vpx/vp9/common/vp9_reconinter.c
Ronald S. Bultje c3941665e9 64x64 blocksize support.
3.2% gains on std/hd, 1.0% gains on hd.

Change-Id: I481d5df23d8a4fc650a5bcba956554490b2bd200
2013-01-05 18:20:25 -08:00

1208 lines
40 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_ports/config.h"
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
void vp9_setup_interp_filters(MACROBLOCKD *xd,
INTERPOLATIONFILTERTYPE mcomp_filter_type,
VP9_COMMON *cm) {
if (mcomp_filter_type == SIXTAP) {
xd->subpixel_predict = vp9_sixtap_predict;
xd->subpixel_predict8x4 = vp9_sixtap_predict8x4;
xd->subpixel_predict8x8 = vp9_sixtap_predict8x8;
xd->subpixel_predict16x16 = vp9_sixtap_predict16x16;
xd->subpixel_predict_avg = vp9_sixtap_predict_avg;
xd->subpixel_predict_avg8x8 = vp9_sixtap_predict_avg8x8;
xd->subpixel_predict_avg16x16 = vp9_sixtap_predict_avg16x16;
} else if (mcomp_filter_type == EIGHTTAP || mcomp_filter_type == SWITCHABLE) {
xd->subpixel_predict = vp9_eighttap_predict;
xd->subpixel_predict8x4 = vp9_eighttap_predict8x4;
xd->subpixel_predict8x8 = vp9_eighttap_predict8x8;
xd->subpixel_predict16x16 = vp9_eighttap_predict16x16;
xd->subpixel_predict_avg = vp9_eighttap_predict_avg4x4;
xd->subpixel_predict_avg8x8 = vp9_eighttap_predict_avg8x8;
xd->subpixel_predict_avg16x16 = vp9_eighttap_predict_avg16x16;
} else if (mcomp_filter_type == EIGHTTAP_SHARP) {
xd->subpixel_predict = vp9_eighttap_predict_sharp;
xd->subpixel_predict8x4 = vp9_eighttap_predict8x4_sharp;
xd->subpixel_predict8x8 = vp9_eighttap_predict8x8_sharp;
xd->subpixel_predict16x16 = vp9_eighttap_predict16x16_sharp;
xd->subpixel_predict_avg = vp9_eighttap_predict_avg4x4_sharp;
xd->subpixel_predict_avg8x8 = vp9_eighttap_predict_avg8x8_sharp;
xd->subpixel_predict_avg16x16 = vp9_eighttap_predict_avg16x16_sharp_c;
} else {
xd->subpixel_predict = vp9_bilinear_predict4x4;
xd->subpixel_predict8x4 = vp9_bilinear_predict8x4;
xd->subpixel_predict8x8 = vp9_bilinear_predict8x8;
xd->subpixel_predict16x16 = vp9_bilinear_predict16x16;
xd->subpixel_predict_avg = vp9_bilinear_predict_avg4x4;
xd->subpixel_predict_avg8x8 = vp9_bilinear_predict_avg8x8;
xd->subpixel_predict_avg16x16 = vp9_bilinear_predict_avg16x16;
}
}
void vp9_copy_mem16x16_c(uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 16; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
dst[8] = src[8];
dst[9] = src[9];
dst[10] = src[10];
dst[11] = src[11];
dst[12] = src[12];
dst[13] = src[13];
dst[14] = src[14];
dst[15] = src[15];
#else
((uint32_t *)dst)[0] = ((uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((uint32_t *)src)[1];
((uint32_t *)dst)[2] = ((uint32_t *)src)[2];
((uint32_t *)dst)[3] = ((uint32_t *)src)[3];
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp9_avg_mem16x16_c(uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 16; r++) {
int n;
for (n = 0; n < 16; n++) {
dst[n] = (dst[n] + src[n] + 1) >> 1;
}
src += src_stride;
dst += dst_stride;
}
}
void vp9_copy_mem8x8_c(uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 8; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
#else
((uint32_t *)dst)[0] = ((uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((uint32_t *)src)[1];
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp9_avg_mem8x8_c(uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 8; r++) {
int n;
for (n = 0; n < 8; n++) {
dst[n] = (dst[n] + src[n] + 1) >> 1;
}
src += src_stride;
dst += dst_stride;
}
}
void vp9_copy_mem8x4_c(uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 4; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
#else
((uint32_t *)dst)[0] = ((uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((uint32_t *)src)[1];
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp9_build_inter_predictors_b(BLOCKD *d, int pitch, vp9_subpix_fn_t sppf) {
int r;
uint8_t *ptr_base;
uint8_t *ptr;
uint8_t *pred_ptr = d->predictor;
int_mv mv;
ptr_base = *(d->base_pre);
mv.as_int = d->bmi.as_mv.first.as_int;
if (mv.as_mv.row & 7 || mv.as_mv.col & 7) {
ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride +
(mv.as_mv.col >> 3);
sppf(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1, (mv.as_mv.row & 7) << 1,
pred_ptr, pitch);
} else {
ptr_base += d->pre + (mv.as_mv.row >> 3) * d->pre_stride +
(mv.as_mv.col >> 3);
ptr = ptr_base;
for (r = 0; r < 4; r++) {
#if !(CONFIG_FAST_UNALIGNED)
pred_ptr[0] = ptr[0];
pred_ptr[1] = ptr[1];
pred_ptr[2] = ptr[2];
pred_ptr[3] = ptr[3];
#else
*(uint32_t *)pred_ptr = *(uint32_t *)ptr;
#endif
pred_ptr += pitch;
ptr += d->pre_stride;
}
}
}
/*
* Similar to vp9_build_inter_predictors_b(), but instead of storing the
* results in d->predictor, we average the contents of d->predictor (which
* come from an earlier call to vp9_build_inter_predictors_b()) with the
* predictor of the second reference frame / motion vector.
*/
void vp9_build_2nd_inter_predictors_b(BLOCKD *d, int pitch,
vp9_subpix_fn_t sppf) {
int r;
uint8_t *ptr_base;
uint8_t *ptr;
uint8_t *pred_ptr = d->predictor;
int_mv mv;
ptr_base = *(d->base_second_pre);
mv.as_int = d->bmi.as_mv.second.as_int;
if (mv.as_mv.row & 7 || mv.as_mv.col & 7) {
ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride +
(mv.as_mv.col >> 3);
sppf(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1, (mv.as_mv.row & 7) << 1,
pred_ptr, pitch);
} else {
ptr_base += d->pre + (mv.as_mv.row >> 3) * d->pre_stride +
(mv.as_mv.col >> 3);
ptr = ptr_base;
for (r = 0; r < 4; r++) {
pred_ptr[0] = (pred_ptr[0] + ptr[0] + 1) >> 1;
pred_ptr[1] = (pred_ptr[1] + ptr[1] + 1) >> 1;
pred_ptr[2] = (pred_ptr[2] + ptr[2] + 1) >> 1;
pred_ptr[3] = (pred_ptr[3] + ptr[3] + 1) >> 1;
pred_ptr += pitch;
ptr += d->pre_stride;
}
}
}
void vp9_build_inter_predictors4b(MACROBLOCKD *xd, BLOCKD *d, int pitch) {
uint8_t *ptr_base;
uint8_t *ptr;
uint8_t *pred_ptr = d->predictor;
int_mv mv;
ptr_base = *(d->base_pre);
mv.as_int = d->bmi.as_mv.first.as_int;
ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride +
(mv.as_mv.col >> 3);
if (mv.as_mv.row & 7 || mv.as_mv.col & 7) {
xd->subpixel_predict8x8(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1,
(mv.as_mv.row & 7) << 1, pred_ptr, pitch);
} else {
vp9_copy_mem8x8(ptr, d->pre_stride, pred_ptr, pitch);
}
}
/*
* Similar to build_inter_predictors_4b(), but instead of storing the
* results in d->predictor, we average the contents of d->predictor (which
* come from an earlier call to build_inter_predictors_4b()) with the
* predictor of the second reference frame / motion vector.
*/
void vp9_build_2nd_inter_predictors4b(MACROBLOCKD *xd,
BLOCKD *d, int pitch) {
uint8_t *ptr_base;
uint8_t *ptr;
uint8_t *pred_ptr = d->predictor;
int_mv mv;
ptr_base = *(d->base_second_pre);
mv.as_int = d->bmi.as_mv.second.as_int;
ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride +
(mv.as_mv.col >> 3);
if (mv.as_mv.row & 7 || mv.as_mv.col & 7) {
xd->subpixel_predict_avg8x8(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1,
(mv.as_mv.row & 7) << 1, pred_ptr, pitch);
} else {
vp9_avg_mem8x8(ptr, d->pre_stride, pred_ptr, pitch);
}
}
static void build_inter_predictors2b(MACROBLOCKD *xd, BLOCKD *d, int pitch) {
uint8_t *ptr_base;
uint8_t *ptr;
uint8_t *pred_ptr = d->predictor;
int_mv mv;
ptr_base = *(d->base_pre);
mv.as_int = d->bmi.as_mv.first.as_int;
ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride +
(mv.as_mv.col >> 3);
if (mv.as_mv.row & 7 || mv.as_mv.col & 7) {
xd->subpixel_predict8x4(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1,
(mv.as_mv.row & 7) << 1, pred_ptr, pitch);
} else {
vp9_copy_mem8x4(ptr, d->pre_stride, pred_ptr, pitch);
}
}
/*encoder only*/
#if CONFIG_PRED_FILTER
// Select the thresholded or non-thresholded filter
#define USE_THRESH_FILTER 0
#define PRED_FILT_LEN 5
static const int filt_shift = 4;
static const int pred_filter[PRED_FILT_LEN] = {1, 2, 10, 2, 1};
// Alternative filter {1, 1, 4, 1, 1}
#if !USE_THRESH_FILTER
void filter_mb(uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
int width, int height) {
int i, j, k;
unsigned int temp[32 * 32];
unsigned int *pTmp = temp;
uint8_t *pSrc = src - (1 + src_stride) * (PRED_FILT_LEN / 2);
// Horizontal
for (i = 0; i < height + PRED_FILT_LEN - 1; i++) {
for (j = 0; j < width; j++) {
int sum = 0;
for (k = 0; k < PRED_FILT_LEN; k++)
sum += pSrc[j + k] * pred_filter[k];
pTmp[j] = sum;
}
pSrc += src_stride;
pTmp += width;
}
// Vertical
pTmp = temp;
for (i = 0; i < width; i++) {
uint8_t *pDst = dst + i;
for (j = 0; j < height; j++) {
int sum = 0;
for (k = 0; k < PRED_FILT_LEN; k++)
sum += pTmp[(j + k) * width] * pred_filter[k];
// Round
pDst[j * dst_stride] = (sum + ((1 << (filt_shift << 1)) >> 1)) >>
(filt_shift << 1);
}
++pTmp;
}
}
#else
// Based on vp9_post_proc_down_and_across_c (vp9_postproc.c)
void filter_mb(uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
int width, int height) {
uint8_t *pSrc, *pDst;
int row;
int col;
int i;
int v;
uint8_t d[8];
/* TODO flimit should be linked to the quantizer value */
int flimit = 7;
for (row = 0; row < height; row++) {
/* post_proc_down for one row */
pSrc = src;
pDst = dst;
for (col = 0; col < width; col++) {
int kernel = (1 << (filt_shift - 1));
int v = pSrc[col];
for (i = -2; i <= 2; i++) {
if (abs(v - pSrc[col + i * src_stride]) > flimit)
goto down_skip_convolve;
kernel += pred_filter[2 + i] * pSrc[col + i * src_stride];
}
v = (kernel >> filt_shift);
down_skip_convolve:
pDst[col] = v;
}
/* now post_proc_across */
pSrc = dst;
pDst = dst;
for (i = 0; i < 8; i++)
d[i] = pSrc[i];
for (col = 0; col < width; col++) {
int kernel = (1 << (filt_shift - 1));
v = pSrc[col];
d[col & 7] = v;
for (i = -2; i <= 2; i++) {
if (abs(v - pSrc[col + i]) > flimit)
goto across_skip_convolve;
kernel += pred_filter[2 + i] * pSrc[col + i];
}
d[col & 7] = (kernel >> filt_shift);
across_skip_convolve:
if (col >= 2)
pDst[col - 2] = d[(col - 2) & 7];
}
/* handle the last two pixels */
pDst[col - 2] = d[(col - 2) & 7];
pDst[col - 1] = d[(col - 1) & 7];
/* next row */
src += src_stride;
dst += dst_stride;
}
}
#endif // !USE_THRESH_FILTER
#endif // CONFIG_PRED_FILTER
/*encoder only*/
void vp9_build_inter4x4_predictors_mbuv(MACROBLOCKD *xd) {
int i, j;
BLOCKD *blockd = xd->block;
/* build uv mvs */
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
int yoffset = i * 8 + j * 2;
int uoffset = 16 + i * 2 + j;
int voffset = 20 + i * 2 + j;
int temp;
temp = blockd[yoffset ].bmi.as_mv.first.as_mv.row
+ blockd[yoffset + 1].bmi.as_mv.first.as_mv.row
+ blockd[yoffset + 4].bmi.as_mv.first.as_mv.row
+ blockd[yoffset + 5].bmi.as_mv.first.as_mv.row;
if (temp < 0) temp -= 4;
else temp += 4;
xd->block[uoffset].bmi.as_mv.first.as_mv.row = (temp / 8) &
xd->fullpixel_mask;
temp = blockd[yoffset ].bmi.as_mv.first.as_mv.col
+ blockd[yoffset + 1].bmi.as_mv.first.as_mv.col
+ blockd[yoffset + 4].bmi.as_mv.first.as_mv.col
+ blockd[yoffset + 5].bmi.as_mv.first.as_mv.col;
if (temp < 0) temp -= 4;
else temp += 4;
blockd[uoffset].bmi.as_mv.first.as_mv.col = (temp / 8) &
xd->fullpixel_mask;
blockd[voffset].bmi.as_mv.first.as_mv.row =
blockd[uoffset].bmi.as_mv.first.as_mv.row;
blockd[voffset].bmi.as_mv.first.as_mv.col =
blockd[uoffset].bmi.as_mv.first.as_mv.col;
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
temp = blockd[yoffset ].bmi.as_mv.second.as_mv.row
+ blockd[yoffset + 1].bmi.as_mv.second.as_mv.row
+ blockd[yoffset + 4].bmi.as_mv.second.as_mv.row
+ blockd[yoffset + 5].bmi.as_mv.second.as_mv.row;
if (temp < 0) {
temp -= 4;
} else {
temp += 4;
}
blockd[uoffset].bmi.as_mv.second.as_mv.row = (temp / 8) &
xd->fullpixel_mask;
temp = blockd[yoffset ].bmi.as_mv.second.as_mv.col
+ blockd[yoffset + 1].bmi.as_mv.second.as_mv.col
+ blockd[yoffset + 4].bmi.as_mv.second.as_mv.col
+ blockd[yoffset + 5].bmi.as_mv.second.as_mv.col;
if (temp < 0) {
temp -= 4;
} else {
temp += 4;
}
blockd[uoffset].bmi.as_mv.second.as_mv.col = (temp / 8) &
xd->fullpixel_mask;
blockd[voffset].bmi.as_mv.second.as_mv.row =
blockd[uoffset].bmi.as_mv.second.as_mv.row;
blockd[voffset].bmi.as_mv.second.as_mv.col =
blockd[uoffset].bmi.as_mv.second.as_mv.col;
}
}
}
for (i = 16; i < 24; i += 2) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
if (d0->bmi.as_mv.first.as_int == d1->bmi.as_mv.first.as_int)
build_inter_predictors2b(xd, d0, 8);
else {
vp9_build_inter_predictors_b(d0, 8, xd->subpixel_predict);
vp9_build_inter_predictors_b(d1, 8, xd->subpixel_predict);
}
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
vp9_build_2nd_inter_predictors_b(d0, 8, xd->subpixel_predict_avg);
vp9_build_2nd_inter_predictors_b(d1, 8, xd->subpixel_predict_avg);
}
}
}
static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) {
/* If the MV points so far into the UMV border that no visible pixels
* are used for reconstruction, the subpel part of the MV can be
* discarded and the MV limited to 16 pixels with equivalent results.
*
* This limit kicks in at 19 pixels for the top and left edges, for
* the 16 pixels plus 3 taps right of the central pixel when subpel
* filtering. The bottom and right edges use 16 pixels plus 2 pixels
* left of the central pixel when filtering.
*/
if (mv->col < (xd->mb_to_left_edge - ((16 + VP9_INTERP_EXTEND) << 3)))
mv->col = xd->mb_to_left_edge - (16 << 3);
else if (mv->col > xd->mb_to_right_edge + ((15 + VP9_INTERP_EXTEND) << 3))
mv->col = xd->mb_to_right_edge + (16 << 3);
if (mv->row < (xd->mb_to_top_edge - ((16 + VP9_INTERP_EXTEND) << 3)))
mv->row = xd->mb_to_top_edge - (16 << 3);
else if (mv->row > xd->mb_to_bottom_edge + ((15 + VP9_INTERP_EXTEND) << 3))
mv->row = xd->mb_to_bottom_edge + (16 << 3);
}
/* A version of the above function for chroma block MVs.*/
static void clamp_uvmv_to_umv_border(MV *mv, const MACROBLOCKD *xd) {
const int extend = VP9_INTERP_EXTEND;
mv->col = (2 * mv->col < (xd->mb_to_left_edge - ((16 + extend) << 3))) ?
(xd->mb_to_left_edge - (16 << 3)) >> 1 : mv->col;
mv->col = (2 * mv->col > xd->mb_to_right_edge + ((15 + extend) << 3)) ?
(xd->mb_to_right_edge + (16 << 3)) >> 1 : mv->col;
mv->row = (2 * mv->row < (xd->mb_to_top_edge - ((16 + extend) << 3))) ?
(xd->mb_to_top_edge - (16 << 3)) >> 1 : mv->row;
mv->row = (2 * mv->row > xd->mb_to_bottom_edge + ((15 + extend) << 3)) ?
(xd->mb_to_bottom_edge + (16 << 3)) >> 1 : mv->row;
}
/*encoder only*/
void vp9_build_1st_inter16x16_predictors_mby(MACROBLOCKD *xd,
uint8_t *dst_y,
int dst_ystride,
int clamp_mvs) {
uint8_t *ptr_base = xd->pre.y_buffer;
uint8_t *ptr;
int pre_stride = xd->block[0].pre_stride;
int_mv ymv;
ymv.as_int = xd->mode_info_context->mbmi.mv[0].as_int;
if (clamp_mvs)
clamp_mv_to_umv_border(&ymv.as_mv, xd);
ptr = ptr_base + (ymv.as_mv.row >> 3) * pre_stride + (ymv.as_mv.col >> 3);
#if CONFIG_PRED_FILTER
if (xd->mode_info_context->mbmi.pred_filter_enabled) {
if ((ymv.as_mv.row | ymv.as_mv.col) & 7) {
// Sub-pel filter needs extended input
int len = 15 + (VP9_INTERP_EXTEND << 1);
uint8_t Temp[32 * 32]; // Data required by sub-pel filter
uint8_t *pTemp = Temp + (VP9_INTERP_EXTEND - 1) * (len + 1);
// Copy extended MB into Temp array, applying the spatial filter
filter_mb(ptr - (VP9_INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride,
Temp, len, len, len);
// Sub-pel interpolation
xd->subpixel_predict16x16(pTemp, len,
(ymv.as_mv.col & 7) << 1,
(ymv.as_mv.row & 7) << 1,
dst_y, dst_ystride);
} else {
// Apply spatial filter to create the prediction directly
filter_mb(ptr, pre_stride, dst_y, dst_ystride, 16, 16);
}
} else
#endif
if ((ymv.as_mv.row | ymv.as_mv.col) & 7) {
xd->subpixel_predict16x16(ptr, pre_stride,
(ymv.as_mv.col & 7) << 1,
(ymv.as_mv.row & 7) << 1,
dst_y, dst_ystride);
} else {
vp9_copy_mem16x16(ptr, pre_stride, dst_y, dst_ystride);
}
}
void vp9_build_1st_inter16x16_predictors_mbuv(MACROBLOCKD *xd,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride) {
int offset;
uint8_t *uptr, *vptr;
int pre_stride = xd->block[0].pre_stride;
int_mv _o16x16mv;
int_mv _16x16mv;
_16x16mv.as_int = xd->mode_info_context->mbmi.mv[0].as_int;
if (xd->mode_info_context->mbmi.need_to_clamp_mvs)
clamp_mv_to_umv_border(&_16x16mv.as_mv, xd);
_o16x16mv = _16x16mv;
/* calc uv motion vectors */
if (_16x16mv.as_mv.row < 0)
_16x16mv.as_mv.row -= 1;
else
_16x16mv.as_mv.row += 1;
if (_16x16mv.as_mv.col < 0)
_16x16mv.as_mv.col -= 1;
else
_16x16mv.as_mv.col += 1;
_16x16mv.as_mv.row /= 2;
_16x16mv.as_mv.col /= 2;
_16x16mv.as_mv.row &= xd->fullpixel_mask;
_16x16mv.as_mv.col &= xd->fullpixel_mask;
pre_stride >>= 1;
offset = (_16x16mv.as_mv.row >> 3) * pre_stride + (_16x16mv.as_mv.col >> 3);
uptr = xd->pre.u_buffer + offset;
vptr = xd->pre.v_buffer + offset;
#if CONFIG_PRED_FILTER
if (xd->mode_info_context->mbmi.pred_filter_enabled) {
int i;
uint8_t *pSrc = uptr;
uint8_t *pDst = dst_u;
int len = 7 + (VP9_INTERP_EXTEND << 1);
uint8_t Temp[32 * 32]; // Data required by the sub-pel filter
uint8_t *pTemp = Temp + (VP9_INTERP_EXTEND - 1) * (len + 1);
// U & V
for (i = 0; i < 2; i++) {
if (_o16x16mv.as_int & 0x000f000f) {
// Copy extended MB into Temp array, applying the spatial filter
filter_mb(pSrc - (VP9_INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride,
Temp, len, len, len);
// Sub-pel filter
xd->subpixel_predict8x8(pTemp, len,
_o16x16mv.as_mv.col & 15,
_o16x16mv.as_mv.row & 15,
pDst, dst_uvstride);
} else {
filter_mb(pSrc, pre_stride, pDst, dst_uvstride, 8, 8);
}
// V
pSrc = vptr;
pDst = dst_v;
}
} else
#endif
if (_o16x16mv.as_int & 0x000f000f) {
xd->subpixel_predict8x8(uptr, pre_stride, _o16x16mv.as_mv.col & 15,
_o16x16mv.as_mv.row & 15, dst_u, dst_uvstride);
xd->subpixel_predict8x8(vptr, pre_stride, _o16x16mv.as_mv.col & 15,
_o16x16mv.as_mv.row & 15, dst_v, dst_uvstride);
} else {
vp9_copy_mem8x8(uptr, pre_stride, dst_u, dst_uvstride);
vp9_copy_mem8x8(vptr, pre_stride, dst_v, dst_uvstride);
}
}
void vp9_build_1st_inter16x16_predictors_mb(MACROBLOCKD *xd,
uint8_t *dst_y,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_ystride, int dst_uvstride) {
vp9_build_1st_inter16x16_predictors_mby(xd, dst_y, dst_ystride,
xd->mode_info_context->mbmi.need_to_clamp_mvs);
vp9_build_1st_inter16x16_predictors_mbuv(xd, dst_u, dst_v, dst_uvstride);
}
#if CONFIG_SUPERBLOCKS
void vp9_build_inter32x32_predictors_sb(MACROBLOCKD *x,
uint8_t *dst_y,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_ystride,
int dst_uvstride) {
uint8_t *y1 = x->pre.y_buffer, *u1 = x->pre.u_buffer, *v1 = x->pre.v_buffer;
uint8_t *y2 = x->second_pre.y_buffer, *u2 = x->second_pre.u_buffer,
*v2 = x->second_pre.v_buffer;
int edge[4], n;
edge[0] = x->mb_to_top_edge;
edge[1] = x->mb_to_bottom_edge;
edge[2] = x->mb_to_left_edge;
edge[3] = x->mb_to_right_edge;
for (n = 0; n < 4; n++) {
const int x_idx = n & 1, y_idx = n >> 1;
x->mb_to_top_edge = edge[0] - ((y_idx * 16) << 3);
x->mb_to_bottom_edge = edge[1] + (((1 - y_idx) * 16) << 3);
x->mb_to_left_edge = edge[2] - ((x_idx * 16) << 3);
x->mb_to_right_edge = edge[3] + (((1 - x_idx) * 16) << 3);
x->pre.y_buffer = y1 + y_idx * 16 * x->pre.y_stride + x_idx * 16;
x->pre.u_buffer = u1 + y_idx * 8 * x->pre.uv_stride + x_idx * 8;
x->pre.v_buffer = v1 + y_idx * 8 * x->pre.uv_stride + x_idx * 8;
vp9_build_1st_inter16x16_predictors_mb(x,
dst_y + y_idx * 16 * dst_ystride + x_idx * 16,
dst_u + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_v + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_ystride, dst_uvstride);
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.y_buffer = y2 + y_idx * 16 * x->pre.y_stride + x_idx * 16;
x->second_pre.u_buffer = u2 + y_idx * 8 * x->pre.uv_stride + x_idx * 8;
x->second_pre.v_buffer = v2 + y_idx * 8 * x->pre.uv_stride + x_idx * 8;
vp9_build_2nd_inter16x16_predictors_mb(x,
dst_y + y_idx * 16 * dst_ystride + x_idx * 16,
dst_u + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_v + y_idx * 8 * dst_uvstride + x_idx * 8,
dst_ystride, dst_uvstride);
}
}
x->mb_to_top_edge = edge[0];
x->mb_to_bottom_edge = edge[1];
x->mb_to_left_edge = edge[2];
x->mb_to_right_edge = edge[3];
x->pre.y_buffer = y1;
x->pre.u_buffer = u1;
x->pre.v_buffer = v1;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.y_buffer = y2;
x->second_pre.u_buffer = u2;
x->second_pre.v_buffer = v2;
}
#if CONFIG_COMP_INTERINTRA_PRED
if (x->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) {
vp9_build_interintra_32x32_predictors_sb(
x, dst_y, dst_u, dst_v, dst_ystride, dst_uvstride);
}
#endif
}
void vp9_build_inter64x64_predictors_sb(MACROBLOCKD *x,
uint8_t *dst_y,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_ystride,
int dst_uvstride) {
uint8_t *y1 = x->pre.y_buffer, *u1 = x->pre.u_buffer, *v1 = x->pre.v_buffer;
uint8_t *y2 = x->second_pre.y_buffer, *u2 = x->second_pre.u_buffer,
*v2 = x->second_pre.v_buffer;
int edge[4], n;
edge[0] = x->mb_to_top_edge;
edge[1] = x->mb_to_bottom_edge;
edge[2] = x->mb_to_left_edge;
edge[3] = x->mb_to_right_edge;
for (n = 0; n < 4; n++) {
const int x_idx = n & 1, y_idx = n >> 1;
x->mb_to_top_edge = edge[0] - ((y_idx * 32) << 3);
x->mb_to_bottom_edge = edge[1] + (((1 - y_idx) * 32) << 3);
x->mb_to_left_edge = edge[2] - ((x_idx * 32) << 3);
x->mb_to_right_edge = edge[3] + (((1 - x_idx) * 32) << 3);
x->pre.y_buffer = y1 + y_idx * 32 * x->pre.y_stride + x_idx * 32;
x->pre.u_buffer = u1 + y_idx * 16 * x->pre.uv_stride + x_idx * 16;
x->pre.v_buffer = v1 + y_idx * 16 * x->pre.uv_stride + x_idx * 16;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.y_buffer = y2 + y_idx * 32 * x->pre.y_stride + x_idx * 32;
x->second_pre.u_buffer = u2 + y_idx * 16 * x->pre.uv_stride + x_idx * 16;
x->second_pre.v_buffer = v2 + y_idx * 16 * x->pre.uv_stride + x_idx * 16;
}
vp9_build_inter32x32_predictors_sb(x,
dst_y + y_idx * 32 * dst_ystride + x_idx * 32,
dst_u + y_idx * 16 * dst_uvstride + x_idx * 16,
dst_v + y_idx * 16 * dst_uvstride + x_idx * 16,
dst_ystride, dst_uvstride);
}
x->mb_to_top_edge = edge[0];
x->mb_to_bottom_edge = edge[1];
x->mb_to_left_edge = edge[2];
x->mb_to_right_edge = edge[3];
x->pre.y_buffer = y1;
x->pre.u_buffer = u1;
x->pre.v_buffer = v1;
if (x->mode_info_context->mbmi.second_ref_frame > 0) {
x->second_pre.y_buffer = y2;
x->second_pre.u_buffer = u2;
x->second_pre.v_buffer = v2;
}
#if CONFIG_COMP_INTERINTRA_PRED
if (x->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) {
vp9_build_interintra_64x64_predictors_sb(x, dst_y, dst_u, dst_v,
dst_ystride, dst_uvstride);
}
#endif
}
#endif
/*
* The following functions should be called after an initial
* call to vp9_build_1st_inter16x16_predictors_mb() or _mby()/_mbuv().
* It will run a second sixtap filter on a (different) ref
* frame and average the result with the output of the
* first sixtap filter. The second reference frame is stored
* in x->second_pre (the reference frame index is in
* x->mode_info_context->mbmi.second_ref_frame). The second
* motion vector is x->mode_info_context->mbmi.second_mv.
*
* This allows blending prediction from two reference frames
* which sometimes leads to better prediction than from a
* single reference framer.
*/
void vp9_build_2nd_inter16x16_predictors_mby(MACROBLOCKD *xd,
uint8_t *dst_y,
int dst_ystride) {
uint8_t *ptr;
int_mv _16x16mv;
int mv_row;
int mv_col;
uint8_t *ptr_base = xd->second_pre.y_buffer;
int pre_stride = xd->block[0].pre_stride;
_16x16mv.as_int = xd->mode_info_context->mbmi.mv[1].as_int;
if (xd->mode_info_context->mbmi.need_to_clamp_secondmv)
clamp_mv_to_umv_border(&_16x16mv.as_mv, xd);
mv_row = _16x16mv.as_mv.row;
mv_col = _16x16mv.as_mv.col;
ptr = ptr_base + (mv_row >> 3) * pre_stride + (mv_col >> 3);
#if CONFIG_PRED_FILTER
if (xd->mode_info_context->mbmi.pred_filter_enabled) {
if ((mv_row | mv_col) & 7) {
// Sub-pel filter needs extended input
int len = 15 + (VP9_INTERP_EXTEND << 1);
uint8_t Temp[32 * 32]; // Data required by sub-pel filter
uint8_t *pTemp = Temp + (VP9_INTERP_EXTEND - 1) * (len + 1);
// Copy extended MB into Temp array, applying the spatial filter
filter_mb(ptr - (VP9_INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride,
Temp, len, len, len);
// Sub-pel filter
xd->subpixel_predict_avg16x16(pTemp, len, (mv_col & 7) << 1,
(mv_row & 7) << 1, dst_y, dst_ystride);
} else {
// TODO Needs to AVERAGE with the dst_y
// For now, do not apply the prediction filter in these cases!
vp9_avg_mem16x16(ptr, pre_stride, dst_y, dst_ystride);
}
} else
#endif // CONFIG_PRED_FILTER
{
if ((mv_row | mv_col) & 7) {
xd->subpixel_predict_avg16x16(ptr, pre_stride, (mv_col & 7) << 1,
(mv_row & 7) << 1, dst_y, dst_ystride);
} else {
vp9_avg_mem16x16(ptr, pre_stride, dst_y, dst_ystride);
}
}
}
void vp9_build_2nd_inter16x16_predictors_mbuv(MACROBLOCKD *xd,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_uvstride) {
int offset;
uint8_t *uptr, *vptr;
int_mv _16x16mv;
int mv_row;
int mv_col;
int omv_row, omv_col;
int pre_stride = xd->block[0].pre_stride;
_16x16mv.as_int = xd->mode_info_context->mbmi.mv[1].as_int;
if (xd->mode_info_context->mbmi.need_to_clamp_secondmv)
clamp_mv_to_umv_border(&_16x16mv.as_mv, xd);
mv_row = _16x16mv.as_mv.row;
mv_col = _16x16mv.as_mv.col;
/* calc uv motion vectors */
omv_row = mv_row;
omv_col = mv_col;
mv_row = (mv_row + (mv_row > 0)) >> 1;
mv_col = (mv_col + (mv_col > 0)) >> 1;
mv_row &= xd->fullpixel_mask;
mv_col &= xd->fullpixel_mask;
pre_stride >>= 1;
offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
uptr = xd->second_pre.u_buffer + offset;
vptr = xd->second_pre.v_buffer + offset;
#if CONFIG_PRED_FILTER
if (xd->mode_info_context->mbmi.pred_filter_enabled) {
int i;
int len = 7 + (VP9_INTERP_EXTEND << 1);
uint8_t Temp[32 * 32]; // Data required by sub-pel filter
uint8_t *pTemp = Temp + (VP9_INTERP_EXTEND - 1) * (len + 1);
uint8_t *pSrc = uptr;
uint8_t *pDst = dst_u;
// U & V
for (i = 0; i < 2; i++) {
if ((omv_row | omv_col) & 15) {
// Copy extended MB into Temp array, applying the spatial filter
filter_mb(pSrc - (VP9_INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride,
Temp, len, len, len);
// Sub-pel filter
xd->subpixel_predict_avg8x8(pTemp, len, omv_col & 15,
omv_row & 15, pDst, dst_uvstride);
} else {
// TODO Needs to AVERAGE with the dst_[u|v]
// For now, do not apply the prediction filter here!
vp9_avg_mem8x8(pSrc, pre_stride, pDst, dst_uvstride);
}
// V
pSrc = vptr;
pDst = dst_v;
}
} else
#endif // CONFIG_PRED_FILTER
if ((omv_row | omv_col) & 15) {
xd->subpixel_predict_avg8x8(uptr, pre_stride, omv_col & 15,
omv_row & 15, dst_u, dst_uvstride);
xd->subpixel_predict_avg8x8(vptr, pre_stride, omv_col & 15,
omv_row & 15, dst_v, dst_uvstride);
} else {
vp9_avg_mem8x8(uptr, pre_stride, dst_u, dst_uvstride);
vp9_avg_mem8x8(vptr, pre_stride, dst_v, dst_uvstride);
}
}
void vp9_build_2nd_inter16x16_predictors_mb(MACROBLOCKD *xd,
uint8_t *dst_y,
uint8_t *dst_u,
uint8_t *dst_v,
int dst_ystride,
int dst_uvstride) {
vp9_build_2nd_inter16x16_predictors_mby(xd, dst_y, dst_ystride);
vp9_build_2nd_inter16x16_predictors_mbuv(xd, dst_u, dst_v, dst_uvstride);
}
static void build_inter4x4_predictors_mb(MACROBLOCKD *xd) {
int i;
MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi;
BLOCKD *blockd = xd->block;
if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) {
blockd[ 0].bmi = xd->mode_info_context->bmi[ 0];
blockd[ 2].bmi = xd->mode_info_context->bmi[ 2];
blockd[ 8].bmi = xd->mode_info_context->bmi[ 8];
blockd[10].bmi = xd->mode_info_context->bmi[10];
if (mbmi->need_to_clamp_mvs) {
clamp_mv_to_umv_border(&blockd[ 0].bmi.as_mv.first.as_mv, xd);
clamp_mv_to_umv_border(&blockd[ 2].bmi.as_mv.first.as_mv, xd);
clamp_mv_to_umv_border(&blockd[ 8].bmi.as_mv.first.as_mv, xd);
clamp_mv_to_umv_border(&blockd[10].bmi.as_mv.first.as_mv, xd);
if (mbmi->second_ref_frame > 0) {
clamp_mv_to_umv_border(&blockd[ 0].bmi.as_mv.second.as_mv, xd);
clamp_mv_to_umv_border(&blockd[ 2].bmi.as_mv.second.as_mv, xd);
clamp_mv_to_umv_border(&blockd[ 8].bmi.as_mv.second.as_mv, xd);
clamp_mv_to_umv_border(&blockd[10].bmi.as_mv.second.as_mv, xd);
}
}
vp9_build_inter_predictors4b(xd, &blockd[ 0], 16);
vp9_build_inter_predictors4b(xd, &blockd[ 2], 16);
vp9_build_inter_predictors4b(xd, &blockd[ 8], 16);
vp9_build_inter_predictors4b(xd, &blockd[10], 16);
if (mbmi->second_ref_frame > 0) {
vp9_build_2nd_inter_predictors4b(xd, &blockd[ 0], 16);
vp9_build_2nd_inter_predictors4b(xd, &blockd[ 2], 16);
vp9_build_2nd_inter_predictors4b(xd, &blockd[ 8], 16);
vp9_build_2nd_inter_predictors4b(xd, &blockd[10], 16);
}
} else {
for (i = 0; i < 16; i += 2) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0];
blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1];
if (mbmi->need_to_clamp_mvs) {
clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv.first.as_mv, xd);
clamp_mv_to_umv_border(&blockd[i + 1].bmi.as_mv.first.as_mv, xd);
if (mbmi->second_ref_frame > 0) {
clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv.second.as_mv, xd);
clamp_mv_to_umv_border(&blockd[i + 1].bmi.as_mv.second.as_mv, xd);
}
}
if (d0->bmi.as_mv.first.as_int == d1->bmi.as_mv.first.as_int)
build_inter_predictors2b(xd, d0, 16);
else {
vp9_build_inter_predictors_b(d0, 16, xd->subpixel_predict);
vp9_build_inter_predictors_b(d1, 16, xd->subpixel_predict);
}
if (mbmi->second_ref_frame > 0) {
vp9_build_2nd_inter_predictors_b(d0, 16, xd->subpixel_predict_avg);
vp9_build_2nd_inter_predictors_b(d1, 16, xd->subpixel_predict_avg);
}
}
}
for (i = 16; i < 24; i += 2) {
BLOCKD *d0 = &blockd[i];
BLOCKD *d1 = &blockd[i + 1];
if (d0->bmi.as_mv.first.as_int == d1->bmi.as_mv.first.as_int)
build_inter_predictors2b(xd, d0, 8);
else {
vp9_build_inter_predictors_b(d0, 8, xd->subpixel_predict);
vp9_build_inter_predictors_b(d1, 8, xd->subpixel_predict);
}
if (mbmi->second_ref_frame > 0) {
vp9_build_2nd_inter_predictors_b(d0, 8, xd->subpixel_predict_avg);
vp9_build_2nd_inter_predictors_b(d1, 8, xd->subpixel_predict_avg);
}
}
}
static
void build_4x4uvmvs(MACROBLOCKD *xd) {
int i, j;
BLOCKD *blockd = xd->block;
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
int yoffset = i * 8 + j * 2;
int uoffset = 16 + i * 2 + j;
int voffset = 20 + i * 2 + j;
int temp;
temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.first.as_mv.row
+ xd->mode_info_context->bmi[yoffset + 1].as_mv.first.as_mv.row
+ xd->mode_info_context->bmi[yoffset + 4].as_mv.first.as_mv.row
+ xd->mode_info_context->bmi[yoffset + 5].as_mv.first.as_mv.row;
if (temp < 0) temp -= 4;
else temp += 4;
blockd[uoffset].bmi.as_mv.first.as_mv.row = (temp / 8) &
xd->fullpixel_mask;
temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.first.as_mv.col
+ xd->mode_info_context->bmi[yoffset + 1].as_mv.first.as_mv.col
+ xd->mode_info_context->bmi[yoffset + 4].as_mv.first.as_mv.col
+ xd->mode_info_context->bmi[yoffset + 5].as_mv.first.as_mv.col;
if (temp < 0) temp -= 4;
else temp += 4;
blockd[uoffset].bmi.as_mv.first.as_mv.col = (temp / 8) &
xd->fullpixel_mask;
// if (x->mode_info_context->mbmi.need_to_clamp_mvs)
clamp_uvmv_to_umv_border(&blockd[uoffset].bmi.as_mv.first.as_mv, xd);
// if (x->mode_info_context->mbmi.need_to_clamp_mvs)
clamp_uvmv_to_umv_border(&blockd[uoffset].bmi.as_mv.first.as_mv, xd);
blockd[voffset].bmi.as_mv.first.as_mv.row =
blockd[uoffset].bmi.as_mv.first.as_mv.row;
blockd[voffset].bmi.as_mv.first.as_mv.col =
blockd[uoffset].bmi.as_mv.first.as_mv.col;
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.second.as_mv.row
+ xd->mode_info_context->bmi[yoffset + 1].as_mv.second.as_mv.row
+ xd->mode_info_context->bmi[yoffset + 4].as_mv.second.as_mv.row
+ xd->mode_info_context->bmi[yoffset + 5].as_mv.second.as_mv.row;
if (temp < 0) {
temp -= 4;
} else {
temp += 4;
}
blockd[uoffset].bmi.as_mv.second.as_mv.row = (temp / 8) &
xd->fullpixel_mask;
temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.second.as_mv.col
+ xd->mode_info_context->bmi[yoffset + 1].as_mv.second.as_mv.col
+ xd->mode_info_context->bmi[yoffset + 4].as_mv.second.as_mv.col
+ xd->mode_info_context->bmi[yoffset + 5].as_mv.second.as_mv.col;
if (temp < 0) {
temp -= 4;
} else {
temp += 4;
}
blockd[uoffset].bmi.as_mv.second.as_mv.col = (temp / 8) &
xd->fullpixel_mask;
// if (mbmi->need_to_clamp_mvs)
clamp_uvmv_to_umv_border(
&blockd[uoffset].bmi.as_mv.second.as_mv, xd);
// if (mbmi->need_to_clamp_mvs)
clamp_uvmv_to_umv_border(
&blockd[uoffset].bmi.as_mv.second.as_mv, xd);
blockd[voffset].bmi.as_mv.second.as_mv.row =
blockd[uoffset].bmi.as_mv.second.as_mv.row;
blockd[voffset].bmi.as_mv.second.as_mv.col =
blockd[uoffset].bmi.as_mv.second.as_mv.col;
}
}
}
}
void vp9_build_inter_predictors_mb(MACROBLOCKD *xd) {
if (xd->mode_info_context->mbmi.mode != SPLITMV) {
vp9_build_1st_inter16x16_predictors_mb(xd, xd->predictor,
&xd->predictor[256],
&xd->predictor[320], 16, 8);
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
/* 256 = offset of U plane in Y+U+V buffer;
* 320 = offset of V plane in Y+U+V buffer.
* (256=16x16, 320=16x16+8x8). */
vp9_build_2nd_inter16x16_predictors_mb(xd, xd->predictor,
&xd->predictor[256],
&xd->predictor[320], 16, 8);
}
#if CONFIG_COMP_INTERINTRA_PRED
else if (xd->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) {
vp9_build_interintra_16x16_predictors_mb(xd, xd->predictor,
&xd->predictor[256],
&xd->predictor[320], 16, 8);
}
#endif
} else {
build_4x4uvmvs(xd);
build_inter4x4_predictors_mb(xd);
}
}