Manually cherry-picked commits: ceef058 libvpx->libaom part2 3d26d91 libvpx -> libaom cfea7dd vp10/ -> av1/ 3a8eff7 Fix a build issue for a test bf4202e Rename vpx to aom Change-Id: I1b0eb5a40796e3aaf41c58984b4229a439a597dc
192 lines
5.2 KiB
C
192 lines
5.2 KiB
C
/*
|
|
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include "av1/encoder/palette.h"
|
|
|
|
static float calc_dist(const float *p1, const float *p2, int dim) {
|
|
float dist = 0;
|
|
int i;
|
|
for (i = 0; i < dim; ++i) {
|
|
const float diff = p1[i] - p2[i];
|
|
dist += diff * diff;
|
|
}
|
|
return dist;
|
|
}
|
|
|
|
void vp10_calc_indices(const float *data, const float *centroids,
|
|
uint8_t *indices, int n, int k, int dim) {
|
|
int i, j;
|
|
for (i = 0; i < n; ++i) {
|
|
float min_dist = calc_dist(data + i * dim, centroids, dim);
|
|
indices[i] = 0;
|
|
for (j = 1; j < k; ++j) {
|
|
const float this_dist =
|
|
calc_dist(data + i * dim, centroids + j * dim, dim);
|
|
if (this_dist < min_dist) {
|
|
min_dist = this_dist;
|
|
indices[i] = j;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Generate a random number in the range [0, 32768).
|
|
static unsigned int lcg_rand16(unsigned int *state) {
|
|
*state = *state * 1103515245 + 12345;
|
|
return *state / 65536 % 32768;
|
|
}
|
|
|
|
static void calc_centroids(const float *data, float *centroids,
|
|
const uint8_t *indices, int n, int k, int dim) {
|
|
int i, j, index;
|
|
int count[PALETTE_MAX_SIZE];
|
|
unsigned int rand_state = (unsigned int)data[0];
|
|
|
|
assert(n <= 32768);
|
|
|
|
memset(count, 0, sizeof(count[0]) * k);
|
|
memset(centroids, 0, sizeof(centroids[0]) * k * dim);
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
index = indices[i];
|
|
assert(index < k);
|
|
++count[index];
|
|
for (j = 0; j < dim; ++j) {
|
|
centroids[index * dim + j] += data[i * dim + j];
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < k; ++i) {
|
|
if (count[i] == 0) {
|
|
memcpy(centroids + i * dim, data + (lcg_rand16(&rand_state) % n) * dim,
|
|
sizeof(centroids[0]) * dim);
|
|
} else {
|
|
const float norm = 1.0f / count[i];
|
|
for (j = 0; j < dim; ++j) centroids[i * dim + j] *= norm;
|
|
}
|
|
}
|
|
|
|
// Round to nearest integers.
|
|
for (i = 0; i < k * dim; ++i) {
|
|
centroids[i] = roundf(centroids[i]);
|
|
}
|
|
}
|
|
|
|
static float calc_total_dist(const float *data, const float *centroids,
|
|
const uint8_t *indices, int n, int k, int dim) {
|
|
float dist = 0;
|
|
int i;
|
|
(void)k;
|
|
|
|
for (i = 0; i < n; ++i)
|
|
dist += calc_dist(data + i * dim, centroids + indices[i] * dim, dim);
|
|
|
|
return dist;
|
|
}
|
|
|
|
void vp10_k_means(const float *data, float *centroids, uint8_t *indices, int n,
|
|
int k, int dim, int max_itr) {
|
|
int i;
|
|
float this_dist;
|
|
float pre_centroids[2 * PALETTE_MAX_SIZE];
|
|
uint8_t pre_indices[MAX_SB_SQUARE];
|
|
|
|
vp10_calc_indices(data, centroids, indices, n, k, dim);
|
|
this_dist = calc_total_dist(data, centroids, indices, n, k, dim);
|
|
|
|
for (i = 0; i < max_itr; ++i) {
|
|
const float pre_dist = this_dist;
|
|
memcpy(pre_centroids, centroids, sizeof(pre_centroids[0]) * k * dim);
|
|
memcpy(pre_indices, indices, sizeof(pre_indices[0]) * n);
|
|
|
|
calc_centroids(data, centroids, indices, n, k, dim);
|
|
vp10_calc_indices(data, centroids, indices, n, k, dim);
|
|
this_dist = calc_total_dist(data, centroids, indices, n, k, dim);
|
|
|
|
if (this_dist > pre_dist) {
|
|
memcpy(centroids, pre_centroids, sizeof(pre_centroids[0]) * k * dim);
|
|
memcpy(indices, pre_indices, sizeof(pre_indices[0]) * n);
|
|
break;
|
|
}
|
|
if (!memcmp(centroids, pre_centroids, sizeof(pre_centroids[0]) * k * dim))
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int float_comparer(const void *a, const void *b) {
|
|
const float fa = *(const float *)a;
|
|
const float fb = *(const float *)b;
|
|
return (fa > fb) - (fb < fa);
|
|
}
|
|
|
|
int vp10_remove_duplicates(float *centroids, int num_centroids) {
|
|
int num_unique; // number of unique centroids
|
|
int i;
|
|
qsort(centroids, num_centroids, sizeof(*centroids), float_comparer);
|
|
// Remove duplicates.
|
|
num_unique = 1;
|
|
for (i = 1; i < num_centroids; ++i) {
|
|
if (centroids[i] != centroids[i - 1]) { // found a new unique centroid
|
|
centroids[num_unique++] = centroids[i];
|
|
}
|
|
}
|
|
return num_unique;
|
|
}
|
|
|
|
int vp10_count_colors(const uint8_t *src, int stride, int rows, int cols) {
|
|
int n = 0, r, c, i, val_count[256];
|
|
uint8_t val;
|
|
memset(val_count, 0, sizeof(val_count));
|
|
|
|
for (r = 0; r < rows; ++r) {
|
|
for (c = 0; c < cols; ++c) {
|
|
val = src[r * stride + c];
|
|
++val_count[val];
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 256; ++i) {
|
|
if (val_count[i]) {
|
|
++n;
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
#if CONFIG_VP9_HIGHBITDEPTH
|
|
int vp10_count_colors_highbd(const uint8_t *src8, int stride, int rows,
|
|
int cols, int bit_depth) {
|
|
int n = 0, r, c, i;
|
|
uint16_t val;
|
|
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
|
|
int val_count[1 << 12];
|
|
|
|
assert(bit_depth <= 12);
|
|
memset(val_count, 0, (1 << 12) * sizeof(val_count[0]));
|
|
for (r = 0; r < rows; ++r) {
|
|
for (c = 0; c < cols; ++c) {
|
|
val = src[r * stride + c];
|
|
++val_count[val];
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < (1 << bit_depth); ++i) {
|
|
if (val_count[i]) {
|
|
++n;
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
#endif // CONFIG_VP9_HIGHBITDEPTH
|