vpx/vp8/encoder/onyx_if.c
2010-11-21 00:05:06 -05:00

5441 lines
172 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "onyxc_int.h"
#include "onyx_int.h"
#include "systemdependent.h"
#include "quantize.h"
#include "alloccommon.h"
#include "mcomp.h"
#include "firstpass.h"
#include "psnr.h"
#include "vpx_scale/vpxscale.h"
#include "extend.h"
#include "ratectrl.h"
#include "quant_common.h"
#include "segmentation.h"
#include "g_common.h"
#include "vpx_scale/yv12extend.h"
#include "postproc.h"
#include "vpx_mem/vpx_mem.h"
#include "swapyv12buffer.h"
#include "threading.h"
#include "vpx_ports/vpx_timer.h"
#include "vpxerrors.h"
#include "temporal_filter.h"
#if ARCH_ARM
#include "vpx_ports/arm.h"
#endif
#include <math.h>
#include <stdio.h>
#include <limits.h>
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#define RTCD(x) &cpi->common.rtcd.x
#else
#define IF_RTCD(x) NULL
#define RTCD(x) NULL
#endif
extern void vp8cx_init_mv_bits_sadcost();
extern void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
extern void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val);
extern void vp8cx_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
extern void vp8_init_loop_filter(VP8_COMMON *cm);
extern void vp8_loop_filter_frame(VP8_COMMON *cm, MACROBLOCKD *mbd, int filt_val);
extern void vp8_loop_filter_frame_yonly(VP8_COMMON *cm, MACROBLOCKD *mbd, int filt_val, int sharpness_lvl);
extern void vp8_dmachine_specific_config(VP8_COMP *cpi);
extern void vp8_cmachine_specific_config(VP8_COMP *cpi);
extern void vp8_calc_auto_iframe_target_size(VP8_COMP *cpi);
extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *post, int filt_lvl, int low_var_thresh, int flag);
extern void print_parms(VP8_CONFIG *ocf, char *filenam);
extern unsigned int vp8_get_processor_freq();
extern void print_tree_update_probs();
extern void vp8cx_create_encoder_threads(VP8_COMP *cpi);
extern void vp8cx_remove_encoder_threads(VP8_COMP *cpi);
#if HAVE_ARMV7
extern void vp8_yv12_copy_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc);
extern void vp8_yv12_copy_src_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc);
#endif
int vp8_estimate_entropy_savings(VP8_COMP *cpi);
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd);
int vp8_calc_low_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd);
static void set_default_lf_deltas(VP8_COMP *cpi);
extern const int vp8_gf_interval_table[101];
#if CONFIG_PSNR
#include "math.h"
extern double vp8_calc_ssim
(
YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest,
int lumamask,
double *weight
);
extern double vp8_calc_ssimg
(
YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest,
double *ssim_y,
double *ssim_u,
double *ssim_v
);
#endif
#ifdef OUTPUT_YUV_SRC
FILE *yuv_file;
#endif
#if 0
FILE *framepsnr;
FILE *kf_list;
FILE *keyfile;
#endif
#if 0
extern int skip_true_count;
extern int skip_false_count;
#endif
#ifdef ENTROPY_STATS
extern int intra_mode_stats[10][10][10];
#endif
#ifdef SPEEDSTATS
unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int tot_pm = 0;
unsigned int cnt_pm = 0;
unsigned int tot_ef = 0;
unsigned int cnt_ef = 0;
#endif
#ifdef MODE_STATS
extern unsigned __int64 Sectionbits[50];
extern int y_modes[5] ;
extern int uv_modes[4] ;
extern int b_modes[10] ;
extern int inter_y_modes[10] ;
extern int inter_uv_modes[4] ;
extern unsigned int inter_b_modes[15];
#endif
extern void (*vp8_short_fdct4x4)(short *input, short *output, int pitch);
extern void (*vp8_short_fdct8x4)(short *input, short *output, int pitch);
extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
extern const int qrounding_factors[129];
extern const int qzbin_factors[129];
extern void vp8cx_init_quantizer(VP8_COMP *cpi);
extern const int vp8cx_base_skip_false_prob[128];
// Tables relating active max Q to active min Q
static const int kf_low_motion_minq[QINDEX_RANGE] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,
5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 10,10,
11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,
19,19,20,20,21,21,22,22,23,23,24,24,25,25,26,26,
27,27,28,28,29,29,30,30,31,32,33,34,35,36,37,38,
};
static const int kf_high_motion_minq[QINDEX_RANGE] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5,
6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,10,
11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,
19,19,20,20,21,21,22,22,23,23,24,24,25,25,26,26,
27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34,
35,35,36,36,37,38,39,40,41,42,43,44,45,46,47,48,
};
/*static const int kf_minq[QINDEX_RANGE] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10,10,11,11,12,12,13,13,14,14,
15,15,16,16,17,17,18,18,19,19,20,20,21,21,22,22,
23,23,24,24,25,25,26,26,27,27,28,28,29,29,30,30,
31,31,32,32,33,33,34,34,35,35,36,36,37,37,38,38
};*/
static const int gf_low_motion_minq[QINDEX_RANGE] =
{
0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,
3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,
7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,
11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,
19,19,20,20,21,21,22,22,23,23,24,24,25,25,26,26,
27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34,
35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,
43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58
};
static const int gf_mid_motion_minq[QINDEX_RANGE] =
{
0,0,0,0,1,1,1,1,1,1,2,2,3,3,3,4,
4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,
9,10,10,10,10,11,11,11,12,12,12,12,13,13,13,14,
14,14,15,15,16,16,17,17,18,18,19,19,20,20,21,21,
22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,29,
30,30,31,31,32,32,33,33,34,34,35,35,36,36,37,37,
38,39,39,40,40,41,41,42,42,43,43,44,45,46,47,48,
49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,
};
static const int gf_high_motion_minq[QINDEX_RANGE] =
{
0,0,0,0,1,1,1,1,1,2,2,2,3,3,3,4,
4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,
9,10,10,10,11,11,12,12,13,13,14,14,15,15,16,16,
17,17,18,18,19,19,20,20,21,21,22,22,23,23,24,24,
25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,
33,33,34,34,35,35,36,36,37,37,38,38,39,39,40,40,
41,41,42,42,43,44,45,46,47,48,49,50,51,52,53,54,
55,56,57,58,59,60,62,64,66,68,70,72,74,76,78,80,
};
/*static const int gf_arf_minq[QINDEX_RANGE] =
{
0,0,0,0,1,1,1,1,1,1,2,2,3,3,3,4,
4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,
9,10,10,10,11,11,11,12,12,12,13,13,13,14,14,14,
15,15,16,16,17,17,18,18,19,19,20,20,21,21,22,22,
23,23,24,24,25,25,26,26,27,27,28,28,29,29,30,30,
31,31,32,32,33,33,34,34,35,35,36,36,37,37,38,39,
39,40,40,41,41,42,42,43,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66
};*/
static const int inter_minq[QINDEX_RANGE] =
{
0,0,0,0,1,1,2,3,3,4,4,5,6,6,7,7,
8,8,9,9,10,11,11,12,12,13,13,14,14,15,15,16,
16,17,17,17,18,18,19,19,20,20,21,21,22,22,22,23,
23,24,24,24,25,25,26,27,28,28,29,30,31,32,33,34,
35,35,36,37,38,39,39,40,41,42,43,43,44,45,46,47,
47,48,49,49,51,52,53,54,54,55,56,56,57,57,58,58,
59,59,60,61,61,62,62,63,64,64,65,66,67,67,68,69,
69,70,71,71,72,73,74,75,76,76,77,78,79,80,81,81,
};
void vp8_initialize()
{
static int init_done = 0;
if (!init_done)
{
vp8_scale_machine_specific_config();
vp8_initialize_common();
//vp8_dmachine_specific_config();
vp8_tokenize_initialize();
vp8cx_init_mv_bits_sadcost();
init_done = 1;
}
}
#ifdef PACKET_TESTING
extern FILE *vpxlogc;
#endif
static void setup_features(VP8_COMP *cpi)
{
// Set up default state for MB feature flags
cpi->mb.e_mbd.segmentation_enabled = 0;
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
vpx_memset(cpi->mb.e_mbd.mb_segment_tree_probs, 255, sizeof(cpi->mb.e_mbd.mb_segment_tree_probs));
vpx_memset(cpi->mb.e_mbd.segment_feature_data, 0, sizeof(cpi->mb.e_mbd.segment_feature_data));
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 0;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
vpx_memset(cpi->mb.e_mbd.last_ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
vpx_memset(cpi->mb.e_mbd.last_mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
set_default_lf_deltas(cpi);
}
void vp8_dealloc_compressor_data(VP8_COMP *cpi)
{
// Delete sementation map
if (cpi->segmentation_map != 0)
vpx_free(cpi->segmentation_map);
cpi->segmentation_map = 0;
if (cpi->active_map != 0)
vpx_free(cpi->active_map);
cpi->active_map = 0;
// Delete first pass motion map
if (cpi->fp_motion_map != 0)
vpx_free(cpi->fp_motion_map);
cpi->fp_motion_map = 0;
vp8_de_alloc_frame_buffers(&cpi->common);
vp8_yv12_de_alloc_frame_buffer(&cpi->last_frame_uf);
vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source);
#if VP8_TEMPORAL_ALT_REF
vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer.source_buffer);
#endif
{
int i;
for (i = 0; i < MAX_LAG_BUFFERS; i++)
vp8_yv12_de_alloc_frame_buffer(&cpi->src_buffer[i].source_buffer);
cpi->source_buffer_count = 0;
}
vpx_free(cpi->tok);
cpi->tok = 0;
// Structure used to minitor GF useage
if (cpi->gf_active_flags != 0)
vpx_free(cpi->gf_active_flags);
cpi->gf_active_flags = 0;
if(cpi->mb.pip)
vpx_free(cpi->mb.pip);
cpi->mb.pip = 0;
vpx_free(cpi->total_stats);
vpx_free(cpi->this_frame_stats);
}
static void enable_segmentation(VP8_PTR ptr)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
// Set the appropriate feature bit
cpi->mb.e_mbd.segmentation_enabled = 1;
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
static void disable_segmentation(VP8_PTR ptr)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
// Clear the appropriate feature bit
cpi->mb.e_mbd.segmentation_enabled = 0;
}
// Valid values for a segment are 0 to 3
// Segmentation map is arrange as [Rows][Columns]
static void set_segmentation_map(VP8_PTR ptr, unsigned char *segmentation_map)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
// Copy in the new segmentation map
vpx_memcpy(cpi->segmentation_map, segmentation_map, (cpi->common.mb_rows * cpi->common.mb_cols));
// Signal that the map should be updated.
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
// The values given for each segment can be either deltas (from the default value chosen for the frame) or absolute values.
//
// Valid range for abs values is (0-127 for MB_LVL_ALT_Q) , (0-63 for SEGMENT_ALT_LF)
// Valid range for delta values are (+/-127 for MB_LVL_ALT_Q) , (+/-63 for SEGMENT_ALT_LF)
//
// abs_delta = SEGMENT_DELTADATA (deltas) abs_delta = SEGMENT_ABSDATA (use the absolute values given).
//
//
static void set_segment_data(VP8_PTR ptr, signed char *feature_data, unsigned char abs_delta)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
cpi->mb.e_mbd.mb_segement_abs_delta = abs_delta;
vpx_memcpy(cpi->segment_feature_data, feature_data, sizeof(cpi->segment_feature_data));
}
static void segmentation_test_function(VP8_PTR ptr)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
unsigned char *seg_map;
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
CHECK_MEM_ERROR(seg_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
// Create a temporary map for segmentation data.
// MB loop to set local segmentation map
/*for ( i = 0; i < cpi->common.mb_rows; i++ )
{
for ( j = 0; j < cpi->common.mb_cols; j++ )
{
//seg_map[(i*cpi->common.mb_cols) + j] = (j % 2) + ((i%2)* 2);
//if ( j < cpi->common.mb_cols/2 )
// Segment 1 around the edge else 0
if ( (i == 0) || (j == 0) || (i == (cpi->common.mb_rows-1)) || (j == (cpi->common.mb_cols-1)) )
seg_map[(i*cpi->common.mb_cols) + j] = 1;
//else if ( (i < 2) || (j < 2) || (i > (cpi->common.mb_rows-3)) || (j > (cpi->common.mb_cols-3)) )
// seg_map[(i*cpi->common.mb_cols) + j] = 2;
//else if ( (i < 5) || (j < 5) || (i > (cpi->common.mb_rows-6)) || (j > (cpi->common.mb_cols-6)) )
// seg_map[(i*cpi->common.mb_cols) + j] = 3;
else
seg_map[(i*cpi->common.mb_cols) + j] = 0;
}
}*/
// Set the segmentation Map
set_segmentation_map(ptr, seg_map);
// Activate segmentation.
enable_segmentation(ptr);
// Set up the quant segment data
feature_data[MB_LVL_ALT_Q][0] = 0;
feature_data[MB_LVL_ALT_Q][1] = 4;
feature_data[MB_LVL_ALT_Q][2] = 0;
feature_data[MB_LVL_ALT_Q][3] = 0;
// Set up the loop segment data
feature_data[MB_LVL_ALT_LF][0] = 0;
feature_data[MB_LVL_ALT_LF][1] = 0;
feature_data[MB_LVL_ALT_LF][2] = 0;
feature_data[MB_LVL_ALT_LF][3] = 0;
// Initialise the feature data structure
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
set_segment_data(ptr, &feature_data[0][0], SEGMENT_DELTADATA);
// Delete sementation map
if (seg_map != 0)
vpx_free(seg_map);
seg_map = 0;
}
// A simple function to cyclically refresh the background at a lower Q
static void cyclic_background_refresh(VP8_COMP *cpi, int Q, int lf_adjustment)
{
unsigned char *seg_map;
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
int i;
int block_count = cpi->cyclic_refresh_mode_max_mbs_perframe;
int mbs_in_frame = cpi->common.mb_rows * cpi->common.mb_cols;
// Create a temporary map for segmentation data.
CHECK_MEM_ERROR(seg_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
cpi->cyclic_refresh_q = Q;
for (i = Q; i > 0; i--)
{
if (vp8_bits_per_mb[cpi->common.frame_type][i] >= ((vp8_bits_per_mb[cpi->common.frame_type][Q]*(Q + 128)) / 64))
//if ( vp8_bits_per_mb[cpi->common.frame_type][i] >= ((vp8_bits_per_mb[cpi->common.frame_type][Q]*((2*Q)+96))/64) )
{
break;
}
}
cpi->cyclic_refresh_q = i;
// Only update for inter frames
if (cpi->common.frame_type != KEY_FRAME)
{
// Cycle through the macro_block rows
// MB loop to set local segmentation map
for (i = cpi->cyclic_refresh_mode_index; i < mbs_in_frame; i++)
{
// If the MB is as a candidate for clean up then mark it for possible boost/refresh (segment 1)
// The segment id may get reset to 0 later if the MB gets coded anything other than last frame 0,0
// as only (last frame 0,0) MBs are eligable for refresh : that is to say Mbs likely to be background blocks.
if (cpi->cyclic_refresh_map[i] == 0)
{
seg_map[i] = 1;
}
else
{
seg_map[i] = 0;
// Skip blocks that have been refreshed recently anyway.
if (cpi->cyclic_refresh_map[i] < 0)
//cpi->cyclic_refresh_map[i] = cpi->cyclic_refresh_map[i] / 16;
cpi->cyclic_refresh_map[i]++;
}
if (block_count > 0)
block_count--;
else
break;
}
// If we have gone through the frame reset to the start
cpi->cyclic_refresh_mode_index = i;
if (cpi->cyclic_refresh_mode_index >= mbs_in_frame)
cpi->cyclic_refresh_mode_index = 0;
}
// Set the segmentation Map
set_segmentation_map((VP8_PTR)cpi, seg_map);
// Activate segmentation.
enable_segmentation((VP8_PTR)cpi);
// Set up the quant segment data
feature_data[MB_LVL_ALT_Q][0] = 0;
feature_data[MB_LVL_ALT_Q][1] = (cpi->cyclic_refresh_q - Q);
feature_data[MB_LVL_ALT_Q][2] = 0;
feature_data[MB_LVL_ALT_Q][3] = 0;
// Set up the loop segment data
feature_data[MB_LVL_ALT_LF][0] = 0;
feature_data[MB_LVL_ALT_LF][1] = lf_adjustment;
feature_data[MB_LVL_ALT_LF][2] = 0;
feature_data[MB_LVL_ALT_LF][3] = 0;
// Initialise the feature data structure
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
set_segment_data((VP8_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA);
// Delete sementation map
if (seg_map != 0)
vpx_free(seg_map);
seg_map = 0;
}
static void set_default_lf_deltas(VP8_COMP *cpi)
{
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 1;
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
// Test of ref frame deltas
cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2;
cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0;
cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2;
cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2;
cpi->mb.e_mbd.mode_lf_deltas[0] = 4; // BPRED
cpi->mb.e_mbd.mode_lf_deltas[1] = -2; // Zero
cpi->mb.e_mbd.mode_lf_deltas[2] = 2; // New mv
cpi->mb.e_mbd.mode_lf_deltas[3] = 4; // Split mv
}
void vp8_set_speed_features(VP8_COMP *cpi)
{
SPEED_FEATURES *sf = &cpi->sf;
int Mode = cpi->compressor_speed;
int Speed = cpi->Speed;
int i;
VP8_COMMON *cm = &cpi->common;
int last_improved_quant = sf->improved_quant;
// Initialise default mode frequency sampling variables
for (i = 0; i < MAX_MODES; i ++)
{
cpi->mode_check_freq[i] = 0;
cpi->mode_test_hit_counts[i] = 0;
cpi->mode_chosen_counts[i] = 0;
}
cpi->mbs_tested_so_far = 0;
// best quality
sf->RD = 1;
sf->search_method = NSTEP;
sf->improved_quant = 1;
sf->improved_dct = 1;
sf->auto_filter = 1;
sf->recode_loop = 1;
sf->quarter_pixel_search = 1;
sf->half_pixel_search = 1;
sf->full_freq[0] = 7;
sf->full_freq[1] = 7;
sf->min_fs_radius = 8;
sf->max_fs_radius = 32;
sf->iterative_sub_pixel = 1;
sf->optimize_coefficients = 1;
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
cpi->do_full[0] = 0;
cpi->do_full[1] = 0;
// default thresholds to 0
for (i = 0; i < MAX_MODES; i++)
sf->thresh_mult[i] = 0;
switch (Mode)
{
#if !(CONFIG_REALTIME_ONLY)
case 0: // best quality mode
sf->thresh_mult[THR_ZEROMV ] = 0;
sf->thresh_mult[THR_ZEROG ] = 0;
sf->thresh_mult[THR_ZEROA ] = 0;
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_NEARESTG ] = 0;
sf->thresh_mult[THR_NEARESTA ] = 0;
sf->thresh_mult[THR_NEARMV ] = 0;
sf->thresh_mult[THR_NEARG ] = 0;
sf->thresh_mult[THR_NEARA ] = 0;
sf->thresh_mult[THR_DC ] = 0;
sf->thresh_mult[THR_V_PRED ] = 1000;
sf->thresh_mult[THR_H_PRED ] = 1000;
sf->thresh_mult[THR_B_PRED ] = 2000;
sf->thresh_mult[THR_TM ] = 1000;
sf->thresh_mult[THR_NEWMV ] = 1000;
sf->thresh_mult[THR_NEWG ] = 1000;
sf->thresh_mult[THR_NEWA ] = 1000;
sf->thresh_mult[THR_SPLITMV ] = 2500;
sf->thresh_mult[THR_SPLITG ] = 5000;
sf->thresh_mult[THR_SPLITA ] = 5000;
sf->full_freq[0] = 7;
sf->full_freq[1] = 15;
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
if (!(cpi->ref_frame_flags & VP8_LAST_FLAG))
{
sf->thresh_mult[THR_NEWMV ] = INT_MAX;
sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
sf->thresh_mult[THR_NEARMV ] = INT_MAX;
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG))
{
sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
sf->thresh_mult[THR_ZEROG ] = INT_MAX;
sf->thresh_mult[THR_NEARG ] = INT_MAX;
sf->thresh_mult[THR_NEWG ] = INT_MAX;
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP8_ALT_FLAG))
{
sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
sf->thresh_mult[THR_ZEROA ] = INT_MAX;
sf->thresh_mult[THR_NEARA ] = INT_MAX;
sf->thresh_mult[THR_NEWA ] = INT_MAX;
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
}
break;
case 1:
case 3:
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_ZEROMV ] = 0;
sf->thresh_mult[THR_DC ] = 0;
sf->thresh_mult[THR_NEARMV ] = 0;
sf->thresh_mult[THR_V_PRED ] = 1000;
sf->thresh_mult[THR_H_PRED ] = 1000;
sf->thresh_mult[THR_B_PRED ] = 2500;
sf->thresh_mult[THR_TM ] = 1000;
sf->thresh_mult[THR_NEARESTG ] = 1000;
sf->thresh_mult[THR_NEARESTA ] = 1000;
sf->thresh_mult[THR_ZEROG ] = 1000;
sf->thresh_mult[THR_ZEROA ] = 1000;
sf->thresh_mult[THR_NEARG ] = 1000;
sf->thresh_mult[THR_NEARA ] = 1000;
sf->thresh_mult[THR_NEWMV ] = 1500;
sf->thresh_mult[THR_NEWG ] = 1500;
sf->thresh_mult[THR_NEWA ] = 1500;
sf->thresh_mult[THR_SPLITMV ] = 5000;
sf->thresh_mult[THR_SPLITG ] = 10000;
sf->thresh_mult[THR_SPLITA ] = 10000;
sf->full_freq[0] = 15;
sf->full_freq[1] = 31;
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
if (!(cpi->ref_frame_flags & VP8_LAST_FLAG))
{
sf->thresh_mult[THR_NEWMV ] = INT_MAX;
sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
sf->thresh_mult[THR_NEARMV ] = INT_MAX;
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG))
{
sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
sf->thresh_mult[THR_ZEROG ] = INT_MAX;
sf->thresh_mult[THR_NEARG ] = INT_MAX;
sf->thresh_mult[THR_NEWG ] = INT_MAX;
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP8_ALT_FLAG))
{
sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
sf->thresh_mult[THR_ZEROA ] = INT_MAX;
sf->thresh_mult[THR_NEARA ] = INT_MAX;
sf->thresh_mult[THR_NEWA ] = INT_MAX;
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
}
if (Speed > 0)
{
// Disable coefficient optimization above speed 0
sf->optimize_coefficients = 0;
cpi->mode_check_freq[THR_SPLITG] = 4;
cpi->mode_check_freq[THR_SPLITA] = 4;
cpi->mode_check_freq[THR_SPLITMV] = 2;
sf->thresh_mult[THR_TM ] = 1500;
sf->thresh_mult[THR_V_PRED ] = 1500;
sf->thresh_mult[THR_H_PRED ] = 1500;
sf->thresh_mult[THR_B_PRED ] = 5000;
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
{
sf->thresh_mult[THR_NEWMV ] = 2000;
sf->thresh_mult[THR_SPLITMV ] = 10000;
}
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
sf->thresh_mult[THR_NEARESTG ] = 1500;
sf->thresh_mult[THR_ZEROG ] = 1500;
sf->thresh_mult[THR_NEARG ] = 1500;
sf->thresh_mult[THR_NEWG ] = 2000;
sf->thresh_mult[THR_SPLITG ] = 20000;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
sf->thresh_mult[THR_NEARESTA ] = 1500;
sf->thresh_mult[THR_ZEROA ] = 1500;
sf->thresh_mult[THR_NEARA ] = 1500;
sf->thresh_mult[THR_NEWA ] = 2000;
sf->thresh_mult[THR_SPLITA ] = 20000;
}
sf->improved_quant = 0;
sf->improved_dct = 0;
sf->first_step = 1;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
}
if (Speed > 1)
{
cpi->mode_check_freq[THR_SPLITG] = 15;
cpi->mode_check_freq[THR_SPLITA] = 15;
cpi->mode_check_freq[THR_SPLITMV] = 7;
sf->thresh_mult[THR_TM ] = 2000;
sf->thresh_mult[THR_V_PRED ] = 2000;
sf->thresh_mult[THR_H_PRED ] = 2000;
sf->thresh_mult[THR_B_PRED ] = 7500;
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
{
sf->thresh_mult[THR_NEWMV ] = 2000;
sf->thresh_mult[THR_SPLITMV ] = 25000;
}
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
sf->thresh_mult[THR_NEARESTG ] = 2000;
sf->thresh_mult[THR_ZEROG ] = 2000;
sf->thresh_mult[THR_NEARG ] = 2000;
sf->thresh_mult[THR_NEWG ] = 2500;
sf->thresh_mult[THR_SPLITG ] = 50000;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
sf->thresh_mult[THR_NEARESTA ] = 2000;
sf->thresh_mult[THR_ZEROA ] = 2000;
sf->thresh_mult[THR_NEARA ] = 2000;
sf->thresh_mult[THR_NEWA ] = 2500;
sf->thresh_mult[THR_SPLITA ] = 50000;
}
// Only do recode loop on key frames, golden frames and
// alt ref frames
sf->recode_loop = 2;
sf->full_freq[0] = 31;
sf->full_freq[1] = 63;
}
if (Speed > 2)
{
sf->auto_filter = 0; // Faster selection of loop filter
cpi->mode_check_freq[THR_V_PRED] = 2;
cpi->mode_check_freq[THR_H_PRED] = 2;
cpi->mode_check_freq[THR_B_PRED] = 2;
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
cpi->mode_check_freq[THR_NEARG] = 2;
cpi->mode_check_freq[THR_NEWG] = 4;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
cpi->mode_check_freq[THR_NEARA] = 2;
cpi->mode_check_freq[THR_NEWA] = 4;
}
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
sf->full_freq[0] = 63;
sf->full_freq[1] = 127;
}
if (Speed > 3)
{
cpi->mode_check_freq[THR_V_PRED] = 0;
cpi->mode_check_freq[THR_H_PRED] = 0;
cpi->mode_check_freq[THR_B_PRED] = 0;
cpi->mode_check_freq[THR_NEARG] = 0;
cpi->mode_check_freq[THR_NEWG] = 0;
cpi->mode_check_freq[THR_NEARA] = 0;
cpi->mode_check_freq[THR_NEWA] = 0;
sf->auto_filter = 1;
sf->recode_loop = 0; // recode loop off
sf->RD = 0; // Turn rd off
sf->full_freq[0] = INT_MAX;
sf->full_freq[1] = INT_MAX;
}
if (Speed > 4)
{
sf->auto_filter = 0; // Faster selection of loop filter
cpi->mode_check_freq[THR_V_PRED] = 2;
cpi->mode_check_freq[THR_H_PRED] = 2;
cpi->mode_check_freq[THR_B_PRED] = 2;
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
cpi->mode_check_freq[THR_NEARG] = 2;
cpi->mode_check_freq[THR_NEWG] = 4;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
cpi->mode_check_freq[THR_NEARA] = 2;
cpi->mode_check_freq[THR_NEWA] = 4;
}
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
sf->thresh_mult[THR_NEARESTG ] = 2000;
sf->thresh_mult[THR_ZEROG ] = 2000;
sf->thresh_mult[THR_NEARG ] = 2000;
sf->thresh_mult[THR_NEWG ] = 4000;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
sf->thresh_mult[THR_NEARESTA ] = 2000;
sf->thresh_mult[THR_ZEROA ] = 2000;
sf->thresh_mult[THR_NEARA ] = 2000;
sf->thresh_mult[THR_NEWA ] = 4000;
}
}
break;
#endif
case 2:
sf->optimize_coefficients = 0;
sf->recode_loop = 0;
sf->auto_filter = 1;
sf->iterative_sub_pixel = 1;
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_ZEROMV ] = 0;
sf->thresh_mult[THR_DC ] = 0;
sf->thresh_mult[THR_TM ] = 0;
sf->thresh_mult[THR_NEARMV ] = 0;
sf->thresh_mult[THR_V_PRED ] = 1000;
sf->thresh_mult[THR_H_PRED ] = 1000;
sf->thresh_mult[THR_B_PRED ] = 2500;
sf->thresh_mult[THR_NEARESTG ] = 1000;
sf->thresh_mult[THR_ZEROG ] = 1000;
sf->thresh_mult[THR_NEARG ] = 1000;
sf->thresh_mult[THR_NEARESTA ] = 1000;
sf->thresh_mult[THR_ZEROA ] = 1000;
sf->thresh_mult[THR_NEARA ] = 1000;
sf->thresh_mult[THR_NEWMV ] = 2000;
sf->thresh_mult[THR_NEWG ] = 2000;
sf->thresh_mult[THR_NEWA ] = 2000;
sf->thresh_mult[THR_SPLITMV ] = 5000;
sf->thresh_mult[THR_SPLITG ] = 10000;
sf->thresh_mult[THR_SPLITA ] = 10000;
sf->full_freq[0] = 15;
sf->full_freq[1] = 31;
sf->search_method = NSTEP;
if (!(cpi->ref_frame_flags & VP8_LAST_FLAG))
{
sf->thresh_mult[THR_NEWMV ] = INT_MAX;
sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
sf->thresh_mult[THR_NEARMV ] = INT_MAX;
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG))
{
sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
sf->thresh_mult[THR_ZEROG ] = INT_MAX;
sf->thresh_mult[THR_NEARG ] = INT_MAX;
sf->thresh_mult[THR_NEWG ] = INT_MAX;
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP8_ALT_FLAG))
{
sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
sf->thresh_mult[THR_ZEROA ] = INT_MAX;
sf->thresh_mult[THR_NEARA ] = INT_MAX;
sf->thresh_mult[THR_NEWA ] = INT_MAX;
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
}
if (Speed > 0)
{
cpi->mode_check_freq[THR_SPLITG] = 4;
cpi->mode_check_freq[THR_SPLITA] = 4;
cpi->mode_check_freq[THR_SPLITMV] = 2;
sf->thresh_mult[THR_DC ] = 0;
sf->thresh_mult[THR_TM ] = 1000;
sf->thresh_mult[THR_V_PRED ] = 2000;
sf->thresh_mult[THR_H_PRED ] = 2000;
sf->thresh_mult[THR_B_PRED ] = 5000;
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
{
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_ZEROMV ] = 0;
sf->thresh_mult[THR_NEARMV ] = 0;
sf->thresh_mult[THR_NEWMV ] = 2000;
sf->thresh_mult[THR_SPLITMV ] = 10000;
}
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
sf->thresh_mult[THR_NEARESTG ] = 1000;
sf->thresh_mult[THR_ZEROG ] = 1000;
sf->thresh_mult[THR_NEARG ] = 1000;
sf->thresh_mult[THR_NEWG ] = 2000;
sf->thresh_mult[THR_SPLITG ] = 20000;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
sf->thresh_mult[THR_NEARESTA ] = 1000;
sf->thresh_mult[THR_ZEROA ] = 1000;
sf->thresh_mult[THR_NEARA ] = 1000;
sf->thresh_mult[THR_NEWA ] = 2000;
sf->thresh_mult[THR_SPLITA ] = 20000;
}
sf->improved_quant = 0;
sf->improved_dct = 0;
}
if (Speed > 1)
{
cpi->mode_check_freq[THR_SPLITMV] = 7;
cpi->mode_check_freq[THR_SPLITG] = 15;
cpi->mode_check_freq[THR_SPLITA] = 15;
sf->thresh_mult[THR_TM ] = 2000;
sf->thresh_mult[THR_V_PRED ] = 2000;
sf->thresh_mult[THR_H_PRED ] = 2000;
sf->thresh_mult[THR_B_PRED ] = 5000;
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
{
sf->thresh_mult[THR_NEWMV ] = 2000;
sf->thresh_mult[THR_SPLITMV ] = 25000;
}
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
sf->thresh_mult[THR_NEARESTG ] = 2000;
sf->thresh_mult[THR_ZEROG ] = 2000;
sf->thresh_mult[THR_NEARG ] = 2000;
sf->thresh_mult[THR_NEWG ] = 2500;
sf->thresh_mult[THR_SPLITG ] = 50000;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
sf->thresh_mult[THR_NEARESTA ] = 2000;
sf->thresh_mult[THR_ZEROA ] = 2000;
sf->thresh_mult[THR_NEARA ] = 2000;
sf->thresh_mult[THR_NEWA ] = 2500;
sf->thresh_mult[THR_SPLITA ] = 50000;
}
sf->full_freq[0] = 31;
sf->full_freq[1] = 63;
}
if (Speed > 2)
{
sf->auto_filter = 0; // Faster selection of loop filter
cpi->mode_check_freq[THR_V_PRED] = 2;
cpi->mode_check_freq[THR_H_PRED] = 2;
cpi->mode_check_freq[THR_B_PRED] = 2;
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
cpi->mode_check_freq[THR_NEARG] = 2;
cpi->mode_check_freq[THR_NEWG] = 4;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
cpi->mode_check_freq[THR_NEARA] = 2;
cpi->mode_check_freq[THR_NEWA] = 4;
}
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
sf->full_freq[0] = 63;
sf->full_freq[1] = 127;
}
if (Speed > 3)
{
sf->RD = 0;
sf->full_freq[0] = INT_MAX;
sf->full_freq[1] = INT_MAX;
sf->auto_filter = 1;
}
if (Speed > 4)
{
sf->auto_filter = 0; // Faster selection of loop filter
#if CONFIG_REALTIME_ONLY
sf->search_method = HEX;
#else
sf->search_method = DIAMOND;
#endif
cpi->mode_check_freq[THR_V_PRED] = 4;
cpi->mode_check_freq[THR_H_PRED] = 4;
cpi->mode_check_freq[THR_B_PRED] = 4;
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
cpi->mode_check_freq[THR_NEARG] = 2;
cpi->mode_check_freq[THR_NEWG] = 4;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
cpi->mode_check_freq[THR_NEARA] = 2;
cpi->mode_check_freq[THR_NEWA] = 4;
}
sf->thresh_mult[THR_TM ] = 2000;
sf->thresh_mult[THR_B_PRED ] = 5000;
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
sf->thresh_mult[THR_NEARESTG ] = 2000;
sf->thresh_mult[THR_ZEROG ] = 2000;
sf->thresh_mult[THR_NEARG ] = 2000;
sf->thresh_mult[THR_NEWG ] = 4000;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
sf->thresh_mult[THR_NEARESTA ] = 2000;
sf->thresh_mult[THR_ZEROA ] = 2000;
sf->thresh_mult[THR_NEARA ] = 2000;
sf->thresh_mult[THR_NEWA ] = 4000;
}
}
if (Speed > 5)
{
// Disable split MB intra prediction mode
sf->thresh_mult[THR_B_PRED] = INT_MAX;
}
if (Speed > 6)
{
unsigned int i, sum = 0;
unsigned int total_mbs = cm->MBs;
int thresh;
int total_skip;
int min = 2000;
sf->iterative_sub_pixel = 0;
if (cpi->oxcf.encode_breakout > 2000)
min = cpi->oxcf.encode_breakout;
min >>= 7;
for (i = 0; i < min; i++)
{
sum += cpi->error_bins[i];
}
total_skip = sum;
sum = 0;
// i starts from 2 to make sure thresh started from 2048
for (; i < 1024; i++)
{
sum += cpi->error_bins[i];
if (10 * sum >= (unsigned int)(cpi->Speed - 6)*(total_mbs - total_skip))
break;
}
i--;
thresh = (i << 7);
if (thresh < 2000)
thresh = 2000;
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
{
sf->thresh_mult[THR_NEWMV] = thresh;
sf->thresh_mult[THR_NEARESTMV ] = thresh >> 1;
sf->thresh_mult[THR_NEARMV ] = thresh >> 1;
}
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
sf->thresh_mult[THR_NEWG] = thresh << 1;
sf->thresh_mult[THR_NEARESTG ] = thresh;
sf->thresh_mult[THR_NEARG ] = thresh;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
sf->thresh_mult[THR_NEWA] = thresh << 1;
sf->thresh_mult[THR_NEARESTA ] = thresh;
sf->thresh_mult[THR_NEARA ] = thresh;
}
// Disable other intra prediction modes
sf->thresh_mult[THR_TM] = INT_MAX;
sf->thresh_mult[THR_V_PRED] = INT_MAX;
sf->thresh_mult[THR_H_PRED] = INT_MAX;
}
if (Speed > 8)
{
sf->quarter_pixel_search = 0;
}
if (Speed > 9)
{
int Tmp = cpi->Speed - 8;
if (Tmp > 4)
Tmp = 4;
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
cpi->mode_check_freq[THR_ZEROG] = 1 << (Tmp - 1);
cpi->mode_check_freq[THR_NEARESTG] = 1 << (Tmp - 1);
cpi->mode_check_freq[THR_NEARG] = 1 << Tmp;
cpi->mode_check_freq[THR_NEWG] = 1 << (Tmp + 1);
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
cpi->mode_check_freq[THR_ZEROA] = 1 << (Tmp - 1);
cpi->mode_check_freq[THR_NEARESTA] = 1 << (Tmp - 1);
cpi->mode_check_freq[THR_NEARA] = 1 << Tmp;
cpi->mode_check_freq[THR_NEWA] = 1 << (Tmp + 1);
}
cpi->mode_check_freq[THR_NEWMV] = 1 << (Tmp - 1);
}
cm->filter_type = NORMAL_LOOPFILTER;
if (Speed >= 14)
cm->filter_type = SIMPLE_LOOPFILTER;
if (Speed >= 15)
{
sf->half_pixel_search = 0; // This has a big hit on quality. Last resort
}
vpx_memset(cpi->error_bins, 0, sizeof(cpi->error_bins));
};
if (cpi->sf.search_method == NSTEP)
{
vp8_init3smotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
}
else if (cpi->sf.search_method == DIAMOND)
{
vp8_init_dsmotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
}
if (cpi->sf.improved_dct)
{
cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short8x4);
cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short4x4);
}
else
{
cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast8x4);
cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast4x4);
}
cpi->mb.short_walsh4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, walsh_short4x4);
if (cpi->sf.improved_quant)
{
cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, quantb);
}
else
{
cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, fastquantb);
}
if (cpi->sf.improved_quant != last_improved_quant)
vp8cx_init_quantizer(cpi);
#if CONFIG_RUNTIME_CPU_DETECT
cpi->mb.e_mbd.rtcd = &cpi->common.rtcd;
#endif
if (cpi->sf.iterative_sub_pixel == 1)
{
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively;
}
else if (cpi->sf.quarter_pixel_search)
{
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step;
}
else if (cpi->sf.half_pixel_search)
{
cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step;
}
else
{
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
}
if (cpi->sf.optimize_coefficients == 1)
cpi->mb.optimize = 1 + cpi->is_next_src_alt_ref;
else
cpi->mb.optimize = 0;
if (cpi->common.full_pixel)
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
#ifdef SPEEDSTATS
frames_at_speed[cpi->Speed]++;
#endif
}
static void alloc_raw_frame_buffers(VP8_COMP *cpi)
{
int i, buffers;
buffers = cpi->oxcf.lag_in_frames;
if (buffers > MAX_LAG_BUFFERS)
buffers = MAX_LAG_BUFFERS;
if (buffers < 1)
buffers = 1;
for (i = 0; i < buffers; i++)
if (vp8_yv12_alloc_frame_buffer(&cpi->src_buffer[i].source_buffer,
cpi->oxcf.Width, cpi->oxcf.Height,
16))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate lag buffer");
#if VP8_TEMPORAL_ALT_REF
if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer.source_buffer,
cpi->oxcf.Width, cpi->oxcf.Height, 16))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
#endif
cpi->source_buffer_count = 0;
}
static int vp8_alloc_partition_data(VP8_COMP *cpi)
{
cpi->mb.pip = vpx_calloc((cpi->common.mb_cols + 1) *
(cpi->common.mb_rows + 1),
sizeof(PARTITION_INFO));
if(!cpi->mb.pip)
return ALLOC_FAILURE;
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
return 0;
}
void vp8_alloc_compressor_data(VP8_COMP *cpi)
{
VP8_COMMON *cm = & cpi->common;
int width = cm->Width;
int height = cm->Height;
if (vp8_alloc_frame_buffers(cm, width, height))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
if (vp8_alloc_partition_data(cpi))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate partition data");
if ((width & 0xf) != 0)
width += 16 - (width & 0xf);
if ((height & 0xf) != 0)
height += 16 - (height & 0xf);
if (vp8_yv12_alloc_frame_buffer(&cpi->last_frame_uf,
width, height, VP8BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source, width, height, 16))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
if (cpi->tok != 0)
vpx_free(cpi->tok);
{
unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16;
CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
}
// Data used for real time vc mode to see if gf needs refreshing
cpi->inter_zz_count = 0;
cpi->gf_bad_count = 0;
cpi->gf_update_recommended = 0;
// Structures used to minitor GF usage
if (cpi->gf_active_flags != 0)
vpx_free(cpi->gf_active_flags);
CHECK_MEM_ERROR(cpi->gf_active_flags, vpx_calloc(1, cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
cpi->total_stats = vpx_calloc(1, vp8_firstpass_stats_sz(cpi->common.MBs));
cpi->this_frame_stats = vpx_calloc(1, vp8_firstpass_stats_sz(cpi->common.MBs));
if(!cpi->total_stats || !cpi->this_frame_stats)
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate firstpass stats");
}
// Quant MOD
static const int q_trans[] =
{
0, 1, 2, 3, 4, 5, 7, 8,
9, 10, 12, 13, 15, 17, 18, 19,
20, 21, 23, 24, 25, 26, 27, 28,
29, 30, 31, 33, 35, 37, 39, 41,
43, 45, 47, 49, 51, 53, 55, 57,
59, 61, 64, 67, 70, 73, 76, 79,
82, 85, 88, 91, 94, 97, 100, 103,
106, 109, 112, 115, 118, 121, 124, 127,
};
int vp8_reverse_trans(int x)
{
int i;
for (i = 0; i < 64; i++)
if (q_trans[i] >= x)
return i;
return 63;
};
void vp8_new_frame_rate(VP8_COMP *cpi, double framerate)
{
if(framerate < .1)
framerate = 30;
cpi->oxcf.frame_rate = framerate;
cpi->output_frame_rate = cpi->oxcf.frame_rate;
cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate);
cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate);
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
cpi->max_gf_interval = (int)(cpi->output_frame_rate / 2) + 2;
//cpi->max_gf_interval = (int)(cpi->output_frame_rate * 2 / 3) + 1;
//cpi->max_gf_interval = 24;
if (cpi->max_gf_interval < 12)
cpi->max_gf_interval = 12;
// Special conditions when altr ref frame enabled in lagged compress mode
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames)
{
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
}
}
static int
rescale(int val, int num, int denom)
{
int64_t llnum = num;
int64_t llden = denom;
int64_t llval = val;
return llval * llnum / llden;
}
void vp8_init_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
VP8_COMMON *cm = &cpi->common;
if (!cpi)
return;
cpi->auto_gold = 1;
cpi->auto_adjust_gold_quantizer = 1;
cpi->goldquantizer = 1;
cpi->goldfreq = 7;
cpi->auto_adjust_key_quantizer = 1;
cpi->keyquantizer = 1;
cm->version = oxcf->Version;
vp8_setup_version(cm);
if (oxcf == 0)
{
cpi->pass = 0;
cpi->auto_worst_q = 0;
cpi->oxcf.best_allowed_q = MINQ;
cpi->oxcf.worst_allowed_q = MAXQ;
cpi->oxcf.end_usage = USAGE_STREAM_FROM_SERVER;
cpi->oxcf.starting_buffer_level = 4000;
cpi->oxcf.optimal_buffer_level = 5000;
cpi->oxcf.maximum_buffer_size = 6000;
cpi->oxcf.under_shoot_pct = 90;
cpi->oxcf.allow_df = 0;
cpi->oxcf.drop_frames_water_mark = 20;
cpi->oxcf.allow_spatial_resampling = 0;
cpi->oxcf.resample_down_water_mark = 40;
cpi->oxcf.resample_up_water_mark = 60;
cpi->oxcf.fixed_q = cpi->interquantizer;
cpi->filter_type = NORMAL_LOOPFILTER;
if (cm->simpler_lpf)
cpi->filter_type = SIMPLE_LOOPFILTER;
cpi->compressor_speed = 1;
cpi->horiz_scale = 0;
cpi->vert_scale = 0;
cpi->oxcf.two_pass_vbrbias = 50;
cpi->oxcf.two_pass_vbrmax_section = 400;
cpi->oxcf.two_pass_vbrmin_section = 0;
cpi->oxcf.Sharpness = 0;
cpi->oxcf.noise_sensitivity = 0;
}
else
cpi->oxcf = *oxcf;
switch (cpi->oxcf.Mode)
{
case MODE_REALTIME:
cpi->pass = 0;
cpi->compressor_speed = 2;
if (cpi->oxcf.cpu_used < -16)
{
cpi->oxcf.cpu_used = -16;
}
if (cpi->oxcf.cpu_used > 16)
cpi->oxcf.cpu_used = 16;
break;
#if !(CONFIG_REALTIME_ONLY)
case MODE_GOODQUALITY:
cpi->pass = 0;
cpi->compressor_speed = 1;
if (cpi->oxcf.cpu_used < -5)
{
cpi->oxcf.cpu_used = -5;
}
if (cpi->oxcf.cpu_used > 5)
cpi->oxcf.cpu_used = 5;
break;
case MODE_BESTQUALITY:
cpi->pass = 0;
cpi->compressor_speed = 0;
break;
case MODE_FIRSTPASS:
cpi->pass = 1;
cpi->compressor_speed = 1;
break;
case MODE_SECONDPASS:
cpi->pass = 2;
cpi->compressor_speed = 1;
if (cpi->oxcf.cpu_used < -5)
{
cpi->oxcf.cpu_used = -5;
}
if (cpi->oxcf.cpu_used > 5)
cpi->oxcf.cpu_used = 5;
break;
case MODE_SECONDPASS_BEST:
cpi->pass = 2;
cpi->compressor_speed = 0;
break;
#endif
}
if (cpi->pass == 0)
cpi->auto_worst_q = 1;
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
if (oxcf->fixed_q >= 0)
{
if (oxcf->worst_allowed_q < 0)
cpi->oxcf.fixed_q = q_trans[0];
else
cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q];
if (oxcf->alt_q < 0)
cpi->oxcf.alt_q = q_trans[0];
else
cpi->oxcf.alt_q = q_trans[oxcf->alt_q];
if (oxcf->key_q < 0)
cpi->oxcf.key_q = q_trans[0];
else
cpi->oxcf.key_q = q_trans[oxcf->key_q];
if (oxcf->gold_q < 0)
cpi->oxcf.gold_q = q_trans[0];
else
cpi->oxcf.gold_q = q_trans[oxcf->gold_q];
}
cpi->baseline_gf_interval = cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL;
cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG;
//cpi->use_golden_frame_only = 0;
//cpi->use_last_frame_only = 0;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
cm->refresh_entropy_probs = 1;
if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3)
cm->multi_token_partition = (TOKEN_PARTITION) cpi->oxcf.token_partitions;
setup_features(cpi);
{
int i;
for (i = 0; i < MAX_MB_SEGMENTS; i++)
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
// At the moment the first order values may not be > MAXQ
if (cpi->oxcf.fixed_q > MAXQ)
cpi->oxcf.fixed_q = MAXQ;
// local file playback mode == really big buffer
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK)
{
cpi->oxcf.starting_buffer_level = 60000;
cpi->oxcf.optimal_buffer_level = 60000;
cpi->oxcf.maximum_buffer_size = 240000;
}
// Convert target bandwidth from Kbit/s to Bit/s
cpi->oxcf.target_bandwidth *= 1000;
cpi->oxcf.starting_buffer_level =
rescale(cpi->oxcf.starting_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
if (cpi->oxcf.optimal_buffer_level == 0)
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.optimal_buffer_level =
rescale(cpi->oxcf.optimal_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
if (cpi->oxcf.maximum_buffer_size == 0)
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.maximum_buffer_size =
rescale(cpi->oxcf.maximum_buffer_size,
cpi->oxcf.target_bandwidth, 1000);
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
vp8_new_frame_rate(cpi, cpi->oxcf.frame_rate);
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
cpi->best_quality = cpi->oxcf.best_allowed_q;
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
cpi->buffered_mode = (cpi->oxcf.optimal_buffer_level > 0) ? TRUE : FALSE;
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->total_actual_bits = 0;
cpi->total_target_vs_actual = 0;
// Only allow dropped frames in buffered mode
cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode;
cm->filter_type = (LOOPFILTERTYPE) cpi->filter_type;
if (!cm->use_bilinear_mc_filter)
cm->mcomp_filter_type = SIXTAP;
else
cm->mcomp_filter_type = BILINEAR;
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
cm->Width = cpi->oxcf.Width ;
cm->Height = cpi->oxcf.Height ;
cpi->intra_frame_target = (4 * (cm->Width + cm->Height) / 15) * 1000; // As per VP8
cm->horiz_scale = cpi->horiz_scale;
cm->vert_scale = cpi->vert_scale ;
// VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs)
if (cpi->oxcf.Sharpness > 7)
cpi->oxcf.Sharpness = 7;
cm->sharpness_level = cpi->oxcf.Sharpness;
if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL)
{
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
// always go to the next whole number
cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs;
cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs;
}
if (((cm->Width + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_width ||
((cm->Height + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_height ||
cm->yv12_fb[cm->lst_fb_idx].y_width == 0)
{
alloc_raw_frame_buffers(cpi);
vp8_alloc_compressor_data(cpi);
}
// Clamp KF frame size to quarter of data rate
if (cpi->intra_frame_target > cpi->target_bandwidth >> 2)
cpi->intra_frame_target = cpi->target_bandwidth >> 2;
if (cpi->oxcf.fixed_q >= 0)
{
cpi->last_q[0] = cpi->oxcf.fixed_q;
cpi->last_q[1] = cpi->oxcf.fixed_q;
}
cpi->Speed = cpi->oxcf.cpu_used;
// force to allowlag to 0 if lag_in_frames is 0;
if (cpi->oxcf.lag_in_frames == 0)
{
cpi->oxcf.allow_lag = 0;
}
// Limit on lag buffers as these are not currently dynamically allocated
else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS)
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
// YX Temp
cpi->last_alt_ref_sei = -1;
cpi->is_src_frame_alt_ref = 0;
cpi->is_next_src_alt_ref = 0;
#if 0
// Experimental RD Code
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
#if VP8_TEMPORAL_ALT_REF
cpi->use_weighted_temporal_filter = 0;
{
int i;
cpi->fixed_divide[0] = 0;
for (i = 1; i < 512; i++)
cpi->fixed_divide[i] = 0x80000 / i;
}
#endif
}
/*
* This function needs more clean up, i.e. be more tuned torwards
* change_config rather than init_config !!!!!!!!!!!!!!!!
* YX - 5/28/2009
*
*/
void vp8_change_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
VP8_COMMON *cm = &cpi->common;
if (!cpi)
return;
if (!oxcf)
return;
if (cm->version != oxcf->Version)
{
cm->version = oxcf->Version;
vp8_setup_version(cm);
}
cpi->oxcf = *oxcf;
switch (cpi->oxcf.Mode)
{
case MODE_REALTIME:
cpi->pass = 0;
cpi->compressor_speed = 2;
if (cpi->oxcf.cpu_used < -16)
{
cpi->oxcf.cpu_used = -16;
}
if (cpi->oxcf.cpu_used > 16)
cpi->oxcf.cpu_used = 16;
break;
#if !(CONFIG_REALTIME_ONLY)
case MODE_GOODQUALITY:
cpi->pass = 0;
cpi->compressor_speed = 1;
if (cpi->oxcf.cpu_used < -5)
{
cpi->oxcf.cpu_used = -5;
}
if (cpi->oxcf.cpu_used > 5)
cpi->oxcf.cpu_used = 5;
break;
case MODE_BESTQUALITY:
cpi->pass = 0;
cpi->compressor_speed = 0;
break;
case MODE_FIRSTPASS:
cpi->pass = 1;
cpi->compressor_speed = 1;
break;
case MODE_SECONDPASS:
cpi->pass = 2;
cpi->compressor_speed = 1;
if (cpi->oxcf.cpu_used < -5)
{
cpi->oxcf.cpu_used = -5;
}
if (cpi->oxcf.cpu_used > 5)
cpi->oxcf.cpu_used = 5;
break;
case MODE_SECONDPASS_BEST:
cpi->pass = 2;
cpi->compressor_speed = 0;
break;
#endif
}
if (cpi->pass == 0)
cpi->auto_worst_q = 1;
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
if (oxcf->fixed_q >= 0)
{
if (oxcf->worst_allowed_q < 0)
cpi->oxcf.fixed_q = q_trans[0];
else
cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q];
if (oxcf->alt_q < 0)
cpi->oxcf.alt_q = q_trans[0];
else
cpi->oxcf.alt_q = q_trans[oxcf->alt_q];
if (oxcf->key_q < 0)
cpi->oxcf.key_q = q_trans[0];
else
cpi->oxcf.key_q = q_trans[oxcf->key_q];
if (oxcf->gold_q < 0)
cpi->oxcf.gold_q = q_trans[0];
else
cpi->oxcf.gold_q = q_trans[oxcf->gold_q];
}
cpi->baseline_gf_interval = cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL;
cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG;
//cpi->use_golden_frame_only = 0;
//cpi->use_last_frame_only = 0;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
cm->refresh_entropy_probs = 1;
if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3)
cm->multi_token_partition = (TOKEN_PARTITION) cpi->oxcf.token_partitions;
setup_features(cpi);
{
int i;
for (i = 0; i < MAX_MB_SEGMENTS; i++)
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
// At the moment the first order values may not be > MAXQ
if (cpi->oxcf.fixed_q > MAXQ)
cpi->oxcf.fixed_q = MAXQ;
// local file playback mode == really big buffer
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK)
{
cpi->oxcf.starting_buffer_level = 60000;
cpi->oxcf.optimal_buffer_level = 60000;
cpi->oxcf.maximum_buffer_size = 240000;
}
// Convert target bandwidth from Kbit/s to Bit/s
cpi->oxcf.target_bandwidth *= 1000;
cpi->oxcf.starting_buffer_level =
rescale(cpi->oxcf.starting_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
if (cpi->oxcf.optimal_buffer_level == 0)
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.optimal_buffer_level =
rescale(cpi->oxcf.optimal_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
if (cpi->oxcf.maximum_buffer_size == 0)
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.maximum_buffer_size =
rescale(cpi->oxcf.maximum_buffer_size,
cpi->oxcf.target_bandwidth, 1000);
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
vp8_new_frame_rate(cpi, cpi->oxcf.frame_rate);
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
cpi->best_quality = cpi->oxcf.best_allowed_q;
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
cpi->buffered_mode = (cpi->oxcf.optimal_buffer_level > 0) ? TRUE : FALSE;
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->total_actual_bits = 0;
cpi->total_target_vs_actual = 0;
// Only allow dropped frames in buffered mode
cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode;
cm->filter_type = (LOOPFILTERTYPE) cpi->filter_type;
if (!cm->use_bilinear_mc_filter)
cm->mcomp_filter_type = SIXTAP;
else
cm->mcomp_filter_type = BILINEAR;
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
cm->Width = cpi->oxcf.Width ;
cm->Height = cpi->oxcf.Height ;
cm->horiz_scale = cpi->horiz_scale;
cm->vert_scale = cpi->vert_scale ;
cpi->intra_frame_target = (4 * (cm->Width + cm->Height) / 15) * 1000; // As per VP8
// VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs)
if (cpi->oxcf.Sharpness > 7)
cpi->oxcf.Sharpness = 7;
cm->sharpness_level = cpi->oxcf.Sharpness;
if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL)
{
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
// always go to the next whole number
cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs;
cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs;
}
if (((cm->Width + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_width ||
((cm->Height + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_height ||
cm->yv12_fb[cm->lst_fb_idx].y_width == 0)
{
alloc_raw_frame_buffers(cpi);
vp8_alloc_compressor_data(cpi);
}
// Clamp KF frame size to quarter of data rate
if (cpi->intra_frame_target > cpi->target_bandwidth >> 2)
cpi->intra_frame_target = cpi->target_bandwidth >> 2;
if (cpi->oxcf.fixed_q >= 0)
{
cpi->last_q[0] = cpi->oxcf.fixed_q;
cpi->last_q[1] = cpi->oxcf.fixed_q;
}
cpi->Speed = cpi->oxcf.cpu_used;
// force to allowlag to 0 if lag_in_frames is 0;
if (cpi->oxcf.lag_in_frames == 0)
{
cpi->oxcf.allow_lag = 0;
}
// Limit on lag buffers as these are not currently dynamically allocated
else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS)
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
// YX Temp
cpi->last_alt_ref_sei = -1;
cpi->is_src_frame_alt_ref = 0;
cpi->is_next_src_alt_ref = 0;
#if 0
// Experimental RD Code
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
}
#define M_LOG2_E 0.693147180559945309417
#define log2f(x) (log (x) / (float) M_LOG2_E)
static void cal_mvsadcosts(int *mvsadcost[2])
{
int i = 1;
mvsadcost [0] [0] = 300;
mvsadcost [1] [0] = 300;
do
{
double z = 256 * (2 * (log2f(2 * i) + .6));
mvsadcost [0][i] = (int) z;
mvsadcost [1][i] = (int) z;
mvsadcost [0][-i] = (int) z;
mvsadcost [1][-i] = (int) z;
}
while (++i <= mv_max);
}
VP8_PTR vp8_create_compressor(VP8_CONFIG *oxcf)
{
int i;
volatile union
{
VP8_COMP *cpi;
VP8_PTR ptr;
} ctx;
VP8_COMP *cpi;
VP8_COMMON *cm;
cpi = ctx.cpi = vpx_memalign(32, sizeof(VP8_COMP));
// Check that the CPI instance is valid
if (!cpi)
return 0;
cm = &cpi->common;
vpx_memset(cpi, 0, sizeof(VP8_COMP));
if (setjmp(cm->error.jmp))
{
VP8_PTR ptr = ctx.ptr;
ctx.cpi->common.error.setjmp = 0;
vp8_remove_compressor(&ptr);
return 0;
}
cpi->common.error.setjmp = 1;
CHECK_MEM_ERROR(cpi->rdtok, vpx_calloc(256 * 3 / 2, sizeof(TOKENEXTRA)));
CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1));
vp8_create_common(&cpi->common);
vp8_cmachine_specific_config(cpi);
vp8_init_config((VP8_PTR)cpi, oxcf);
memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob, sizeof(vp8cx_base_skip_false_prob));
cpi->common.current_video_frame = 0;
cpi->kf_overspend_bits = 0;
cpi->kf_bitrate_adjustment = 0;
cpi->frames_till_gf_update_due = 0;
cpi->gf_overspend_bits = 0;
cpi->non_gf_bitrate_adjustment = 0;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
cpi->prob_intra_coded = 63;
// Prime the recent reference frame useage counters.
// Hereafter they will be maintained as a sort of moving average
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
// Set reference frame sign bias for ALTREF frame to 1 (for now)
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
cpi->gf_decay_rate = 0;
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->gold_is_last = 0 ;
cpi->alt_is_last = 0 ;
cpi->gold_is_alt = 0 ;
// Create the encoder segmentation map and set all entries to 0
CHECK_MEM_ERROR(cpi->segmentation_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
vpx_memset(cpi->active_map , 1, (cpi->common.mb_rows * cpi->common.mb_cols));
cpi->active_map_enabled = 0;
// Create the first pass motion map structure and set to 0
// Allocate space for maximum of 15 buffers
CHECK_MEM_ERROR(cpi->fp_motion_map, vpx_calloc(15*cpi->common.MBs, 1));
#if 0
// Experimental code for lagged and one pass
// Initialise one_pass GF frames stats
// Update stats used for GF selection
if (cpi->pass == 0)
{
cpi->one_pass_frame_index = 0;
for (i = 0; i < MAX_LAG_BUFFERS; i++)
{
cpi->one_pass_frame_stats[i].frames_so_far = 0;
cpi->one_pass_frame_stats[i].frame_intra_error = 0.0;
cpi->one_pass_frame_stats[i].frame_coded_error = 0.0;
cpi->one_pass_frame_stats[i].frame_pcnt_inter = 0.0;
cpi->one_pass_frame_stats[i].frame_pcnt_motion = 0.0;
cpi->one_pass_frame_stats[i].frame_mvr = 0.0;
cpi->one_pass_frame_stats[i].frame_mvr_abs = 0.0;
cpi->one_pass_frame_stats[i].frame_mvc = 0.0;
cpi->one_pass_frame_stats[i].frame_mvc_abs = 0.0;
}
}
#endif
// Should we use the cyclic refresh method.
// Currently this is tied to error resilliant mode
cpi->cyclic_refresh_mode_enabled = cpi->oxcf.error_resilient_mode;
cpi->cyclic_refresh_mode_max_mbs_perframe = (cpi->common.mb_rows * cpi->common.mb_cols) / 40;
cpi->cyclic_refresh_mode_index = 0;
cpi->cyclic_refresh_q = 32;
if (cpi->cyclic_refresh_mode_enabled)
CHECK_MEM_ERROR(cpi->cyclic_refresh_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
else
cpi->cyclic_refresh_map = (signed char *) NULL;
// Test function for segmentation
//segmentation_test_function((VP8_PTR) cpi);
#ifdef ENTROPY_STATS
init_context_counters();
#endif
cpi->frames_since_key = 8; // Give a sensible default for the first frame.
cpi->key_frame_frequency = cpi->oxcf.key_freq;
cpi->source_alt_ref_pending = FALSE;
cpi->source_alt_ref_active = FALSE;
cpi->common.refresh_alt_ref_frame = 0;
cpi->b_calculate_psnr = CONFIG_PSNR;
#if CONFIG_PSNR
cpi->b_calculate_ssimg = 0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr)
{
cpi->total_sq_error = 0.0;
cpi->total_sq_error2 = 0.0;
cpi->total_y = 0.0;
cpi->total_u = 0.0;
cpi->total_v = 0.0;
cpi->total = 0.0;
cpi->totalp_y = 0.0;
cpi->totalp_u = 0.0;
cpi->totalp_v = 0.0;
cpi->totalp = 0.0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
}
if (cpi->b_calculate_ssimg)
{
cpi->total_ssimg_y = 0;
cpi->total_ssimg_u = 0;
cpi->total_ssimg_v = 0;
cpi->total_ssimg_all = 0;
}
#ifndef LLONG_MAX
#define LLONG_MAX 9223372036854775807LL
#endif
cpi->first_time_stamp_ever = LLONG_MAX;
#endif
cpi->frames_till_gf_update_due = 0;
cpi->key_frame_count = 1;
cpi->tot_key_frame_bits = 0;
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
cpi->ni_tot_qi = 0;
cpi->ni_frames = 0;
cpi->total_byte_count = 0;
cpi->drop_frame = 0;
cpi->drop_count = 0;
cpi->max_drop_count = 0;
cpi->max_consec_dropped_frames = 4;
cpi->rate_correction_factor = 1.0;
cpi->key_frame_rate_correction_factor = 1.0;
cpi->gf_rate_correction_factor = 1.0;
cpi->est_max_qcorrection_factor = 1.0;
cpi->mb.mvcost[0] = &cpi->mb.mvcosts[0][mv_max+1];
cpi->mb.mvcost[1] = &cpi->mb.mvcosts[1][mv_max+1];
cpi->mb.mvsadcost[0] = &cpi->mb.mvsadcosts[0][mv_max+1];
cpi->mb.mvsadcost[1] = &cpi->mb.mvsadcosts[1][mv_max+1];
cal_mvsadcosts(cpi->mb.mvsadcost);
for (i = 0; i < KEY_FRAME_CONTEXT; i++)
{
cpi->prior_key_frame_size[i] = cpi->intra_frame_target;
cpi->prior_key_frame_distance[i] = (int)cpi->output_frame_rate;
}
cpi->check_freq[0] = 15;
cpi->check_freq[1] = 15;
#ifdef OUTPUT_YUV_SRC
yuv_file = fopen("bd.yuv", "ab");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
#endif
cpi->output_pkt_list = oxcf->output_pkt_list;
#if !(CONFIG_REALTIME_ONLY)
if (cpi->pass == 1)
{
vp8_init_first_pass(cpi);
}
else if (cpi->pass == 2)
{
size_t packet_sz = vp8_firstpass_stats_sz(cpi->common.MBs);
int packets = oxcf->two_pass_stats_in.sz / packet_sz;
cpi->stats_in = oxcf->two_pass_stats_in.buf;
cpi->stats_in_end = (void*)((char *)cpi->stats_in
+ (packets - 1) * packet_sz);
vp8_init_second_pass(cpi);
}
#endif
if (cpi->compressor_speed == 2)
{
cpi->cpu_freq = 0; //vp8_get_processor_freq();
cpi->avg_encode_time = 0;
cpi->avg_pick_mode_time = 0;
}
vp8_set_speed_features(cpi);
// Set starting values of RD threshold multipliers (128 = *1)
for (i = 0; i < MAX_MODES; i++)
{
cpi->rd_thresh_mult[i] = 128;
}
#ifdef ENTROPY_STATS
init_mv_ref_counts();
#endif
vp8cx_create_encoder_threads(cpi);
cpi->fn_ptr[BLOCK_16X16].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16);
cpi->fn_ptr[BLOCK_16X16].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16);
cpi->fn_ptr[BLOCK_16X16].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar16x16);
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_h = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_h);
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_v = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_v);
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_hv = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_hv);
cpi->fn_ptr[BLOCK_16X16].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x3);
cpi->fn_ptr[BLOCK_16X16].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x8);
cpi->fn_ptr[BLOCK_16X16].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x4d);
cpi->fn_ptr[BLOCK_16X8].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8);
cpi->fn_ptr[BLOCK_16X8].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x8);
cpi->fn_ptr[BLOCK_16X8].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar16x8);
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_16X8].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x3);
cpi->fn_ptr[BLOCK_16X8].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x8);
cpi->fn_ptr[BLOCK_16X8].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x4d);
cpi->fn_ptr[BLOCK_8X16].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16);
cpi->fn_ptr[BLOCK_8X16].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var8x16);
cpi->fn_ptr[BLOCK_8X16].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar8x16);
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_8X16].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x3);
cpi->fn_ptr[BLOCK_8X16].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x8);
cpi->fn_ptr[BLOCK_8X16].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x4d);
cpi->fn_ptr[BLOCK_8X8].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8);
cpi->fn_ptr[BLOCK_8X8].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var8x8);
cpi->fn_ptr[BLOCK_8X8].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar8x8);
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_8X8].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x3);
cpi->fn_ptr[BLOCK_8X8].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x8);
cpi->fn_ptr[BLOCK_8X8].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x4d);
cpi->fn_ptr[BLOCK_4X4].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4);
cpi->fn_ptr[BLOCK_4X4].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var4x4);
cpi->fn_ptr[BLOCK_4X4].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar4x4);
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_4X4].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x3);
cpi->fn_ptr[BLOCK_4X4].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x8);
cpi->fn_ptr[BLOCK_4X4].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x4d);
#if !(CONFIG_REALTIME_ONLY)
cpi->full_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, full_search);
#endif
cpi->diamond_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, diamond_search);
cpi->ready_for_new_frame = 1;
cpi->source_encode_index = 0;
// make sure frame 1 is okay
cpi->error_bins[0] = cpi->common.MBs;
//vp8cx_init_quantizer() is first called here. Add check in vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only called later
//when needed. This will avoid unnecessary calls of vp8cx_init_quantizer() for every frame.
vp8cx_init_quantizer(cpi);
{
vp8_init_loop_filter(cm);
cm->last_frame_type = KEY_FRAME;
cm->last_filter_type = cm->filter_type;
cm->last_sharpness_level = cm->sharpness_level;
}
cpi->common.error.setjmp = 0;
return (VP8_PTR) cpi;
}
void vp8_remove_compressor(VP8_PTR *ptr)
{
VP8_COMP *cpi = (VP8_COMP *)(*ptr);
if (!cpi)
return;
if (cpi && (cpi->common.current_video_frame > 0))
{
#if !(CONFIG_REALTIME_ONLY)
if (cpi->pass == 2)
{
vp8_end_second_pass(cpi);
}
#endif
#ifdef ENTROPY_STATS
print_context_counters();
print_tree_update_probs();
print_mode_context();
#endif
#if CONFIG_PSNR
if (cpi->pass != 1)
{
FILE *f = fopen("opsnr.stt", "a");
double time_encoded = (cpi->source_end_time_stamp - cpi->first_time_stamp_ever) / 10000000.000;
double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded;
if (cpi->b_calculate_psnr)
{
YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
double samples = 3.0 / 2 * cpi->count * lst_yv12->y_width * lst_yv12->y_height;
double total_psnr = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error);
double total_psnr2 = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error2);
double total_ssim = 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\tVPXSSIM\t Time(us)\n");
fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f %8.0f\n",
dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim,
total_encode_time);
}
if (cpi->b_calculate_ssimg)
{
fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(us)\n");
fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time);
}
fclose(f);
#if 0
f = fopen("qskip.stt", "a");
fprintf(f, "minq:%d -maxq:%d skipture:skipfalse = %d:%d\n", cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q, skiptruecount, skipfalsecount);
fclose(f);
#endif
}
#endif
#ifdef SPEEDSTATS
if (cpi->compressor_speed == 2)
{
int i;
FILE *f = fopen("cxspeed.stt", "a");
cnt_pm /= cpi->common.MBs;
for (i = 0; i < 16; i++)
fprintf(f, "%5d", frames_at_speed[i]);
fprintf(f, "\n");
//fprintf(f, "%10d PM %10d %10d %10d EF %10d %10d %10d\n", cpi->Speed, cpi->avg_pick_mode_time, (tot_pm/cnt_pm), cnt_pm, cpi->avg_encode_time, 0, 0);
fclose(f);
}
#endif
#ifdef MODE_STATS
{
extern int count_mb_seg[4];
FILE *f = fopen("modes.stt", "a");
double dr = (double)cpi->oxcf.frame_rate * (double)bytes * (double)8 / (double)count / (double)1000 ;
fprintf(f, "intra_mode in Intra Frames:\n");
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d\n", y_modes[0], y_modes[1], y_modes[2], y_modes[3], y_modes[4]);
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", uv_modes[0], uv_modes[1], uv_modes[2], uv_modes[3]);
fprintf(f, "B: ");
{
int i;
for (i = 0; i < 10; i++)
fprintf(f, "%8d, ", b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "Modes in Inter Frames:\n");
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n",
inter_y_modes[0], inter_y_modes[1], inter_y_modes[2], inter_y_modes[3], inter_y_modes[4],
inter_y_modes[5], inter_y_modes[6], inter_y_modes[7], inter_y_modes[8], inter_y_modes[9]);
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", inter_uv_modes[0], inter_uv_modes[1], inter_uv_modes[2], inter_uv_modes[3]);
fprintf(f, "B: ");
{
int i;
for (i = 0; i < 15; i++)
fprintf(f, "%8d, ", inter_b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], count_mb_seg[2], count_mb_seg[3]);
fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], inter_b_modes[NEW4X4]);
fclose(f);
}
#endif
#ifdef ENTROPY_STATS
{
int i, j, k;
FILE *fmode = fopen("modecontext.c", "w");
fprintf(fmode, "\n#include \"entropymode.h\"\n\n");
fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts ");
fprintf(fmode, "[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n");
for (i = 0; i < 10; i++)
{
fprintf(fmode, " { //Above Mode : %d\n", i);
for (j = 0; j < 10; j++)
{
fprintf(fmode, " {");
for (k = 0; k < 10; k++)
{
if (!intra_mode_stats[i][j][k])
fprintf(fmode, " %5d, ", 1);
else
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
}
fprintf(fmode, "}, // left_mode %d\n", j);
}
fprintf(fmode, " },\n");
}
fprintf(fmode, "};\n");
fclose(fmode);
}
#endif
#if defined(SECTIONBITS_OUTPUT)
if (0)
{
int i;
FILE *f = fopen("tokenbits.stt", "a");
for (i = 0; i < 28; i++)
fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
fprintf(f, "\n");
fclose(f);
}
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
#endif
}
vp8cx_remove_encoder_threads(cpi);
vp8_dealloc_compressor_data(cpi);
vpx_free(cpi->mb.ss);
vpx_free(cpi->tok);
vpx_free(cpi->rdtok);
vpx_free(cpi->cyclic_refresh_map);
vp8_remove_common(&cpi->common);
vpx_free(cpi);
*ptr = 0;
#ifdef OUTPUT_YUV_SRC
fclose(yuv_file);
#endif
#if 0
if (keyfile)
fclose(keyfile);
if (framepsnr)
fclose(framepsnr);
if (kf_list)
fclose(kf_list);
#endif
}
static uint64_t calc_plane_error(unsigned char *orig, int orig_stride,
unsigned char *recon, int recon_stride,
unsigned int cols, unsigned int rows,
vp8_variance_rtcd_vtable_t *rtcd)
{
unsigned int row, col;
uint64_t total_sse = 0;
int diff;
for (row = 0; row + 16 <= rows; row += 16)
{
for (col = 0; col + 16 <= cols; col += 16)
{
unsigned int sse;
VARIANCE_INVOKE(rtcd, mse16x16)(orig + col, orig_stride,
recon + col, recon_stride,
&sse);
total_sse += sse;
}
/* Handle odd-sized width */
if (col < cols)
{
unsigned int border_row, border_col;
unsigned char *border_orig = orig;
unsigned char *border_recon = recon;
for (border_row = 0; border_row < 16; border_row++)
{
for (border_col = col; border_col < cols; border_col++)
{
diff = border_orig[border_col] - border_recon[border_col];
total_sse += diff * diff;
}
border_orig += orig_stride;
border_recon += recon_stride;
}
}
orig += orig_stride * 16;
recon += recon_stride * 16;
}
/* Handle odd-sized height */
for (; row < rows; row++)
{
for (col = 0; col < cols; col++)
{
diff = orig[col] - recon[col];
total_sse += diff * diff;
}
orig += orig_stride;
recon += recon_stride;
}
return total_sse;
}
static void generate_psnr_packet(VP8_COMP *cpi)
{
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
struct vpx_codec_cx_pkt pkt;
uint64_t sse;
int i;
unsigned int width = cpi->common.Width;
unsigned int height = cpi->common.Height;
pkt.kind = VPX_CODEC_PSNR_PKT;
sse = calc_plane_error(orig->y_buffer, orig->y_stride,
recon->y_buffer, recon->y_stride,
width, height,
IF_RTCD(&cpi->rtcd.variance));
pkt.data.psnr.sse[0] = sse;
pkt.data.psnr.sse[1] = sse;
pkt.data.psnr.samples[0] = width * height;
pkt.data.psnr.samples[1] = width * height;
width = (width + 1) / 2;
height = (height + 1) / 2;
sse = calc_plane_error(orig->u_buffer, orig->uv_stride,
recon->u_buffer, recon->uv_stride,
width, height,
IF_RTCD(&cpi->rtcd.variance));
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[2] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[2] = width * height;
sse = calc_plane_error(orig->v_buffer, orig->uv_stride,
recon->v_buffer, recon->uv_stride,
width, height,
IF_RTCD(&cpi->rtcd.variance));
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[3] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[3] = width * height;
for (i = 0; i < 4; i++)
pkt.data.psnr.psnr[i] = vp8_mse2psnr(pkt.data.psnr.samples[i], 255.0,
pkt.data.psnr.sse[i]);
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int vp8_use_as_reference(VP8_PTR ptr, int ref_frame_flags)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
if (ref_frame_flags > 7)
return -1 ;
cpi->ref_frame_flags = ref_frame_flags;
return 0;
}
int vp8_update_reference(VP8_PTR ptr, int ref_frame_flags)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
if (ref_frame_flags > 7)
return -1 ;
cpi->common.refresh_golden_frame = 0;
cpi->common.refresh_alt_ref_frame = 0;
cpi->common.refresh_last_frame = 0;
if (ref_frame_flags & VP8_LAST_FLAG)
cpi->common.refresh_last_frame = 1;
if (ref_frame_flags & VP8_GOLD_FLAG)
cpi->common.refresh_golden_frame = 1;
if (ref_frame_flags & VP8_ALT_FLAG)
cpi->common.refresh_alt_ref_frame = 1;
return 0;
}
int vp8_get_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
VP8_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP8_LAST_FLAG)
ref_fb_idx = cm->lst_fb_idx;
else if (ref_frame_flag == VP8_GOLD_FLAG)
ref_fb_idx = cm->gld_fb_idx;
else if (ref_frame_flag == VP8_ALT_FLAG)
ref_fb_idx = cm->alt_fb_idx;
else
return -1;
vp8_yv12_copy_frame_ptr(&cm->yv12_fb[ref_fb_idx], sd);
return 0;
}
int vp8_set_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
VP8_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP8_LAST_FLAG)
ref_fb_idx = cm->lst_fb_idx;
else if (ref_frame_flag == VP8_GOLD_FLAG)
ref_fb_idx = cm->gld_fb_idx;
else if (ref_frame_flag == VP8_ALT_FLAG)
ref_fb_idx = cm->alt_fb_idx;
else
return -1;
vp8_yv12_copy_frame_ptr(sd, &cm->yv12_fb[ref_fb_idx]);
return 0;
}
int vp8_update_entropy(VP8_PTR comp, int update)
{
VP8_COMP *cpi = (VP8_COMP *) comp;
VP8_COMMON *cm = &cpi->common;
cm->refresh_entropy_probs = update;
return 0;
}
#if OUTPUT_YUV_SRC
void vp8_write_yuv_frame(const char *name, YV12_BUFFER_CONFIG *s)
{
FILE *yuv_file = fopen(name, "ab");
unsigned char *src = s->y_buffer;
int h = s->y_height;
do
{
fwrite(src, s->y_width, 1, yuv_file);
src += s->y_stride;
}
while (--h);
src = s->u_buffer;
h = s->uv_height;
do
{
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
}
while (--h);
src = s->v_buffer;
h = s->uv_height;
do
{
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
}
while (--h);
fclose(yuv_file);
}
#endif
static void scale_and_extend_source(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
// are we resizing the image
if (cm->horiz_scale != 0 || cm->vert_scale != 0)
{
#if CONFIG_SPATIAL_RESAMPLING
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
int tmp_height;
if (cm->vert_scale == 3)
tmp_height = 9;
else
tmp_height = 11;
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
vp8_scale_frame(sd, &cpi->scaled_source, cm->temp_scale_frame.y_buffer,
tmp_height, hs, hr, vs, vr, 0);
cpi->Source = &cpi->scaled_source;
#endif
}
// we may need to copy to a buffer so we can extend the image...
else if (cm->Width != cm->yv12_fb[cm->lst_fb_idx].y_width ||
cm->Height != cm->yv12_fb[cm->lst_fb_idx].y_height)
{
//vp8_yv12_copy_frame_ptr(sd, &cpi->scaled_source);
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_yv12_copy_src_frame_func_neon(sd, &cpi->scaled_source);
}
#if CONFIG_RUNTIME_CPU_DETECT
else
#endif
#endif
#if !HAVE_ARMV7 || CONFIG_RUNTIME_CPU_DETECT
{
vp8_yv12_copy_frame_ptr(sd, &cpi->scaled_source);
}
#endif
cpi->Source = &cpi->scaled_source;
}
vp8_extend_to_multiple_of16(cpi->Source, cm->Width, cm->Height);
}
static void resize_key_frame(VP8_COMP *cpi)
{
#if CONFIG_SPATIAL_RESAMPLING
VP8_COMMON *cm = &cpi->common;
// Do we need to apply resampling for one pass cbr.
// In one pass this is more limited than in two pass cbr
// The test and any change is only made one per key frame sequence
if (cpi->oxcf.allow_spatial_resampling && (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER))
{
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
int new_width, new_height;
// If we are below the resample DOWN watermark then scale down a notch.
if (cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100))
{
cm->horiz_scale = (cm->horiz_scale < ONETWO) ? cm->horiz_scale + 1 : ONETWO;
cm->vert_scale = (cm->vert_scale < ONETWO) ? cm->vert_scale + 1 : ONETWO;
}
// Should we now start scaling back up
else if (cpi->buffer_level > (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))
{
cm->horiz_scale = (cm->horiz_scale > NORMAL) ? cm->horiz_scale - 1 : NORMAL;
cm->vert_scale = (cm->vert_scale > NORMAL) ? cm->vert_scale - 1 : NORMAL;
}
// Get the new hieght and width
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
// If the image size has changed we need to reallocate the buffers
// and resample the source image
if ((cm->Width != new_width) || (cm->Height != new_height))
{
cm->Width = new_width;
cm->Height = new_height;
vp8_alloc_compressor_data(cpi);
scale_and_extend_source(cpi->un_scaled_source, cpi);
}
}
#endif
}
// return of 0 means drop frame
static int pick_frame_size(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
// First Frame is a special case
if (cm->current_video_frame == 0)
{
#if !(CONFIG_REALTIME_ONLY)
if (cpi->pass == 2)
vp8_calc_auto_iframe_target_size(cpi);
// 1 Pass there is no information on which to base size so use bandwidth per second * fixed fraction
else
#endif
cpi->this_frame_target = cpi->oxcf.target_bandwidth / 2;
// in error resilient mode the first frame is bigger since it likely contains
// all the static background
if (cpi->oxcf.error_resilient_mode == 1 || (cpi->compressor_speed == 2))
{
cpi->this_frame_target *= 3; // 5;
}
// Key frame from VFW/auto-keyframe/first frame
cm->frame_type = KEY_FRAME;
}
// Special case for forced key frames
// The frame sizing here is still far from ideal for 2 pass.
else if (cm->frame_flags & FRAMEFLAGS_KEY)
{
cm->frame_type = KEY_FRAME;
resize_key_frame(cpi);
vp8_calc_iframe_target_size(cpi);
}
else if (cm->frame_type == KEY_FRAME)
{
vp8_calc_auto_iframe_target_size(cpi);
}
else
{
// INTER frame: compute target frame size
cm->frame_type = INTER_FRAME;
vp8_calc_pframe_target_size(cpi);
// Check if we're dropping the frame:
if (cpi->drop_frame)
{
cpi->drop_frame = FALSE;
cpi->drop_count++;
return 0;
}
}
// Note target_size in bits * 256 per MB
cpi->target_bits_per_mb = (cpi->this_frame_target * 256) / cpi->common.MBs;
return 1;
}
static void set_quantizer(VP8_COMP *cpi, int Q)
{
VP8_COMMON *cm = &cpi->common;
MACROBLOCKD *mbd = &cpi->mb.e_mbd;
cm->base_qindex = Q;
cm->y1dc_delta_q = 0;
cm->y2dc_delta_q = 0;
cm->y2ac_delta_q = 0;
cm->uvdc_delta_q = 0;
cm->uvac_delta_q = 0;
// Set Segment specific quatizers
mbd->segment_feature_data[MB_LVL_ALT_Q][0] = cpi->segment_feature_data[MB_LVL_ALT_Q][0];
mbd->segment_feature_data[MB_LVL_ALT_Q][1] = cpi->segment_feature_data[MB_LVL_ALT_Q][1];
mbd->segment_feature_data[MB_LVL_ALT_Q][2] = cpi->segment_feature_data[MB_LVL_ALT_Q][2];
mbd->segment_feature_data[MB_LVL_ALT_Q][3] = cpi->segment_feature_data[MB_LVL_ALT_Q][3];
}
static void update_alt_ref_frame_and_stats(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
// Update the golden frame buffer
vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->alt_fb_idx]);
// Select an interval before next GF or altref
if (!cpi->auto_gold)
cpi->frames_till_gf_update_due = cpi->goldfreq;
if ((cpi->pass != 2) && cpi->frames_till_gf_update_due)
{
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
// Set the bits per frame that we should try and recover in subsequent inter frames
// to account for the extra GF spend... note that his does not apply for GF updates
// that occur coincident with a key frame as the extra cost of key frames is dealt
// with elsewhere.
cpi->gf_overspend_bits += cpi->projected_frame_size;
cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
}
// Update data structure that monitors level of reference to last GF
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
// this frame refreshes means next frames don't unless specified by user
cpi->common.frames_since_golden = 0;
// Clear the alternate reference update pending flag.
cpi->source_alt_ref_pending = FALSE;
// Set the alternate refernce frame active flag
cpi->source_alt_ref_active = TRUE;
}
static void update_golden_frame_and_stats(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
// Update the Golden frame reconstruction buffer if signalled and the GF usage counts.
if (cm->refresh_golden_frame)
{
// Update the golden frame buffer
vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->gld_fb_idx]);
// Select an interval before next GF
if (!cpi->auto_gold)
cpi->frames_till_gf_update_due = cpi->goldfreq;
if ((cpi->pass != 2) && (cpi->frames_till_gf_update_due > 0))
{
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
// Set the bits per frame that we should try and recover in subsequent inter frames
// to account for the extra GF spend... note that his does not apply for GF updates
// that occur coincident with a key frame as the extra cost of key frames is dealt
// with elsewhere.
if ((cm->frame_type != KEY_FRAME) && !cpi->source_alt_ref_active)
{
// Calcluate GF bits to be recovered
// Projected size - av frame bits available for inter frames for clip as a whole
cpi->gf_overspend_bits += (cpi->projected_frame_size - cpi->inter_frame_target);
}
cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
}
// Update data structure that monitors level of reference to last GF
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
// this frame refreshes means next frames don't unless specified by user
cm->refresh_golden_frame = 0;
cpi->common.frames_since_golden = 0;
//if ( cm->frame_type == KEY_FRAME )
//{
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
//}
//else
//{
// // Carry a potrtion of count over to begining of next gf sequence
// cpi->recent_ref_frame_usage[INTRA_FRAME] >>= 5;
// cpi->recent_ref_frame_usage[LAST_FRAME] >>= 5;
// cpi->recent_ref_frame_usage[GOLDEN_FRAME] >>= 5;
// cpi->recent_ref_frame_usage[ALTREF_FRAME] >>= 5;
//}
// ******** Fixed Q test code only ************
// If we are going to use the ALT reference for the next group of frames set a flag to say so.
if (cpi->oxcf.fixed_q >= 0 &&
cpi->oxcf.play_alternate && !cpi->common.refresh_alt_ref_frame)
{
cpi->source_alt_ref_pending = TRUE;
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
}
if (!cpi->source_alt_ref_pending)
cpi->source_alt_ref_active = FALSE;
// Decrement count down till next gf
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
}
else if (!cpi->common.refresh_alt_ref_frame)
{
// Decrement count down till next gf
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
if (cpi->common.frames_till_alt_ref_frame)
cpi->common.frames_till_alt_ref_frame --;
cpi->common.frames_since_golden ++;
if (cpi->common.frames_since_golden > 1)
{
cpi->recent_ref_frame_usage[INTRA_FRAME] += cpi->count_mb_ref_frame_usage[INTRA_FRAME];
cpi->recent_ref_frame_usage[LAST_FRAME] += cpi->count_mb_ref_frame_usage[LAST_FRAME];
cpi->recent_ref_frame_usage[GOLDEN_FRAME] += cpi->count_mb_ref_frame_usage[GOLDEN_FRAME];
cpi->recent_ref_frame_usage[ALTREF_FRAME] += cpi->count_mb_ref_frame_usage[ALTREF_FRAME];
}
}
}
// This function updates the reference frame probability estimates that
// will be used during mode selection
static void update_rd_ref_frame_probs(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
#if 0
const int *const rfct = cpi->recent_ref_frame_usage;
const int rf_intra = rfct[INTRA_FRAME];
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
if (cm->frame_type == KEY_FRAME)
{
cpi->prob_intra_coded = 255;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
}
else if (!(rf_intra + rf_inter))
{
// This is a trap in case this function is called with cpi->recent_ref_frame_usage[] blank.
cpi->prob_intra_coded = 63;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
}
else
{
cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter);
if (cpi->prob_intra_coded < 1)
cpi->prob_intra_coded = 1;
if ((cm->frames_since_golden > 0) || cpi->source_alt_ref_active)
{
cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
if (cpi->prob_last_coded < 1)
cpi->prob_last_coded = 1;
cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
if (cpi->prob_gf_coded < 1)
cpi->prob_gf_coded = 1;
}
}
#else
const int *const rfct = cpi->count_mb_ref_frame_usage;
const int rf_intra = rfct[INTRA_FRAME];
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
if (cm->frame_type == KEY_FRAME)
{
cpi->prob_intra_coded = 255;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
}
else if (!(rf_intra + rf_inter))
{
// This is a trap in case this function is called with cpi->recent_ref_frame_usage[] blank.
cpi->prob_intra_coded = 63;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
}
else
{
cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter);
if (cpi->prob_intra_coded < 1)
cpi->prob_intra_coded = 1;
cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
if (cpi->prob_last_coded < 1)
cpi->prob_last_coded = 1;
cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
if (cpi->prob_gf_coded < 1)
cpi->prob_gf_coded = 1;
}
// update reference frame costs since we can do better than what we got last frame.
if (cpi->common.refresh_alt_ref_frame)
{
cpi->prob_intra_coded += 40;
cpi->prob_last_coded = 200;
cpi->prob_gf_coded = 1;
}
else if (cpi->common.frames_since_golden == 0)
{
cpi->prob_last_coded = 214;
cpi->prob_gf_coded = 1;
}
else if (cpi->common.frames_since_golden == 1)
{
cpi->prob_last_coded = 192;
cpi->prob_gf_coded = 220;
}
else if (cpi->source_alt_ref_active)
{
//int dist = cpi->common.frames_till_alt_ref_frame + cpi->common.frames_since_golden;
cpi->prob_gf_coded -= 20;
if (cpi->prob_gf_coded < 10)
cpi->prob_gf_coded = 10;
}
#endif
}
// 1 = key, 0 = inter
static int decide_key_frame(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
int code_key_frame = FALSE;
cpi->kf_boost = 0;
if (cpi->Speed > 11)
return FALSE;
// Clear down mmx registers
vp8_clear_system_state(); //__asm emms;
if ((cpi->compressor_speed == 2) && (cpi->Speed >= 5) && (cpi->sf.RD == 0))
{
double change = 1.0 * abs((int)(cpi->intra_error - cpi->last_intra_error)) / (1 + cpi->last_intra_error);
double change2 = 1.0 * abs((int)(cpi->prediction_error - cpi->last_prediction_error)) / (1 + cpi->last_prediction_error);
double minerror = cm->MBs * 256;
#if 0
if (10 * cpi->intra_error / (1 + cpi->prediction_error) < 15
&& cpi->prediction_error > minerror
&& (change > .25 || change2 > .25))
{
FILE *f = fopen("intra_inter.stt", "a");
if (cpi->prediction_error <= 0)
cpi->prediction_error = 1;
fprintf(f, "%d %d %d %d %14.4f\n",
cm->current_video_frame,
(int) cpi->prediction_error,
(int) cpi->intra_error,
(int)((10 * cpi->intra_error) / cpi->prediction_error),
change);
fclose(f);
}
#endif
cpi->last_intra_error = cpi->intra_error;
cpi->last_prediction_error = cpi->prediction_error;
if (10 * cpi->intra_error / (1 + cpi->prediction_error) < 15
&& cpi->prediction_error > minerror
&& (change > .25 || change2 > .25))
{
/*(change > 1.4 || change < .75)&& cpi->this_frame_percent_intra > cpi->last_frame_percent_intra + 3*/
return TRUE;
}
return FALSE;
}
// If the following are true we might as well code a key frame
if (((cpi->this_frame_percent_intra == 100) &&
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 2))) ||
((cpi->this_frame_percent_intra > 95) &&
(cpi->this_frame_percent_intra >= (cpi->last_frame_percent_intra + 5))))
{
code_key_frame = TRUE;
}
// in addition if the following are true and this is not a golden frame then code a key frame
// Note that on golden frames there often seems to be a pop in intra useage anyway hence this
// restriction is designed to prevent spurious key frames. The Intra pop needs to be investigated.
else if (((cpi->this_frame_percent_intra > 60) &&
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 2))) ||
((cpi->this_frame_percent_intra > 75) &&
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 3 / 2))) ||
((cpi->this_frame_percent_intra > 90) &&
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 10))))
{
if (!cm->refresh_golden_frame)
code_key_frame = TRUE;
}
return code_key_frame;
}
#if !(CONFIG_REALTIME_ONLY)
static void Pass1Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags)
{
(void) size;
(void) dest;
(void) frame_flags;
set_quantizer(cpi, 26);
scale_and_extend_source(cpi->un_scaled_source, cpi);
vp8_first_pass(cpi);
}
#endif
#if 0
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame)
{
// write the frame
FILE *yframe;
int i;
char filename[255];
sprintf(filename, "cx\\y%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->y_height; i++)
fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\u%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\v%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
fclose(yframe);
}
#endif
// return of 0 means drop frame
// Function to test for conditions that indeicate we should loop
// back and recode a frame.
static BOOL recode_loop_test( VP8_COMP *cpi,
int high_limit, int low_limit,
int q, int maxq, int minq )
{
BOOL force_recode = FALSE;
VP8_COMMON *cm = &cpi->common;
// Is frame recode allowed at all
// Yes if either recode mode 1 is selected or mode two is selcted
// and the frame is a key frame. golden frame or alt_ref_frame
if ( (cpi->sf.recode_loop == 1) ||
( (cpi->sf.recode_loop == 2) &&
( (cm->frame_type == KEY_FRAME) ||
cm->refresh_golden_frame ||
cm->refresh_alt_ref_frame ) ) )
{
// General over and under shoot tests
if ( ((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
((cpi->projected_frame_size < low_limit) && (q > minq)) )
{
force_recode = TRUE;
}
// Specific rate control mode related tests
// TBD
}
return force_recode;
}
static void encode_frame_to_data_rate
(
VP8_COMP *cpi,
unsigned long *size,
unsigned char *dest,
unsigned int *frame_flags
)
{
int Q;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
int Loop = FALSE;
int loop_count;
int this_q;
int last_zbin_oq;
int q_low;
int q_high;
int zbin_oq_high;
int zbin_oq_low = 0;
int top_index;
int bottom_index;
VP8_COMMON *cm = &cpi->common;
int active_worst_qchanged = FALSE;
int overshoot_seen = FALSE;
int undershoot_seen = FALSE;
int drop_mark = cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100;
int drop_mark75 = drop_mark * 2 / 3;
int drop_mark50 = drop_mark / 4;
int drop_mark25 = drop_mark / 8;
// Clear down mmx registers to allow floating point in what follows
vp8_clear_system_state();
// Test code for segmentation of gf/arf (0,0)
//segmentation_test_function((VP8_PTR) cpi);
#if CONFIG_SEGMENTATION
cpi->mb.e_mbd.segmentation_enabled = 1;
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
#endif
// For an alt ref frame in 2 pass we skip the call to the second pass function that sets the target bandwidth
#if !(CONFIG_REALTIME_ONLY)
if (cpi->pass == 2)
{
if (cpi->common.refresh_alt_ref_frame)
{
cpi->per_frame_bandwidth = cpi->gf_bits; // Per frame bit target for the alt ref frame
cpi->target_bandwidth = cpi->gf_bits * cpi->output_frame_rate; // per second target bitrate
}
}
else
#endif
cpi->per_frame_bandwidth = (int)(cpi->target_bandwidth / cpi->output_frame_rate);
// Default turn off buffer to buffer copying
cm->copy_buffer_to_gf = 0;
cm->copy_buffer_to_arf = 0;
// Clear zbin over-quant value and mode boost values.
cpi->zbin_over_quant = 0;
cpi->zbin_mode_boost = 0;
// Enable or disable mode based tweaking of the zbin
// For 2 Pass Only used where GF/ARF prediction quality
// is above a threshold
cpi->zbin_mode_boost = 0;
cpi->zbin_mode_boost_enabled = TRUE;
if (cpi->pass == 2)
{
if ( cpi->gfu_boost <= 400 )
{
cpi->zbin_mode_boost_enabled = FALSE;
}
}
// Current default encoder behaviour for the altref sign bias
if (cpi->source_alt_ref_active)
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
else
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0;
// Check to see if a key frame is signalled
// For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass.
if ((cm->current_video_frame == 0) ||
(cm->frame_flags & FRAMEFLAGS_KEY) ||
(cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0)))
{
// Key frame from VFW/auto-keyframe/first frame
cm->frame_type = KEY_FRAME;
}
// Set default state for segment and mode based loop filter update flags
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
// Set various flags etc to special state if it is a key frame
if (cm->frame_type == KEY_FRAME)
{
int i;
// Reset the loop filter deltas and segmentation map
setup_features(cpi);
// If segmentation is enabled force a map update for key frames
if (cpi->mb.e_mbd.segmentation_enabled)
{
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
// The alternate reference frame cannot be active for a key frame
cpi->source_alt_ref_active = FALSE;
// Reset the RD threshold multipliers to default of * 1 (128)
for (i = 0; i < MAX_MODES; i++)
{
cpi->rd_thresh_mult[i] = 128;
}
}
// Test code for segmentation
//if ( (cm->frame_type == KEY_FRAME) || ((cm->current_video_frame % 2) == 0))
//if ( (cm->current_video_frame % 2) == 0 )
// enable_segmentation((VP8_PTR)cpi);
//else
// disable_segmentation((VP8_PTR)cpi);
#if 0
// Experimental code for lagged compress and one pass
// Initialise one_pass GF frames stats
// Update stats used for GF selection
//if ( cpi->pass == 0 )
{
cpi->one_pass_frame_index = cm->current_video_frame % MAX_LAG_BUFFERS;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frames_so_far = 0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_intra_error = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_coded_error = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_inter = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_motion = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr_abs = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc_abs = 0.0;
}
#endif
update_rd_ref_frame_probs(cpi);
if (cpi->drop_frames_allowed)
{
// The reset to decimation 0 is only done here for one pass.
// Once it is set two pass leaves decimation on till the next kf.
if ((cpi->buffer_level > drop_mark) && (cpi->decimation_factor > 0))
cpi->decimation_factor --;
if (cpi->buffer_level > drop_mark75 && cpi->decimation_factor > 0)
cpi->decimation_factor = 1;
else if (cpi->buffer_level < drop_mark25 && (cpi->decimation_factor == 2 || cpi->decimation_factor == 3))
{
cpi->decimation_factor = 3;
}
else if (cpi->buffer_level < drop_mark50 && (cpi->decimation_factor == 1 || cpi->decimation_factor == 2))
{
cpi->decimation_factor = 2;
}
else if (cpi->buffer_level < drop_mark75 && (cpi->decimation_factor == 0 || cpi->decimation_factor == 1))
{
cpi->decimation_factor = 1;
}
//vpx_log("Encoder: Decimation Factor: %d \n",cpi->decimation_factor);
}
// The following decimates the frame rate according to a regular pattern (i.e. to 1/2 or 2/3 frame rate)
// This can be used to help prevent buffer under-run in CBR mode. Alternatively it might be desirable in
// some situations to drop frame rate but throw more bits at each frame.
//
// Note that dropping a key frame can be problematic if spatial resampling is also active
if (cpi->decimation_factor > 0)
{
switch (cpi->decimation_factor)
{
case 1:
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 3 / 2;
break;
case 2:
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
break;
case 3:
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
break;
}
// Note that we should not throw out a key frame (especially when spatial resampling is enabled).
if ((cm->frame_type == KEY_FRAME)) // && cpi->oxcf.allow_spatial_resampling )
{
cpi->decimation_count = cpi->decimation_factor;
}
else if (cpi->decimation_count > 0)
{
cpi->decimation_count --;
cpi->bits_off_target += cpi->av_per_frame_bandwidth;
cm->current_video_frame++;
cpi->frames_since_key++;
#if CONFIG_PSNR
cpi->count ++;
#endif
cpi->buffer_level = cpi->bits_off_target;
return;
}
else
cpi->decimation_count = cpi->decimation_factor;
}
// Decide how big to make the frame
if (!pick_frame_size(cpi))
{
cm->current_video_frame++;
cpi->frames_since_key++;
return;
}
// Reduce active_worst_allowed_q for CBR if our buffer is getting too full.
// This has a knock on effect on active best quality as well.
// For CBR if the buffer reaches its maximum level then we can no longer
// save up bits for later frames so we might as well use them up
// on the current frame.
if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
(cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) && cpi->buffered_mode)
{
int Adjustment = cpi->active_worst_quality / 4; // Max adjustment is 1/4
if (Adjustment)
{
int buff_lvl_step;
int tmp_lvl = cpi->buffer_level;
if (cpi->buffer_level < cpi->oxcf.maximum_buffer_size)
{
buff_lvl_step = (cpi->oxcf.maximum_buffer_size - cpi->oxcf.optimal_buffer_level) / Adjustment;
if (buff_lvl_step)
{
Adjustment = (cpi->buffer_level - cpi->oxcf.optimal_buffer_level) / buff_lvl_step;
cpi->active_worst_quality -= Adjustment;
}
}
else
{
cpi->active_worst_quality -= Adjustment;
}
}
}
// Set an active best quality and if necessary active worst quality
if (cpi->pass == 2 || (cm->current_video_frame > 150))
{
int Q;
int i;
int bpm_target;
//int tmp;
vp8_clear_system_state();
Q = cpi->active_worst_quality;
if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame)
{
if (cm->frame_type != KEY_FRAME)
{
if (cpi->avg_frame_qindex < cpi->active_worst_quality)
Q = cpi->avg_frame_qindex;
if ( cpi->gfu_boost > 1000 )
cpi->active_best_quality = gf_low_motion_minq[Q];
else if ( cpi->gfu_boost < 400 )
cpi->active_best_quality = gf_high_motion_minq[Q];
else
cpi->active_best_quality = gf_mid_motion_minq[Q];
/*cpi->active_best_quality = gf_arf_minq[Q];
tmp = (cpi->gfu_boost > 1000) ? 600 : cpi->gfu_boost - 400;
//tmp = (cpi->gfu_boost > 1000) ? 600 :
//(cpi->gfu_boost < 400) ? 0 : cpi->gfu_boost - 400;
tmp = 128 - (tmp >> 4);
cpi->active_best_quality = (cpi->active_best_quality * tmp)>>7;*/
}
// KEY FRAMES
else
{
if (cpi->gfu_boost > 600)
cpi->active_best_quality = kf_low_motion_minq[Q];
else
cpi->active_best_quality = kf_high_motion_minq[Q];
}
}
else
{
cpi->active_best_quality = inter_minq[Q];
}
// If CBR and the buffer is as full then it is reasonable to allow higher quality on the frames
// to prevent bits just going to waste.
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
// Note that the use of >= here elliminates the risk of a devide by 0 error in the else if clause
if (cpi->buffer_level >= cpi->oxcf.maximum_buffer_size)
cpi->active_best_quality = cpi->best_quality;
else if (cpi->buffer_level > cpi->oxcf.optimal_buffer_level)
{
int Fraction = ((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) * 128) / (cpi->oxcf.maximum_buffer_size - cpi->oxcf.optimal_buffer_level);
int min_qadjustment = ((cpi->active_best_quality - cpi->best_quality) * Fraction) / 128;
cpi->active_best_quality -= min_qadjustment;
}
}
}
// Clip the active best and worst quality values to limits
if (cpi->active_worst_quality > cpi->worst_quality)
cpi->active_worst_quality = cpi->worst_quality;
if (cpi->active_best_quality < cpi->best_quality)
cpi->active_best_quality = cpi->best_quality;
else if (cpi->active_best_quality > cpi->active_worst_quality)
cpi->active_best_quality = cpi->active_worst_quality;
// Determine initial Q to try
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
last_zbin_oq = cpi->zbin_over_quant;
// Set highest allowed value for Zbin over quant
if (cm->frame_type == KEY_FRAME)
zbin_oq_high = 0; //ZBIN_OQ_MAX/16
else if (cm->refresh_alt_ref_frame || (cm->refresh_golden_frame && !cpi->source_alt_ref_active))
zbin_oq_high = 16;
else
zbin_oq_high = ZBIN_OQ_MAX;
// Setup background Q adjustment for error resilliant mode
if (cpi->cyclic_refresh_mode_enabled)
cyclic_background_refresh(cpi, Q, 0);
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit);
// Limit Q range for the adaptive loop (Values not clipped to range 20-60 as in VP8).
bottom_index = cpi->active_best_quality;
top_index = cpi->active_worst_quality;
vp8_save_coding_context(cpi);
loop_count = 0;
q_low = cpi->best_quality;
q_high = cpi->worst_quality;
scale_and_extend_source(cpi->un_scaled_source, cpi);
#if !(CONFIG_REALTIME_ONLY) && CONFIG_POSTPROC
if (cpi->oxcf.noise_sensitivity > 0)
{
unsigned char *src;
int l = 0;
switch (cpi->oxcf.noise_sensitivity)
{
case 1:
l = 20;
break;
case 2:
l = 40;
break;
case 3:
l = 60;
break;
case 4:
l = 80;
break;
case 5:
l = 100;
break;
case 6:
l = 150;
break;
}
if (cm->frame_type == KEY_FRAME)
{
vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0, RTCD(postproc));
cpi->ppi.frame = 0;
}
else
{
vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0, RTCD(postproc));
src = cpi->Source->y_buffer;
if (cpi->Source->y_stride < 0)
{
src += cpi->Source->y_stride * (cpi->Source->y_height - 1);
}
//temp_filter(&cpi->ppi,src,src,
// cm->last_frame.y_width * cm->last_frame.y_height,
// cpi->oxcf.noise_sensitivity);
}
}
#endif
#ifdef OUTPUT_YUV_SRC
vp8_write_yuv_frame(cpi->Source);
#endif
do
{
vp8_clear_system_state(); //__asm emms;
/*
if(cpi->is_src_frame_alt_ref)
Q = 127;
*/
set_quantizer(cpi, Q);
this_q = Q;
// setup skip prob for costing in mode/mv decision
if (cpi->common.mb_no_coeff_skip)
{
cpi->prob_skip_false = cpi->base_skip_false_prob[Q];
if (cm->frame_type != KEY_FRAME)
{
if (cpi->common.refresh_alt_ref_frame)
{
if (cpi->last_skip_false_probs[2] != 0)
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
/*
if(cpi->last_skip_false_probs[2]!=0 && abs(Q- cpi->last_skip_probs_q[2])<=16 )
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
else if (cpi->last_skip_false_probs[2]!=0)
cpi->prob_skip_false = (cpi->last_skip_false_probs[2] + cpi->prob_skip_false ) / 2;
*/
}
else if (cpi->common.refresh_golden_frame)
{
if (cpi->last_skip_false_probs[1] != 0)
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
/*
if(cpi->last_skip_false_probs[1]!=0 && abs(Q- cpi->last_skip_probs_q[1])<=16 )
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
else if (cpi->last_skip_false_probs[1]!=0)
cpi->prob_skip_false = (cpi->last_skip_false_probs[1] + cpi->prob_skip_false ) / 2;
*/
}
else
{
if (cpi->last_skip_false_probs[0] != 0)
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
/*
if(cpi->last_skip_false_probs[0]!=0 && abs(Q- cpi->last_skip_probs_q[0])<=16 )
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
else if(cpi->last_skip_false_probs[0]!=0)
cpi->prob_skip_false = (cpi->last_skip_false_probs[0] + cpi->prob_skip_false ) / 2;
*/
}
//as this is for cost estimate, let's make sure it does not go extreme eitehr way
if (cpi->prob_skip_false < 5)
cpi->prob_skip_false = 5;
if (cpi->prob_skip_false > 250)
cpi->prob_skip_false = 250;
if (cpi->is_src_frame_alt_ref)
cpi->prob_skip_false = 1;
}
#if 0
if (cpi->pass != 1)
{
FILE *f = fopen("skip.stt", "a");
fprintf(f, "%d, %d, %4d ", cpi->common.refresh_golden_frame, cpi->common.refresh_alt_ref_frame, cpi->prob_skip_false);
fclose(f);
}
#endif
}
if (cm->frame_type == KEY_FRAME)
vp8_setup_key_frame(cpi);
// transform / motion compensation build reconstruction frame
vp8_encode_frame(cpi);
cpi->projected_frame_size -= vp8_estimate_entropy_savings(cpi);
cpi->projected_frame_size = (cpi->projected_frame_size > 0) ? cpi->projected_frame_size : 0;
vp8_clear_system_state(); //__asm emms;
// Test to see if the stats generated for this frame indicate that we should have coded a key frame
// (assuming that we didn't)!
if (cpi->pass != 2 && cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME)
{
if (decide_key_frame(cpi))
{
vp8_calc_auto_iframe_target_size(cpi);
// Reset all our sizing numbers and recode
cm->frame_type = KEY_FRAME;
// Clear the Alt reference frame active flag when we have a key frame
cpi->source_alt_ref_active = FALSE;
// Reset the loop filter deltas and segmentation map
setup_features(cpi);
// If segmentation is enabled force a map update for key frames
if (cpi->mb.e_mbd.segmentation_enabled)
{
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
vp8_restore_coding_context(cpi);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
q_low = cpi->best_quality;
q_high = cpi->worst_quality;
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit);
// Limit Q range for the adaptive loop (Values not clipped to range 20-60 as in VP8).
bottom_index = cpi->active_best_quality;
top_index = cpi->active_worst_quality;
loop_count++;
Loop = TRUE;
resize_key_frame(cpi);
continue;
}
}
vp8_clear_system_state();
if (frame_over_shoot_limit == 0)
frame_over_shoot_limit = 1;
// Are we are overshooting and up against the limit of active max Q.
if (((cpi->pass != 2) || (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) &&
(Q == cpi->active_worst_quality) &&
(cpi->active_worst_quality < cpi->worst_quality) &&
(cpi->projected_frame_size > frame_over_shoot_limit))
{
int over_size_percent = ((cpi->projected_frame_size - frame_over_shoot_limit) * 100) / frame_over_shoot_limit;
// If so is there any scope for relaxing it
while ((cpi->active_worst_quality < cpi->worst_quality) && (over_size_percent > 0))
{
cpi->active_worst_quality++;
top_index = cpi->active_worst_quality;
over_size_percent = (int)(over_size_percent * 0.96); // Assume 1 qstep = about 4% on frame size.
}
// If we have updated the active max Q do not call vp8_update_rate_correction_factors() this loop.
active_worst_qchanged = TRUE;
}
else
active_worst_qchanged = FALSE;
#if !(CONFIG_REALTIME_ONLY)
// Is the projected frame size out of range and are we allowed to attempt to recode.
if ( recode_loop_test( cpi,
frame_over_shoot_limit, frame_under_shoot_limit,
Q, top_index, bottom_index ) )
{
int last_q = Q;
int Retries = 0;
// Frame size out of permitted range:
// Update correction factor & compute new Q to try...
// Frame is too large
if (cpi->projected_frame_size > cpi->this_frame_target)
{
//if ( cpi->zbin_over_quant == 0 )
q_low = (Q < q_high) ? (Q + 1) : q_high; // Raise Qlow as to at least the current value
if (cpi->zbin_over_quant > 0) // If we are using over quant do the same for zbin_oq_low
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
//if ( undershoot_seen || (Q == MAXQ) )
if (undershoot_seen)
{
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 1);
Q = (q_high + q_low + 1) / 2;
// Adjust cpi->zbin_over_quant (only allowed when Q is max)
if (Q < MAXQ)
cpi->zbin_over_quant = 0;
else
{
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
}
}
else
{
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
while (((Q < q_low) || (cpi->zbin_over_quant < zbin_oq_low)) && (Retries < 10))
{
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
Retries ++;
}
}
overshoot_seen = TRUE;
}
// Frame is too small
else
{
if (cpi->zbin_over_quant == 0)
q_high = (Q > q_low) ? (Q - 1) : q_low; // Lower q_high if not using over quant
else // else lower zbin_oq_high
zbin_oq_high = (cpi->zbin_over_quant > zbin_oq_low) ? (cpi->zbin_over_quant - 1) : zbin_oq_low;
if (overshoot_seen)
{
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 1);
Q = (q_high + q_low) / 2;
// Adjust cpi->zbin_over_quant (only allowed when Q is max)
if (Q < MAXQ)
cpi->zbin_over_quant = 0;
else
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
}
else
{
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
while (((Q > q_high) || (cpi->zbin_over_quant > zbin_oq_high)) && (Retries < 10))
{
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
Retries ++;
}
}
undershoot_seen = TRUE;
}
// Clamp Q to upper and lower limits:
if (Q > q_high)
Q = q_high;
else if (Q < q_low)
Q = q_low;
// Clamp cpi->zbin_over_quant
cpi->zbin_over_quant = (cpi->zbin_over_quant < zbin_oq_low) ? zbin_oq_low : (cpi->zbin_over_quant > zbin_oq_high) ? zbin_oq_high : cpi->zbin_over_quant;
//Loop = ((Q != last_q) || (last_zbin_oq != cpi->zbin_over_quant)) ? TRUE : FALSE;
Loop = ((Q != last_q)) ? TRUE : FALSE;
last_zbin_oq = cpi->zbin_over_quant;
}
else
#endif
Loop = FALSE;
if (cpi->is_src_frame_alt_ref)
Loop = FALSE;
if (Loop == TRUE)
{
vp8_restore_coding_context(cpi);
loop_count++;
#if CONFIG_PSNR
cpi->tot_recode_hits++;
#endif
}
}
while (Loop == TRUE);
#if 0
// Experimental code for lagged and one pass
// Update stats used for one pass GF selection
{
/*
int frames_so_far;
double frame_intra_error;
double frame_coded_error;
double frame_pcnt_inter;
double frame_pcnt_motion;
double frame_mvr;
double frame_mvr_abs;
double frame_mvc;
double frame_mvc_abs;
*/
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_coded_error = (double)cpi->prediction_error;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_intra_error = (double)cpi->intra_error;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_pcnt_inter = (double)(100 - cpi->this_frame_percent_intra) / 100.0;
}
#endif
// Update the GF useage maps.
// This is done after completing the compression of a frame when all modes etc. are finalized but before loop filter
vp8_update_gf_useage_maps(cpi, cm, &cpi->mb);
if (cm->frame_type == KEY_FRAME)
cm->refresh_last_frame = 1;
#if 0
{
FILE *f = fopen("gfactive.stt", "a");
fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame);
fclose(f);
}
#endif
// For inter frames the current default behaviour is that when cm->refresh_golden_frame is set we copy the old GF over to the ARF buffer
// This is purely an encoder descision at present.
if (!cpi->oxcf.error_resilient_mode && cm->refresh_golden_frame)
cm->copy_buffer_to_arf = 2;
else
cm->copy_buffer_to_arf = 0;
if (cm->refresh_last_frame)
{
vp8_swap_yv12_buffer(&cm->yv12_fb[cm->lst_fb_idx], &cm->yv12_fb[cm->new_fb_idx]);
cm->frame_to_show = &cm->yv12_fb[cm->lst_fb_idx];
}
else
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
//#pragma omp parallel sections
{
//#pragma omp section
{
struct vpx_usec_timer timer;
vpx_usec_timer_start(&timer);
if (cpi->sf.auto_filter == 0)
vp8cx_pick_filter_level_fast(cpi->Source, cpi);
else
vp8cx_pick_filter_level(cpi->Source, cpi);
vpx_usec_timer_mark(&timer);
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
if (cm->no_lpf)
cm->filter_level = 0;
if (cm->filter_level > 0)
{
vp8cx_set_alt_lf_level(cpi, cm->filter_level);
vp8_loop_filter_frame(cm, &cpi->mb.e_mbd, cm->filter_level);
cm->last_frame_type = cm->frame_type;
cm->last_filter_type = cm->filter_type;
cm->last_sharpness_level = cm->sharpness_level;
}
vp8_yv12_extend_frame_borders_ptr(cm->frame_to_show);
if (cpi->oxcf.error_resilient_mode == 1)
{
cm->refresh_entropy_probs = 0;
}
}
//#pragma omp section
{
// build the bitstream
vp8_pack_bitstream(cpi, dest, size);
}
}
{
YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx];
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx];
YV12_BUFFER_CONFIG *alt_yv12 = &cm->yv12_fb[cm->alt_fb_idx];
// At this point the new frame has been encoded coded.
// If any buffer copy / swaping is signalled it should be done here.
if (cm->frame_type == KEY_FRAME)
{
vp8_yv12_copy_frame_ptr(cm->frame_to_show, gld_yv12);
vp8_yv12_copy_frame_ptr(cm->frame_to_show, alt_yv12);
}
else // For non key frames
{
// Code to copy between reference buffers
if (cm->copy_buffer_to_arf)
{
if (cm->copy_buffer_to_arf == 1)
{
if (cm->refresh_last_frame)
// We copy new_frame here because last and new buffers will already have been swapped if cm->refresh_last_frame is set.
vp8_yv12_copy_frame_ptr(new_yv12, alt_yv12);
else
vp8_yv12_copy_frame_ptr(lst_yv12, alt_yv12);
}
else if (cm->copy_buffer_to_arf == 2)
vp8_yv12_copy_frame_ptr(gld_yv12, alt_yv12);
}
if (cm->copy_buffer_to_gf)
{
if (cm->copy_buffer_to_gf == 1)
{
if (cm->refresh_last_frame)
// We copy new_frame here because last and new buffers will already have been swapped if cm->refresh_last_frame is set.
vp8_yv12_copy_frame_ptr(new_yv12, gld_yv12);
else
vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12);
}
else if (cm->copy_buffer_to_gf == 2)
vp8_yv12_copy_frame_ptr(alt_yv12, gld_yv12);
}
}
}
// Update rate control heuristics
cpi->total_byte_count += (*size);
cpi->projected_frame_size = (*size) << 3;
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 2);
cpi->last_q[cm->frame_type] = cm->base_qindex;
if (cm->frame_type == KEY_FRAME)
{
vp8_adjust_key_frame_context(cpi);
}
// Keep a record of ambient average Q.
if (cm->frame_type == KEY_FRAME)
cpi->avg_frame_qindex = cm->base_qindex;
else
cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
// Keep a record from which we can calculate the average Q excluding GF updates and key frames
if ((cm->frame_type != KEY_FRAME) && !cm->refresh_golden_frame && !cm->refresh_alt_ref_frame)
{
cpi->ni_frames++;
// Calculate the average Q for normal inter frames (not key or GFU frames)
// This is used as a basis for setting active worst quality.
if (cpi->ni_frames > 150)
{
cpi->ni_tot_qi += Q;
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
}
// Early in the clip ... average the current frame Q value with the default
// entered by the user as a dampening measure
else
{
cpi->ni_tot_qi += Q;
cpi->ni_av_qi = ((cpi->ni_tot_qi / cpi->ni_frames) + cpi->worst_quality + 1) / 2;
}
// If the average Q is higher than what was used in the last frame
// (after going through the recode loop to keep the frame size within range)
// then use the last frame value - 1.
// The -1 is designed to stop Q and hence the data rate, from progressively
// falling away during difficult sections, but at the same time reduce the number of
// itterations around the recode loop.
if (Q > cpi->ni_av_qi)
cpi->ni_av_qi = Q - 1;
}
#if 0
// If the frame was massively oversize and we are below optimal buffer level drop next frame
if ((cpi->drop_frames_allowed) &&
(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
(cpi->buffer_level < cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100) &&
(cpi->projected_frame_size > (4 * cpi->this_frame_target)))
{
cpi->drop_frame = TRUE;
}
#endif
// Set the count for maximum consequative dropped frames based upon the ratio of
// this frame size to the target average per frame bandwidth.
// (cpi->av_per_frame_bandwidth > 0) is just a sanity check to prevent / 0.
if (cpi->drop_frames_allowed && (cpi->av_per_frame_bandwidth > 0))
{
cpi->max_drop_count = cpi->projected_frame_size / cpi->av_per_frame_bandwidth;
if (cpi->max_drop_count > cpi->max_consec_dropped_frames)
cpi->max_drop_count = cpi->max_consec_dropped_frames;
}
// Update the buffer level variable.
if (cpi->common.refresh_alt_ref_frame)
cpi->bits_off_target -= cpi->projected_frame_size;
else
cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
// Rolling monitors of whether we are over or underspending used to help regulate min and Max Q in two pass.
cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
cpi->rolling_actual_bits = ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
cpi->long_rolling_target_bits = ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
cpi->long_rolling_actual_bits = ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / 32;
// Actual bits spent
cpi->total_actual_bits += cpi->projected_frame_size;
// Debug stats
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
cpi->buffer_level = cpi->bits_off_target;
// Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames
if (cm->frame_type == KEY_FRAME)
{
cpi->kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
if (cpi->kf_group_bits < 0)
cpi->kf_group_bits = 0 ;
}
else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame)
{
cpi->gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
if (cpi->gf_group_bits < 0)
cpi->gf_group_bits = 0 ;
}
if (cm->frame_type != KEY_FRAME)
{
if (cpi->common.refresh_alt_ref_frame)
{
cpi->last_skip_false_probs[2] = cpi->prob_skip_false;
cpi->last_skip_probs_q[2] = cm->base_qindex;
}
else if (cpi->common.refresh_golden_frame)
{
cpi->last_skip_false_probs[1] = cpi->prob_skip_false;
cpi->last_skip_probs_q[1] = cm->base_qindex;
}
else
{
cpi->last_skip_false_probs[0] = cpi->prob_skip_false;
cpi->last_skip_probs_q[0] = cm->base_qindex;
//update the baseline
cpi->base_skip_false_prob[cm->base_qindex] = cpi->prob_skip_false;
}
}
#if 0 && CONFIG_PSNR
{
FILE *f = fopen("tmp.stt", "a");
vp8_clear_system_state(); //__asm emms;
if (cpi->total_coded_error_left != 0.0)
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %6ld %6ld"
"%6ld %6ld %5ld %5ld %5ld %8ld %8.2f %10d %10.3f"
"%10.3f %8ld\n",
cpi->common.current_video_frame, cpi->this_frame_target,
cpi->projected_frame_size,
(cpi->projected_frame_size - cpi->this_frame_target),
(int)cpi->total_target_vs_actual,
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
(int)cpi->total_actual_bits, cm->base_qindex,
cpi->active_best_quality, cpi->active_worst_quality,
cpi->avg_frame_qindex, cpi->zbin_over_quant,
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->est_max_qcorrection_factor, (int)cpi->bits_left,
cpi->total_coded_error_left,
(double)cpi->bits_left / cpi->total_coded_error_left,
cpi->tot_recode_hits);
else
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %6ld %6ld"
"%6ld %6ld %5ld %5ld %5ld %8ld %8.2f %10d %10.3f"
"%8ld\n",
cpi->common.current_video_frame,
cpi->this_frame_target, cpi->projected_frame_size,
(cpi->projected_frame_size - cpi->this_frame_target),
(int)cpi->total_target_vs_actual,
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
(int)cpi->total_actual_bits, cm->base_qindex,
cpi->active_best_quality, cpi->active_worst_quality,
cpi->avg_frame_qindex, cpi->zbin_over_quant,
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->est_max_qcorrection_factor, (int)cpi->bits_left,
cpi->total_coded_error_left, cpi->tot_recode_hits);
fclose(f);
{
FILE *fmodes = fopen("Modes.stt", "a");
int i;
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
cpi->common.current_video_frame,
cm->frame_type, cm->refresh_golden_frame,
cm->refresh_alt_ref_frame);
for (i = 0; i < MAX_MODES; i++)
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
fprintf(fmodes, "\n");
fclose(fmodes);
}
}
#endif
// If this was a kf or Gf note the Q
if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || cm->refresh_alt_ref_frame)
cm->last_kf_gf_q = cm->base_qindex;
if (cm->refresh_golden_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN;
if (cm->refresh_alt_ref_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF;
if (cm->refresh_last_frame & cm->refresh_golden_frame) // both refreshed
cpi->gold_is_last = 1;
else if (cm->refresh_last_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other
cpi->gold_is_last = 0;
if (cm->refresh_last_frame & cm->refresh_alt_ref_frame) // both refreshed
cpi->alt_is_last = 1;
else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame) // 1 refreshed but not the other
cpi->alt_is_last = 0;
if (cm->refresh_alt_ref_frame & cm->refresh_golden_frame) // both refreshed
cpi->gold_is_alt = 1;
else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other
cpi->gold_is_alt = 0;
cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG;
if (cpi->gold_is_last)
cpi->ref_frame_flags &= ~VP8_GOLD_FLAG;
if (cpi->alt_is_last)
cpi->ref_frame_flags &= ~VP8_ALT_FLAG;
if (cpi->gold_is_alt)
cpi->ref_frame_flags &= ~VP8_ALT_FLAG;
if (cpi->oxcf.error_resilient_mode)
{
// Is this an alternate reference update
if (cpi->common.refresh_alt_ref_frame)
vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->alt_fb_idx]);
if (cpi->common.refresh_golden_frame)
vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->gld_fb_idx]);
}
else
{
if (cpi->oxcf.play_alternate && cpi->common.refresh_alt_ref_frame)
// Update the alternate reference frame and stats as appropriate.
update_alt_ref_frame_and_stats(cpi);
else
// Update the Golden frame and golden frame and stats as appropriate.
update_golden_frame_and_stats(cpi);
}
if (cm->frame_type == KEY_FRAME)
{
// Tell the caller that the frame was coded as a key frame
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
// As this frame is a key frame the next defaults to an inter frame.
cm->frame_type = INTER_FRAME;
cpi->last_frame_percent_intra = 100;
}
else
{
*frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY;
cpi->last_frame_percent_intra = cpi->this_frame_percent_intra;
}
// Clear the one shot update flags for segmentation map and mode/ref loop filter deltas.
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
// Dont increment frame counters if this was an altref buffer update not a real frame
if (cm->show_frame)
{
cm->current_video_frame++;
cpi->frames_since_key++;
}
// reset to normal state now that we are done.
#if 0
{
char filename[512];
FILE *recon_file;
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
recon_file = fopen(filename, "wb");
fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc,
cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file);
fclose(recon_file);
}
#endif
// DEBUG
//vp8_write_yuv_frame("encoder_recon.yuv", cm->frame_to_show);
}
int vp8_is_gf_update_needed(VP8_PTR ptr)
{
VP8_COMP *cpi = (VP8_COMP *) ptr;
int ret_val;
ret_val = cpi->gf_update_recommended;
cpi->gf_update_recommended = 0;
return ret_val;
}
void vp8_check_gf_quality(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
int gf_active_pct = (100 * cpi->gf_active_count) / (cm->mb_rows * cm->mb_cols);
int gf_ref_usage_pct = (cpi->count_mb_ref_frame_usage[GOLDEN_FRAME] * 100) / (cm->mb_rows * cm->mb_cols);
int last_ref_zz_useage = (cpi->inter_zz_count * 100) / (cm->mb_rows * cm->mb_cols);
// Gf refresh is not currently being signalled
if (cpi->gf_update_recommended == 0)
{
if (cpi->common.frames_since_golden > 7)
{
// Low use of gf
if ((gf_active_pct < 10) || ((gf_active_pct + gf_ref_usage_pct) < 15))
{
// ...but last frame zero zero usage is reasonbable so a new gf might be appropriate
if (last_ref_zz_useage >= 25)
{
cpi->gf_bad_count ++;
if (cpi->gf_bad_count >= 8) // Check that the condition is stable
{
cpi->gf_update_recommended = 1;
cpi->gf_bad_count = 0;
}
}
else
cpi->gf_bad_count = 0; // Restart count as the background is not stable enough
}
else
cpi->gf_bad_count = 0; // Gf useage has picked up so reset count
}
}
// If the signal is set but has not been read should we cancel it.
else if (last_ref_zz_useage < 15)
{
cpi->gf_update_recommended = 0;
cpi->gf_bad_count = 0;
}
#if 0
{
FILE *f = fopen("gfneeded.stt", "a");
fprintf(f, "%10d %10d %10d %10d %10ld \n",
cm->current_video_frame,
cpi->common.frames_since_golden,
gf_active_pct, gf_ref_usage_pct,
cpi->gf_update_recommended);
fclose(f);
}
#endif
}
#if !(CONFIG_REALTIME_ONLY)
static void Pass2Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags)
{
if (!cpi->common.refresh_alt_ref_frame)
vp8_second_pass(cpi);
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
cpi->bits_left -= 8 * *size;
if (!cpi->common.refresh_alt_ref_frame)
{
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
*cpi->oxcf.two_pass_vbrmin_section / 100);
cpi->bits_left += (long long)(two_pass_min_rate / cpi->oxcf.frame_rate);
}
}
#endif
//For ARM NEON, d8-d15 are callee-saved registers, and need to be saved by us.
#if HAVE_ARMV7
extern void vp8_push_neon(INT64 *store);
extern void vp8_pop_neon(INT64 *store);
#endif
int vp8_receive_raw_frame(VP8_PTR ptr, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, INT64 time_stamp, INT64 end_time)
{
INT64 store_reg[8];
VP8_COMP *cpi = (VP8_COMP *) ptr;
VP8_COMMON *cm = &cpi->common;
struct vpx_usec_timer timer;
if (!cpi)
return -1;
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_push_neon(store_reg);
}
#endif
vpx_usec_timer_start(&timer);
// no more room for frames;
if (cpi->source_buffer_count != 0 && cpi->source_buffer_count >= cpi->oxcf.lag_in_frames)
{
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_pop_neon(store_reg);
}
#endif
return -1;
}
//printf("in-cpi->source_buffer_count: %d\n", cpi->source_buffer_count);
cm->clr_type = sd->clrtype;
// make a copy of the frame for use later...
#if !(CONFIG_REALTIME_ONLY)
if (cpi->oxcf.allow_lag)
{
int which_buffer = cpi->source_encode_index - 1;
SOURCE_SAMPLE *s;
if (which_buffer == -1)
which_buffer = cpi->oxcf.lag_in_frames - 1;
if (cpi->source_buffer_count < cpi->oxcf.lag_in_frames - 1)
which_buffer = cpi->source_buffer_count;
s = &cpi->src_buffer[which_buffer];
s->source_time_stamp = time_stamp;
s->source_end_time_stamp = end_time;
s->source_frame_flags = frame_flags;
vp8_yv12_copy_frame_ptr(sd, &s->source_buffer);
cpi->source_buffer_count ++;
}
else
#endif
{
SOURCE_SAMPLE *s;
s = &cpi->src_buffer[0];
s->source_end_time_stamp = end_time;
s->source_time_stamp = time_stamp;
s->source_frame_flags = frame_flags;
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_yv12_copy_src_frame_func_neon(sd, &s->source_buffer);
}
#if CONFIG_RUNTIME_CPU_DETECT
else
#endif
#endif
#if !HAVE_ARMV7 || CONFIG_RUNTIME_CPU_DETECT
{
vp8_yv12_copy_frame_ptr(sd, &s->source_buffer);
}
#endif
cpi->source_buffer_count = 1;
}
vpx_usec_timer_mark(&timer);
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_pop_neon(store_reg);
}
#endif
return 0;
}
int vp8_get_compressed_data(VP8_PTR ptr, unsigned int *frame_flags, unsigned long *size, unsigned char *dest, INT64 *time_stamp, INT64 *time_end, int flush)
{
INT64 store_reg[8];
VP8_COMP *cpi = (VP8_COMP *) ptr;
VP8_COMMON *cm = &cpi->common;
struct vpx_usec_timer tsctimer;
struct vpx_usec_timer ticktimer;
struct vpx_usec_timer cmptimer;
if (!cpi)
return -1;
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_push_neon(store_reg);
}
#endif
vpx_usec_timer_start(&cmptimer);
// flush variable tells us that even though we have less than 10 frames
// in our buffer we need to start producing compressed frames.
// Probably because we are at the end of a file....
if ((cpi->source_buffer_count == cpi->oxcf.lag_in_frames && cpi->oxcf.lag_in_frames > 0)
|| (!cpi->oxcf.allow_lag && cpi->source_buffer_count > 0)
|| (flush && cpi->source_buffer_count > 0))
{
SOURCE_SAMPLE *s;
s = &cpi->src_buffer[cpi->source_encode_index];
cpi->source_time_stamp = s->source_time_stamp;
cpi->source_end_time_stamp = s->source_end_time_stamp;
#if !(CONFIG_REALTIME_ONLY)
// Should we code an alternate reference frame
if (cpi->oxcf.error_resilient_mode == 0 &&
cpi->oxcf.play_alternate &&
cpi->source_alt_ref_pending &&
(cpi->frames_till_gf_update_due < cpi->source_buffer_count) &&
cpi->oxcf.lag_in_frames != 0)
{
cpi->last_alt_ref_sei = (cpi->source_encode_index + cpi->frames_till_gf_update_due) % cpi->oxcf.lag_in_frames;
#if VP8_TEMPORAL_ALT_REF
if (cpi->oxcf.arnr_max_frames > 0)
{
#if 0
// my attempt at a loop that tests the results of strength filter.
int start_frame = cpi->last_alt_ref_sei - 3;
int i, besti = -1, pastin = cpi->oxcf.arnr_strength;
int besterr;
if (start_frame < 0)
start_frame += cpi->oxcf.lag_in_frames;
besterr = vp8_calc_low_ss_err(&cpi->src_buffer[cpi->last_alt_ref_sei].source_buffer,
&cpi->src_buffer[start_frame].source_buffer, IF_RTCD(&cpi->rtcd.variance));
for (i = 0; i < 7; i++)
{
int thiserr;
cpi->oxcf.arnr_strength = i;
vp8cx_temp_filter_c(cpi);
thiserr = vp8_calc_low_ss_err(&cpi->alt_ref_buffer.source_buffer,
&cpi->src_buffer[start_frame].source_buffer, IF_RTCD(&cpi->rtcd.variance));
if (10 * thiserr < besterr * 8)
{
besterr = thiserr;
besti = i;
}
}
if (besti != -1)
{
cpi->oxcf.arnr_strength = besti;
vp8cx_temp_filter_c(cpi);
s = &cpi->alt_ref_buffer;
// FWG not sure if I need to copy this data for the Alt Ref frame
s->source_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_time_stamp;
s->source_end_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_end_time_stamp;
s->source_frame_flags = cpi->src_buffer[cpi->last_alt_ref_sei].source_frame_flags;
}
else
s = &cpi->src_buffer[cpi->last_alt_ref_sei];
#else
vp8cx_temp_filter_c(cpi);
s = &cpi->alt_ref_buffer;
// FWG not sure if I need to copy this data for the Alt Ref frame
s->source_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_time_stamp;
s->source_end_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_end_time_stamp;
s->source_frame_flags = cpi->src_buffer[cpi->last_alt_ref_sei].source_frame_flags;
#endif
}
else
#endif
s = &cpi->src_buffer[cpi->last_alt_ref_sei];
cm->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due;
cm->refresh_alt_ref_frame = 1;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 0;
cm->show_frame = 0;
cpi->source_alt_ref_pending = FALSE; // Clear Pending altf Ref flag.
cpi->is_src_frame_alt_ref = 0;
cpi->is_next_src_alt_ref = 0;
}
else
#endif
{
cm->show_frame = 1;
#if !(CONFIG_REALTIME_ONLY)
if (cpi->oxcf.allow_lag)
{
if (cpi->source_encode_index == cpi->last_alt_ref_sei)
{
cpi->is_src_frame_alt_ref = 1;
cpi->last_alt_ref_sei = -1;
}
else
cpi->is_src_frame_alt_ref = 0;
cpi->source_encode_index = (cpi->source_encode_index + 1) % cpi->oxcf.lag_in_frames;
if(cpi->source_encode_index == cpi->last_alt_ref_sei)
cpi->is_next_src_alt_ref = 1;
else
cpi->is_next_src_alt_ref = 0;
}
#endif
cpi->source_buffer_count--;
}
cpi->un_scaled_source = &s->source_buffer;
cpi->Source = &s->source_buffer;
cpi->source_frame_flags = s->source_frame_flags;
*time_stamp = cpi->source_time_stamp;
*time_end = cpi->source_end_time_stamp;
}
else
{
*size = 0;
#if !(CONFIG_REALTIME_ONLY)
if (flush && cpi->pass == 1 && !cpi->first_pass_done)
{
vp8_end_first_pass(cpi); /* get last stats packet */
cpi->first_pass_done = 1;
}
#endif
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_pop_neon(store_reg);
}
#endif
return -1;
}
*frame_flags = cpi->source_frame_flags;
if (cpi->source_time_stamp < cpi->first_time_stamp_ever)
{
cpi->first_time_stamp_ever = cpi->source_time_stamp;
cpi->last_end_time_stamp_seen = cpi->source_time_stamp;
}
// adjust frame rates based on timestamps given
if (!cm->refresh_alt_ref_frame)
{
if (cpi->source_time_stamp == cpi->first_time_stamp_ever)
{
double this_fps = 10000000.000 / (cpi->source_end_time_stamp - cpi->source_time_stamp);
vp8_new_frame_rate(cpi, this_fps);
}
else
{
long long nanosecs = cpi->source_end_time_stamp
- cpi->last_end_time_stamp_seen;
double this_fps = 10000000.000 / nanosecs;
vp8_new_frame_rate(cpi, (7 * cpi->oxcf.frame_rate + this_fps) / 8);
}
cpi->last_time_stamp_seen = cpi->source_time_stamp;
cpi->last_end_time_stamp_seen = cpi->source_end_time_stamp;
}
if (cpi->compressor_speed == 2)
{
vp8_check_gf_quality(cpi);
}
if (!cpi)
{
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_pop_neon(store_reg);
}
#endif
return 0;
}
if (cpi->compressor_speed == 2)
{
vpx_usec_timer_start(&tsctimer);
vpx_usec_timer_start(&ticktimer);
}
// start with a 0 size frame
*size = 0;
// Clear down mmx registers
vp8_clear_system_state(); //__asm emms;
cm->frame_type = INTER_FRAME;
cm->frame_flags = *frame_flags;
#if 0
if (cm->refresh_alt_ref_frame)
{
//cm->refresh_golden_frame = 1;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 0;
}
else
{
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
}
#endif
#if !(CONFIG_REALTIME_ONLY)
if (cpi->pass == 1)
{
Pass1Encode(cpi, size, dest, frame_flags);
}
else if (cpi->pass == 2)
{
Pass2Encode(cpi, size, dest, frame_flags);
}
else
#endif
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
if (cpi->compressor_speed == 2)
{
unsigned int duration, duration2;
vpx_usec_timer_mark(&tsctimer);
vpx_usec_timer_mark(&ticktimer);
duration = vpx_usec_timer_elapsed(&ticktimer);
duration2 = (unsigned int)((double)duration / 2);
if (cm->frame_type != KEY_FRAME)
{
if (cpi->avg_encode_time == 0)
cpi->avg_encode_time = duration;
else
cpi->avg_encode_time = (7 * cpi->avg_encode_time + duration) >> 3;
}
if (duration2)
{
//if(*frame_flags!=1)
{
if (cpi->avg_pick_mode_time == 0)
cpi->avg_pick_mode_time = duration2;
else
cpi->avg_pick_mode_time = (7 * cpi->avg_pick_mode_time + duration2) >> 3;
}
}
}
if (cm->refresh_entropy_probs == 0)
{
vpx_memcpy(&cm->fc, &cm->lfc, sizeof(cm->fc));
}
// if its a dropped frame honor the requests on subsequent frames
if (*size > 0)
{
// return to normal state
cm->refresh_entropy_probs = 1;
cm->refresh_alt_ref_frame = 0;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
cm->frame_type = INTER_FRAME;
}
cpi->ready_for_new_frame = 1;
vpx_usec_timer_mark(&cmptimer);
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame)
generate_psnr_packet(cpi);
#if CONFIG_PSNR
if (cpi->pass != 1)
{
cpi->bytes += *size;
if (cm->show_frame)
{
cpi->count ++;
if (cpi->b_calculate_psnr)
{
double y, u, v;
double sq_error;
double frame_psnr = vp8_calc_psnr(cpi->Source, cm->frame_to_show, &y, &u, &v, &sq_error);
cpi->total_y += y;
cpi->total_u += u;
cpi->total_v += v;
cpi->total_sq_error += sq_error;
cpi->total += frame_psnr;
{
double y2, u2, v2, frame_psnr2, frame_ssim2 = 0;
double weight = 0;
vp8_deblock(cm->frame_to_show, &cm->post_proc_buffer, cm->filter_level * 10 / 6, 1, 0, IF_RTCD(&cm->rtcd.postproc));
vp8_clear_system_state();
frame_psnr2 = vp8_calc_psnr(cpi->Source, &cm->post_proc_buffer, &y2, &u2, &v2, &sq_error);
frame_ssim2 = vp8_calc_ssim(cpi->Source, &cm->post_proc_buffer, 1, &weight);
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
cpi->totalp_y += y2;
cpi->totalp_u += u2;
cpi->totalp_v += v2;
cpi->totalp += frame_psnr2;
cpi->total_sq_error2 += sq_error;
}
}
if (cpi->b_calculate_ssimg)
{
double y, u, v, frame_all;
frame_all = vp8_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v);
cpi->total_ssimg_y += y;
cpi->total_ssimg_u += u;
cpi->total_ssimg_v += v;
cpi->total_ssimg_all += frame_all;
}
}
}
#if 0
if (cpi->common.frame_type != 0 && cpi->common.base_qindex == cpi->oxcf.worst_allowed_q)
{
skiptruecount += cpi->skip_true_count;
skipfalsecount += cpi->skip_false_count;
}
#endif
#if 0
if (cpi->pass != 1)
{
FILE *f = fopen("skip.stt", "a");
fprintf(f, "frame:%4d flags:%4x Q:%4d P:%4d Size:%5d\n", cpi->common.current_video_frame, *frame_flags, cpi->common.base_qindex, cpi->prob_skip_false, *size);
if (cpi->is_src_frame_alt_ref == 1)
fprintf(f, "skipcount: %4d framesize: %d\n", cpi->skip_true_count , *size);
fclose(f);
}
#endif
#endif
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_pop_neon(store_reg);
}
#endif
return 0;
}
int vp8_get_preview_raw_frame(VP8_PTR comp, YV12_BUFFER_CONFIG *dest, vp8_ppflags_t *flags)
{
VP8_COMP *cpi = (VP8_COMP *) comp;
if (cpi->common.refresh_alt_ref_frame)
return -1;
else
{
int ret;
#if CONFIG_POSTPROC
ret = vp8_post_proc_frame(&cpi->common, dest, flags);
#else
if (cpi->common.frame_to_show)
{
*dest = *cpi->common.frame_to_show;
dest->y_width = cpi->common.Width;
dest->y_height = cpi->common.Height;
dest->uv_height = cpi->common.Height / 2;
ret = 0;
}
else
{
ret = -1;
}
#endif //!CONFIG_POSTPROC
vp8_clear_system_state();
return ret;
}
}
int vp8_set_roimap(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[4], int delta_lf[4], unsigned int threshold[4])
{
VP8_COMP *cpi = (VP8_COMP *) comp;
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols)
return -1;
if (!map)
{
disable_segmentation((VP8_PTR)cpi);
return 0;
}
// Set the segmentation Map
set_segmentation_map((VP8_PTR)cpi, map);
// Activate segmentation.
enable_segmentation((VP8_PTR)cpi);
// Set up the quant segment data
feature_data[MB_LVL_ALT_Q][0] = delta_q[0];
feature_data[MB_LVL_ALT_Q][1] = delta_q[1];
feature_data[MB_LVL_ALT_Q][2] = delta_q[2];
feature_data[MB_LVL_ALT_Q][3] = delta_q[3];
// Set up the loop segment data s
feature_data[MB_LVL_ALT_LF][0] = delta_lf[0];
feature_data[MB_LVL_ALT_LF][1] = delta_lf[1];
feature_data[MB_LVL_ALT_LF][2] = delta_lf[2];
feature_data[MB_LVL_ALT_LF][3] = delta_lf[3];
cpi->segment_encode_breakout[0] = threshold[0];
cpi->segment_encode_breakout[1] = threshold[1];
cpi->segment_encode_breakout[2] = threshold[2];
cpi->segment_encode_breakout[3] = threshold[3];
// Initialise the feature data structure
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
set_segment_data((VP8_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA);
return 0;
}
int vp8_set_active_map(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols)
{
VP8_COMP *cpi = (VP8_COMP *) comp;
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols)
{
if (map)
{
vpx_memcpy(cpi->active_map, map, rows * cols);
cpi->active_map_enabled = 1;
}
else
cpi->active_map_enabled = 0;
return 0;
}
else
{
//cpi->active_map_enabled = 0;
return -1 ;
}
}
int vp8_set_internal_size(VP8_PTR comp, VPX_SCALING horiz_mode, VPX_SCALING vert_mode)
{
VP8_COMP *cpi = (VP8_COMP *) comp;
if (horiz_mode <= ONETWO)
cpi->common.horiz_scale = horiz_mode;
else
return -1;
if (vert_mode <= ONETWO)
cpi->common.vert_scale = vert_mode;
else
return -1;
return 0;
}
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd)
{
int i, j;
int Total = 0;
unsigned char *src = source->y_buffer;
unsigned char *dst = dest->y_buffer;
(void)rtcd;
// Loop through the Y plane raw and reconstruction data summing (square differences)
for (i = 0; i < source->y_height; i += 16)
{
for (j = 0; j < source->y_width; j += 16)
{
unsigned int sse;
Total += VARIANCE_INVOKE(rtcd, mse16x16)(src + j, source->y_stride, dst + j, dest->y_stride, &sse);
}
src += 16 * source->y_stride;
dst += 16 * dest->y_stride;
}
return Total;
}
int vp8_calc_low_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd)
{
int i, j;
int Total = 0;
unsigned char *src = source->y_buffer;
unsigned char *dst = dest->y_buffer;
(void)rtcd;
// Loop through the Y plane raw and reconstruction data summing (square differences)
for (i = 0; i < source->y_height; i += 16)
{
for (j = 0; j < source->y_width; j += 16)
{
unsigned int sse;
VARIANCE_INVOKE(rtcd, mse16x16)(src + j, source->y_stride, dst + j, dest->y_stride, &sse);
if (sse < 8096)
Total += sse;
}
src += 16 * source->y_stride;
dst += 16 * dest->y_stride;
}
return Total;
}
int vp8_get_speed(VP8_PTR c)
{
VP8_COMP *cpi = (VP8_COMP *) c;
return cpi->Speed;
}
int vp8_get_quantizer(VP8_PTR c)
{
VP8_COMP *cpi = (VP8_COMP *) c;
return cpi->common.base_qindex;
}