vpx/vp9/encoder/vp9_ethread.c
Yunqing Wang bca4564683 Make allow_exhaustive_searches feature no longer adaptive
A previous patch turned on allow_exhaustive_searches feature only for
FC_GRAPHICS_ANIMATION content. This patch further modified the feature
by removing the exhaustive search limit, and made it no longer adaptive.
As a result, the 2 counts that recorded the number of motion searches
were removed, which helped achieve the determinism in the row based
multi-threading encoding. Tests showed that this patch didn't cause
the encoder much slower.

Used exhaustive_searches_thresh for this speed feature, and removed
allow_exhaustive_searches. Also, refactored the speed feature code
to follow the general speed feature setting style.

Change-Id: Ib96b182c4c8dfff4c1ab91d2497cc42bb9e5a4aa
2017-04-21 11:14:02 -07:00

653 lines
21 KiB
C

/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_ethread.h"
#include "vp9/encoder/vp9_firstpass.h"
#include "vp9/encoder/vp9_multi_thread.h"
#include "vp9/encoder/vp9_temporal_filter.h"
#include "vpx_dsp/vpx_dsp_common.h"
static void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) {
int i, j, k, l, m, n;
for (i = 0; i < REFERENCE_MODES; i++)
td->rd_counts.comp_pred_diff[i] += td_t->rd_counts.comp_pred_diff[i];
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
td->rd_counts.filter_diff[i] += td_t->rd_counts.filter_diff[i];
for (i = 0; i < TX_SIZES; i++)
for (j = 0; j < PLANE_TYPES; j++)
for (k = 0; k < REF_TYPES; k++)
for (l = 0; l < COEF_BANDS; l++)
for (m = 0; m < COEFF_CONTEXTS; m++)
for (n = 0; n < ENTROPY_TOKENS; n++)
td->rd_counts.coef_counts[i][j][k][l][m][n] +=
td_t->rd_counts.coef_counts[i][j][k][l][m][n];
}
static int enc_worker_hook(EncWorkerData *const thread_data, void *unused) {
VP9_COMP *const cpi = thread_data->cpi;
const VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
int t;
(void)unused;
for (t = thread_data->start; t < tile_rows * tile_cols;
t += cpi->num_workers) {
int tile_row = t / tile_cols;
int tile_col = t % tile_cols;
vp9_encode_tile(cpi, thread_data->td, tile_row, tile_col);
}
return 0;
}
static int get_max_tile_cols(VP9_COMP *cpi) {
const int aligned_width = ALIGN_POWER_OF_TWO(cpi->oxcf.width, MI_SIZE_LOG2);
int mi_cols = aligned_width >> MI_SIZE_LOG2;
int min_log2_tile_cols, max_log2_tile_cols;
int log2_tile_cols;
vp9_get_tile_n_bits(mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
log2_tile_cols =
clamp(cpi->oxcf.tile_columns, min_log2_tile_cols, max_log2_tile_cols);
return (1 << log2_tile_cols);
}
static void create_enc_workers(VP9_COMP *cpi, int num_workers) {
VP9_COMMON *const cm = &cpi->common;
const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
int i;
// Only run once to create threads and allocate thread data.
if (cpi->num_workers == 0) {
int allocated_workers = num_workers;
// While using SVC, we need to allocate threads according to the highest
// resolution. When row based multithreading is enabled, it is OK to
// allocate more threads than the number of max tile columns.
if (cpi->use_svc && !cpi->row_mt) {
int max_tile_cols = get_max_tile_cols(cpi);
allocated_workers = VPXMIN(cpi->oxcf.max_threads, max_tile_cols);
}
CHECK_MEM_ERROR(cm, cpi->workers,
vpx_malloc(allocated_workers * sizeof(*cpi->workers)));
CHECK_MEM_ERROR(cm, cpi->tile_thr_data,
vpx_calloc(allocated_workers, sizeof(*cpi->tile_thr_data)));
for (i = 0; i < allocated_workers; i++) {
VPxWorker *const worker = &cpi->workers[i];
EncWorkerData *thread_data = &cpi->tile_thr_data[i];
++cpi->num_workers;
winterface->init(worker);
if (i < allocated_workers - 1) {
thread_data->cpi = cpi;
// Allocate thread data.
CHECK_MEM_ERROR(cm, thread_data->td,
vpx_memalign(32, sizeof(*thread_data->td)));
vp9_zero(*thread_data->td);
// Set up pc_tree.
thread_data->td->leaf_tree = NULL;
thread_data->td->pc_tree = NULL;
vp9_setup_pc_tree(cm, thread_data->td);
// Allocate frame counters in thread data.
CHECK_MEM_ERROR(cm, thread_data->td->counts,
vpx_calloc(1, sizeof(*thread_data->td->counts)));
// Create threads
if (!winterface->reset(worker))
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
"Tile encoder thread creation failed");
} else {
// Main thread acts as a worker and uses the thread data in cpi.
thread_data->cpi = cpi;
thread_data->td = &cpi->td;
}
winterface->sync(worker);
}
}
}
static void launch_enc_workers(VP9_COMP *cpi, VPxWorkerHook hook, void *data2,
int num_workers) {
const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
int i;
for (i = 0; i < num_workers; i++) {
VPxWorker *const worker = &cpi->workers[i];
worker->hook = (VPxWorkerHook)hook;
worker->data1 = &cpi->tile_thr_data[i];
worker->data2 = data2;
}
// Encode a frame
for (i = 0; i < num_workers; i++) {
VPxWorker *const worker = &cpi->workers[i];
EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
// Set the starting tile for each thread.
thread_data->start = i;
if (i == cpi->num_workers - 1)
winterface->execute(worker);
else
winterface->launch(worker);
}
// Encoding ends.
for (i = 0; i < num_workers; i++) {
VPxWorker *const worker = &cpi->workers[i];
winterface->sync(worker);
}
}
void vp9_encode_tiles_mt(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
const int num_workers = VPXMIN(cpi->oxcf.max_threads, tile_cols);
int i;
vp9_init_tile_data(cpi);
create_enc_workers(cpi, num_workers);
for (i = 0; i < num_workers; i++) {
EncWorkerData *thread_data;
thread_data = &cpi->tile_thr_data[i];
// Before encoding a frame, copy the thread data from cpi.
if (thread_data->td != &cpi->td) {
thread_data->td->mb = cpi->td.mb;
thread_data->td->rd_counts = cpi->td.rd_counts;
}
if (thread_data->td->counts != &cpi->common.counts) {
memcpy(thread_data->td->counts, &cpi->common.counts,
sizeof(cpi->common.counts));
}
// Handle use_nonrd_pick_mode case.
if (cpi->sf.use_nonrd_pick_mode) {
MACROBLOCK *const x = &thread_data->td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
PICK_MODE_CONTEXT *ctx = &thread_data->td->pc_root->none;
int j;
for (j = 0; j < MAX_MB_PLANE; ++j) {
p[j].coeff = ctx->coeff_pbuf[j][0];
p[j].qcoeff = ctx->qcoeff_pbuf[j][0];
pd[j].dqcoeff = ctx->dqcoeff_pbuf[j][0];
p[j].eobs = ctx->eobs_pbuf[j][0];
}
}
}
launch_enc_workers(cpi, (VPxWorkerHook)enc_worker_hook, NULL, num_workers);
for (i = 0; i < num_workers; i++) {
VPxWorker *const worker = &cpi->workers[i];
EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
// Accumulate counters.
if (i < cpi->num_workers - 1) {
vp9_accumulate_frame_counts(&cm->counts, thread_data->td->counts, 0);
accumulate_rd_opt(&cpi->td, thread_data->td);
}
}
}
static void accumulate_fp_tile_stat(TileDataEnc *tile_data,
TileDataEnc *tile_data_t) {
tile_data->fp_data.intra_factor += tile_data_t->fp_data.intra_factor;
tile_data->fp_data.brightness_factor +=
tile_data_t->fp_data.brightness_factor;
tile_data->fp_data.coded_error += tile_data_t->fp_data.coded_error;
tile_data->fp_data.sr_coded_error += tile_data_t->fp_data.sr_coded_error;
tile_data->fp_data.frame_noise_energy +=
tile_data_t->fp_data.frame_noise_energy;
tile_data->fp_data.intra_error += tile_data_t->fp_data.intra_error;
tile_data->fp_data.intercount += tile_data_t->fp_data.intercount;
tile_data->fp_data.second_ref_count += tile_data_t->fp_data.second_ref_count;
tile_data->fp_data.neutral_count += tile_data_t->fp_data.neutral_count;
tile_data->fp_data.intra_count_low += tile_data_t->fp_data.intra_count_low;
tile_data->fp_data.intra_count_high += tile_data_t->fp_data.intra_count_high;
tile_data->fp_data.intra_skip_count += tile_data_t->fp_data.intra_skip_count;
tile_data->fp_data.mvcount += tile_data_t->fp_data.mvcount;
tile_data->fp_data.sum_mvr += tile_data_t->fp_data.sum_mvr;
tile_data->fp_data.sum_mvr_abs += tile_data_t->fp_data.sum_mvr_abs;
tile_data->fp_data.sum_mvc += tile_data_t->fp_data.sum_mvc;
tile_data->fp_data.sum_mvc_abs += tile_data_t->fp_data.sum_mvc_abs;
tile_data->fp_data.sum_mvrs += tile_data_t->fp_data.sum_mvrs;
tile_data->fp_data.sum_mvcs += tile_data_t->fp_data.sum_mvcs;
tile_data->fp_data.sum_in_vectors += tile_data_t->fp_data.sum_in_vectors;
tile_data->fp_data.intra_smooth_count +=
tile_data_t->fp_data.intra_smooth_count;
tile_data->fp_data.image_data_start_row =
VPXMIN(tile_data->fp_data.image_data_start_row,
tile_data_t->fp_data.image_data_start_row) == INVALID_ROW
? VPXMAX(tile_data->fp_data.image_data_start_row,
tile_data_t->fp_data.image_data_start_row)
: VPXMIN(tile_data->fp_data.image_data_start_row,
tile_data_t->fp_data.image_data_start_row);
}
// Allocate memory for row synchronization
void vp9_row_mt_sync_mem_alloc(VP9RowMTSync *row_mt_sync, VP9_COMMON *cm,
int rows) {
row_mt_sync->rows = rows;
#if CONFIG_MULTITHREAD
{
int i;
CHECK_MEM_ERROR(cm, row_mt_sync->mutex_,
vpx_malloc(sizeof(*row_mt_sync->mutex_) * rows));
if (row_mt_sync->mutex_) {
for (i = 0; i < rows; ++i) {
pthread_mutex_init(&row_mt_sync->mutex_[i], NULL);
}
}
CHECK_MEM_ERROR(cm, row_mt_sync->cond_,
vpx_malloc(sizeof(*row_mt_sync->cond_) * rows));
if (row_mt_sync->cond_) {
for (i = 0; i < rows; ++i) {
pthread_cond_init(&row_mt_sync->cond_[i], NULL);
}
}
}
#endif // CONFIG_MULTITHREAD
CHECK_MEM_ERROR(cm, row_mt_sync->cur_col,
vpx_malloc(sizeof(*row_mt_sync->cur_col) * rows));
// Set up nsync.
row_mt_sync->sync_range = 1;
}
// Deallocate row based multi-threading synchronization related mutex and data
void vp9_row_mt_sync_mem_dealloc(VP9RowMTSync *row_mt_sync) {
if (row_mt_sync != NULL) {
#if CONFIG_MULTITHREAD
int i;
if (row_mt_sync->mutex_ != NULL) {
for (i = 0; i < row_mt_sync->rows; ++i) {
pthread_mutex_destroy(&row_mt_sync->mutex_[i]);
}
vpx_free(row_mt_sync->mutex_);
}
if (row_mt_sync->cond_ != NULL) {
for (i = 0; i < row_mt_sync->rows; ++i) {
pthread_cond_destroy(&row_mt_sync->cond_[i]);
}
vpx_free(row_mt_sync->cond_);
}
#endif // CONFIG_MULTITHREAD
vpx_free(row_mt_sync->cur_col);
// clear the structure as the source of this call may be dynamic change
// in tiles in which case this call will be followed by an _alloc()
// which may fail.
vp9_zero(*row_mt_sync);
}
}
void vp9_row_mt_sync_read(VP9RowMTSync *const row_mt_sync, int r, int c) {
#if CONFIG_MULTITHREAD
const int nsync = row_mt_sync->sync_range;
if (r && !(c & (nsync - 1))) {
pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1];
pthread_mutex_lock(mutex);
while (c > row_mt_sync->cur_col[r - 1] - nsync + 1) {
pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex);
}
pthread_mutex_unlock(mutex);
}
#else
(void)row_mt_sync;
(void)r;
(void)c;
#endif // CONFIG_MULTITHREAD
}
void vp9_row_mt_sync_read_dummy(VP9RowMTSync *const row_mt_sync, int r, int c) {
(void)row_mt_sync;
(void)r;
(void)c;
return;
}
void vp9_row_mt_sync_write(VP9RowMTSync *const row_mt_sync, int r, int c,
const int cols) {
#if CONFIG_MULTITHREAD
const int nsync = row_mt_sync->sync_range;
int cur;
// Only signal when there are enough encoded blocks for next row to run.
int sig = 1;
if (c < cols - 1) {
cur = c;
if (c % nsync != nsync - 1) sig = 0;
} else {
cur = cols + nsync;
}
if (sig) {
pthread_mutex_lock(&row_mt_sync->mutex_[r]);
row_mt_sync->cur_col[r] = cur;
pthread_cond_signal(&row_mt_sync->cond_[r]);
pthread_mutex_unlock(&row_mt_sync->mutex_[r]);
}
#else
(void)row_mt_sync;
(void)r;
(void)c;
(void)cols;
#endif // CONFIG_MULTITHREAD
}
void vp9_row_mt_sync_write_dummy(VP9RowMTSync *const row_mt_sync, int r, int c,
const int cols) {
(void)row_mt_sync;
(void)r;
(void)c;
(void)cols;
return;
}
static int first_pass_worker_hook(EncWorkerData *const thread_data,
MultiThreadHandle *multi_thread_ctxt) {
VP9_COMP *const cpi = thread_data->cpi;
const VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
int tile_row, tile_col;
TileDataEnc *this_tile;
int end_of_frame;
int thread_id = thread_data->thread_id;
int cur_tile_id = multi_thread_ctxt->thread_id_to_tile_id[thread_id];
JobNode *proc_job = NULL;
FIRSTPASS_DATA fp_acc_data;
MV zero_mv = { 0, 0 };
MV best_ref_mv;
int mb_row;
end_of_frame = 0;
while (0 == end_of_frame) {
// Get the next job in the queue
proc_job =
(JobNode *)vp9_enc_grp_get_next_job(multi_thread_ctxt, cur_tile_id);
if (NULL == proc_job) {
// Query for the status of other tiles
end_of_frame = vp9_get_tiles_proc_status(
multi_thread_ctxt, thread_data->tile_completion_status, &cur_tile_id,
tile_cols);
} else {
tile_col = proc_job->tile_col_id;
tile_row = proc_job->tile_row_id;
this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
mb_row = proc_job->vert_unit_row_num;
best_ref_mv = zero_mv;
vp9_zero(fp_acc_data);
fp_acc_data.image_data_start_row = INVALID_ROW;
vp9_first_pass_encode_tile_mb_row(cpi, thread_data->td, &fp_acc_data,
this_tile, &best_ref_mv, mb_row);
}
}
return 0;
}
void vp9_encode_fp_row_mt(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt;
TileDataEnc *first_tile_col;
int num_workers = VPXMAX(cpi->oxcf.max_threads, 1);
int i;
if (multi_thread_ctxt->allocated_tile_cols < tile_cols ||
multi_thread_ctxt->allocated_tile_rows < tile_rows ||
multi_thread_ctxt->allocated_vert_unit_rows < cm->mb_rows) {
vp9_row_mt_mem_dealloc(cpi);
vp9_init_tile_data(cpi);
vp9_row_mt_mem_alloc(cpi);
} else {
vp9_init_tile_data(cpi);
}
create_enc_workers(cpi, num_workers);
vp9_assign_tile_to_thread(multi_thread_ctxt, tile_cols, cpi->num_workers);
vp9_prepare_job_queue(cpi, FIRST_PASS_JOB);
vp9_multi_thread_tile_init(cpi);
for (i = 0; i < num_workers; i++) {
EncWorkerData *thread_data;
thread_data = &cpi->tile_thr_data[i];
// Before encoding a frame, copy the thread data from cpi.
if (thread_data->td != &cpi->td) {
thread_data->td->mb = cpi->td.mb;
}
}
launch_enc_workers(cpi, (VPxWorkerHook)first_pass_worker_hook,
multi_thread_ctxt, num_workers);
first_tile_col = &cpi->tile_data[0];
for (i = 1; i < tile_cols; i++) {
TileDataEnc *this_tile = &cpi->tile_data[i];
accumulate_fp_tile_stat(first_tile_col, this_tile);
}
}
static int temporal_filter_worker_hook(EncWorkerData *const thread_data,
MultiThreadHandle *multi_thread_ctxt) {
VP9_COMP *const cpi = thread_data->cpi;
const VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
int tile_row, tile_col;
int mb_col_start, mb_col_end;
TileDataEnc *this_tile;
int end_of_frame;
int thread_id = thread_data->thread_id;
int cur_tile_id = multi_thread_ctxt->thread_id_to_tile_id[thread_id];
JobNode *proc_job = NULL;
int mb_row;
end_of_frame = 0;
while (0 == end_of_frame) {
// Get the next job in the queue
proc_job =
(JobNode *)vp9_enc_grp_get_next_job(multi_thread_ctxt, cur_tile_id);
if (NULL == proc_job) {
// Query for the status of other tiles
end_of_frame = vp9_get_tiles_proc_status(
multi_thread_ctxt, thread_data->tile_completion_status, &cur_tile_id,
tile_cols);
} else {
tile_col = proc_job->tile_col_id;
tile_row = proc_job->tile_row_id;
this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
mb_col_start = (this_tile->tile_info.mi_col_start) >> 1;
mb_col_end = (this_tile->tile_info.mi_col_end + 1) >> 1;
mb_row = proc_job->vert_unit_row_num;
vp9_temporal_filter_iterate_row_c(cpi, thread_data->td, mb_row,
mb_col_start, mb_col_end);
}
}
return 0;
}
void vp9_temporal_filter_row_mt(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt;
int num_workers = cpi->num_workers ? cpi->num_workers : 1;
int i;
if (multi_thread_ctxt->allocated_tile_cols < tile_cols ||
multi_thread_ctxt->allocated_tile_rows < tile_rows ||
multi_thread_ctxt->allocated_vert_unit_rows < cm->mb_rows) {
vp9_row_mt_mem_dealloc(cpi);
vp9_init_tile_data(cpi);
vp9_row_mt_mem_alloc(cpi);
} else {
vp9_init_tile_data(cpi);
}
create_enc_workers(cpi, num_workers);
vp9_assign_tile_to_thread(multi_thread_ctxt, tile_cols, cpi->num_workers);
vp9_prepare_job_queue(cpi, ARNR_JOB);
for (i = 0; i < num_workers; i++) {
EncWorkerData *thread_data;
thread_data = &cpi->tile_thr_data[i];
// Before encoding a frame, copy the thread data from cpi.
if (thread_data->td != &cpi->td) {
thread_data->td->mb = cpi->td.mb;
}
}
launch_enc_workers(cpi, (VPxWorkerHook)temporal_filter_worker_hook,
multi_thread_ctxt, num_workers);
}
static int enc_row_mt_worker_hook(EncWorkerData *const thread_data,
MultiThreadHandle *multi_thread_ctxt) {
VP9_COMP *const cpi = thread_data->cpi;
const VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
int tile_row, tile_col;
int end_of_frame;
int thread_id = thread_data->thread_id;
int cur_tile_id = multi_thread_ctxt->thread_id_to_tile_id[thread_id];
JobNode *proc_job = NULL;
int mi_row;
end_of_frame = 0;
while (0 == end_of_frame) {
// Get the next job in the queue
proc_job =
(JobNode *)vp9_enc_grp_get_next_job(multi_thread_ctxt, cur_tile_id);
if (NULL == proc_job) {
// Query for the status of other tiles
end_of_frame = vp9_get_tiles_proc_status(
multi_thread_ctxt, thread_data->tile_completion_status, &cur_tile_id,
tile_cols);
} else {
tile_col = proc_job->tile_col_id;
tile_row = proc_job->tile_row_id;
mi_row = proc_job->vert_unit_row_num * MI_BLOCK_SIZE;
vp9_encode_sb_row(cpi, thread_data->td, tile_row, tile_col, mi_row);
}
}
return 0;
}
void vp9_encode_tiles_row_mt(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
MultiThreadHandle *multi_thread_ctxt = &cpi->multi_thread_ctxt;
int num_workers = VPXMAX(cpi->oxcf.max_threads, 1);
int i;
if (multi_thread_ctxt->allocated_tile_cols < tile_cols ||
multi_thread_ctxt->allocated_tile_rows < tile_rows ||
multi_thread_ctxt->allocated_vert_unit_rows < cm->mb_rows) {
vp9_row_mt_mem_dealloc(cpi);
vp9_init_tile_data(cpi);
vp9_row_mt_mem_alloc(cpi);
} else {
vp9_init_tile_data(cpi);
}
create_enc_workers(cpi, num_workers);
vp9_assign_tile_to_thread(multi_thread_ctxt, tile_cols, cpi->num_workers);
vp9_prepare_job_queue(cpi, ENCODE_JOB);
vp9_multi_thread_tile_init(cpi);
for (i = 0; i < num_workers; i++) {
EncWorkerData *thread_data;
thread_data = &cpi->tile_thr_data[i];
// Before encoding a frame, copy the thread data from cpi.
if (thread_data->td != &cpi->td) {
thread_data->td->mb = cpi->td.mb;
thread_data->td->rd_counts = cpi->td.rd_counts;
}
if (thread_data->td->counts != &cpi->common.counts) {
memcpy(thread_data->td->counts, &cpi->common.counts,
sizeof(cpi->common.counts));
}
// Handle use_nonrd_pick_mode case.
if (cpi->sf.use_nonrd_pick_mode) {
MACROBLOCK *const x = &thread_data->td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
PICK_MODE_CONTEXT *ctx = &thread_data->td->pc_root->none;
int j;
for (j = 0; j < MAX_MB_PLANE; ++j) {
p[j].coeff = ctx->coeff_pbuf[j][0];
p[j].qcoeff = ctx->qcoeff_pbuf[j][0];
pd[j].dqcoeff = ctx->dqcoeff_pbuf[j][0];
p[j].eobs = ctx->eobs_pbuf[j][0];
}
}
}
launch_enc_workers(cpi, (VPxWorkerHook)enc_row_mt_worker_hook,
multi_thread_ctxt, num_workers);
for (i = 0; i < num_workers; i++) {
VPxWorker *const worker = &cpi->workers[i];
EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
// Accumulate counters.
if (i < cpi->num_workers - 1) {
vp9_accumulate_frame_counts(&cm->counts, thread_data->td->counts, 0);
accumulate_rd_opt(&cpi->td, thread_data->td);
}
}
}