;
top_index = cpi->active_worst_quality;
q_low = cpi->active_best_quality;
q_high = cpi->active_worst_quality;
loop_count = 0;
if (cm->frame_type != KEY_FRAME) {
/* TODO: Decide this more intelligently */
if (sf->search_best_filter) {
cm->mcomp_filter_type = mcomp_filters_to_search[0];
mcomp_filter_index = 0;
} else {
cm->mcomp_filter_type = DEFAULT_INTERP_FILTER;
}
/* TODO: Decide this more intelligently */
xd->allow_high_precision_mv = (Q < HIGH_PRECISION_MV_QTHRESH);
set_mvcost(&cpi->mb);
}
#if CONFIG_COMP_INTERINTRA_PRED
if (cm->current_video_frame == 0) {
cm->use_interintra = 1;
}
#endif
#if CONFIG_POSTPROC
if (cpi->oxcf.noise_sensitivity > 0) {
uint8_t *src;
int l = 0;
switch (cpi->oxcf.noise_sensitivity) {
case 1:
l = 20;
break;
case 2:
l = 40;
break;
case 3:
l = 60;
break;
case 4:
case 5:
l = 100;
break;
case 6:
l = 150;
break;
}
if (cm->frame_type == KEY_FRAME) {
vp9_de_noise(cpi->Source, cpi->Source, l, 1, 0);
} else {
vp9_de_noise(cpi->Source, cpi->Source, l, 1, 0);
src = cpi->Source->y_buffer;
if (cpi->Source->y_stride < 0) {
src += cpi->Source->y_stride * (cpi->Source->y_height - 1);
}
}
}
#endif
#ifdef OUTPUT_YUV_SRC
vp9_write_yuv_frame(cpi->Source);
#endif
#if RESET_FOREACH_FILTER
if (sf->search_best_filter) {
q_low0 = q_low;
q_high0 = q_high;
Q0 = Q;
rate_correction_factor0 = cpi->rate_correction_factor;
gf_rate_correction_factor0 = cpi->gf_rate_correction_factor;
active_best_quality0 = cpi->active_best_quality;
active_worst_quality0 = cpi->active_worst_quality;
}
#endif
do {
vp9_clear_system_state(); // __asm emms;
vp9_set_quantizer(cpi, Q);
if (loop_count == 0) {
// setup skip prob for costing in mode/mv decision
if (cpi->common.mb_no_coeff_skip) {
int k;
for (k = 0; k < MBSKIP_CONTEXTS; k++)
cm->mbskip_pred_probs[k] = cpi->base_skip_false_prob[Q][k];
if (cm->frame_type != KEY_FRAME) {
if (cpi->refresh_alt_ref_frame) {
for (k = 0; k < MBSKIP_CONTEXTS; k++) {
if (cpi->last_skip_false_probs[2][k] != 0)
cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[2][k];
}
} else if (cpi->refresh_golden_frame) {
for (k = 0; k < MBSKIP_CONTEXTS; k++) {
if (cpi->last_skip_false_probs[1][k] != 0)
cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[1][k];
}
} else {
int k;
for (k = 0; k < MBSKIP_CONTEXTS; k++) {
if (cpi->last_skip_false_probs[0][k] != 0)
cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[0][k];
}
}
// as this is for cost estimate, let's make sure it does not
// get extreme either way
{
int k;
for (k = 0; k < MBSKIP_CONTEXTS; ++k) {
if (cm->mbskip_pred_probs[k] < 5)
cm->mbskip_pred_probs[k] = 5;
if (cm->mbskip_pred_probs[k] > 250)
cm->mbskip_pred_probs[k] = 250;
if (cpi->is_src_frame_alt_ref)
cm->mbskip_pred_probs[k] = 1;
}
}
}
}
// Set up entropy depending on frame type.
if (cm->frame_type == KEY_FRAME) {
/* Choose which entropy context to use. When using a forward reference
* frame, it immediately follows the keyframe, and thus benefits from
* using the same entropy context established by the keyframe. Otherwise,
* use the default context 0.
*/
cm->frame_context_idx = cpi->oxcf.play_alternate;
vp9_setup_key_frame(cpi);
} else {
/* Choose which entropy context to use. Currently there are only two
* contexts used, one for normal frames and one for alt ref frames.
*/
cpi->common.frame_context_idx = cpi->refresh_alt_ref_frame;
vp9_setup_inter_frame(cpi);
}
}
// transform / motion compensation build reconstruction frame
vp9_encode_frame(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
update_base_skip_probs(cpi);
vp9_clear_system_state(); // __asm emms;
// Dummy pack of the bitstream using up to date stats to get an
// accurate estimate of output frame size to determine if we need
// to recode.
vp9_save_coding_context(cpi);
cpi->dummy_packing = 1;
vp9_pack_bitstream(cpi, dest, size);
cpi->projected_frame_size = (*size) << 3;
vp9_restore_coding_context(cpi);
if (frame_over_shoot_limit == 0)
frame_over_shoot_limit = 1;
active_worst_qchanged = FALSE;
// Special case handling for forced key frames
if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
int last_q = Q;
int kf_err = vp9_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx]);
int high_err_target = cpi->ambient_err;
int low_err_target = (cpi->ambient_err >> 1);
// Prevent possible divide by zero error below for perfect KF
kf_err += (!kf_err);
// The key frame is not good enough or we can afford
// to make it better without undue risk of popping.
if (((kf_err > high_err_target) &&
(cpi->projected_frame_size <= frame_over_shoot_limit)) ||
((kf_err > low_err_target) &&
(cpi->projected_frame_size <= frame_under_shoot_limit))) {
// Lower q_high
q_high = (Q > q_low) ? (Q - 1) : q_low;
// Adjust Q
Q = (Q * high_err_target) / kf_err;
if (Q < ((q_high + q_low) >> 1))
Q = (q_high + q_low) >> 1;
}
// The key frame is much better than the previous frame
else if ((kf_err < low_err_target) &&
(cpi->projected_frame_size >= frame_under_shoot_limit)) {
// Raise q_low
q_low = (Q < q_high) ? (Q + 1) : q_high;
// Adjust Q
Q = (Q * low_err_target) / kf_err;
if (Q > ((q_high + q_low + 1) >> 1))
Q = (q_high + q_low + 1) >> 1;
}
// Clamp Q to upper and lower limits:
if (Q > q_high)
Q = q_high;
else if (Q < q_low)
Q = q_low;
Loop = ((Q != last_q)) ? TRUE : FALSE;
}
// Is the projected frame size out of range and are we allowed to attempt to recode.
else if (recode_loop_test(cpi,
frame_over_shoot_limit, frame_under_shoot_limit,
Q, top_index, bottom_index)) {
int last_q = Q;
int Retries = 0;
// Frame size out of permitted range:
// Update correction factor & compute new Q to try...
// Frame is too large
if (cpi->projected_frame_size > cpi->this_frame_target) {
q_low = (Q < q_high) ? (Q + 1) : q_high; // Raise Qlow as to at least the current value
if (undershoot_seen || (loop_count > 1)) {
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp9_update_rate_correction_factors(cpi, 1);
Q = (q_high + q_low + 1) / 2;
} else {
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp9_update_rate_correction_factors(cpi, 0);
Q = vp9_regulate_q(cpi, cpi->this_frame_target);
while ((Q < q_low) && (Retries < 10)) {
vp9_update_rate_correction_factors(cpi, 0);
Q = vp9_regulate_q(cpi, cpi->this_frame_target);
Retries++;
}
}
overshoot_seen = TRUE;
}
// Frame is too small
else {
q_high = (Q > q_low) ? (Q - 1) : q_low;
if (overshoot_seen || (loop_count > 1)) {
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp9_update_rate_correction_factors(cpi, 1);
Q = (q_high + q_low) / 2;
} else {
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp9_update_rate_correction_factors(cpi, 0);
Q = vp9_regulate_q(cpi, cpi->this_frame_target);
// Special case reset for qlow for constrained quality.
// This should only trigger where there is very substantial
// undershoot on a frame and the auto cq level is above
// the user passsed in value.
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < q_low)) {
q_low = Q;
}
while ((Q > q_high) && (Retries < 10)) {
vp9_update_rate_correction_factors(cpi, 0);
Q = vp9_regulate_q(cpi, cpi->this_frame_target);
Retries++;
}
}
undershoot_seen = TRUE;
}
// Clamp Q to upper and lower limits:
if (Q > q_high)
Q = q_high;
else if (Q < q_low)
Q = q_low;
Loop = ((Q != last_q)) ? TRUE : FALSE;
} else
Loop = FALSE;
if (cpi->is_src_frame_alt_ref)
Loop = FALSE;
if (Loop == FALSE && cm->frame_type != KEY_FRAME && sf->search_best_filter) {
if (mcomp_filter_index < mcomp_filters) {
int64_t err = vp9_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx]);
int64_t rate = cpi->projected_frame_size << 8;
mcomp_filter_cost[mcomp_filter_index] =
(RDCOST(cpi->RDMULT, cpi->RDDIV, rate, err));
mcomp_filter_index++;
if (mcomp_filter_index < mcomp_filters) {
cm->mcomp_filter_type = mcomp_filters_to_search[mcomp_filter_index];
loop_count = -1;
Loop = TRUE;
} else {
int f;
int64_t best_cost = mcomp_filter_cost[0];
int mcomp_best_filter = mcomp_filters_to_search[0];
for (f = 1; f < mcomp_filters; f++) {
if (mcomp_filter_cost[f] < best_cost) {
mcomp_best_filter = mcomp_filters_to_search[f];
best_cost = mcomp_filter_cost[f];
}
}
if (mcomp_best_filter != mcomp_filters_to_search[mcomp_filters - 1]) {
loop_count = -1;
Loop = TRUE;
cm->mcomp_filter_type = mcomp_best_filter;
}
/*
printf(" best filter = %d, ( ", mcomp_best_filter);
for (f=0;f<mcomp_filters; f++) printf("%d ", mcomp_filter_cost[f]);
printf(")\n");
*/
}
#if RESET_FOREACH_FILTER
if (Loop == TRUE) {
overshoot_seen = FALSE;
undershoot_seen = FALSE;
q_low = q_low0;
q_high = q_high0;
Q = Q0;
cpi->rate_correction_factor = rate_correction_factor0;
cpi->gf_rate_correction_factor = gf_rate_correction_factor0;
cpi->active_best_quality = active_best_quality0;
cpi->active_worst_quality = active_worst_quality0;
}
#endif
}
}
if (Loop == TRUE) {
loop_count++;
#if CONFIG_INTERNAL_STATS
cpi->tot_recode_hits++;
#endif
}
} while (Loop == TRUE);
// Special case code to reduce pulsing when key frames are forced at a
// fixed interval. Note the reconstruction error if it is the frame before
// the force key frame
if (cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0)) {
cpi->ambient_err = vp9_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx]);
}
// This frame's MVs are saved and will be used in next frame's MV
// prediction. Last frame has one more line(add to bottom) and one
// more column(add to right) than cm->mip. The edge elements are
// initialized to 0.
if (cm->show_frame) { // do not save for altref frame
int mb_row;
int mb_col;
MODE_INFO *tmp = cm->mip;
if (cm->frame_type != KEY_FRAME) {
for (mb_row = 0; mb_row < cm->mb_rows + 1; mb_row ++) {
for (mb_col = 0; mb_col < cm->mb_cols + 1; mb_col ++) {
if (tmp->mbmi.ref_frame != INTRA_FRAME)
cpi->lfmv[mb_col + mb_row * (cm->mode_info_stride + 1)].as_int = tmp->mbmi.mv[0].as_int;
cpi->lf_ref_frame_sign_bias[mb_col + mb_row * (cm->mode_info_stride + 1)] = cm->ref_frame_sign_bias[tmp->mbmi.ref_frame];
cpi->lf_ref_frame[mb_col + mb_row * (cm->mode_info_stride + 1)] = tmp->mbmi.ref_frame;
tmp++;
}
}
}
}
// Update the GF useage maps.
// This is done after completing the compression of a frame when all modes
// etc. are finalized but before loop filter
vp9_update_gf_useage_maps(cpi, cm, &cpi->mb);
if (cm->frame_type == KEY_FRAME)
cpi->refresh_last_frame = 1;
#if 0
{
FILE *f = fopen("gfactive.stt", "a");
fprintf(f, "%8d %8d %8d %8d %8d\n",
cm->current_video_frame,
(100 * cpi->gf_active_count)
/ (cpi->common.mb_rows * cpi->common.mb_cols),
cpi->this_iiratio,
cpi->next_iiratio,
cpi->refresh_golden_frame);
fclose(f);
}
#endif
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
#if WRITE_RECON_BUFFER
if (cm->show_frame)
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame);
else
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame + 1000);
#endif
// Pick the loop filter level for the frame.
loopfilter_frame(cpi, cm);
// build the bitstream
cpi->dummy_packing = 0;
vp9_pack_bitstream(cpi, dest, size);
if (cpi->mb.e_mbd.update_mb_segmentation_map) {
update_reference_segmentation_map(cpi);
}
update_reference_frames(cpi);
vp9_copy(cpi->common.fc.coef_counts_4x4, cpi->coef_counts_4x4);
vp9_copy(cpi->common.fc.hybrid_coef_counts_4x4,
cpi->hybrid_coef_counts_4x4);
vp9_copy(cpi->common.fc.coef_counts_8x8, cpi->coef_counts_8x8);
vp9_copy(cpi->common.fc.hybrid_coef_counts_8x8,
cpi->hybrid_coef_counts_8x8);
vp9_copy(cpi->common.fc.coef_counts_16x16, cpi->coef_counts_16x16);
vp9_copy(cpi->common.fc.hybrid_coef_counts_16x16,
cpi->hybrid_coef_counts_16x16);
vp9_copy(cpi->common.fc.coef_counts_32x32, cpi->coef_counts_32x32);
if (!cpi->common.error_resilient_mode &&
!cpi->common.frame_parallel_decoding_mode)
vp9_adapt_coef_probs(&cpi->common);
if (cpi->common.frame_type != KEY_FRAME) {
vp9_copy(cpi->common.fc.sb_ymode_counts, cpi->sb_ymode_count);
vp9_copy(cpi->common.fc.ymode_counts, cpi->ymode_count);
vp9_copy(cpi->common.fc.uv_mode_counts, cpi->y_uv_mode_count);
vp9_copy(cpi->common.fc.bmode_counts, cpi->bmode_count);
vp9_copy(cpi->common.fc.i8x8_mode_counts, cpi->i8x8_mode_count);
vp9_copy(cpi->common.fc.sub_mv_ref_counts, cpi->sub_mv_ref_count);
vp9_copy(cpi->common.fc.mbsplit_counts, cpi->mbsplit_count);
#if CONFIG_COMP_INTERINTRA_PRED
vp9_copy(cpi->common.fc.interintra_counts, cpi->interintra_count);
#endif
cpi->common.fc.NMVcount = cpi->NMVcount;
if (!cpi->common.error_resilient_mode &&
!cpi->common.frame_parallel_decoding_mode) {
vp9_adapt_mode_probs(&cpi->common);
vp9_adapt_mode_context(&cpi->common);
vp9_adapt_nmv_probs(&cpi->common, cpi->mb.e_mbd.allow_high_precision_mv);
}
}
#if CONFIG_COMP_INTERINTRA_PRED
if (cm->frame_type != KEY_FRAME)
select_interintra_mode(cpi);
#endif
/* Move storing frame_type out of the above loop since it is also
* needed in motion search besides loopfilter */
cm->last_frame_type = cm->frame_type;
// Update rate control heuristics
cpi->total_byte_count += (*size);
cpi->projected_frame_size = (*size) << 3;
if (!active_worst_qchanged)
vp9_update_rate_correction_factors(cpi, 2);
cpi->last_q[cm->frame_type] = cm->base_qindex;
// Keep record of last boosted (KF/KF/ARF) Q value.
// If the current frame is coded at a lower Q then we also update it.
// If all mbs in this group are skipped only update if the Q value is
// better than that already stored.
// This is used to help set quality in forced key frames to reduce popping
if ((cm->base_qindex < cpi->last_boosted_qindex) ||
((cpi->static_mb_pct < 100) &&
((cm->frame_type == KEY_FRAME) ||
cpi->refresh_alt_ref_frame ||
(cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) {
cpi->last_boosted_qindex = cm->base_qindex;
}
if (cm->frame_type == KEY_FRAME) {
vp9_adjust_key_frame_context(cpi);
}
// Keep a record of ambient average Q.
if (cm->frame_type != KEY_FRAME)
cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
// Keep a record from which we can calculate the average Q excluding GF updates and key frames
if ((cm->frame_type != KEY_FRAME)
&& !cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) {
cpi->ni_frames++;
cpi->tot_q += vp9_convert_qindex_to_q(Q);
cpi->avg_q = cpi->tot_q / (double)cpi->ni_frames;
// Calculate the average Q for normal inter frames (not key or GFU
// frames).
cpi->ni_tot_qi += Q;
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
}
// Update the buffer level variable.
// Non-viewable frames are a special case and are treated as pure overhead.
if (!cm->show_frame)
cpi->bits_off_target -= cpi->projected_frame_size;
else
cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
// Clip the buffer level at the maximum buffer size
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size)
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
// Rolling monitors of whether we are over or underspending used to help regulate min and Max Q in two pass.
cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
cpi->rolling_actual_bits = ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
cpi->long_rolling_target_bits = ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
cpi->long_rolling_actual_bits = ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / 32;
// Actual bits spent
cpi->total_actual_bits += cpi->projected_frame_size;
// Debug stats
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
cpi->buffer_level = cpi->bits_off_target;
// Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames
if (cm->frame_type == KEY_FRAME) {
cpi->twopass.kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
if (cpi->twopass.kf_group_bits < 0)
cpi->twopass.kf_group_bits = 0;
} else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
cpi->twopass.gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
if (cpi->twopass.gf_group_bits < 0)
cpi->twopass.gf_group_bits = 0;
}
// Update the skip mb flag probabilities based on the distribution seen
// in this frame.
update_base_skip_probs(cpi);
#if 0// 1 && CONFIG_INTERNAL_STATS
{
FILE *f = fopen("tmp.stt", "a");
int recon_err;
vp9_clear_system_state(); // __asm emms;
recon_err = vp9_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx]);
if (cpi->twopass.total_left_stats->coded_error != 0.0)
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d"
"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f"
"%6d %5d %5d %5d %8d %8.2f %10d %10.3f"
"%10.3f %8d %10d %10d %10d\n",
cpi->common.current_video_frame, cpi->this_frame_target,
cpi->projected_frame_size, 0, //loop_size_estimate,
(cpi->projected_frame_size - cpi->this_frame_target),
(int)cpi->total_target_vs_actual,
(cpi->oxcf.starting_buffer_level - cpi->bits_off_target),
(int)cpi->total_actual_bits,
vp9_convert_qindex_to_q(cm->base_qindex),
(double)vp9_dc_quant(cm->base_qindex, 0) / 4.0,
vp9_convert_qindex_to_q(cpi->active_best_quality),
vp9_convert_qindex_to_q(cpi->active_worst_quality),
cpi->avg_q,
vp9_convert_qindex_to_q(cpi->ni_av_qi),
vp9_convert_qindex_to_q(cpi->cq_target_quality),
cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
(int)cpi->twopass.bits_left,
cpi->twopass.total_left_stats->coded_error,
(double)cpi->twopass.bits_left /
cpi->twopass.total_left_stats->coded_error,
cpi->tot_recode_hits, recon_err, cpi->kf_boost,
cpi->kf_zeromotion_pct);
else
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d"
"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f"
"%5d %5d %8d %8.2f %10d %10.3f"
"%8d %10d %10d %10d\n",
cpi->common.current_video_frame,
cpi->this_frame_target, cpi->projected_frame_size,
0, //loop_size_estimate,
(cpi->projected_frame_size - cpi->this_frame_target),
(int)cpi->total_target_vs_actual,
(cpi->oxcf.starting_buffer_level - cpi->bits_off_target),
(int)cpi->total_actual_bits,
vp9_convert_qindex_to_q(cm->base_qindex),
(double)vp9_dc_quant(cm->base_qindex, 0) / 4.0,
vp9_convert_qindex_to_q(cpi->active_best_quality),
vp9_convert_qindex_to_q(cpi->active_worst_quality),
cpi->avg_q,
vp9_convert_qindex_to_q(cpi->ni_av_qi),
vp9_convert_qindex_to_q(cpi->cq_target_quality),
cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
(int)cpi->twopass.bits_left,
cpi->twopass.total_left_stats->coded_error,
cpi->tot_recode_hits, recon_err, cpi->kf_boost,
cpi->kf_zeromotion_pct);
fclose(f);
if (0) {
FILE *fmodes = fopen("Modes.stt", "a");
int i;
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
cpi->common.current_video_frame,
cm->frame_type, cpi->refresh_golden_frame,
cpi->refresh_alt_ref_frame);
for (i = 0; i < MAX_MODES; i++)
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
fprintf(fmodes, "\n");
fclose(fmodes);
}
}
#endif
#if 0
// Debug stats for segment feature experiments.
print_seg_map(cpi);
#endif
// If this was a kf or Gf note the Q
if ((cm->frame_type == KEY_FRAME)
|| cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
cm->last_kf_gf_q = cm->base_qindex;
if (cpi->refresh_golden_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN;
if (cpi->refresh_alt_ref_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF;
if (cpi->refresh_last_frame & cpi->refresh_golden_frame)
cpi->gold_is_last = 1;
else if (cpi->refresh_last_frame ^ cpi->refresh_golden_frame)
cpi->gold_is_last = 0;
if (cpi->refresh_last_frame & cpi->refresh_alt_ref_frame)
cpi->alt_is_last = 1;
else if (cpi->refresh_last_frame ^ cpi->refresh_alt_ref_frame)
cpi->alt_is_last = 0;
if (cpi->refresh_alt_ref_frame & cpi->refresh_golden_frame)
cpi->gold_is_alt = 1;
else if (cpi->refresh_alt_ref_frame ^ cpi->refresh_golden_frame)
cpi->gold_is_alt = 0;
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
if (cpi->gold_is_last)
cpi->ref_frame_flags &= ~VP9_GOLD_FLAG;
if (cpi->alt_is_last)
cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
if (cpi->gold_is_alt)
cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
if (cpi->oxcf.play_alternate && cpi->refresh_alt_ref_frame
&& (cm->frame_type != KEY_FRAME))
// Update the alternate reference frame stats as appropriate.
update_alt_ref_frame_stats(cpi);
else
// Update the Golden frame stats as appropriate.
update_golden_frame_stats(cpi);
if (cm->frame_type == KEY_FRAME) {
// Tell the caller that the frame was coded as a key frame
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
// As this frame is a key frame the next defaults to an inter frame.
cm->frame_type = INTER_FRAME;
} else {
*frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY;
}
// Clear the one shot update flags for segmentation map and mode/ref loop filter deltas.
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
xd->mode_ref_lf_delta_update = 0;
// Dont increment frame counters if this was an altref buffer update not a real frame
if (cm->show_frame) {
cm->current_video_frame++;
cpi->frames_since_key++;
}
// reset to normal state now that we are done.
#if 0
{
char filename[512];
FILE *recon_file;
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
recon_file = fopen(filename, "wb");
fwrite(cm->yv12_fb[cm->active_ref_idx[cpi->lst_fb_idx]].buffer_alloc,
cm->yv12_fb[cm->active_ref_idx[cpi->lst_fb_idx]].frame_size,
1, recon_file);
fclose(recon_file);
}
#endif
#ifdef OUTPUT_YUV_REC
vp9_write_yuv_rec_frame(cm);
#endif
if (cm->show_frame) {
vpx_memcpy(cm->prev_mip, cm->mip,
(cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO));
} else {
vpx_memset(cm->prev_mip, 0,
(cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO));
}
}
static void Pass2Encode(VP9_COMP *cpi, unsigned long *size,
unsigned char *dest, unsigned int *frame_flags) {
if (!cpi->refresh_alt_ref_frame)
vp9_second_pass(cpi);
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
cpi->twopass.bits_left -= 8 * *size;
if (!cpi->refresh_alt_ref_frame) {
double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.frame_rate;
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
* cpi->oxcf.two_pass_vbrmin_section / 100);
if (two_pass_min_rate < lower_bounds_min_rate)
two_pass_min_rate = lower_bounds_min_rate;
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->oxcf.frame_rate);
}
}
int vp9_receive_raw_frame(VP9_PTR ptr, unsigned int frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time) {
VP9_COMP *cpi = (VP9_COMP *) ptr;
VP9_COMMON *cm = &cpi->common;
struct vpx_usec_timer timer;
int res = 0;
vpx_usec_timer_start(&timer);
if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags,
cpi->active_map_enabled ? cpi->active_map : NULL))
res = -1;
cm->clr_type = sd->clrtype;
vpx_usec_timer_mark(&timer);
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
return res;
}
static int frame_is_reference(const VP9_COMP *cpi) {
const VP9_COMMON *cm = &cpi->common;
const MACROBLOCKD *xd = &cpi->mb.e_mbd;
return cm->frame_type == KEY_FRAME || cpi->refresh_last_frame
|| cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame
|| cm->refresh_entropy_probs
|| xd->mode_ref_lf_delta_update
|| xd->update_mb_segmentation_map || xd->update_mb_segmentation_data;
}
int vp9_get_compressed_data(VP9_PTR ptr, unsigned int *frame_flags,
unsigned long *size, unsigned char *dest,
int64_t *time_stamp, int64_t *time_end, int flush) {
VP9_COMP *cpi = (VP9_COMP *) ptr;
VP9_COMMON *cm = &cpi->common;
struct vpx_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
if (!cpi)
return -1;
vpx_usec_timer_start(&cmptimer);
cpi->source = NULL;
cpi->mb.e_mbd.allow_high_precision_mv = ALTREF_HIGH_PRECISION_MV;
set_mvcost(&cpi->mb);
// Should we code an alternate reference frame
if (cpi->oxcf.play_alternate &&
cpi->source_alt_ref_pending) {
if ((cpi->source = vp9_lookahead_peek(cpi->lookahead,
cpi->frames_till_gf_update_due))) {
cpi->alt_ref_source = cpi->source;
if (cpi->oxcf.arnr_max_frames > 0) {
vp9_temporal_filter_prepare(cpi, cpi->frames_till_gf_update_due);
force_src_buffer = &cpi->alt_ref_buffer;
}
cm->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due;
cpi->refresh_alt_ref_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 0;
cm->show_frame = 0;
cpi->source_alt_ref_pending = FALSE; // Clear Pending altf Ref flag.
cpi->is_src_frame_alt_ref = 0;
}
}
if (!cpi->source) {
if ((cpi->source = vp9_lookahead_pop(cpi->lookahead, flush))) {
cm->show_frame = 1;
cpi->is_src_frame_alt_ref = cpi->alt_ref_source
&& (cpi->source == cpi->alt_ref_source);
if (cpi->is_src_frame_alt_ref)
cpi->alt_ref_source = NULL;
}
}
if (cpi->source) {
cpi->un_scaled_source =
cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img;
*time_stamp = cpi->source->ts_start;
*time_end = cpi->source->ts_end;
*frame_flags = cpi->source->flags;
} else {
*size = 0;
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) {
vp9_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
}
return -1;
}
if (cpi->source->ts_start < cpi->first_time_stamp_ever) {
cpi->first_time_stamp_ever = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
}
// adjust frame rates based on timestamps given
if (!cpi->refresh_alt_ref_frame) {
int64_t this_duration;
int step = 0;
if (cpi->source->ts_start == cpi->first_time_stamp_ever) {
this_duration = cpi->source->ts_end - cpi->source->ts_start;
step = 1;
} else {
int64_t last_duration;
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
last_duration = cpi->last_end_time_stamp_seen
- cpi->last_time_stamp_seen;
// do a step update if the duration changes by 10%
if (last_duration)
step = (int)((this_duration - last_duration) * 10 / last_duration);
}
if (this_duration) {
if (step)
vp9_new_frame_rate(cpi, 10000000.0 / this_duration);
else {
double avg_duration, interval;
/* Average this frame's rate into the last second's average
* frame rate. If we haven't seen 1 second yet, then average
* over the whole interval seen.
*/
interval = (double)(cpi->source->ts_end
- cpi->first_time_stamp_ever);
if (interval > 10000000.0)
interval = 10000000;
avg_duration = 10000000.0 / cpi->oxcf.frame_rate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
vp9_new_frame_rate(cpi, 10000000.0 / avg_duration);
}
}
cpi->last_time_stamp_seen = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
}
// start with a 0 size frame
*size = 0;
// Clear down mmx registers
vp9_clear_system_state(); // __asm emms;
cm->frame_type = INTER_FRAME;
cm->frame_flags = *frame_flags;
#if 0
if (cpi->refresh_alt_ref_frame) {
// cpi->refresh_golden_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 0;
} else {
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 1;
}
#endif
/* find a free buffer for the new frame, releasing the reference previously
* held.
*/
cm->fb_idx_ref_cnt[cm->new_fb_idx]--;
cm->new_fb_idx = get_free_fb(cm);
/* Reset the frame pointers to the current frame size */
vp8_yv12_realloc_frame_buffer(&cm->yv12_fb[cm->new_fb_idx],
cm->mb_cols * 16, cm->mb_rows * 16,
VP9BORDERINPIXELS);
/* Disable any references that have different size */
if ((cm->yv12_fb[cm->active_ref_idx[cpi->lst_fb_idx]].y_width !=
cm->yv12_fb[cm->new_fb_idx].y_width) ||
(cm->yv12_fb[cm->active_ref_idx[cpi->lst_fb_idx]].y_height !=
cm->yv12_fb[cm->new_fb_idx].y_height))
cpi->ref_frame_flags &= ~VP9_LAST_FLAG;
if ((cm->yv12_fb[cm->active_ref_idx[cpi->gld_fb_idx]].y_width !=
cm->yv12_fb[cm->new_fb_idx].y_width) ||
(cm->yv12_fb[cm->active_ref_idx[cpi->gld_fb_idx]].y_height !=
cm->yv12_fb[cm->new_fb_idx].y_height))
cpi->ref_frame_flags &= ~VP9_GOLD_FLAG;
if ((cm->yv12_fb[cm->active_ref_idx[cpi->alt_fb_idx]].y_width !=
cm->yv12_fb[cm->new_fb_idx].y_width) ||
(cm->yv12_fb[cm->active_ref_idx[cpi->alt_fb_idx]].y_height !=
cm->yv12_fb[cm->new_fb_idx].y_height))
cpi->ref_frame_flags &= ~VP9_ALT_FLAG;
vp9_setup_interp_filters(&cpi->mb.e_mbd, DEFAULT_INTERP_FILTER, cm);
if (cpi->pass == 1) {
Pass1Encode(cpi, size, dest, frame_flags);
} else if (cpi->pass == 2) {
Pass2Encode(cpi, size, dest, frame_flags);
} else {
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
}
if (cm->refresh_entropy_probs) {
vpx_memcpy(&cm->frame_contexts[cm->frame_context_idx], &cm->fc,
sizeof(cm->fc));
}
// if its a dropped frame honor the requests on subsequent frames
if (*size > 0) {
cpi->droppable = !frame_is_reference(cpi);
// return to normal state
cm->refresh_entropy_probs = 1;
cpi->refresh_alt_ref_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 1;
cm->frame_type = INTER_FRAME;
}
vpx_usec_timer_mark(&cmptimer);
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame) {
generate_psnr_packet(cpi);
}
#if CONFIG_INTERNAL_STATS
if (cpi->pass != 1) {
cpi->bytes += *size;
if (cm->show_frame) {
cpi->count++;
if (cpi->b_calculate_psnr) {
double ye, ue, ve;
double frame_psnr;
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
int y_samples = orig->y_height * orig->y_width;
int uv_samples = orig->uv_height * orig->uv_width;
int t_samples = y_samples + 2 * uv_samples;
double sq_error;
ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride,
recon->y_buffer, recon->y_stride, orig->y_width,
orig->y_height);
ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride,
recon->u_buffer, recon->uv_stride, orig->uv_width,
orig->uv_height);
ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride,
recon->v_buffer, recon->uv_stride, orig->uv_width,
orig->uv_height);
sq_error = ye + ue + ve;
frame_psnr = vp9_mse2psnr(t_samples, 255.0, sq_error);
cpi->total_y += vp9_mse2psnr(y_samples, 255.0, ye);
cpi->total_u += vp9_mse2psnr(uv_samples, 255.0, ue);
cpi->total_v += vp9_mse2psnr(uv_samples, 255.0, ve);
cpi->total_sq_error += sq_error;
cpi->total += frame_psnr;
{
double frame_psnr2, frame_ssim2 = 0;
double weight = 0;
#if CONFIG_POSTPROC
vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer,
cm->filter_level * 10 / 6, 1, 0);
#endif
vp9_clear_system_state();
ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride,
pp->y_buffer, pp->y_stride, orig->y_width,
orig->y_height);
ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride,
pp->u_buffer, pp->uv_stride, orig->uv_width,
orig->uv_height);
ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride,
pp->v_buffer, pp->uv_stride, orig->uv_width,
orig->uv_height);
sq_error = ye + ue + ve;
frame_psnr2 = vp9_mse2psnr(t_samples, 255.0, sq_error);
cpi->totalp_y += vp9_mse2psnr(y_samples, 255.0, ye);
cpi->totalp_u += vp9_mse2psnr(uv_samples, 255.0, ue);
cpi->totalp_v += vp9_mse2psnr(uv_samples, 255.0, ve);
cpi->total_sq_error2 += sq_error;
cpi->totalp += frame_psnr2;
frame_ssim2 = vp9_calc_ssim(cpi->Source,
&cm->post_proc_buffer, 1, &weight);
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
#if 0
{
FILE *f = fopen("q_used.stt", "a");
fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
cpi->common.current_video_frame, y2, u2, v2,
frame_psnr2, frame_ssim2);
fclose(f);
}
#endif
}
}
if (cpi->b_calculate_ssimg) {
double y, u, v, frame_all;
frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show,
&y, &u, &v);
cpi->total_ssimg_y += y;
cpi->total_ssimg_u += u;
cpi->total_ssimg_v += v;
cpi->total_ssimg_all += frame_all;
}
}
}
#endif
return 0;
}
int vp9_get_preview_raw_frame(VP9_PTR comp, YV12_BUFFER_CONFIG *dest,
vp9_ppflags_t *flags) {
VP9_COMP *cpi = (VP9_COMP *) comp;
if (cpi->refresh_alt_ref_frame)
return -1;
else {
int ret;
#if CONFIG_POSTPROC
ret = vp9_post_proc_frame(&cpi->common, dest, flags);
#else
if (cpi->common.frame_to_show) {
*dest = *cpi->common.frame_to_show;
dest->y_width = cpi->common.Width;
dest->y_height = cpi->common.Height;
dest->uv_height = cpi->common.Height / 2;
ret = 0;
} else {
ret = -1;
}
#endif // !CONFIG_POSTPROC
vp9_clear_system_state();
return ret;
}
}
int vp9_set_roimap(VP9_PTR comp, unsigned char *map, unsigned int rows,
unsigned int cols, int delta_q[4], int delta_lf[4],
unsigned int threshold[4]) {
VP9_COMP *cpi = (VP9_COMP *) comp;
signed char feature_data[SEG_LVL_MAX][MAX_MB_SEGMENTS];
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int i;
if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols)
return -1;
if (!map) {
vp9_disable_segmentation((VP9_PTR)cpi);
return 0;
}
// Set the segmentation Map
vp9_set_segmentation_map((VP9_PTR)cpi, map);
// Activate segmentation.
vp9_enable_segmentation((VP9_PTR)cpi);
// Set up the quant segment data
feature_data[SEG_LVL_ALT_Q][0] = delta_q[0];
feature_data[SEG_LVL_ALT_Q][1] = delta_q[1];
feature_data[SEG_LVL_ALT_Q][2] = delta_q[2];
feature_data[SEG_LVL_ALT_Q][3] = delta_q[3];
// Set up the loop segment data s
feature_data[SEG_LVL_ALT_LF][0] = delta_lf[0];
feature_data[SEG_LVL_ALT_LF][1] = delta_lf[1];
feature_data[SEG_LVL_ALT_LF][2] = delta_lf[2];
feature_data[SEG_LVL_ALT_LF][3] = delta_lf[3];
cpi->segment_encode_breakout[0] = threshold[0];
cpi->segment_encode_breakout[1] = threshold[1];
cpi->segment_encode_breakout[2] = threshold[2];
cpi->segment_encode_breakout[3] = threshold[3];
// Enable the loop and quant changes in the feature mask
for (i = 0; i < 4; i++) {
if (delta_q[i])
vp9_enable_segfeature(xd, i, SEG_LVL_ALT_Q);
else
vp9_disable_segfeature(xd, i, SEG_LVL_ALT_Q);
if (delta_lf[i])
vp9_enable_segfeature(xd, i, SEG_LVL_ALT_LF);
else
vp9_disable_segfeature(xd, i, SEG_LVL_ALT_LF);
}
// Initialise the feature data structure
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
vp9_set_segment_data((VP9_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA);
return 0;
}
int vp9_set_active_map(VP9_PTR comp, unsigned char *map,
unsigned int rows, unsigned int cols) {
VP9_COMP *cpi = (VP9_COMP *) comp;
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
if (map) {
vpx_memcpy(cpi->active_map, map, rows * cols);
cpi->active_map_enabled = 1;
} else
cpi->active_map_enabled = 0;
return 0;
} else {
// cpi->active_map_enabled = 0;
return -1;
}
}
int vp9_set_internal_size(VP9_PTR comp,
VPX_SCALING horiz_mode, VPX_SCALING vert_mode) {
VP9_COMP *cpi = (VP9_COMP *) comp;
if (horiz_mode <= ONETWO)
cpi->horiz_scale = horiz_mode;
else
return -1;
if (vert_mode <= ONETWO)
cpi->vert_scale = vert_mode;
else
return -1;
vp9_change_config(comp, &cpi->oxcf);
return 0;
}
int vp9_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest) {
int i, j;
int Total = 0;
uint8_t *src = source->y_buffer;
uint8_t *dst = dest->y_buffer;
// Loop through the Y plane raw and reconstruction data summing (square differences)
for (i = 0; i < source->y_height; i += 16) {
for (j = 0; j < source->y_width; j += 16) {
unsigned int sse;
Total += vp9_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride,
&sse);
}
src += 16 * source->y_stride;
dst += 16 * dest->y_stride;
}
return Total;
}
int vp9_get_quantizer(VP9_PTR c) {
VP9_COMP *cpi = (VP9_COMP *) c;
return cpi->common.base_qindex;
}