vpx/vp8/encoder/onyx_if.c
Deb Mukherjee c5ddb7f016 Adds new Directional Intra prediction modes.
Adds 6 directional intra predictiom modes for 16x16 and 8x8 blocks.

Change-Id: I25eccc0836f28d8d74922e4e9231568a648b47d1
2012-05-15 08:54:50 -07:00

4568 lines
147 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "vp8/common/onyxc_int.h"
#include "onyx_int.h"
#include "vp8/common/systemdependent.h"
#include "quantize.h"
#include "vp8/common/alloccommon.h"
#include "mcomp.h"
#include "firstpass.h"
#include "psnr.h"
#include "vpx_scale/vpxscale.h"
#include "vp8/common/extend.h"
#include "ratectrl.h"
#include "vp8/common/quant_common.h"
#include "segmentation.h"
#include "vp8/common/g_common.h"
#include "vpx_scale/yv12extend.h"
#if CONFIG_POSTPROC
#include "vp8/common/postproc.h"
#endif
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/swapyv12buffer.h"
#include "vpx_ports/vpx_timer.h"
#include "temporal_filter.h"
#include "vp8/common/seg_common.h"
#include "mbgraph.h"
#include "vp8/common/pred_common.h"
#include "vp8/encoder/rdopt.h"
#if ARCH_ARM
#include "vpx_ports/arm.h"
#endif
#include <math.h>
#include <stdio.h>
#include <limits.h>
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#define RTCD(x) &cpi->common.rtcd.x
#else
#define IF_RTCD(x) NULL
#define RTCD(x) NULL
#endif
extern void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
extern void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val);
extern void vp8cx_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
extern void vp8_dmachine_specific_config(VP8_COMP *cpi);
extern void vp8_cmachine_specific_config(VP8_COMP *cpi);
extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *post, int filt_lvl, int low_var_thresh, int flag);
extern void print_parms(VP8_CONFIG *ocf, char *filenam);
extern unsigned int vp8_get_processor_freq();
extern void print_tree_update_probs();
extern void vp8cx_create_encoder_threads(VP8_COMP *cpi);
extern void vp8cx_remove_encoder_threads(VP8_COMP *cpi);
#if HAVE_ARMV7
extern void vp8_yv12_copy_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc);
extern void vp8_yv12_copy_src_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc);
#endif
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd);
extern void vp8_temporal_filter_prepare_c(VP8_COMP *cpi, int distance);
static void set_default_lf_deltas(VP8_COMP *cpi);
extern const int vp8_gf_interval_table[101];
#if CONFIG_ENHANCED_INTERP
#define SEARCH_BEST_FILTER 0 /* to search exhaustively for best filter */
#define RESET_FOREACH_FILTER 0 /* whether to reset the encoder state
before trying each new filter */
#endif
#if CONFIG_HIGH_PRECISION_MV
#define ALTREF_HIGH_PRECISION_MV 1 /* whether to use high precision mv for altref computation */
#define HIGH_PRECISION_MV_QTHRESH 200 /* Q threshold for use of high precision mv */
/* Choose a very high value for now so
* that HIGH_PRECISION is always chosen
*/
#endif
#if CONFIG_INTERNAL_STATS
#include "math.h"
extern double vp8_calc_ssim
(
YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest,
int lumamask,
double *weight,
const vp8_variance_rtcd_vtable_t *rtcd
);
extern double vp8_calc_ssimg
(
YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest,
double *ssim_y,
double *ssim_u,
double *ssim_v,
const vp8_variance_rtcd_vtable_t *rtcd
);
#endif
//#define OUTPUT_YUV_REC
#ifdef OUTPUT_YUV_SRC
FILE *yuv_file;
#endif
#ifdef OUTPUT_YUV_REC
FILE *yuv_rec_file;
#endif
#if 0
FILE *framepsnr;
FILE *kf_list;
FILE *keyfile;
#endif
#if 0
extern int skip_true_count;
extern int skip_false_count;
#endif
#ifdef ENTROPY_STATS
extern int intra_mode_stats[VP8_BINTRAMODES][VP8_BINTRAMODES][VP8_BINTRAMODES];
#endif
#ifdef SPEEDSTATS
unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int tot_pm = 0;
unsigned int cnt_pm = 0;
unsigned int tot_ef = 0;
unsigned int cnt_ef = 0;
#endif
#if defined(SECTIONBITS_OUTPUT)
extern unsigned __int64 Sectionbits[500];
#endif
#ifdef MODE_STATS
extern INT64 Sectionbits[500];
extern unsigned int y_modes[VP8_YMODES] ;
extern unsigned int i8x8_modes[VP8_I8X8_MODES];
extern unsigned int uv_modes[VP8_UV_MODES] ;
extern unsigned int uv_modes_y[VP8_YMODES][VP8_UV_MODES];
extern unsigned int b_modes[B_MODE_COUNT];
extern unsigned int inter_y_modes[MB_MODE_COUNT] ;
extern unsigned int inter_uv_modes[VP8_UV_MODES] ;
extern unsigned int inter_b_modes[B_MODE_COUNT];
#endif
extern void (*vp8_short_fdct4x4)(short *input, short *output, int pitch);
extern void (*vp8_short_fdct8x4)(short *input, short *output, int pitch);
extern void vp8cx_init_quantizer(VP8_COMP *cpi);
#if CONFIG_NEWENTROPY
int vp8cx_base_skip_false_prob[QINDEX_RANGE][3];
#else
int vp8cx_base_skip_false_prob[QINDEX_RANGE];
#endif
// Tables relating active max Q to active min Q
static int kf_low_motion_minq[QINDEX_RANGE];
static int kf_high_motion_minq[QINDEX_RANGE];
static int gf_low_motion_minq[QINDEX_RANGE];
static int gf_mid_motion_minq[QINDEX_RANGE];
static int gf_high_motion_minq[QINDEX_RANGE];
static int inter_minq[QINDEX_RANGE];
// Functions to compute the active minq lookup table entries based on a
// formulaic approach to facilitate easier adjustment of the Q tables.
// The formulae were derived from computing a 3rd order polynomial best
// fit to the original data (after plotting real maxq vs minq (not q index))
int calculate_minq_index( double maxq,
double x3, double x2, double x, double c )
{
int i;
double minqtarget;
double thisq;
minqtarget = ( (x3 * maxq * maxq * maxq) +
(x2 * maxq * maxq) +
(x * maxq) +
c );
if ( minqtarget > maxq )
minqtarget = maxq;
for ( i = 0; i < QINDEX_RANGE; i++ )
{
thisq = vp8_convert_qindex_to_q(i);
if ( minqtarget <= vp8_convert_qindex_to_q(i) )
return i;
}
return QINDEX_RANGE-1;
}
void init_minq_luts()
{
int i;
double maxq;
for ( i = 0; i < QINDEX_RANGE; i++ )
{
maxq = vp8_convert_qindex_to_q(i);
kf_low_motion_minq[i] = calculate_minq_index( maxq,
0.0000003,
-0.000015,
0.074,
0.0 );
kf_high_motion_minq[i] = calculate_minq_index( maxq,
0.00000034,
-0.000125,
0.13,
0.0 );
gf_low_motion_minq[i] = calculate_minq_index( maxq,
0.0000016,
-0.00078,
0.315,
0.0 );
gf_mid_motion_minq[i] = calculate_minq_index( maxq,
0.00000415,
-0.0017,
0.425,
0.0 );
gf_high_motion_minq[i] = calculate_minq_index( maxq,
0.00000725,
-0.00235,
0.47,
0.0 );
inter_minq[i] = calculate_minq_index( maxq,
0.00000271,
-0.00113,
0.697,
0.0 );
}
}
void init_base_skip_probs()
{
int i;
double q;
int skip_prob, t;
for ( i = 0; i < QINDEX_RANGE; i++ )
{
q = vp8_convert_qindex_to_q(i);
// Exponential decay caluclation of baseline skip prob with clamping
// Based on crude best fit of old table.
t = (int)( 564.25 * pow( 2.71828, (-0.012*q) ) );
skip_prob = t;
if ( skip_prob < 1 )
skip_prob = 1;
else if ( skip_prob > 255 )
skip_prob = 255;
#if CONFIG_NEWENTROPY
vp8cx_base_skip_false_prob[i][1] = skip_prob;
skip_prob = t * 0.75;
if ( skip_prob < 1 )
skip_prob = 1;
else if ( skip_prob > 255 )
skip_prob = 255;
vp8cx_base_skip_false_prob[i][2] = skip_prob;
skip_prob = t * 1.25;
if ( skip_prob < 1 )
skip_prob = 1;
else if ( skip_prob > 255 )
skip_prob = 255;
vp8cx_base_skip_false_prob[i][0] = skip_prob;
#else
vp8cx_base_skip_false_prob[i] = skip_prob;
#endif
}
}
void update_base_skip_probs(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
if (cm->frame_type != KEY_FRAME)
{
update_skip_probs(cpi);
if (cm->refresh_alt_ref_frame)
{
#if CONFIG_NEWENTROPY
int k;
for (k=0; k<MBSKIP_CONTEXTS; ++k)
cpi->last_skip_false_probs[2][k] = cm->mbskip_pred_probs[k];
#else
cpi->last_skip_false_probs[2] = cpi->prob_skip_false;
#endif
cpi->last_skip_probs_q[2] = cm->base_qindex;
}
else if (cpi->common.refresh_golden_frame)
{
#if CONFIG_NEWENTROPY
int k;
for (k=0; k<MBSKIP_CONTEXTS; ++k)
cpi->last_skip_false_probs[1][k] = cm->mbskip_pred_probs[k];
#else
cpi->last_skip_false_probs[1] = cpi->prob_skip_false;
#endif
cpi->last_skip_probs_q[1] = cm->base_qindex;
}
else
{
#if CONFIG_NEWENTROPY
int k;
for (k=0; k<MBSKIP_CONTEXTS; ++k)
cpi->last_skip_false_probs[0][k] = cm->mbskip_pred_probs[k];
#else
cpi->last_skip_false_probs[0] = cpi->prob_skip_false;
#endif
cpi->last_skip_probs_q[0] = cm->base_qindex;
// update the baseline table for the current q
#if CONFIG_NEWENTROPY
for (k=0; k<MBSKIP_CONTEXTS; ++k)
cpi->base_skip_false_prob[cm->base_qindex][k] =
cm->mbskip_pred_probs[k];
#else
cpi->base_skip_false_prob[cm->base_qindex] = cpi->prob_skip_false;
#endif
}
}
}
void vp8_initialize()
{
static int init_done = 0;
if (!init_done)
{
vp8_scale_machine_specific_config();
vp8_initialize_common();
//vp8_dmachine_specific_config();
vp8_tokenize_initialize();
vp8_init_quant_tables();
vp8_init_me_luts();
init_minq_luts();
init_base_skip_probs();
init_done = 1;
}
}
#ifdef PACKET_TESTING
extern FILE *vpxlogc;
#endif
static void setup_features(VP8_COMP *cpi)
{
MACROBLOCKD *xd = &cpi->mb.e_mbd;
// Set up default state for MB feature flags
xd->segmentation_enabled = 0; // Default segmentation disabled
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs));
clearall_segfeatures( xd );
xd->mode_ref_lf_delta_enabled = 0;
xd->mode_ref_lf_delta_update = 0;
vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
vpx_memset(xd->last_ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
vpx_memset(xd->last_mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
set_default_lf_deltas(cpi);
}
static void dealloc_compressor_data(VP8_COMP *cpi)
{
vpx_free(cpi->tplist);
cpi->tplist = NULL;
// Delete last frame MV storage buffers
vpx_free(cpi->lfmv);
cpi->lfmv = 0;
vpx_free(cpi->lf_ref_frame_sign_bias);
cpi->lf_ref_frame_sign_bias = 0;
vpx_free(cpi->lf_ref_frame);
cpi->lf_ref_frame = 0;
// Delete sementation map
vpx_free(cpi->segmentation_map);
cpi->segmentation_map = 0;
vpx_free(cpi->common.last_frame_seg_map);
cpi->common.last_frame_seg_map = 0;
vpx_free(cpi->coding_context.last_frame_seg_map_copy);
cpi->coding_context.last_frame_seg_map_copy = 0;
vpx_free(cpi->active_map);
cpi->active_map = 0;
vp8_de_alloc_frame_buffers(&cpi->common);
vp8_yv12_de_alloc_frame_buffer(&cpi->last_frame_uf);
vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source);
#if VP8_TEMPORAL_ALT_REF
vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer);
#endif
vp8_lookahead_destroy(cpi->lookahead);
vpx_free(cpi->tok);
cpi->tok = 0;
// Structure used to monitor GF usage
vpx_free(cpi->gf_active_flags);
cpi->gf_active_flags = 0;
// Activity mask based per mb zbin adjustments
vpx_free(cpi->mb_activity_map);
cpi->mb_activity_map = 0;
vpx_free(cpi->mb_norm_activity_map);
cpi->mb_norm_activity_map = 0;
vpx_free(cpi->mb.pip);
cpi->mb.pip = 0;
vpx_free(cpi->twopass.total_stats);
cpi->twopass.total_stats = 0;
vpx_free(cpi->twopass.total_left_stats);
cpi->twopass.total_left_stats = 0;
vpx_free(cpi->twopass.this_frame_stats);
cpi->twopass.this_frame_stats = 0;
}
// Computes a q delta (in "q index" terms) to get from a starting q value
// to a target value
// target q value
static int compute_qdelta( VP8_COMP *cpi, double qstart, double qtarget )
{
int i;
int start_index = cpi->worst_quality;
int target_index = cpi->worst_quality;
// Convert the average q value to an index.
for ( i = cpi->best_quality; i < cpi->worst_quality; i++ )
{
start_index = i;
if ( vp8_convert_qindex_to_q(i) >= qstart )
break;
}
// Convert the q target to an index
for ( i = cpi->best_quality; i < cpi->worst_quality; i++ )
{
target_index = i;
if ( vp8_convert_qindex_to_q(i) >= qtarget )
break;
}
return target_index - start_index;
}
static void init_seg_features(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int high_q = (int)(cpi->avg_q > 48.0);
int qi_delta;
// Disable and clear down for KF
if ( cm->frame_type == KEY_FRAME )
{
// Clear down the global segmentation map
vpx_memset( cpi->segmentation_map, 0, (cm->mb_rows * cm->mb_cols));
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation
vp8_disable_segmentation((VP8_PTR)cpi);
// Clear down the segment features.
clearall_segfeatures(xd);
}
// If this is an alt ref frame
else if ( cm->refresh_alt_ref_frame )
{
// Clear down the global segmentation map
vpx_memset( cpi->segmentation_map, 0, (cm->mb_rows * cm->mb_cols));
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation and individual segment features by default
vp8_disable_segmentation((VP8_PTR)cpi);
clearall_segfeatures(xd);
// Scan frames from current to arf frame.
// This function re-enables segmentation if appropriate.
vp8_update_mbgraph_stats(cpi);
// If segmentation was enabled set those features needed for the
// arf itself.
if ( xd->segmentation_enabled )
{
xd->update_mb_segmentation_map = 1;
xd->update_mb_segmentation_data = 1;
qi_delta = compute_qdelta( cpi, cpi->avg_q, (cpi->avg_q * 0.875) );
set_segdata( xd, 1, SEG_LVL_ALT_Q, (qi_delta - 2) );
set_segdata( xd, 1, SEG_LVL_ALT_LF, -2 );
enable_segfeature(xd, 1, SEG_LVL_ALT_Q);
enable_segfeature(xd, 1, SEG_LVL_ALT_LF);
// Where relevant assume segment data is delta data
xd->mb_segment_abs_delta = SEGMENT_DELTADATA;
}
}
// All other frames if segmentation has been enabled
else if ( xd->segmentation_enabled )
{
/*
int i;
// clears prior frame seg lev refs
for (i = 0; i < MAX_MB_SEGMENTS; i++)
{
// only do it if the force drop the background stuff is off
if(!segfeature_active(xd, i, SEG_LVL_MODE))
{
disable_segfeature(xd,i,SEG_LVL_REF_FRAME);
set_segdata( xd,i, SEG_LVL_REF_FRAME, 0xffffff);
}
}
*/
// First normal frame in a valid gf or alt ref group
if ( cpi->common.frames_since_golden == 0 )
{
// Set up segment features for normal frames in an af group
if ( cpi->source_alt_ref_active )
{
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 1;
xd->mb_segment_abs_delta = SEGMENT_DELTADATA;
qi_delta = compute_qdelta( cpi, cpi->avg_q,
(cpi->avg_q * 1.125) );
set_segdata( xd, 1, SEG_LVL_ALT_Q, (qi_delta + 2) );
set_segdata( xd, 1, SEG_LVL_ALT_Q, 0 );
enable_segfeature(xd, 1, SEG_LVL_ALT_Q);
set_segdata( xd, 1, SEG_LVL_ALT_LF, -2 );
enable_segfeature(xd, 1, SEG_LVL_ALT_LF);
// Segment coding disabled for compred testing
if ( high_q || (cpi->static_mb_pct == 100) )
{
//set_segref(xd, 1, LAST_FRAME);
set_segref(xd, 1, ALTREF_FRAME);
enable_segfeature(xd, 1, SEG_LVL_REF_FRAME);
set_segdata( xd, 1, SEG_LVL_MODE, ZEROMV );
enable_segfeature(xd, 1, SEG_LVL_MODE);
// EOB segment coding not fixed for 8x8 yet
set_segdata( xd, 1, SEG_LVL_EOB, 0 );
enable_segfeature(xd, 1, SEG_LVL_EOB);
}
}
// Disable segmentation and clear down features if alt ref
// is not active for this group
else
{
vp8_disable_segmentation((VP8_PTR)cpi);
vpx_memset( cpi->segmentation_map, 0,
(cm->mb_rows * cm->mb_cols));
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
clearall_segfeatures(xd);
}
}
// Special case where we are coding over the top of a previous
// alt ref frame
// Segment coding disabled for compred testing
else if ( cpi->is_src_frame_alt_ref )
{
// Enable mode and ref frame features for segment 0 as well
enable_segfeature(xd, 0, SEG_LVL_REF_FRAME);
enable_segfeature(xd, 0, SEG_LVL_MODE);
enable_segfeature(xd, 1, SEG_LVL_REF_FRAME);
enable_segfeature(xd, 1, SEG_LVL_MODE);
// All mbs should use ALTREF_FRAME, ZEROMV exclusively
clear_segref(xd, 0);
set_segref(xd, 0, ALTREF_FRAME);
clear_segref(xd, 1);
set_segref(xd, 1, ALTREF_FRAME);
set_segdata( xd, 0, SEG_LVL_MODE, ZEROMV );
set_segdata( xd, 1, SEG_LVL_MODE, ZEROMV );
// Skip all MBs if high Q
if ( high_q )
{
enable_segfeature(xd, 0, SEG_LVL_EOB);
set_segdata( xd, 0, SEG_LVL_EOB, 0 );
enable_segfeature(xd, 1, SEG_LVL_EOB);
set_segdata( xd, 1, SEG_LVL_EOB, 0 );
}
// Enable data udpate
xd->update_mb_segmentation_data = 1;
}
// All other frames.
else
{
// No updates.. leave things as they are.
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
}
}
}
// DEBUG: Print out the segment id of each MB in the current frame.
static void print_seg_map(VP8_COMP *cpi)
{
VP8_COMMON *cm = & cpi->common;
int row,col;
int map_index = 0;
FILE *statsfile;
statsfile = fopen("segmap.stt", "a");
fprintf(statsfile, "%10d\n",
cm->current_video_frame );
for ( row = 0; row < cpi->common.mb_rows; row++ )
{
for ( col = 0; col < cpi->common.mb_cols; col++ )
{
fprintf(statsfile, "%10d",
cpi->segmentation_map[map_index]);
map_index++;
}
fprintf(statsfile, "\n");
}
fprintf(statsfile, "\n");
fclose(statsfile);
}
static void set_default_lf_deltas(VP8_COMP *cpi)
{
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 1;
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
// Test of ref frame deltas
cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2;
cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0;
cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2;
cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2;
cpi->mb.e_mbd.mode_lf_deltas[0] = 4; // BPRED
cpi->mb.e_mbd.mode_lf_deltas[1] = -2; // Zero
cpi->mb.e_mbd.mode_lf_deltas[2] = 2; // New mv
cpi->mb.e_mbd.mode_lf_deltas[3] = 4; // Split mv
}
void vp8_set_speed_features(VP8_COMP *cpi)
{
SPEED_FEATURES *sf = &cpi->sf;
int Mode = cpi->compressor_speed;
int Speed = cpi->Speed;
int i;
VP8_COMMON *cm = &cpi->common;
// Only modes 0 and 1 supported for now in experimental code basae
if ( Mode > 1 )
Mode = 1;
// Initialise default mode frequency sampling variables
for (i = 0; i < MAX_MODES; i ++)
{
cpi->mode_check_freq[i] = 0;
cpi->mode_test_hit_counts[i] = 0;
cpi->mode_chosen_counts[i] = 0;
}
// best quality defaults
sf->RD = 1;
sf->search_method = NSTEP;
sf->improved_dct = 1;
sf->auto_filter = 1;
sf->recode_loop = 1;
sf->quarter_pixel_search = 1;
sf->half_pixel_search = 1;
sf->iterative_sub_pixel = 1;
sf->optimize_coefficients = 1;
sf->no_skip_block4x4_search = 1;
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
sf->improved_mv_pred = 1;
// default thresholds to 0
for (i = 0; i < MAX_MODES; i++)
sf->thresh_mult[i] = 0;
switch (Mode)
{
case 0: // best quality mode
sf->thresh_mult[THR_ZEROMV ] = 0;
sf->thresh_mult[THR_ZEROG ] = 0;
sf->thresh_mult[THR_ZEROA ] = 0;
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_NEARESTG ] = 0;
sf->thresh_mult[THR_NEARESTA ] = 0;
sf->thresh_mult[THR_NEARMV ] = 0;
sf->thresh_mult[THR_NEARG ] = 0;
sf->thresh_mult[THR_NEARA ] = 0;
sf->thresh_mult[THR_DC ] = 0;
sf->thresh_mult[THR_V_PRED ] = 1000;
sf->thresh_mult[THR_H_PRED ] = 1000;
#if CONFIG_NEWINTRAMODES
sf->thresh_mult[THR_D45_PRED ] = 1000;
sf->thresh_mult[THR_D135_PRED] = 1000;
sf->thresh_mult[THR_D117_PRED] = 1000;
sf->thresh_mult[THR_D153_PRED] = 1000;
sf->thresh_mult[THR_D27_PRED ] = 1000;
sf->thresh_mult[THR_D63_PRED ] = 1000;
#endif
sf->thresh_mult[THR_B_PRED ] = 2000;
sf->thresh_mult[THR_I8X8_PRED] = 2000;
sf->thresh_mult[THR_TM ] = 1000;
sf->thresh_mult[THR_NEWMV ] = 1000;
sf->thresh_mult[THR_NEWG ] = 1000;
sf->thresh_mult[THR_NEWA ] = 1000;
sf->thresh_mult[THR_SPLITMV ] = 2500;
sf->thresh_mult[THR_SPLITG ] = 5000;
sf->thresh_mult[THR_SPLITA ] = 5000;
sf->thresh_mult[THR_COMP_ZEROLG ] = 0;
sf->thresh_mult[THR_COMP_NEARESTLG] = 0;
sf->thresh_mult[THR_COMP_NEARLG ] = 0;
sf->thresh_mult[THR_COMP_ZEROLA ] = 0;
sf->thresh_mult[THR_COMP_NEARESTLA] = 0;
sf->thresh_mult[THR_COMP_NEARLA ] = 0;
sf->thresh_mult[THR_COMP_ZEROGA ] = 0;
sf->thresh_mult[THR_COMP_NEARESTGA] = 0;
sf->thresh_mult[THR_COMP_NEARGA ] = 0;
sf->thresh_mult[THR_COMP_NEWLG ] = 1000;
sf->thresh_mult[THR_COMP_NEWLA ] = 1000;
sf->thresh_mult[THR_COMP_NEWGA ] = 1000;
sf->thresh_mult[THR_COMP_SPLITLA ] = 2500;
sf->thresh_mult[THR_COMP_SPLITGA ] = 5000;
sf->thresh_mult[THR_COMP_SPLITLG ] = 5000;
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
#if CONFIG_ENHANCED_INTERP
sf->search_best_filter = SEARCH_BEST_FILTER;
#endif
break;
case 1:
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_ZEROMV ] = 0;
sf->thresh_mult[THR_DC ] = 0;
sf->thresh_mult[THR_NEARMV ] = 0;
sf->thresh_mult[THR_V_PRED ] = 1000;
sf->thresh_mult[THR_H_PRED ] = 1000;
#if CONFIG_NEWINTRAMODES
sf->thresh_mult[THR_D45_PRED ] = 1000;
sf->thresh_mult[THR_D135_PRED] = 1000;
sf->thresh_mult[THR_D117_PRED] = 1000;
sf->thresh_mult[THR_D153_PRED] = 1000;
sf->thresh_mult[THR_D27_PRED ] = 1000;
sf->thresh_mult[THR_D63_PRED ] = 1000;
#endif
sf->thresh_mult[THR_B_PRED ] = 2500;
sf->thresh_mult[THR_I8X8_PRED] = 2500;
sf->thresh_mult[THR_TM ] = 1000;
sf->thresh_mult[THR_NEARESTG ] = 1000;
sf->thresh_mult[THR_NEARESTA ] = 1000;
sf->thresh_mult[THR_ZEROG ] = 1000;
sf->thresh_mult[THR_ZEROA ] = 1000;
sf->thresh_mult[THR_NEARG ] = 1000;
sf->thresh_mult[THR_NEARA ] = 1000;
sf->thresh_mult[THR_ZEROMV ] = 0;
sf->thresh_mult[THR_ZEROG ] = 0;
sf->thresh_mult[THR_ZEROA ] = 0;
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_NEARESTG ] = 0;
sf->thresh_mult[THR_NEARESTA ] = 0;
sf->thresh_mult[THR_NEARMV ] = 0;
sf->thresh_mult[THR_NEARG ] = 0;
sf->thresh_mult[THR_NEARA ] = 0;
sf->thresh_mult[THR_NEWMV ] = 1000;
sf->thresh_mult[THR_NEWG ] = 1000;
sf->thresh_mult[THR_NEWA ] = 1000;
sf->thresh_mult[THR_SPLITMV ] = 1700;
sf->thresh_mult[THR_SPLITG ] = 4500;
sf->thresh_mult[THR_SPLITA ] = 4500;
sf->thresh_mult[THR_COMP_ZEROLG ] = 0;
sf->thresh_mult[THR_COMP_NEARESTLG] = 0;
sf->thresh_mult[THR_COMP_NEARLG ] = 0;
sf->thresh_mult[THR_COMP_ZEROLA ] = 0;
sf->thresh_mult[THR_COMP_NEARESTLA] = 0;
sf->thresh_mult[THR_COMP_NEARLA ] = 0;
sf->thresh_mult[THR_COMP_ZEROGA ] = 0;
sf->thresh_mult[THR_COMP_NEARESTGA] = 0;
sf->thresh_mult[THR_COMP_NEARGA ] = 0;
sf->thresh_mult[THR_COMP_NEWLG ] = 1000;
sf->thresh_mult[THR_COMP_NEWLA ] = 1000;
sf->thresh_mult[THR_COMP_NEWGA ] = 1000;
sf->thresh_mult[THR_COMP_SPLITLA ] = 1700;
sf->thresh_mult[THR_COMP_SPLITGA ] = 4500;
sf->thresh_mult[THR_COMP_SPLITLG ] = 4500;
if (Speed > 0)
{
/* Disable coefficient optimization above speed 0 */
sf->optimize_coefficients = 0;
sf->no_skip_block4x4_search = 0;
sf->first_step = 1;
cpi->mode_check_freq[THR_SPLITG] = 2;
cpi->mode_check_freq[THR_SPLITA] = 2;
cpi->mode_check_freq[THR_SPLITMV] = 0;
cpi->mode_check_freq[THR_COMP_SPLITGA] = 2;
cpi->mode_check_freq[THR_COMP_SPLITLG] = 2;
cpi->mode_check_freq[THR_COMP_SPLITLA] = 0;
}
if (Speed > 1)
{
cpi->mode_check_freq[THR_SPLITG] = 4;
cpi->mode_check_freq[THR_SPLITA] = 4;
cpi->mode_check_freq[THR_SPLITMV] = 2;
cpi->mode_check_freq[THR_COMP_SPLITGA] = 4;
cpi->mode_check_freq[THR_COMP_SPLITLG] = 4;
cpi->mode_check_freq[THR_COMP_SPLITLA] = 2;
sf->thresh_mult[THR_TM ] = 1500;
sf->thresh_mult[THR_V_PRED ] = 1500;
sf->thresh_mult[THR_H_PRED ] = 1500;
#if CONFIG_NEWINTRAMODES
sf->thresh_mult[THR_D45_PRED ] = 1500;
sf->thresh_mult[THR_D135_PRED] = 1500;
sf->thresh_mult[THR_D117_PRED] = 1500;
sf->thresh_mult[THR_D153_PRED] = 1500;
sf->thresh_mult[THR_D27_PRED ] = 1500;
sf->thresh_mult[THR_D63_PRED ] = 1500;
#endif
sf->thresh_mult[THR_B_PRED ] = 5000;
sf->thresh_mult[THR_I8X8_PRED] = 5000;
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
{
sf->thresh_mult[THR_NEWMV ] = 2000;
sf->thresh_mult[THR_SPLITMV ] = 10000;
sf->thresh_mult[THR_COMP_SPLITLG ] = 20000;
}
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
sf->thresh_mult[THR_NEARESTG ] = 1500;
sf->thresh_mult[THR_ZEROG ] = 1500;
sf->thresh_mult[THR_NEARG ] = 1500;
sf->thresh_mult[THR_NEWG ] = 2000;
sf->thresh_mult[THR_SPLITG ] = 20000;
sf->thresh_mult[THR_COMP_SPLITGA ] = 20000;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
sf->thresh_mult[THR_NEARESTA ] = 1500;
sf->thresh_mult[THR_ZEROA ] = 1500;
sf->thresh_mult[THR_NEARA ] = 1500;
sf->thresh_mult[THR_NEWA ] = 2000;
sf->thresh_mult[THR_SPLITA ] = 20000;
sf->thresh_mult[THR_COMP_SPLITLA ] = 10000;
}
sf->thresh_mult[THR_COMP_ZEROLG ] = 1500;
sf->thresh_mult[THR_COMP_NEARESTLG] = 1500;
sf->thresh_mult[THR_COMP_NEARLG ] = 1500;
sf->thresh_mult[THR_COMP_ZEROLA ] = 1500;
sf->thresh_mult[THR_COMP_NEARESTLA] = 1500;
sf->thresh_mult[THR_COMP_NEARLA ] = 1500;
sf->thresh_mult[THR_COMP_ZEROGA ] = 1500;
sf->thresh_mult[THR_COMP_NEARESTGA] = 1500;
sf->thresh_mult[THR_COMP_NEARGA ] = 1500;
sf->thresh_mult[THR_COMP_NEWLG ] = 2000;
sf->thresh_mult[THR_COMP_NEWLA ] = 2000;
sf->thresh_mult[THR_COMP_NEWGA ] = 2000;
}
if (Speed > 2)
{
cpi->mode_check_freq[THR_SPLITG] = 15;
cpi->mode_check_freq[THR_SPLITA] = 15;
cpi->mode_check_freq[THR_SPLITMV] = 7;
cpi->mode_check_freq[THR_COMP_SPLITGA] = 15;
cpi->mode_check_freq[THR_COMP_SPLITLG] = 15;
cpi->mode_check_freq[THR_COMP_SPLITLA] = 7;
sf->thresh_mult[THR_TM ] = 2000;
sf->thresh_mult[THR_V_PRED ] = 2000;
sf->thresh_mult[THR_H_PRED ] = 2000;
#if CONFIG_NEWINTRAMODES
sf->thresh_mult[THR_D45_PRED ] = 2000;
sf->thresh_mult[THR_D135_PRED] = 2000;
sf->thresh_mult[THR_D117_PRED] = 2000;
sf->thresh_mult[THR_D153_PRED] = 2000;
sf->thresh_mult[THR_D27_PRED ] = 2000;
sf->thresh_mult[THR_D63_PRED ] = 2000;
#endif
sf->thresh_mult[THR_B_PRED ] = 7500;
sf->thresh_mult[THR_I8X8_PRED] = 7500;
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
{
sf->thresh_mult[THR_NEWMV ] = 2000;
sf->thresh_mult[THR_SPLITMV ] = 25000;
sf->thresh_mult[THR_COMP_SPLITLG ] = 50000;
}
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
sf->thresh_mult[THR_NEARESTG ] = 2000;
sf->thresh_mult[THR_ZEROG ] = 2000;
sf->thresh_mult[THR_NEARG ] = 2000;
sf->thresh_mult[THR_NEWG ] = 2500;
sf->thresh_mult[THR_SPLITG ] = 50000;
sf->thresh_mult[THR_COMP_SPLITGA ] = 50000;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
sf->thresh_mult[THR_NEARESTA ] = 2000;
sf->thresh_mult[THR_ZEROA ] = 2000;
sf->thresh_mult[THR_NEARA ] = 2000;
sf->thresh_mult[THR_NEWA ] = 2500;
sf->thresh_mult[THR_SPLITA ] = 50000;
sf->thresh_mult[THR_COMP_SPLITLA ] = 25000;
}
sf->thresh_mult[THR_COMP_ZEROLG ] = 2000;
sf->thresh_mult[THR_COMP_NEARESTLG] = 2000;
sf->thresh_mult[THR_COMP_NEARLG ] = 2000;
sf->thresh_mult[THR_COMP_ZEROLA ] = 2000;
sf->thresh_mult[THR_COMP_NEARESTLA] = 2000;
sf->thresh_mult[THR_COMP_NEARLA ] = 2000;
sf->thresh_mult[THR_COMP_ZEROGA ] = 2000;
sf->thresh_mult[THR_COMP_NEARESTGA] = 2000;
sf->thresh_mult[THR_COMP_NEARGA ] = 2000;
sf->thresh_mult[THR_COMP_NEWLG ] = 2500;
sf->thresh_mult[THR_COMP_NEWLA ] = 2500;
sf->thresh_mult[THR_COMP_NEWGA ] = 2500;
sf->improved_dct = 0;
// Only do recode loop on key frames, golden frames and
// alt ref frames
sf->recode_loop = 2;
}
break;
}; /* switch */
/* disable frame modes if flags not set */
if (!(cpi->ref_frame_flags & VP8_LAST_FLAG))
{
sf->thresh_mult[THR_NEWMV ] = INT_MAX;
sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
sf->thresh_mult[THR_NEARMV ] = INT_MAX;
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG))
{
sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
sf->thresh_mult[THR_ZEROG ] = INT_MAX;
sf->thresh_mult[THR_NEARG ] = INT_MAX;
sf->thresh_mult[THR_NEWG ] = INT_MAX;
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP8_ALT_FLAG))
{
sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
sf->thresh_mult[THR_ZEROA ] = INT_MAX;
sf->thresh_mult[THR_NEARA ] = INT_MAX;
sf->thresh_mult[THR_NEWA ] = INT_MAX;
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
}
if ((cpi->ref_frame_flags & (VP8_LAST_FLAG | VP8_GOLD_FLAG)) != (VP8_LAST_FLAG | VP8_GOLD_FLAG))
{
sf->thresh_mult[THR_COMP_ZEROLG ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARESTLG] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARLG ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEWLG ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITLG ] = INT_MAX;
}
if ((cpi->ref_frame_flags & (VP8_LAST_FLAG | VP8_ALT_FLAG)) != (VP8_LAST_FLAG | VP8_ALT_FLAG))
{
sf->thresh_mult[THR_COMP_ZEROLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARESTLA] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEWLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITLA ] = INT_MAX;
}
if ((cpi->ref_frame_flags & (VP8_GOLD_FLAG | VP8_ALT_FLAG)) != (VP8_GOLD_FLAG | VP8_ALT_FLAG))
{
sf->thresh_mult[THR_COMP_ZEROGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARESTGA] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEWGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITGA ] = INT_MAX;
}
// Slow quant, dct and trellis not worthwhile for first pass
// so make sure they are always turned off.
if ( cpi->pass == 1 )
{
sf->optimize_coefficients = 0;
sf->improved_dct = 0;
}
if (cpi->sf.search_method == NSTEP)
{
vp8_init3smotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
}
else if (cpi->sf.search_method == DIAMOND)
{
vp8_init_dsmotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
}
if (cpi->sf.improved_dct)
{
cpi->mb.vp8_short_fdct8x8 = FDCT_INVOKE(&cpi->rtcd.fdct, short8x8);
cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short8x4);
cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short4x4);
}
else
{
cpi->mb.vp8_short_fdct8x8 = FDCT_INVOKE(&cpi->rtcd.fdct, short8x8);
cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast8x4);
cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast4x4);
}
cpi->mb.short_walsh4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, walsh_short4x4);
cpi->mb.short_fhaar2x2 = FDCT_INVOKE(&cpi->rtcd.fdct, haar_short2x2);
cpi->mb.quantize_b = vp8_regular_quantize_b;
cpi->mb.quantize_b_pair = vp8_regular_quantize_b_pair;
cpi->mb.quantize_b_8x8 = vp8_regular_quantize_b_8x8;
cpi->mb.quantize_b_2x2 = vp8_regular_quantize_b_2x2;
vp8cx_init_quantizer(cpi);
#if CONFIG_RUNTIME_CPU_DETECT
cpi->mb.e_mbd.rtcd = &cpi->common.rtcd;
#endif
if (cpi->sf.iterative_sub_pixel == 1)
{
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively;
}
else if (cpi->sf.quarter_pixel_search)
{
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step;
}
else if (cpi->sf.half_pixel_search)
{
cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step;
}
if (cpi->sf.optimize_coefficients == 1 && cpi->pass!=1)
cpi->mb.optimize = 1;
else
cpi->mb.optimize = 0;
#ifdef SPEEDSTATS
frames_at_speed[cpi->Speed]++;
#endif
}
static void alloc_raw_frame_buffers(VP8_COMP *cpi)
{
int width = (cpi->oxcf.Width + 15) & ~15;
int height = (cpi->oxcf.Height + 15) & ~15;
cpi->lookahead = vp8_lookahead_init(cpi->oxcf.Width, cpi->oxcf.Height,
cpi->oxcf.lag_in_frames);
if(!cpi->lookahead)
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
#if VP8_TEMPORAL_ALT_REF
if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer,
width, height, VP8BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
#endif
}
static int vp8_alloc_partition_data(VP8_COMP *cpi)
{
vpx_free(cpi->mb.pip);
cpi->mb.pip = vpx_calloc((cpi->common.mb_cols + 1) *
(cpi->common.mb_rows + 1),
sizeof(PARTITION_INFO));
if(!cpi->mb.pip)
return 1;
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
return 0;
}
void vp8_alloc_compressor_data(VP8_COMP *cpi)
{
VP8_COMMON *cm = & cpi->common;
int width = cm->Width;
int height = cm->Height;
if (vp8_alloc_frame_buffers(cm, width, height))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
if (vp8_alloc_partition_data(cpi))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate partition data");
if ((width & 0xf) != 0)
width += 16 - (width & 0xf);
if ((height & 0xf) != 0)
height += 16 - (height & 0xf);
if (vp8_yv12_alloc_frame_buffer(&cpi->last_frame_uf,
width, height, VP8BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source,
width, height, VP8BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
vpx_free(cpi->tok);
{
unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16;
CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
}
// Data used for real time vc mode to see if gf needs refreshing
cpi->inter_zz_count = 0;
cpi->gf_bad_count = 0;
cpi->gf_update_recommended = 0;
// Structures used to minitor GF usage
vpx_free(cpi->gf_active_flags);
CHECK_MEM_ERROR(cpi->gf_active_flags,
vpx_calloc(1, cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
vpx_free(cpi->mb_activity_map);
CHECK_MEM_ERROR(cpi->mb_activity_map,
vpx_calloc(sizeof(unsigned int),
cm->mb_rows * cm->mb_cols));
vpx_free(cpi->mb_norm_activity_map);
CHECK_MEM_ERROR(cpi->mb_norm_activity_map,
vpx_calloc(sizeof(unsigned int),
cm->mb_rows * cm->mb_cols));
vpx_free(cpi->twopass.total_stats);
cpi->twopass.total_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS));
vpx_free(cpi->twopass.total_left_stats);
cpi->twopass.total_left_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS));
vpx_free(cpi->twopass.this_frame_stats);
cpi->twopass.this_frame_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS));
if( !cpi->twopass.total_stats ||
!cpi->twopass.total_left_stats ||
!cpi->twopass.this_frame_stats)
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate firstpass stats");
vpx_free(cpi->tplist);
CHECK_MEM_ERROR(cpi->tplist, vpx_malloc(sizeof(TOKENLIST) * cpi->common.mb_rows));
}
// TODO perhaps change number of steps expose to outside world when setting
// max and min limits. Also this will likely want refining for the extended Q
// range.
//
// Table that converts 0-63 Q range values passed in outside to the Qindex
// range used internally.
static const int q_trans[] =
{
0, 4, 8, 12, 16, 20, 24, 28,
32, 36, 40, 44, 48, 52, 56, 60,
64, 68, 72, 76, 80, 84, 88, 92,
96, 100, 104, 108, 112, 116, 120, 124,
128, 132, 136, 140, 144, 148, 152, 156,
160, 164, 168, 172, 176, 180, 184, 188,
192, 196, 200, 204, 208, 212, 216, 220,
224, 228, 232, 236, 240, 244, 249, 255,
};
int vp8_reverse_trans(int x)
{
int i;
for (i = 0; i < 64; i++)
if (q_trans[i] >= x)
return i;
return 63;
};
void vp8_new_frame_rate(VP8_COMP *cpi, double framerate)
{
if(framerate < .1)
framerate = 30;
cpi->oxcf.frame_rate = framerate;
cpi->output_frame_rate = cpi->oxcf.frame_rate;
cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate);
cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate);
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
if (cpi->min_frame_bandwidth < FRAME_OVERHEAD_BITS )
cpi->min_frame_bandwidth = FRAME_OVERHEAD_BITS;
// Set Maximum gf/arf interval
cpi->max_gf_interval = ((int)(cpi->output_frame_rate / 2.0) + 2);
if(cpi->max_gf_interval < 12)
cpi->max_gf_interval = 12;
// Extended interval for genuinely static scenes
cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
// Special conditions when altr ref frame enabled in lagged compress mode
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames)
{
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
}
if ( cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval )
cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
}
static int
rescale(int val, int num, int denom)
{
int64_t llnum = num;
int64_t llden = denom;
int64_t llval = val;
return llval * llnum / llden;
}
static void init_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
VP8_COMMON *cm = &cpi->common;
cpi->oxcf = *oxcf;
cpi->goldfreq = 7;
cm->version = oxcf->Version;
vp8_setup_version(cm);
// change includes all joint functionality
vp8_change_config(ptr, oxcf);
// Initialize active best and worst q and average q values.
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
// Initialise the starting buffer levels
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->total_actual_bits = 0;
cpi->total_target_vs_actual = 0;
cpi->static_mb_pct = 0;
#if VP8_TEMPORAL_ALT_REF
{
int i;
cpi->fixed_divide[0] = 0;
for (i = 1; i < 512; i++)
cpi->fixed_divide[i] = 0x80000 / i;
}
#endif
}
void vp8_change_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
VP8_COMMON *cm = &cpi->common;
if (!cpi)
return;
if (!oxcf)
return;
if (cm->version != oxcf->Version)
{
cm->version = oxcf->Version;
vp8_setup_version(cm);
}
cpi->oxcf = *oxcf;
switch (cpi->oxcf.Mode)
{
// Real time and one pass deprecated in test code base
case MODE_FIRSTPASS:
cpi->pass = 1;
cpi->compressor_speed = 1;
break;
case MODE_SECONDPASS:
cpi->pass = 2;
cpi->compressor_speed = 1;
if (cpi->oxcf.cpu_used < -5)
{
cpi->oxcf.cpu_used = -5;
}
if (cpi->oxcf.cpu_used > 5)
cpi->oxcf.cpu_used = 5;
break;
case MODE_SECONDPASS_BEST:
cpi->pass = 2;
cpi->compressor_speed = 0;
break;
}
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG;
//cpi->use_golden_frame_only = 0;
//cpi->use_last_frame_only = 0;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
cm->refresh_entropy_probs = 1;
setup_features(cpi);
#if CONFIG_HIGH_PRECISION_MV
cpi->mb.e_mbd.allow_high_precision_mv = 0; // Default mv precision adaptation
#endif
{
int i;
for (i = 0; i < MAX_MB_SEGMENTS; i++)
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
// At the moment the first order values may not be > MAXQ
if (cpi->oxcf.fixed_q > MAXQ)
cpi->oxcf.fixed_q = MAXQ;
// local file playback mode == really big buffer
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK)
{
cpi->oxcf.starting_buffer_level = 60000;
cpi->oxcf.optimal_buffer_level = 60000;
cpi->oxcf.maximum_buffer_size = 240000;
}
// Convert target bandwidth from Kbit/s to Bit/s
cpi->oxcf.target_bandwidth *= 1000;
cpi->oxcf.starting_buffer_level =
rescale(cpi->oxcf.starting_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
// Set or reset optimal and maximum buffer levels.
if (cpi->oxcf.optimal_buffer_level == 0)
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.optimal_buffer_level =
rescale(cpi->oxcf.optimal_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
if (cpi->oxcf.maximum_buffer_size == 0)
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.maximum_buffer_size =
rescale(cpi->oxcf.maximum_buffer_size,
cpi->oxcf.target_bandwidth, 1000);
// Set up frame rate and related parameters rate control values.
vp8_new_frame_rate(cpi, cpi->oxcf.frame_rate);
// Set absolute upper and lower quality limits
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
cpi->best_quality = cpi->oxcf.best_allowed_q;
// active values should only be modified if out of new range
if (cpi->active_worst_quality > cpi->oxcf.worst_allowed_q)
{
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
}
// less likely
else if (cpi->active_worst_quality < cpi->oxcf.best_allowed_q)
{
cpi->active_worst_quality = cpi->oxcf.best_allowed_q;
}
if (cpi->active_best_quality < cpi->oxcf.best_allowed_q)
{
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
}
// less likely
else if (cpi->active_best_quality > cpi->oxcf.worst_allowed_q)
{
cpi->active_best_quality = cpi->oxcf.worst_allowed_q;
}
cpi->buffered_mode = (cpi->oxcf.optimal_buffer_level > 0) ? TRUE : FALSE;
cpi->cq_target_quality = cpi->oxcf.cq_level;
if (!cm->use_bilinear_mc_filter)
#if CONFIG_ENHANCED_INTERP
cm->mcomp_filter_type = EIGHTTAP;
#else
cm->mcomp_filter_type = SIXTAP;
#endif
else
cm->mcomp_filter_type = BILINEAR;
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
cm->Width = cpi->oxcf.Width ;
cm->Height = cpi->oxcf.Height ;
cm->horiz_scale = cpi->horiz_scale;
cm->vert_scale = cpi->vert_scale ;
// VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs)
if (cpi->oxcf.Sharpness > 7)
cpi->oxcf.Sharpness = 7;
cm->sharpness_level = cpi->oxcf.Sharpness;
if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL)
{
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
// always go to the next whole number
cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs;
cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs;
}
if (((cm->Width + 15) & 0xfffffff0) !=
cm->yv12_fb[cm->lst_fb_idx].y_width ||
((cm->Height + 15) & 0xfffffff0) !=
cm->yv12_fb[cm->lst_fb_idx].y_height ||
cm->yv12_fb[cm->lst_fb_idx].y_width == 0)
{
alloc_raw_frame_buffers(cpi);
vp8_alloc_compressor_data(cpi);
}
if (cpi->oxcf.fixed_q >= 0)
{
cpi->last_q[0] = cpi->oxcf.fixed_q;
cpi->last_q[1] = cpi->oxcf.fixed_q;
cpi->last_boosted_qindex = cpi->oxcf.fixed_q;
}
cpi->Speed = cpi->oxcf.cpu_used;
// force to allowlag to 0 if lag_in_frames is 0;
if (cpi->oxcf.lag_in_frames == 0)
{
cpi->oxcf.allow_lag = 0;
}
// Limit on lag buffers as these are not currently dynamically allocated
else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS)
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
// YX Temp
cpi->alt_ref_source = NULL;
cpi->is_src_frame_alt_ref = 0;
#if 0
// Experimental RD Code
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
}
#define M_LOG2_E 0.693147180559945309417
#define log2f(x) (log (x) / (float) M_LOG2_E)
static void cal_mvsadcosts(int *mvsadcost[2])
{
int i = 1;
mvsadcost [0] [0] = 300;
mvsadcost [1] [0] = 300;
do
{
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost [0][i] = (int) z;
mvsadcost [1][i] = (int) z;
mvsadcost [0][-i] = (int) z;
mvsadcost [1][-i] = (int) z;
}
while (++i <= mvfp_max);
}
#if CONFIG_HIGH_PRECISION_MV
static void cal_mvsadcosts_hp(int *mvsadcost[2])
{
int i = 1;
mvsadcost [0] [0] = 300;
mvsadcost [1] [0] = 300;
do
{
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost [0][i] = (int) z;
mvsadcost [1][i] = (int) z;
mvsadcost [0][-i] = (int) z;
mvsadcost [1][-i] = (int) z;
}
while (++i <= mvfp_max_hp);
}
#endif
VP8_PTR vp8_create_compressor(VP8_CONFIG *oxcf)
{
int i;
volatile union
{
VP8_COMP *cpi;
VP8_PTR ptr;
} ctx;
VP8_COMP *cpi;
VP8_COMMON *cm;
cpi = ctx.cpi = vpx_memalign(32, sizeof(VP8_COMP));
// Check that the CPI instance is valid
if (!cpi)
return 0;
cm = &cpi->common;
vpx_memset(cpi, 0, sizeof(VP8_COMP));
if (setjmp(cm->error.jmp))
{
VP8_PTR ptr = ctx.ptr;
ctx.cpi->common.error.setjmp = 0;
vp8_remove_compressor(&ptr);
return 0;
}
cpi->common.error.setjmp = 1;
CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1));
vp8_create_common(&cpi->common);
vp8_cmachine_specific_config(cpi);
init_config((VP8_PTR)cpi, oxcf);
memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob, sizeof(vp8cx_base_skip_false_prob));
cpi->common.current_video_frame = 0;
cpi->kf_overspend_bits = 0;
cpi->kf_bitrate_adjustment = 0;
cpi->frames_till_gf_update_due = 0;
cpi->gf_overspend_bits = 0;
cpi->non_gf_bitrate_adjustment = 0;
cm->prob_last_coded = 128;
cm->prob_gf_coded = 128;
cm->prob_intra_coded = 63;
for ( i = 0; i < COMP_PRED_CONTEXTS; i++ )
cm->prob_comppred[i] = 128;
// Prime the recent reference frame useage counters.
// Hereafter they will be maintained as a sort of moving average
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
// Set reference frame sign bias for ALTREF frame to 1 (for now)
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->gold_is_last = 0 ;
cpi->alt_is_last = 0 ;
cpi->gold_is_alt = 0 ;
// allocate memory for storing last frame's MVs for MV prediction.
CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cpi->common.mb_rows+2) * (cpi->common.mb_cols+2), sizeof(int_mv)));
CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias, vpx_calloc((cpi->common.mb_rows+2) * (cpi->common.mb_cols+2), sizeof(int)));
CHECK_MEM_ERROR(cpi->lf_ref_frame, vpx_calloc((cpi->common.mb_rows+2) * (cpi->common.mb_cols+2), sizeof(int)));
// Create the encoder segmentation map and set all entries to 0
CHECK_MEM_ERROR(cpi->segmentation_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
// And a copy in common for temporal coding
CHECK_MEM_ERROR(cm->last_frame_seg_map,
vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
// And a place holder structure is the coding context
// for use if we want to save and restore it
CHECK_MEM_ERROR(cpi->coding_context.last_frame_seg_map_copy,
vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
vpx_memset(cpi->active_map , 1, (cpi->common.mb_rows * cpi->common.mb_cols));
cpi->active_map_enabled = 0;
for (i = 0; i < ( sizeof(cpi->mbgraph_stats) /
sizeof(cpi->mbgraph_stats[0]) ); i++)
{
CHECK_MEM_ERROR(cpi->mbgraph_stats[i].mb_stats,
vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols *
sizeof(*cpi->mbgraph_stats[i].mb_stats),
1));
}
#ifdef ENTROPY_STATS
init_context_counters();
#endif
#ifdef MODE_STATS
vp8_zero(y_modes);
vp8_zero(i8x8_modes);
vp8_zero(uv_modes);
vp8_zero(uv_modes_y);
vp8_zero(b_modes);
vp8_zero(inter_y_modes);
vp8_zero(inter_uv_modes);
vp8_zero(inter_b_modes);
#endif
/*Initialize the feed-forward activity masking.*/
cpi->activity_avg = 90<<12;
cpi->frames_since_key = 8; // Give a sensible default for the first frame.
cpi->key_frame_frequency = cpi->oxcf.key_freq;
cpi->this_key_frame_forced = FALSE;
cpi->next_key_frame_forced = FALSE;
cpi->source_alt_ref_pending = FALSE;
cpi->source_alt_ref_active = FALSE;
cpi->common.refresh_alt_ref_frame = 0;
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
cpi->b_calculate_ssimg = 0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr)
{
cpi->total_sq_error = 0.0;
cpi->total_sq_error2 = 0.0;
cpi->total_y = 0.0;
cpi->total_u = 0.0;
cpi->total_v = 0.0;
cpi->total = 0.0;
cpi->totalp_y = 0.0;
cpi->totalp_u = 0.0;
cpi->totalp_v = 0.0;
cpi->totalp = 0.0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
}
if (cpi->b_calculate_ssimg)
{
cpi->total_ssimg_y = 0;
cpi->total_ssimg_u = 0;
cpi->total_ssimg_v = 0;
cpi->total_ssimg_all = 0;
}
#endif
#ifndef LLONG_MAX
#define LLONG_MAX 9223372036854775807LL
#endif
cpi->first_time_stamp_ever = LLONG_MAX;
cpi->frames_till_gf_update_due = 0;
cpi->key_frame_count = 1;
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
cpi->ni_tot_qi = 0;
cpi->ni_frames = 0;
cpi->tot_q = 0.0;
cpi->avg_q = vp8_convert_qindex_to_q( cpi->oxcf.worst_allowed_q );
cpi->total_byte_count = 0;
cpi->rate_correction_factor = 1.0;
cpi->key_frame_rate_correction_factor = 1.0;
cpi->gf_rate_correction_factor = 1.0;
cpi->twopass.est_max_qcorrection_factor = 1.0;
cpi->mb.mvcost[0] = &cpi->mb.mvcosts[0][mv_max+1];
cpi->mb.mvcost[1] = &cpi->mb.mvcosts[1][mv_max+1];
cpi->mb.mvsadcost[0] = &cpi->mb.mvsadcosts[0][mvfp_max+1];
cpi->mb.mvsadcost[1] = &cpi->mb.mvsadcosts[1][mvfp_max+1];
cal_mvsadcosts(cpi->mb.mvsadcost);
#if CONFIG_HIGH_PRECISION_MV
cpi->mb.mvcost_hp[0] = &cpi->mb.mvcosts_hp[0][mv_max_hp+1];
cpi->mb.mvcost_hp[1] = &cpi->mb.mvcosts_hp[1][mv_max_hp+1];
cpi->mb.mvsadcost_hp[0] = &cpi->mb.mvsadcosts_hp[0][mvfp_max_hp+1];
cpi->mb.mvsadcost_hp[1] = &cpi->mb.mvsadcosts_hp[1][mvfp_max_hp+1];
cal_mvsadcosts_hp(cpi->mb.mvsadcost_hp);
#endif
for (i = 0; i < KEY_FRAME_CONTEXT; i++)
{
cpi->prior_key_frame_distance[i] = (int)cpi->output_frame_rate;
}
#ifdef OUTPUT_YUV_SRC
yuv_file = fopen("bd.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_REC
yuv_rec_file = fopen("rec.yuv", "wb");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
#endif
cpi->output_pkt_list = oxcf->output_pkt_list;
if (cpi->pass == 1)
{
vp8_init_first_pass(cpi);
}
else if (cpi->pass == 2)
{
size_t packet_sz = sizeof(FIRSTPASS_STATS);
int packets = oxcf->two_pass_stats_in.sz / packet_sz;
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = (void*)((char *)cpi->twopass.stats_in
+ (packets - 1) * packet_sz);
vp8_init_second_pass(cpi);
}
vp8_set_speed_features(cpi);
// Set starting values of RD threshold multipliers (128 = *1)
for (i = 0; i < MAX_MODES; i++)
{
cpi->rd_thresh_mult[i] = 128;
}
#ifdef ENTROPY_STATS
init_mv_ref_counts();
#endif
cpi->fn_ptr[BLOCK_16X16].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16);
cpi->fn_ptr[BLOCK_16X16].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16);
cpi->fn_ptr[BLOCK_16X16].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar16x16);
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_h = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_h);
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_v = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_v);
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_hv = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_hv);
cpi->fn_ptr[BLOCK_16X16].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x3);
cpi->fn_ptr[BLOCK_16X16].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x8);
cpi->fn_ptr[BLOCK_16X16].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x4d);
cpi->fn_ptr[BLOCK_16X8].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8);
cpi->fn_ptr[BLOCK_16X8].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x8);
cpi->fn_ptr[BLOCK_16X8].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar16x8);
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_16X8].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x3);
cpi->fn_ptr[BLOCK_16X8].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x8);
cpi->fn_ptr[BLOCK_16X8].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x4d);
cpi->fn_ptr[BLOCK_8X16].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16);
cpi->fn_ptr[BLOCK_8X16].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var8x16);
cpi->fn_ptr[BLOCK_8X16].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar8x16);
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_8X16].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x3);
cpi->fn_ptr[BLOCK_8X16].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x8);
cpi->fn_ptr[BLOCK_8X16].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x4d);
cpi->fn_ptr[BLOCK_8X8].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8);
cpi->fn_ptr[BLOCK_8X8].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var8x8);
cpi->fn_ptr[BLOCK_8X8].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar8x8);
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_8X8].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x3);
cpi->fn_ptr[BLOCK_8X8].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x8);
cpi->fn_ptr[BLOCK_8X8].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x4d);
cpi->fn_ptr[BLOCK_4X4].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4);
cpi->fn_ptr[BLOCK_4X4].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var4x4);
cpi->fn_ptr[BLOCK_4X4].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar4x4);
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_4X4].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x3);
cpi->fn_ptr[BLOCK_4X4].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x8);
cpi->fn_ptr[BLOCK_4X4].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x4d);
#if ARCH_X86 || ARCH_X86_64
cpi->fn_ptr[BLOCK_16X16].copymem = VARIANCE_INVOKE(&cpi->rtcd.variance, copy32xn);
cpi->fn_ptr[BLOCK_16X8].copymem = VARIANCE_INVOKE(&cpi->rtcd.variance, copy32xn);
cpi->fn_ptr[BLOCK_8X16].copymem = VARIANCE_INVOKE(&cpi->rtcd.variance, copy32xn);
cpi->fn_ptr[BLOCK_8X8].copymem = VARIANCE_INVOKE(&cpi->rtcd.variance, copy32xn);
cpi->fn_ptr[BLOCK_4X4].copymem = VARIANCE_INVOKE(&cpi->rtcd.variance, copy32xn);
#endif
cpi->full_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, full_search);
cpi->diamond_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, diamond_search);
cpi->refining_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, refining_search);
// make sure frame 1 is okay
cpi->error_bins[0] = cpi->common.MBs;
//vp8cx_init_quantizer() is first called here. Add check in vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only called later
//when needed. This will avoid unnecessary calls of vp8cx_init_quantizer() for every frame.
vp8cx_init_quantizer(cpi);
vp8_loop_filter_init(cm);
cpi->common.error.setjmp = 0;
vp8_zero(cpi->y_uv_mode_count)
return (VP8_PTR) cpi;
}
void vp8_remove_compressor(VP8_PTR *ptr)
{
VP8_COMP *cpi = (VP8_COMP *)(*ptr);
int i;
if (!cpi)
return;
if (cpi && (cpi->common.current_video_frame > 0))
{
if (cpi->pass == 2)
{
vp8_end_second_pass(cpi);
}
#ifdef ENTROPY_STATS
print_context_counters();
print_tree_update_probs();
print_mode_context();
#endif
#if CONFIG_INTERNAL_STATS
vp8_clear_system_state();
//printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count);
if (cpi->pass != 1)
{
FILE *f = fopen("opsnr.stt", "a");
double time_encoded = (cpi->last_end_time_stamp_seen
- cpi->first_time_stamp_ever) / 10000000.000;
double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded;
#if defined(MODE_STATS)
print_mode_contexts(&cpi->common);
#endif
if (cpi->b_calculate_psnr)
{
YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
double samples = 3.0 / 2 * cpi->count * lst_yv12->y_width * lst_yv12->y_height;
double total_psnr = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error);
double total_psnr2 = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error2);
double total_ssim = 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\tVPXSSIM\t Time(us)\n");
fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n",
dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim,
total_encode_time);
// fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f %10ld\n",
// dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim,
// total_encode_time, cpi->tot_recode_hits);
}
if (cpi->b_calculate_ssimg)
{
fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(us)\n");
fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time);
// fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f %10ld\n", dr,
// cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
// cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time, cpi->tot_recode_hits);
}
fclose(f);
}
#endif
#ifdef MODE_STATS
{
extern int count_mb_seg[4];
char modes_stats_file[250];
FILE *f;
double dr = (double)cpi->oxcf.frame_rate * (double)cpi->bytes * (double)8 / (double)cpi->count / (double)1000 ;
sprintf(modes_stats_file, "modes_q%03d.stt",cpi->common.base_qindex);
f = fopen(modes_stats_file, "w");
fprintf(f, "intra_mode in Intra Frames:\n");
{
int i;
fprintf(f, "Y: ");
for (i=0;i<VP8_YMODES;i++) fprintf(f, " %8d,", y_modes[i]);
fprintf(f, "\n");
}
{
int i;
fprintf(f, "I8: ");
for (i=0;i<VP8_I8X8_MODES;i++) fprintf(f, " %8d,", i8x8_modes[i]);
fprintf(f, "\n");
}
{
int i;
fprintf(f, "UV: ");
for (i=0;i<VP8_UV_MODES;i++) fprintf(f, " %8d,", uv_modes[i]);
fprintf(f, "\n");
}
{
int i, j;
fprintf(f, "KeyFrame Y-UV:\n");
for(i=0;i<VP8_YMODES;i++)
{
fprintf(f, "%2d:", i);
for (j=0; j<VP8_UV_MODES;j++) fprintf(f, "%8d, ",uv_modes_y[i][j]);
fprintf(f, "\n");
}
}
{
int i, j;
fprintf(f, "Inter Y-UV:\n");
for(i=0;i<VP8_YMODES;i++)
{
fprintf(f, "%2d:", i);
for (j=0; j<VP8_UV_MODES;j++) fprintf(f, "%8d, ",cpi->y_uv_mode_count[i][j]);
fprintf(f, "\n");
}
}
{
int i;
fprintf(f, "B: ");
for (i = 0; i < VP8_BINTRAMODES; i++)
fprintf(f, "%8d, ", b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "Modes in Inter Frames:\n");
{
int i;
fprintf(f, "Y: ");
for (i=0;i<MB_MODE_COUNT;i++) fprintf(f, " %8d,", inter_y_modes[i]);
fprintf(f, "\n");
}
{
int i;
fprintf(f, "UV: ");
for (i=0;i<VP8_UV_MODES;i++) fprintf(f, " %8d,", inter_uv_modes[i]);
fprintf(f, "\n");
}
{
int i;
fprintf(f, "B: ");
for (i = 0; i < B_MODE_COUNT; i++) fprintf(f, "%8d, ", inter_b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], count_mb_seg[2], count_mb_seg[3]);
fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], inter_b_modes[NEW4X4]);
fclose(f);
}
#endif
#ifdef ENTROPY_STATS
{
int i, j, k;
FILE *fmode = fopen("modecontext.c", "w");
fprintf(fmode, "\n#include \"entropymode.h\"\n\n");
fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts ");
fprintf(fmode, "[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n");
for (i = 0; i < 10; i++)
{
fprintf(fmode, " { //Above Mode : %d\n", i);
for (j = 0; j < 10; j++)
{
fprintf(fmode, " {");
for (k = 0; k < VP8_BINTRAMODES; k++)
{
if (!intra_mode_stats[i][j][k])
fprintf(fmode, " %5d, ", 1);
else
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
}
fprintf(fmode, "}, // left_mode %d\n", j);
}
fprintf(fmode, " },\n");
}
fprintf(fmode, "};\n");
fclose(fmode);
}
#endif
#if defined(SECTIONBITS_OUTPUT)
if (0)
{
int i;
FILE *f = fopen("tokenbits.stt", "a");
for (i = 0; i < 28; i++)
fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
fprintf(f, "\n");
fclose(f);
}
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
#endif
}
dealloc_compressor_data(cpi);
vpx_free(cpi->mb.ss);
vpx_free(cpi->tok);
for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); i++)
{
vpx_free(cpi->mbgraph_stats[i].mb_stats);
}
vp8_remove_common(&cpi->common);
vpx_free(cpi);
*ptr = 0;
#ifdef OUTPUT_YUV_SRC
fclose(yuv_file);
#endif
#ifdef OUTPUT_YUV_REC
fclose(yuv_rec_file);
#endif
#if 0
if (keyfile)
fclose(keyfile);
if (framepsnr)
fclose(framepsnr);
if (kf_list)
fclose(kf_list);
#endif
}
static uint64_t calc_plane_error(unsigned char *orig, int orig_stride,
unsigned char *recon, int recon_stride,
unsigned int cols, unsigned int rows,
vp8_variance_rtcd_vtable_t *rtcd)
{
unsigned int row, col;
uint64_t total_sse = 0;
int diff;
for (row = 0; row + 16 <= rows; row += 16)
{
for (col = 0; col + 16 <= cols; col += 16)
{
unsigned int sse;
VARIANCE_INVOKE(rtcd, mse16x16)(orig + col, orig_stride,
recon + col, recon_stride,
&sse);
total_sse += sse;
}
/* Handle odd-sized width */
if (col < cols)
{
unsigned int border_row, border_col;
unsigned char *border_orig = orig;
unsigned char *border_recon = recon;
for (border_row = 0; border_row < 16; border_row++)
{
for (border_col = col; border_col < cols; border_col++)
{
diff = border_orig[border_col] - border_recon[border_col];
total_sse += diff * diff;
}
border_orig += orig_stride;
border_recon += recon_stride;
}
}
orig += orig_stride * 16;
recon += recon_stride * 16;
}
/* Handle odd-sized height */
for (; row < rows; row++)
{
for (col = 0; col < cols; col++)
{
diff = orig[col] - recon[col];
total_sse += diff * diff;
}
orig += orig_stride;
recon += recon_stride;
}
return total_sse;
}
static void generate_psnr_packet(VP8_COMP *cpi)
{
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
struct vpx_codec_cx_pkt pkt;
uint64_t sse;
int i;
unsigned int width = cpi->common.Width;
unsigned int height = cpi->common.Height;
pkt.kind = VPX_CODEC_PSNR_PKT;
sse = calc_plane_error(orig->y_buffer, orig->y_stride,
recon->y_buffer, recon->y_stride,
width, height,
IF_RTCD(&cpi->rtcd.variance));
pkt.data.psnr.sse[0] = sse;
pkt.data.psnr.sse[1] = sse;
pkt.data.psnr.samples[0] = width * height;
pkt.data.psnr.samples[1] = width * height;
width = (width + 1) / 2;
height = (height + 1) / 2;
sse = calc_plane_error(orig->u_buffer, orig->uv_stride,
recon->u_buffer, recon->uv_stride,
width, height,
IF_RTCD(&cpi->rtcd.variance));
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[2] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[2] = width * height;
sse = calc_plane_error(orig->v_buffer, orig->uv_stride,
recon->v_buffer, recon->uv_stride,
width, height,
IF_RTCD(&cpi->rtcd.variance));
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[3] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[3] = width * height;
for (i = 0; i < 4; i++)
pkt.data.psnr.psnr[i] = vp8_mse2psnr(pkt.data.psnr.samples[i], 255.0,
pkt.data.psnr.sse[i]);
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int vp8_use_as_reference(VP8_PTR ptr, int ref_frame_flags)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
if (ref_frame_flags > 7)
return -1 ;
cpi->ref_frame_flags = ref_frame_flags;
return 0;
}
int vp8_update_reference(VP8_PTR ptr, int ref_frame_flags)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
if (ref_frame_flags > 7)
return -1 ;
cpi->common.refresh_golden_frame = 0;
cpi->common.refresh_alt_ref_frame = 0;
cpi->common.refresh_last_frame = 0;
if (ref_frame_flags & VP8_LAST_FLAG)
cpi->common.refresh_last_frame = 1;
if (ref_frame_flags & VP8_GOLD_FLAG)
cpi->common.refresh_golden_frame = 1;
if (ref_frame_flags & VP8_ALT_FLAG)
cpi->common.refresh_alt_ref_frame = 1;
return 0;
}
int vp8_get_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
VP8_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP8_LAST_FLAG)
ref_fb_idx = cm->lst_fb_idx;
else if (ref_frame_flag == VP8_GOLD_FLAG)
ref_fb_idx = cm->gld_fb_idx;
else if (ref_frame_flag == VP8_ALT_FLAG)
ref_fb_idx = cm->alt_fb_idx;
else
return -1;
vp8_yv12_copy_frame_ptr(&cm->yv12_fb[ref_fb_idx], sd);
return 0;
}
int vp8_set_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
VP8_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP8_LAST_FLAG)
ref_fb_idx = cm->lst_fb_idx;
else if (ref_frame_flag == VP8_GOLD_FLAG)
ref_fb_idx = cm->gld_fb_idx;
else if (ref_frame_flag == VP8_ALT_FLAG)
ref_fb_idx = cm->alt_fb_idx;
else
return -1;
vp8_yv12_copy_frame_ptr(sd, &cm->yv12_fb[ref_fb_idx]);
return 0;
}
int vp8_update_entropy(VP8_PTR comp, int update)
{
VP8_COMP *cpi = (VP8_COMP *) comp;
VP8_COMMON *cm = &cpi->common;
cm->refresh_entropy_probs = update;
return 0;
}
#ifdef OUTPUT_YUV_SRC
void vp8_write_yuv_frame(YV12_BUFFER_CONFIG *s)
{
unsigned char *src = s->y_buffer;
int h = s->y_height;
do
{
fwrite(src, s->y_width, 1, yuv_file);
src += s->y_stride;
}
while (--h);
src = s->u_buffer;
h = s->uv_height;
do
{
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
}
while (--h);
src = s->v_buffer;
h = s->uv_height;
do
{
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
}
while (--h);
}
#endif
#ifdef OUTPUT_YUV_REC
void vp8_write_yuv_rec_frame(VP8_COMMON *cm)
{
YV12_BUFFER_CONFIG *s = cm->frame_to_show;
unsigned char *src = s->y_buffer;
int h = cm->Height;
do
{
fwrite(src, s->y_width, 1, yuv_rec_file);
src += s->y_stride;
}
while (--h);
src = s->u_buffer;
h = (cm->Height+1)/2;
do
{
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
}
while (--h);
src = s->v_buffer;
h = (cm->Height+1)/2;
do
{
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
}
while (--h);
}
#endif
static void update_alt_ref_frame_stats(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
// Update data structure that monitors level of reference to last GF
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
// this frame refreshes means next frames don't unless specified by user
cpi->common.frames_since_golden = 0;
// Clear the alternate reference update pending flag.
cpi->source_alt_ref_pending = FALSE;
// Set the alternate refernce frame active flag
cpi->source_alt_ref_active = TRUE;
}
static void update_golden_frame_stats(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
// Update the Golden frame usage counts.
if (cm->refresh_golden_frame)
{
// Update data structure that monitors level of reference to last GF
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
// this frame refreshes means next frames don't unless specified by user
cm->refresh_golden_frame = 0;
cpi->common.frames_since_golden = 0;
//if ( cm->frame_type == KEY_FRAME )
//{
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
//}
//else
//{
// // Carry a potrtion of count over to begining of next gf sequence
// cpi->recent_ref_frame_usage[INTRA_FRAME] >>= 5;
// cpi->recent_ref_frame_usage[LAST_FRAME] >>= 5;
// cpi->recent_ref_frame_usage[GOLDEN_FRAME] >>= 5;
// cpi->recent_ref_frame_usage[ALTREF_FRAME] >>= 5;
//}
// ******** Fixed Q test code only ************
// If we are going to use the ALT reference for the next group of frames set a flag to say so.
if (cpi->oxcf.fixed_q >= 0 &&
cpi->oxcf.play_alternate && !cpi->common.refresh_alt_ref_frame)
{
cpi->source_alt_ref_pending = TRUE;
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
}
if (!cpi->source_alt_ref_pending)
cpi->source_alt_ref_active = FALSE;
// Decrement count down till next gf
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
}
else if (!cpi->common.refresh_alt_ref_frame)
{
// Decrement count down till next gf
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
if (cpi->common.frames_till_alt_ref_frame)
cpi->common.frames_till_alt_ref_frame --;
cpi->common.frames_since_golden ++;
if (cpi->common.frames_since_golden > 1)
{
cpi->recent_ref_frame_usage[INTRA_FRAME] += cpi->count_mb_ref_frame_usage[INTRA_FRAME];
cpi->recent_ref_frame_usage[LAST_FRAME] += cpi->count_mb_ref_frame_usage[LAST_FRAME];
cpi->recent_ref_frame_usage[GOLDEN_FRAME] += cpi->count_mb_ref_frame_usage[GOLDEN_FRAME];
cpi->recent_ref_frame_usage[ALTREF_FRAME] += cpi->count_mb_ref_frame_usage[ALTREF_FRAME];
}
}
}
int find_fp_qindex()
{
int i;
for ( i = 0; i < QINDEX_RANGE; i++ )
{
if ( vp8_convert_qindex_to_q(i) >= 30.0 )
{
break;
}
}
if ( i == QINDEX_RANGE )
i--;
return i;
}
static void Pass1Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags)
{
(void) size;
(void) dest;
(void) frame_flags;
vp8_set_quantizer(cpi, find_fp_qindex());
vp8_first_pass(cpi);
}
#if 1
void write_yuv_frame_to_file(YV12_BUFFER_CONFIG *frame)
{
// write the frame
int i;
char filename[255];
FILE *fp = fopen("encode_recon.yuv", "a");
for (i = 0; i < frame->y_height; i++)
fwrite(frame->y_buffer + i * frame->y_stride,
frame->y_width, 1, fp);
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->u_buffer + i * frame->uv_stride,
frame->uv_width, 1, fp);
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->v_buffer + i * frame->uv_stride,
frame->uv_width, 1, fp);
fclose(fp);
}
#endif
//#define WRITE_RECON_BUFFER 1
#if WRITE_RECON_BUFFER
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame)
{
// write the frame
FILE *yframe;
int i;
char filename[255];
sprintf(filename, "cx\\y%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->y_height; i++)
fwrite(frame->y_buffer + i * frame->y_stride,
frame->y_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\u%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->u_buffer + i * frame->uv_stride,
frame->uv_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\v%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->v_buffer + i * frame->uv_stride,
frame->uv_width, 1, yframe);
fclose(yframe);
}
#endif
static double compute_edge_pixel_proportion(YV12_BUFFER_CONFIG *frame)
{
#define EDGE_THRESH 128
int i, j;
int num_edge_pels = 0;
int num_pels = (frame->y_height - 2) * (frame->y_width - 2);
unsigned char *prev = frame->y_buffer + 1;
unsigned char *curr = frame->y_buffer + 1 + frame->y_stride;
unsigned char *next = frame->y_buffer + 1 + 2*frame->y_stride;
for (i = 1; i < frame->y_height - 1; i++)
{
for (j = 1; j < frame->y_width - 1; j++)
{
/* Sobel hor and ver gradients */
int v = 2*(curr[1] - curr[-1]) + (prev[1] - prev[-1]) + (next[1] - next[-1]);
int h = 2*(prev[0] - next[0]) + (prev[1] - next[1]) + (prev[-1] - next[-1]);
h = (h < 0 ? -h : h);
v = (v < 0 ? -v : v);
if (h > EDGE_THRESH || v > EDGE_THRESH) num_edge_pels++;
curr++;
prev++;
next++;
}
curr += frame->y_stride - frame->y_width + 2;
prev += frame->y_stride - frame->y_width + 2;
next += frame->y_stride - frame->y_width + 2;
}
return (double)num_edge_pels/(double)num_pels;
}
// Function to test for conditions that indicate we should loop
// back and recode a frame.
static BOOL recode_loop_test( VP8_COMP *cpi,
int high_limit, int low_limit,
int q, int maxq, int minq )
{
BOOL force_recode = FALSE;
VP8_COMMON *cm = &cpi->common;
// Is frame recode allowed at all
// Yes if either recode mode 1 is selected or mode two is selcted
// and the frame is a key frame. golden frame or alt_ref_frame
if ( (cpi->sf.recode_loop == 1) ||
( (cpi->sf.recode_loop == 2) &&
( (cm->frame_type == KEY_FRAME) ||
cm->refresh_golden_frame ||
cm->refresh_alt_ref_frame ) ) )
{
// General over and under shoot tests
if ( ((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
((cpi->projected_frame_size < low_limit) && (q > minq)) )
{
force_recode = TRUE;
}
// Special Constrained quality tests
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
{
// Undershoot and below auto cq level
if ( (q > cpi->cq_target_quality) &&
(cpi->projected_frame_size <
((cpi->this_frame_target * 7) >> 3)))
{
force_recode = TRUE;
}
// Severe undershoot and between auto and user cq level
else if ( (q > cpi->oxcf.cq_level) &&
(cpi->projected_frame_size < cpi->min_frame_bandwidth) &&
(cpi->active_best_quality > cpi->oxcf.cq_level))
{
force_recode = TRUE;
cpi->active_best_quality = cpi->oxcf.cq_level;
}
}
}
return force_recode;
}
void update_reference_frames(VP8_COMMON *cm)
{
YV12_BUFFER_CONFIG *yv12_fb = cm->yv12_fb;
// At this point the new frame has been encoded.
// If any buffer copy / swapping is signaled it should be done here.
if (cm->frame_type == KEY_FRAME)
{
yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FLAG | VP8_ALT_FLAG ;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
cm->alt_fb_idx = cm->gld_fb_idx = cm->new_fb_idx;
}
else /* For non key frames */
{
if (cm->refresh_alt_ref_frame)
{
assert(!cm->copy_buffer_to_arf);
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_ALT_FLAG;
cm->yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
cm->alt_fb_idx = cm->new_fb_idx;
}
else if (cm->copy_buffer_to_arf)
{
assert(!(cm->copy_buffer_to_arf & ~0x3));
if (cm->copy_buffer_to_arf == 1)
{
if(cm->alt_fb_idx != cm->lst_fb_idx)
{
yv12_fb[cm->lst_fb_idx].flags |= VP8_ALT_FLAG;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
cm->alt_fb_idx = cm->lst_fb_idx;
}
}
else /* if (cm->copy_buffer_to_arf == 2) */
{
if(cm->alt_fb_idx != cm->gld_fb_idx)
{
yv12_fb[cm->gld_fb_idx].flags |= VP8_ALT_FLAG;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
cm->alt_fb_idx = cm->gld_fb_idx;
}
}
}
if (cm->refresh_golden_frame)
{
assert(!cm->copy_buffer_to_gf);
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FLAG;
cm->yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
cm->gld_fb_idx = cm->new_fb_idx;
}
else if (cm->copy_buffer_to_gf)
{
assert(!(cm->copy_buffer_to_arf & ~0x3));
if (cm->copy_buffer_to_gf == 1)
{
if(cm->gld_fb_idx != cm->lst_fb_idx)
{
yv12_fb[cm->lst_fb_idx].flags |= VP8_GOLD_FLAG;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
cm->gld_fb_idx = cm->lst_fb_idx;
}
}
else /* if (cm->copy_buffer_to_gf == 2) */
{
if(cm->alt_fb_idx != cm->gld_fb_idx)
{
yv12_fb[cm->alt_fb_idx].flags |= VP8_GOLD_FLAG;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
cm->gld_fb_idx = cm->alt_fb_idx;
}
}
}
}
if (cm->refresh_last_frame)
{
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_LAST_FLAG;
cm->yv12_fb[cm->lst_fb_idx].flags &= ~VP8_LAST_FLAG;
cm->lst_fb_idx = cm->new_fb_idx;
}
}
void loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm)
{
if (cm->no_lpf)
{
cm->filter_level = 0;
}
else
{
struct vpx_usec_timer timer;
vp8_clear_system_state();
vpx_usec_timer_start(&timer);
if (cpi->sf.auto_filter == 0)
vp8cx_pick_filter_level_fast(cpi->Source, cpi);
else
vp8cx_pick_filter_level(cpi->Source, cpi);
vpx_usec_timer_mark(&timer);
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
}
if (cm->filter_level > 0)
{
vp8cx_set_alt_lf_level(cpi, cm->filter_level);
vp8_loop_filter_frame(cm, &cpi->mb.e_mbd);
}
vp8_yv12_extend_frame_borders_ptr(cm->frame_to_show);
}
static void encode_frame_to_data_rate
(
VP8_COMP *cpi,
unsigned long *size,
unsigned char *dest,
unsigned int *frame_flags
)
{
VP8_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int Q;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
int Loop = FALSE;
int loop_count;
int this_q;
int last_zbin_oq;
int q_low;
int q_high;
int zbin_oq_high;
int zbin_oq_low = 0;
int top_index;
int bottom_index;
int active_worst_qchanged = FALSE;
int overshoot_seen = FALSE;
int undershoot_seen = FALSE;
int loop_size_estimate = 0;
#if CONFIG_ENHANCED_INTERP
SPEED_FEATURES *sf = &cpi->sf;
#if RESET_FOREACH_FILTER
int q_low0;
int q_high0;
int zbin_oq_high0;
int zbin_oq_low0 = 0;
int Q0;
int last_zbin_oq0;
int active_best_quality0;
int active_worst_quality0;
double rate_correction_factor0;
double gf_rate_correction_factor0;
#endif
/* list of filters to search over */
int mcomp_filters_to_search[] = {EIGHTTAP, EIGHTTAP_SHARP, SIXTAP};
int mcomp_filters = sizeof(mcomp_filters_to_search)/sizeof(*mcomp_filters_to_search);
int mcomp_filter_index = 0;
INT64 mcomp_filter_cost[4];
#endif
// Clear down mmx registers to allow floating point in what follows
vp8_clear_system_state();
// For an alt ref frame in 2 pass we skip the call to the second
// pass function that sets the target bandwidth so must set it here
if (cpi->common.refresh_alt_ref_frame)
{
cpi->per_frame_bandwidth = cpi->twopass.gf_bits; // Per frame bit target for the alt ref frame
cpi->target_bandwidth = cpi->twopass.gf_bits * cpi->output_frame_rate; // per second target bitrate
}
// Default turn off buffer to buffer copying
cm->copy_buffer_to_gf = 0;
cm->copy_buffer_to_arf = 0;
// Clear zbin over-quant value and mode boost values.
cpi->zbin_over_quant = 0;
cpi->zbin_mode_boost = 0;
// Enable or disable mode based tweaking of the zbin
// For 2 Pass Only used where GF/ARF prediction quality
// is above a threshold
cpi->zbin_mode_boost = 0;
cpi->zbin_mode_boost_enabled = TRUE;
if ( cpi->gfu_boost <= 400 )
{
cpi->zbin_mode_boost_enabled = FALSE;
}
// Current default encoder behaviour for the altref sign bias
if (cpi->source_alt_ref_active)
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
else
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0;
// Check to see if a key frame is signalled
// For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass.
if ((cm->current_video_frame == 0) ||
(cm->frame_flags & FRAMEFLAGS_KEY) ||
(cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0)))
{
// Key frame from VFW/auto-keyframe/first frame
cm->frame_type = KEY_FRAME;
}
// Set default state for segment based loop filter update flags
xd->mode_ref_lf_delta_update = 0;
// Set various flags etc to special state if it is a key frame
if (cm->frame_type == KEY_FRAME)
{
int i;
// Reset the loop filter deltas and segmentation map
setup_features(cpi);
// If segmentation is enabled force a map update for key frames
if (xd->segmentation_enabled)
{
xd->update_mb_segmentation_map = 1;
xd->update_mb_segmentation_data = 1;
}
// The alternate reference frame cannot be active for a key frame
cpi->source_alt_ref_active = FALSE;
// Reset the RD threshold multipliers to default of * 1 (128)
for (i = 0; i < MAX_MODES; i++)
{
cpi->rd_thresh_mult[i] = 128;
}
}
//#if !CONFIG_COMPRED
// This function has been deprecated for now but we may want to do
// something here at a late date
//update_rd_ref_frame_probs(cpi);
//#endif
// Test code for new segment features
init_seg_features( cpi );
// Decide how big to make the frame
vp8_pick_frame_size(cpi);
vp8_clear_system_state();
// Set an active best quality and if necessary active worst quality
Q = cpi->active_worst_quality;
if ( cm->frame_type == KEY_FRAME )
{
if (cpi->gfu_boost > 600)
cpi->active_best_quality = kf_low_motion_minq[Q];
else
cpi->active_best_quality = kf_high_motion_minq[Q];
// Special case for key frames forced because we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping
if ( cpi->this_key_frame_forced )
{
int delta_qindex;
int qindex = cpi->last_boosted_qindex;
delta_qindex = compute_qdelta( cpi, qindex,
(qindex * 0.75) );
cpi->active_best_quality = qindex + delta_qindex;
if (cpi->active_best_quality < cpi->best_quality)
cpi->active_best_quality = cpi->best_quality;
}
}
else if (cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame)
{
// Use the lower of cpi->active_worst_quality and recent
// average Q as basis for GF/ARF Q limit unless last frame was
// a key frame.
if ( (cpi->frames_since_key > 1) &&
(cpi->avg_frame_qindex < cpi->active_worst_quality) )
{
Q = cpi->avg_frame_qindex;
}
// For constrained quality dont allow Q less than the cq level
if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < cpi->cq_target_quality) )
{
Q = cpi->cq_target_quality;
}
if ( cpi->gfu_boost > 1000 )
cpi->active_best_quality = gf_low_motion_minq[Q];
else if ( cpi->gfu_boost < 400 )
cpi->active_best_quality = gf_high_motion_minq[Q];
else
cpi->active_best_quality = gf_mid_motion_minq[Q];
// Constrained quality use slightly lower active best.
if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY )
{
cpi->active_best_quality =
cpi->active_best_quality * 15/16;
}
}
else
{
cpi->active_best_quality = inter_minq[Q];
// For the constant/constrained quality mode we dont want
// q to fall below the cq level.
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(cpi->active_best_quality < cpi->cq_target_quality) )
{
// If we are strongly undershooting the target rate in the last
// frames then use the user passed in cq value not the auto
// cq value.
if ( cpi->rolling_actual_bits < cpi->min_frame_bandwidth )
cpi->active_best_quality = cpi->oxcf.cq_level;
else
cpi->active_best_quality = cpi->cq_target_quality;
}
}
// Clip the active best and worst quality values to limits
if (cpi->active_worst_quality > cpi->worst_quality)
cpi->active_worst_quality = cpi->worst_quality;
if (cpi->active_best_quality < cpi->best_quality)
cpi->active_best_quality = cpi->best_quality;
if (cpi->active_best_quality > cpi->worst_quality)
cpi->active_best_quality = cpi->worst_quality;
if ( cpi->active_worst_quality < cpi->active_best_quality )
cpi->active_worst_quality = cpi->active_best_quality;
// Specuial case code to try and match quality with forced key frames
if ( (cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced )
{
Q = cpi->last_boosted_qindex;
}
else
{
// Determine initial Q to try
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
}
last_zbin_oq = cpi->zbin_over_quant;
// Set highest allowed value for Zbin over quant
if (cm->frame_type == KEY_FRAME)
zbin_oq_high = 0; //ZBIN_OQ_MAX/16
else if (cm->refresh_alt_ref_frame || (cm->refresh_golden_frame && !cpi->source_alt_ref_active))
zbin_oq_high = 16;
else
zbin_oq_high = ZBIN_OQ_MAX;
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit);
// Limit Q range for the adaptive loop.
bottom_index = cpi->active_best_quality;
top_index = cpi->active_worst_quality;
q_low = cpi->active_best_quality;
q_high = cpi->active_worst_quality;
loop_count = 0;
#if CONFIG_HIGH_PRECISION_MV || CONFIG_ENHANCED_INTERP
if (cm->frame_type != KEY_FRAME)
{
#if CONFIG_ENHANCED_INTERP
double e = 0; //compute_edge_pixel_proportion(cpi->Source);
/* TODO: Decide this more intelligently */
if (sf->search_best_filter)
{
cm->mcomp_filter_type = mcomp_filters_to_search[0];
mcomp_filter_index = 0;
}
else
cm->mcomp_filter_type = EIGHTTAP;
#endif
#if CONFIG_HIGH_PRECISION_MV
/* TODO: Decide this more intelligently */
xd->allow_high_precision_mv = (Q < HIGH_PRECISION_MV_QTHRESH);
#endif
}
#endif
#if CONFIG_POSTPROC
if (cpi->oxcf.noise_sensitivity > 0)
{
unsigned char *src;
int l = 0;
switch (cpi->oxcf.noise_sensitivity)
{
case 1:
l = 20;
break;
case 2:
l = 40;
break;
case 3:
l = 60;
break;
case 4:
case 5:
l = 100;
break;
case 6:
l = 150;
break;
}
if (cm->frame_type == KEY_FRAME)
{
vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0, RTCD(postproc));
}
else
{
vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0, RTCD(postproc));
src = cpi->Source->y_buffer;
if (cpi->Source->y_stride < 0)
{
src += cpi->Source->y_stride * (cpi->Source->y_height - 1);
}
}
}
#endif
#ifdef OUTPUT_YUV_SRC
vp8_write_yuv_frame(cpi->Source);
#endif
#if CONFIG_ENHANCED_INTERP && RESET_FOREACH_FILTER
if (sf->search_best_filter)
{
q_low0 = q_low;
q_high0 = q_high;
Q0 = Q;
zbin_oq_low0 = zbin_oq_low;
zbin_oq_high0 = zbin_oq_high;
last_zbin_oq0 = last_zbin_oq;
rate_correction_factor0 = cpi->rate_correction_factor;
gf_rate_correction_factor0 = cpi->gf_rate_correction_factor;
active_best_quality0 = cpi->active_best_quality;
active_worst_quality0 = cpi->active_worst_quality;
}
#endif
do
{
vp8_clear_system_state(); //__asm emms;
vp8_set_quantizer(cpi, Q);
this_q = Q;
if ( loop_count == 0 )
{
// setup skip prob for costing in mode/mv decision
if (cpi->common.mb_no_coeff_skip)
{
#if CONFIG_NEWENTROPY
int k;
for (k=0; k<MBSKIP_CONTEXTS; k++)
cm->mbskip_pred_probs[k] = cpi->base_skip_false_prob[Q][k];
#else
cpi->prob_skip_false = cpi->base_skip_false_prob[Q];
#endif
if (cm->frame_type != KEY_FRAME)
{
if (cpi->common.refresh_alt_ref_frame)
{
#if CONFIG_NEWENTROPY
for (k=0; k<MBSKIP_CONTEXTS; k++)
{
if (cpi->last_skip_false_probs[2][k] != 0)
cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[2][k];
}
#else
if (cpi->last_skip_false_probs[2] != 0)
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
#endif
}
else if (cpi->common.refresh_golden_frame)
{
#if CONFIG_NEWENTROPY
for (k=0; k<MBSKIP_CONTEXTS; k++)
{
if (cpi->last_skip_false_probs[1][k] != 0)
cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[1][k];
}
#else
if (cpi->last_skip_false_probs[1] != 0)
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
#endif
}
else
{
#if CONFIG_NEWENTROPY
int k;
for (k=0; k<MBSKIP_CONTEXTS; k++)
{
if (cpi->last_skip_false_probs[0][k] != 0)
cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[0][k];
}
#else
if (cpi->last_skip_false_probs[0] != 0)
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
#endif
}
// as this is for cost estimate, let's make sure it does not
// get extreme either way
#if CONFIG_NEWENTROPY
{
int k;
for (k=0; k<MBSKIP_CONTEXTS; ++k)
{
if (cm->mbskip_pred_probs[k] < 5)
cm->mbskip_pred_probs[k] = 5;
if (cm->mbskip_pred_probs[k] > 250)
cm->mbskip_pred_probs[k] = 250;
if (cpi->is_src_frame_alt_ref)
cm->mbskip_pred_probs[k] = 1;
}
}
#else
if (cpi->prob_skip_false < 5)
cpi->prob_skip_false = 5;
if (cpi->prob_skip_false > 250)
cpi->prob_skip_false = 250;
if (cpi->is_src_frame_alt_ref)
cpi->prob_skip_false = 1;
#endif
}
}
// Set up entropy depending on frame type.
if (cm->frame_type == KEY_FRAME)
vp8_setup_key_frame(cpi);
else
vp8_setup_inter_frame(cpi);
}
// transform / motion compensation build reconstruction frame
vp8_encode_frame(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
update_base_skip_probs( cpi );
vp8_clear_system_state(); //__asm emms;
// Dummy pack of the bitstream using up to date stats to get an
// accurate estimate of output frame size to determine if we need
// to recode.
vp8_save_coding_context(cpi);
cpi->dummy_packing = 1;
vp8_pack_bitstream(cpi, dest, size);
cpi->projected_frame_size = (*size) << 3;
vp8_restore_coding_context(cpi);
if (frame_over_shoot_limit == 0)
frame_over_shoot_limit = 1;
active_worst_qchanged = FALSE;
// Special case handling for forced key frames
if ( (cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced )
{
int last_q = Q;
int kf_err = vp8_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx],
IF_RTCD(&cpi->rtcd.variance));
int high_err_target = cpi->ambient_err;
int low_err_target = (cpi->ambient_err >> 1);
// Prevent possible divide by zero error below for perfect KF
kf_err += (!kf_err);
// The key frame is not good enough or we can afford
// to make it better without undue risk of popping.
if ( ( (kf_err > high_err_target) &&
(cpi->projected_frame_size <= frame_over_shoot_limit) ) ||
( (kf_err > low_err_target) &&
(cpi->projected_frame_size <= frame_under_shoot_limit) ) )
{
// Lower q_high
q_high = (Q > q_low) ? (Q - 1) : q_low;
// Adjust Q
Q = (Q * high_err_target) / kf_err;
if ( Q < ((q_high + q_low) >> 1))
Q = (q_high + q_low) >> 1;
}
// The key frame is much better than the previous frame
else if ( (kf_err < low_err_target) &&
(cpi->projected_frame_size >= frame_under_shoot_limit) )
{
// Raise q_low
q_low = (Q < q_high) ? (Q + 1) : q_high;
// Adjust Q
Q = (Q * low_err_target) / kf_err;
if ( Q > ((q_high + q_low + 1) >> 1))
Q = (q_high + q_low + 1) >> 1;
}
// Clamp Q to upper and lower limits:
if (Q > q_high)
Q = q_high;
else if (Q < q_low)
Q = q_low;
Loop = ((Q != last_q)) ? TRUE : FALSE;
}
// Is the projected frame size out of range and are we allowed to attempt to recode.
else if ( recode_loop_test( cpi,
frame_over_shoot_limit, frame_under_shoot_limit,
Q, top_index, bottom_index ) )
{
int last_q = Q;
int Retries = 0;
// Frame size out of permitted range:
// Update correction factor & compute new Q to try...
// Frame is too large
if (cpi->projected_frame_size > cpi->this_frame_target)
{
q_low = (Q < q_high) ? (Q + 1) : q_high; // Raise Qlow as to at least the current value
if (cpi->zbin_over_quant > 0) // If we are using over quant do the same for zbin_oq_low
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
if ( undershoot_seen || (loop_count > 1) )
{
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 1);
Q = (q_high + q_low + 1) / 2;
// Adjust cpi->zbin_over_quant (only allowed when Q is max)
if (Q < MAXQ)
cpi->zbin_over_quant = 0;
else
{
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
}
}
else
{
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
while (((Q < q_low) || (cpi->zbin_over_quant < zbin_oq_low)) && (Retries < 10))
{
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
Retries ++;
}
}
overshoot_seen = TRUE;
}
// Frame is too small
else
{
if (cpi->zbin_over_quant == 0)
q_high = (Q > q_low) ? (Q - 1) : q_low; // Lower q_high if not using over quant
else // else lower zbin_oq_high
zbin_oq_high = (cpi->zbin_over_quant > zbin_oq_low) ? (cpi->zbin_over_quant - 1) : zbin_oq_low;
if ( overshoot_seen || (loop_count > 1) )
{
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 1);
Q = (q_high + q_low) / 2;
// Adjust cpi->zbin_over_quant (only allowed when Q is max)
if (Q < MAXQ)
cpi->zbin_over_quant = 0;
else
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
}
else
{
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
// Special case reset for qlow for constrained quality.
// This should only trigger where there is very substantial
// undershoot on a frame and the auto cq level is above
// the user passsed in value.
if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < q_low) )
{
q_low = Q;
}
while (((Q > q_high) || (cpi->zbin_over_quant > zbin_oq_high)) && (Retries < 10))
{
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
Retries ++;
}
}
undershoot_seen = TRUE;
}
// Clamp Q to upper and lower limits:
if (Q > q_high)
Q = q_high;
else if (Q < q_low)
Q = q_low;
// Clamp cpi->zbin_over_quant
cpi->zbin_over_quant = (cpi->zbin_over_quant < zbin_oq_low) ? zbin_oq_low : (cpi->zbin_over_quant > zbin_oq_high) ? zbin_oq_high : cpi->zbin_over_quant;
//Loop = ((Q != last_q) || (last_zbin_oq != cpi->zbin_over_quant)) ? TRUE : FALSE;
Loop = ((Q != last_q)) ? TRUE : FALSE;
last_zbin_oq = cpi->zbin_over_quant;
}
else
Loop = FALSE;
if (cpi->is_src_frame_alt_ref)
Loop = FALSE;
#if CONFIG_ENHANCED_INTERP
if (Loop == FALSE && cm->frame_type != KEY_FRAME && sf->search_best_filter)
{
if (mcomp_filter_index < mcomp_filters)
{
INT64 err = vp8_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx],
IF_RTCD(&cpi->rtcd.variance));
INT64 rate = cpi->projected_frame_size << 8;
mcomp_filter_cost[mcomp_filter_index] =
(RDCOST(cpi->RDMULT, cpi->RDDIV, rate, err));
mcomp_filter_index++;
if (mcomp_filter_index < mcomp_filters)
{
cm->mcomp_filter_type = mcomp_filters_to_search[mcomp_filter_index];
loop_count = -1;
Loop = TRUE;
}
else
{
int f;
INT64 best_cost = mcomp_filter_cost[0];
int mcomp_best_filter = mcomp_filters_to_search[0];
for (f = 1; f < mcomp_filters; f++)
{
if (mcomp_filter_cost[f] < best_cost)
{
mcomp_best_filter = mcomp_filters_to_search[f];
best_cost = mcomp_filter_cost[f];
}
}
if (mcomp_best_filter != mcomp_filters_to_search[mcomp_filters-1])
{
loop_count = -1;
Loop = TRUE;
cm->mcomp_filter_type = mcomp_best_filter;
}
/*
printf(" best filter = %d, ( ", mcomp_best_filter);
for (f=0;f<mcomp_filters; f++) printf("%d ", mcomp_filter_cost[f]);
printf(")\n");
*/
}
#if RESET_FOREACH_FILTER
if (Loop == TRUE)
{
overshoot_seen = FALSE;
undershoot_seen = FALSE;
zbin_oq_low = zbin_oq_low0;
zbin_oq_high = zbin_oq_high0;
q_low = q_low0;
q_high = q_high0;
Q = Q0;
cpi->zbin_over_quant = last_zbin_oq = last_zbin_oq0;
cpi->rate_correction_factor = rate_correction_factor0;
cpi->gf_rate_correction_factor = gf_rate_correction_factor0;
cpi->active_best_quality = active_best_quality0;
cpi->active_worst_quality = active_worst_quality0;
}
#endif
}
}
#endif
if (Loop == TRUE)
{
loop_count++;
#if CONFIG_INTERNAL_STATS
cpi->tot_recode_hits++;
#endif
}
}
while (Loop == TRUE);
// Special case code to reduce pulsing when key frames are forced at a
// fixed interval. Note the reconstruction error if it is the frame before
// the force key frame
if ( cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0) )
{
cpi->ambient_err = vp8_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx],
IF_RTCD(&cpi->rtcd.variance));
}
// This frame's MVs are saved and will be used in next frame's MV
// prediction. Last frame has one more line(add to bottom) and one
// more column(add to right) than cm->mip. The edge elements are
// initialized to 0.
if(cm->show_frame) //do not save for altref frame
{
int mb_row;
int mb_col;
MODE_INFO *tmp = cm->mip;
if(cm->frame_type != KEY_FRAME)
{
for (mb_row = 0; mb_row < cm->mb_rows+1; mb_row ++)
{
for (mb_col = 0; mb_col < cm->mb_cols+1; mb_col ++)
{
if(tmp->mbmi.ref_frame != INTRA_FRAME)
cpi->lfmv[mb_col + mb_row*(cm->mode_info_stride+1)].as_int = tmp->mbmi.mv.as_int;
cpi->lf_ref_frame_sign_bias[mb_col + mb_row*(cm->mode_info_stride+1)] = cm->ref_frame_sign_bias[tmp->mbmi.ref_frame];
cpi->lf_ref_frame[mb_col + mb_row*(cm->mode_info_stride+1)] = tmp->mbmi.ref_frame;
tmp++;
}
}
}
}
// Update the GF useage maps.
// This is done after completing the compression of a frame when all modes
// etc. are finalized but before loop filter
vp8_update_gf_useage_maps(cpi, cm, &cpi->mb);
if (cm->frame_type == KEY_FRAME)
cm->refresh_last_frame = 1;
#if 0
{
FILE *f = fopen("gfactive.stt", "a");
fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame);
fclose(f);
}
#endif
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
#if WRITE_RECON_BUFFER
if(cm->show_frame)
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame);
else
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame+1000);
#endif
// Pick the loop filter level for the frame.
loopfilter_frame(cpi, cm);
// build the bitstream
cpi->dummy_packing = 0;
vp8_pack_bitstream(cpi, dest, size);
update_reference_frames(cm);
/* Move storing frame_type out of the above loop since it is also
* needed in motion search besides loopfilter */
cm->last_frame_type = cm->frame_type;
// Keep a copy of the size estimate used in the loop
loop_size_estimate = cpi->projected_frame_size;
// Update rate control heuristics
cpi->total_byte_count += (*size);
cpi->projected_frame_size = (*size) << 3;
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 2);
cpi->last_q[cm->frame_type] = cm->base_qindex;
// Keep record of last boosted (KF/KF/ARF) Q value.
// If the current frame is coded at a lower Q then we also update it.
// If all mbs in this group are skipped only update if the Q value is
// better than that already stored.
// This is used to help set quality in forced key frames to reduce popping
if ( (cm->base_qindex < cpi->last_boosted_qindex) ||
( (cpi->static_mb_pct < 100) &&
( (cm->frame_type == KEY_FRAME) ||
cm->refresh_alt_ref_frame ||
(cm->refresh_golden_frame && !cpi->is_src_frame_alt_ref) ) ) )
{
cpi->last_boosted_qindex = cm->base_qindex;
}
if (cm->frame_type == KEY_FRAME)
{
vp8_adjust_key_frame_context(cpi);
}
// Keep a record of ambient average Q.
if (cm->frame_type != KEY_FRAME)
cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
// Keep a record from which we can calculate the average Q excluding GF updates and key frames
if ((cm->frame_type != KEY_FRAME) && !cm->refresh_golden_frame && !cm->refresh_alt_ref_frame)
{
cpi->ni_frames++;
cpi->tot_q += vp8_convert_qindex_to_q(Q);
cpi->avg_q = cpi->tot_q / (double)cpi->ni_frames;
// Calculate the average Q for normal inter frames (not key or GFU
// frames).
cpi->ni_tot_qi += Q;
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
}
// Update the buffer level variable.
// Non-viewable frames are a special case and are treated as pure overhead.
if ( !cm->show_frame )
cpi->bits_off_target -= cpi->projected_frame_size;
else
cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
// Clip the buffer level at the maximum buffer size
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size)
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
// Rolling monitors of whether we are over or underspending used to help regulate min and Max Q in two pass.
cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
cpi->rolling_actual_bits = ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
cpi->long_rolling_target_bits = ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
cpi->long_rolling_actual_bits = ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / 32;
// Actual bits spent
cpi->total_actual_bits += cpi->projected_frame_size;
// Debug stats
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
cpi->buffer_level = cpi->bits_off_target;
// Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames
if (cm->frame_type == KEY_FRAME)
{
cpi->twopass.kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
if (cpi->twopass.kf_group_bits < 0)
cpi->twopass.kf_group_bits = 0 ;
}
else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame)
{
cpi->twopass.gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
if (cpi->twopass.gf_group_bits < 0)
cpi->twopass.gf_group_bits = 0 ;
}
// Update the skip mb flag probabilities based on the distribution seen
// in this frame.
update_base_skip_probs( cpi );
#if 0 && CONFIG_INTERNAL_STATS
{
FILE *f = fopen("tmp.stt", "a");
int recon_err;
vp8_clear_system_state(); //__asm emms;
recon_err = vp8_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx],
IF_RTCD(&cpi->rtcd.variance));
if (cpi->twopass.total_left_stats->coded_error != 0.0)
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d"
"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f"
"%6d %5d %5d %5d %8d %8.2f %10d %10.3f"
"%10.3f %8d %10d\n",
cpi->common.current_video_frame, cpi->this_frame_target,
cpi->projected_frame_size, loop_size_estimate,
(cpi->projected_frame_size - cpi->this_frame_target),
(int)cpi->total_target_vs_actual,
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
(int)cpi->total_actual_bits,
vp8_convert_qindex_to_q(cm->base_qindex),
(double)vp8_dc_quant(cm->base_qindex,0)/4.0,
vp8_convert_qindex_to_q(cpi->active_best_quality),
vp8_convert_qindex_to_q(cpi->active_worst_quality),
cpi->avg_q,
vp8_convert_qindex_to_q(cpi->ni_av_qi),
vp8_convert_qindex_to_q(cpi->cq_target_quality),
cpi->zbin_over_quant,
//cpi->avg_frame_qindex, cpi->zbin_over_quant,
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
(int)cpi->twopass.bits_left,
cpi->twopass.total_left_stats->coded_error,
(double)cpi->twopass.bits_left /
cpi->twopass.total_left_stats->coded_error,
cpi->tot_recode_hits, recon_err);
else
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d"
"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f"
"%6d %5d %5d %5d %8d %8.2f %10d %10.3f"
"%8d %10d\n",
cpi->common.current_video_frame,
cpi->this_frame_target, cpi->projected_frame_size,
loop_size_estimate,
(cpi->projected_frame_size - cpi->this_frame_target),
(int)cpi->total_target_vs_actual,
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
(int)cpi->total_actual_bits,
vp8_convert_qindex_to_q(cm->base_qindex),
(double)vp8_dc_quant(cm->base_qindex,0)/4.0,
vp8_convert_qindex_to_q(cpi->active_best_quality),
vp8_convert_qindex_to_q(cpi->active_worst_quality),
cpi->avg_q,
vp8_convert_qindex_to_q(cpi->ni_av_qi),
vp8_convert_qindex_to_q(cpi->cq_target_quality),
cpi->zbin_over_quant,
//cpi->avg_frame_qindex, cpi->zbin_over_quant,
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
(int)cpi->twopass.bits_left,
cpi->twopass.total_left_stats->coded_error,
cpi->tot_recode_hits, recon_err);
fclose(f);
if ( 0 )
{
FILE *fmodes = fopen("Modes.stt", "a");
int i;
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
cpi->common.current_video_frame,
cm->frame_type, cm->refresh_golden_frame,
cm->refresh_alt_ref_frame);
for (i = 0; i < MAX_MODES; i++)
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
fprintf(fmodes, "\n");
fclose(fmodes);
}
}
#endif
#if 0
// Debug stats for segment feature experiments.
print_seg_map(cpi);
#endif
// If this was a kf or Gf note the Q
if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || cm->refresh_alt_ref_frame)
cm->last_kf_gf_q = cm->base_qindex;
if (cm->refresh_golden_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN;
if (cm->refresh_alt_ref_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF;
if (cm->refresh_last_frame & cm->refresh_golden_frame) // both refreshed
cpi->gold_is_last = 1;
else if (cm->refresh_last_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other
cpi->gold_is_last = 0;
if (cm->refresh_last_frame & cm->refresh_alt_ref_frame) // both refreshed
cpi->alt_is_last = 1;
else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame) // 1 refreshed but not the other
cpi->alt_is_last = 0;
if (cm->refresh_alt_ref_frame & cm->refresh_golden_frame) // both refreshed
cpi->gold_is_alt = 1;
else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other
cpi->gold_is_alt = 0;
cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG;
if (cpi->gold_is_last)
cpi->ref_frame_flags &= ~VP8_GOLD_FLAG;
if (cpi->alt_is_last)
cpi->ref_frame_flags &= ~VP8_ALT_FLAG;
if (cpi->gold_is_alt)
cpi->ref_frame_flags &= ~VP8_ALT_FLAG;
if (cpi->oxcf.play_alternate && cm->refresh_alt_ref_frame && (cm->frame_type != KEY_FRAME))
// Update the alternate reference frame stats as appropriate.
update_alt_ref_frame_stats(cpi);
else
// Update the Golden frame stats as appropriate.
update_golden_frame_stats(cpi);
if (cm->frame_type == KEY_FRAME)
{
// Tell the caller that the frame was coded as a key frame
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
// As this frame is a key frame the next defaults to an inter frame.
cm->frame_type = INTER_FRAME;
}
else
{
*frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY;
}
// Clear the one shot update flags for segmentation map and mode/ref loop filter deltas.
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
xd->mode_ref_lf_delta_update = 0;
// Dont increment frame counters if this was an altref buffer update not a real frame
if (cm->show_frame)
{
cm->current_video_frame++;
cpi->frames_since_key++;
}
// reset to normal state now that we are done.
#if 0
{
char filename[512];
FILE *recon_file;
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
recon_file = fopen(filename, "wb");
fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc,
cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file);
fclose(recon_file);
}
#endif
#ifdef OUTPUT_YUV_REC
vp8_write_yuv_rec_frame(cm);
#endif
if(cm->show_frame)
{
vpx_memcpy(cm->prev_mip, cm->mip,
(cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO));
}
else
{
vpx_memset(cm->prev_mip, 0,
(cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO));
}
}
static void Pass2Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags)
{
if (!cpi->common.refresh_alt_ref_frame)
vp8_second_pass(cpi);
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
cpi->twopass.bits_left -= 8 * *size;
if (!cpi->common.refresh_alt_ref_frame)
{
double lower_bounds_min_rate = FRAME_OVERHEAD_BITS*cpi->oxcf.frame_rate;
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
*cpi->oxcf.two_pass_vbrmin_section / 100);
if (two_pass_min_rate < lower_bounds_min_rate)
two_pass_min_rate = lower_bounds_min_rate;
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->oxcf.frame_rate);
}
}
//For ARM NEON, d8-d15 are callee-saved registers, and need to be saved by us.
#if HAVE_ARMV7
extern void vp8_push_neon(int64_t *store);
extern void vp8_pop_neon(int64_t *store);
#endif
int vp8_receive_raw_frame(VP8_PTR ptr, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, int64_t time_stamp, int64_t end_time)
{
#if HAVE_ARMV7
int64_t store_reg[8];
#endif
VP8_COMP *cpi = (VP8_COMP *) ptr;
VP8_COMMON *cm = &cpi->common;
struct vpx_usec_timer timer;
int res = 0;
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_push_neon(store_reg);
}
#endif
vpx_usec_timer_start(&timer);
if(vp8_lookahead_push(cpi->lookahead, sd, time_stamp, end_time,
frame_flags, cpi->active_map_enabled ? cpi->active_map : NULL))
res = -1;
cm->clr_type = sd->clrtype;
vpx_usec_timer_mark(&timer);
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_pop_neon(store_reg);
}
#endif
return res;
}
static int frame_is_reference(const VP8_COMP *cpi)
{
const VP8_COMMON *cm = &cpi->common;
const MACROBLOCKD *xd = &cpi->mb.e_mbd;
return cm->frame_type == KEY_FRAME || cm->refresh_last_frame
|| cm->refresh_golden_frame || cm->refresh_alt_ref_frame
|| cm->copy_buffer_to_gf || cm->copy_buffer_to_arf
|| cm->refresh_entropy_probs
|| xd->mode_ref_lf_delta_update
|| xd->update_mb_segmentation_map || xd->update_mb_segmentation_data;
}
int vp8_get_compressed_data(VP8_PTR ptr, unsigned int *frame_flags, unsigned long *size, unsigned char *dest, int64_t *time_stamp, int64_t *time_end, int flush)
{
#if HAVE_ARMV7
int64_t store_reg[8];
#endif
VP8_COMP *cpi = (VP8_COMP *) ptr;
VP8_COMMON *cm = &cpi->common;
struct vpx_usec_timer tsctimer;
struct vpx_usec_timer ticktimer;
struct vpx_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
if (!cpi)
return -1;
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_push_neon(store_reg);
}
#endif
vpx_usec_timer_start(&cmptimer);
cpi->source = NULL;
#if CONFIG_HIGH_PRECISION_MV
cpi->mb.e_mbd.allow_high_precision_mv = ALTREF_HIGH_PRECISION_MV;
#endif
// Should we code an alternate reference frame
if (cpi->oxcf.play_alternate &&
cpi->source_alt_ref_pending)
{
if ((cpi->source = vp8_lookahead_peek(cpi->lookahead,
cpi->frames_till_gf_update_due)))
{
cpi->alt_ref_source = cpi->source;
if (cpi->oxcf.arnr_max_frames > 0)
{
vp8_temporal_filter_prepare_c(cpi,
cpi->frames_till_gf_update_due);
force_src_buffer = &cpi->alt_ref_buffer;
}
cm->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due;
cm->refresh_alt_ref_frame = 1;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 0;
cm->show_frame = 0;
cpi->source_alt_ref_pending = FALSE; // Clear Pending altf Ref flag.
cpi->is_src_frame_alt_ref = 0;
}
}
if (!cpi->source)
{
if ((cpi->source = vp8_lookahead_pop(cpi->lookahead, flush)))
{
cm->show_frame = 1;
cpi->is_src_frame_alt_ref = cpi->alt_ref_source
&& (cpi->source == cpi->alt_ref_source);
if(cpi->is_src_frame_alt_ref)
cpi->alt_ref_source = NULL;
}
}
if (cpi->source)
{
cpi->un_scaled_source =
cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img;
*time_stamp = cpi->source->ts_start;
*time_end = cpi->source->ts_end;
*frame_flags = cpi->source->flags;
}
else
{
*size = 0;
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done)
{
vp8_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
}
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_pop_neon(store_reg);
}
#endif
return -1;
}
if (cpi->source->ts_start < cpi->first_time_stamp_ever)
{
cpi->first_time_stamp_ever = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
}
// adjust frame rates based on timestamps given
if (!cm->refresh_alt_ref_frame)
{
int64_t this_duration;
int step = 0;
if (cpi->source->ts_start == cpi->first_time_stamp_ever)
{
this_duration = cpi->source->ts_end - cpi->source->ts_start;
step = 1;
}
else
{
int64_t last_duration;
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
last_duration = cpi->last_end_time_stamp_seen
- cpi->last_time_stamp_seen;
// do a step update if the duration changes by 10%
if (last_duration)
step = ((this_duration - last_duration) * 10 / last_duration);
}
if (this_duration)
{
if (step)
vp8_new_frame_rate(cpi, 10000000.0 / this_duration);
else
{
double avg_duration, interval;
/* Average this frame's rate into the last second's average
* frame rate. If we haven't seen 1 second yet, then average
* over the whole interval seen.
*/
interval = cpi->source->ts_end - cpi->first_time_stamp_ever;
if(interval > 10000000.0)
interval = 10000000;
avg_duration = 10000000.0 / cpi->oxcf.frame_rate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
vp8_new_frame_rate(cpi, 10000000.0 / avg_duration);
}
}
cpi->last_time_stamp_seen = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
}
// start with a 0 size frame
*size = 0;
// Clear down mmx registers
vp8_clear_system_state(); //__asm emms;
cm->frame_type = INTER_FRAME;
cm->frame_flags = *frame_flags;
#if 0
if (cm->refresh_alt_ref_frame)
{
//cm->refresh_golden_frame = 1;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 0;
}
else
{
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
}
#endif
/* find a free buffer for the new frame */
{
int i = 0;
for(; i < NUM_YV12_BUFFERS; i++)
{
if(!cm->yv12_fb[i].flags)
{
cm->new_fb_idx = i;
break;
}
}
assert(i < NUM_YV12_BUFFERS );
}
if (cpi->pass == 1)
{
Pass1Encode(cpi, size, dest, frame_flags);
}
else if (cpi->pass == 2)
{
Pass2Encode(cpi, size, dest, frame_flags);
}
else
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
if(cm->refresh_entropy_probs)
{
if(cm->refresh_alt_ref_frame)
vpx_memcpy(&cm->lfc_a, &cm->fc, sizeof(cm->fc));
else
vpx_memcpy(&cm->lfc, &cm->fc, sizeof(cm->fc));
}
// if its a dropped frame honor the requests on subsequent frames
if (*size > 0)
{
cpi->droppable = !frame_is_reference(cpi);
// return to normal state
cm->refresh_entropy_probs = 1;
cm->refresh_alt_ref_frame = 0;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
cm->frame_type = INTER_FRAME;
}
vpx_usec_timer_mark(&cmptimer);
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame)
{
generate_psnr_packet(cpi);
}
#if CONFIG_INTERNAL_STATS
if (cpi->pass != 1)
{
cpi->bytes += *size;
if (cm->show_frame)
{
cpi->count ++;
if (cpi->b_calculate_psnr)
{
double ye,ue,ve;
double frame_psnr;
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
int y_samples = orig->y_height * orig->y_width ;
int uv_samples = orig->uv_height * orig->uv_width ;
int t_samples = y_samples + 2 * uv_samples;
int64_t sq_error;
ye = calc_plane_error(orig->y_buffer, orig->y_stride,
recon->y_buffer, recon->y_stride, orig->y_width, orig->y_height,
IF_RTCD(&cpi->rtcd.variance));
ue = calc_plane_error(orig->u_buffer, orig->uv_stride,
recon->u_buffer, recon->uv_stride, orig->uv_width, orig->uv_height,
IF_RTCD(&cpi->rtcd.variance));
ve = calc_plane_error(orig->v_buffer, orig->uv_stride,
recon->v_buffer, recon->uv_stride, orig->uv_width, orig->uv_height,
IF_RTCD(&cpi->rtcd.variance));
sq_error = ye + ue + ve;
frame_psnr = vp8_mse2psnr(t_samples, 255.0, sq_error);
cpi->total_y += vp8_mse2psnr(y_samples, 255.0, ye);
cpi->total_u += vp8_mse2psnr(uv_samples, 255.0, ue);
cpi->total_v += vp8_mse2psnr(uv_samples, 255.0, ve);
cpi->total_sq_error += sq_error;
cpi->total += frame_psnr;
{
double frame_psnr2, frame_ssim2 = 0;
double weight = 0;
vp8_deblock(cm->frame_to_show, &cm->post_proc_buffer, cm->filter_level * 10 / 6, 1, 0, IF_RTCD(&cm->rtcd.postproc));
vp8_clear_system_state();
ye = calc_plane_error(orig->y_buffer, orig->y_stride,
pp->y_buffer, pp->y_stride, orig->y_width, orig->y_height,
IF_RTCD(&cpi->rtcd.variance));
ue = calc_plane_error(orig->u_buffer, orig->uv_stride,
pp->u_buffer, pp->uv_stride, orig->uv_width, orig->uv_height,
IF_RTCD(&cpi->rtcd.variance));
ve = calc_plane_error(orig->v_buffer, orig->uv_stride,
pp->v_buffer, pp->uv_stride, orig->uv_width, orig->uv_height,
IF_RTCD(&cpi->rtcd.variance));
sq_error = ye + ue + ve;
frame_psnr2 = vp8_mse2psnr(t_samples, 255.0, sq_error);
cpi->totalp_y += vp8_mse2psnr(y_samples, 255.0, ye);
cpi->totalp_u += vp8_mse2psnr(uv_samples, 255.0, ue);
cpi->totalp_v += vp8_mse2psnr(uv_samples, 255.0, ve);
cpi->total_sq_error2 += sq_error;
cpi->totalp += frame_psnr2;
frame_ssim2 = vp8_calc_ssim(cpi->Source,
&cm->post_proc_buffer, 1, &weight,
IF_RTCD(&cpi->rtcd.variance));
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
#if 0
{
FILE *f = fopen("q_used.stt", "a");
fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
cpi->common.current_video_frame,y2, u2, v2,
frame_psnr2, frame_ssim2);
fclose(f);
}
#endif
}
}
if (cpi->b_calculate_ssimg)
{
double y, u, v, frame_all;
frame_all = vp8_calc_ssimg(cpi->Source, cm->frame_to_show,
&y, &u, &v, IF_RTCD(&cpi->rtcd.variance));
cpi->total_ssimg_y += y;
cpi->total_ssimg_u += u;
cpi->total_ssimg_v += v;
cpi->total_ssimg_all += frame_all;
}
}
}
#endif
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_pop_neon(store_reg);
}
#endif
return 0;
}
int vp8_get_preview_raw_frame(VP8_PTR comp, YV12_BUFFER_CONFIG *dest, vp8_ppflags_t *flags)
{
VP8_COMP *cpi = (VP8_COMP *) comp;
if (cpi->common.refresh_alt_ref_frame)
return -1;
else
{
int ret;
#if CONFIG_POSTPROC
ret = vp8_post_proc_frame(&cpi->common, dest, flags);
#else
if (cpi->common.frame_to_show)
{
*dest = *cpi->common.frame_to_show;
dest->y_width = cpi->common.Width;
dest->y_height = cpi->common.Height;
dest->uv_height = cpi->common.Height / 2;
ret = 0;
}
else
{
ret = -1;
}
#endif //!CONFIG_POSTPROC
vp8_clear_system_state();
return ret;
}
}
int vp8_set_roimap(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[4], int delta_lf[4], unsigned int threshold[4])
{
VP8_COMP *cpi = (VP8_COMP *) comp;
signed char feature_data[SEG_LVL_MAX][MAX_MB_SEGMENTS];
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int i;
if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols)
return -1;
if (!map)
{
vp8_disable_segmentation((VP8_PTR)cpi);
return 0;
}
// Set the segmentation Map
vp8_set_segmentation_map((VP8_PTR)cpi, map);
// Activate segmentation.
vp8_enable_segmentation((VP8_PTR)cpi);
// Set up the quant segment data
feature_data[SEG_LVL_ALT_Q][0] = delta_q[0];
feature_data[SEG_LVL_ALT_Q][1] = delta_q[1];
feature_data[SEG_LVL_ALT_Q][2] = delta_q[2];
feature_data[SEG_LVL_ALT_Q][3] = delta_q[3];
// Set up the loop segment data s
feature_data[SEG_LVL_ALT_LF][0] = delta_lf[0];
feature_data[SEG_LVL_ALT_LF][1] = delta_lf[1];
feature_data[SEG_LVL_ALT_LF][2] = delta_lf[2];
feature_data[SEG_LVL_ALT_LF][3] = delta_lf[3];
cpi->segment_encode_breakout[0] = threshold[0];
cpi->segment_encode_breakout[1] = threshold[1];
cpi->segment_encode_breakout[2] = threshold[2];
cpi->segment_encode_breakout[3] = threshold[3];
// Enable the loop and quant changes in the feature mask
for ( i = 0; i < 4; i++ )
{
if (delta_q[i])
enable_segfeature(xd, i, SEG_LVL_ALT_Q);
else
disable_segfeature(xd, i, SEG_LVL_ALT_Q);
if (delta_lf[i])
enable_segfeature(xd, i, SEG_LVL_ALT_LF);
else
disable_segfeature(xd, i, SEG_LVL_ALT_LF);
}
// Initialise the feature data structure
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
vp8_set_segment_data((VP8_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA);
return 0;
}
int vp8_set_active_map(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols)
{
VP8_COMP *cpi = (VP8_COMP *) comp;
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols)
{
if (map)
{
vpx_memcpy(cpi->active_map, map, rows * cols);
cpi->active_map_enabled = 1;
}
else
cpi->active_map_enabled = 0;
return 0;
}
else
{
//cpi->active_map_enabled = 0;
return -1 ;
}
}
int vp8_set_internal_size(VP8_PTR comp, VPX_SCALING horiz_mode, VPX_SCALING vert_mode)
{
VP8_COMP *cpi = (VP8_COMP *) comp;
if (horiz_mode <= ONETWO)
cpi->common.horiz_scale = horiz_mode;
else
return -1;
if (vert_mode <= ONETWO)
cpi->common.vert_scale = vert_mode;
else
return -1;
return 0;
}
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd)
{
int i, j;
int Total = 0;
unsigned char *src = source->y_buffer;
unsigned char *dst = dest->y_buffer;
(void)rtcd;
// Loop through the Y plane raw and reconstruction data summing (square differences)
for (i = 0; i < source->y_height; i += 16)
{
for (j = 0; j < source->y_width; j += 16)
{
unsigned int sse;
Total += VARIANCE_INVOKE(rtcd, mse16x16)(src + j, source->y_stride, dst + j, dest->y_stride, &sse);
}
src += 16 * source->y_stride;
dst += 16 * dest->y_stride;
}
return Total;
}
int vp8_get_quantizer(VP8_PTR c)
{
VP8_COMP *cpi = (VP8_COMP *) c;
return cpi->common.base_qindex;
}