vpx/vp9/decoder/vp9_decodeframe.c
Brandon Young 43195061b7 Quantization Profiles Strictly on Entropy Context
Allow for 3 quant profiles from entropy context

Refactored dq_offset bands to allow for re-optimization based on number
of quantization profiles

Change-Id: Ib8d7e8854ad4e0bf8745038df28833d91efcfbea
2016-05-01 12:25:57 -07:00

3856 lines
140 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <stdlib.h> // qsort()
#include "./vp9_rtcd.h"
#include "./vpx_scale_rtcd.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_thread.h"
#include "vp9/common/vp9_tile_common.h"
#if CONFIG_SR_MODE
#include "vp9/common/vp9_sr_txfm.h"
#endif // CONFIG_SR_MODE
#include "vp9/decoder/vp9_decodeframe.h"
#include "vp9/decoder/vp9_detokenize.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/decoder/vp9_decoder.h"
#include "vp9/decoder/vp9_dsubexp.h"
#include "vp9/decoder/vp9_dthread.h"
#include "vp9/decoder/vp9_read_bit_buffer.h"
#include "vp9/decoder/vp9_reader.h"
#define MAX_VP9_HEADER_SIZE 80
static int is_compound_reference_allowed(const VP9_COMMON *cm) {
int i;
for (i = 1; i < REFS_PER_FRAME; ++i)
if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1])
return 1;
return 0;
}
static void setup_compound_reference_mode(VP9_COMMON *cm) {
if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[GOLDEN_FRAME]) {
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
#if CONFIG_MULTI_REF
cm->comp_var_ref[1] = LAST2_FRAME;
cm->comp_var_ref[2] = LAST3_FRAME;
cm->comp_var_ref[3] = LAST4_FRAME;
cm->comp_var_ref[4] = GOLDEN_FRAME;
#else // CONFIG_MULTI_REF
cm->comp_var_ref[1] = GOLDEN_FRAME;
#endif // CONFIG_MULTI_REF
} else if (cm->ref_frame_sign_bias[LAST_FRAME] ==
cm->ref_frame_sign_bias[ALTREF_FRAME]) {
#if CONFIG_MULTI_REF
assert(0);
#endif // CONFIG_MULTI_REF
cm->comp_fixed_ref = GOLDEN_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
} else { // same sign bias for GOLDEN / ALTREF
#if CONFIG_MULTI_REF
assert(0);
#endif // CONFIG_MULTI_REF
cm->comp_fixed_ref = LAST_FRAME;
cm->comp_var_ref[0] = GOLDEN_FRAME;
cm->comp_var_ref[1] = ALTREF_FRAME;
}
}
static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
return len != 0 && len <= (size_t)(end - start);
}
static int decode_unsigned_max(struct vp9_read_bit_buffer *rb, int max) {
const int data = vp9_rb_read_literal(rb, get_unsigned_bits(max));
return data > max ? max : data;
}
static TX_MODE read_tx_mode(vp9_reader *r) {
TX_MODE tx_mode = vp9_read_literal(r, 2);
#if CONFIG_TX64X64
if (tx_mode == 2)
tx_mode += vp9_read_bit(r); // ALLOW_16X16 and ALLOW_32X32
else if (tx_mode == 3)
tx_mode += 1 + vp9_read_bit(r); // ALLOW_64X64 and TX_MODE_SELECT
#else
if (tx_mode == ALLOW_32X32)
tx_mode += vp9_read_bit(r);
#endif
return tx_mode;
}
static void read_tx_mode_probs(struct tx_probs *tx_probs, vp9_reader *r) {
int i, j;
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < 1; ++j)
vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]);
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < 2; ++j)
vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]);
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < 3; ++j)
vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]);
#if CONFIG_TX64X64
for (i = 0; i < TX_SIZE_CONTEXTS; ++i)
for (j = 0; j < 4; ++j)
vp9_diff_update_prob(r, &tx_probs->p64x64[i][j]);
#endif
}
static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vp9_reader *r) {
int i, j;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i)
vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]);
}
#if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES
static void read_dq_profile_probs(FRAME_CONTEXT *fc, vp9_reader *r) {
int i;
for (i = 0; i < QUANT_PROFILES - 1; ++i)
vp9_diff_update_prob(r, &fc->dq_profile_prob[i]);
}
#endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES
static void read_inter_mode_probs(FRAME_CONTEXT *fc, vp9_reader *r) {
int i, j;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
for (j = 0; j < INTER_MODES - 1; ++j)
vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]);
}
#if CONFIG_SR_MODE && SR_USE_MULTI_F
static void read_sr_usfilter_probs(FRAME_CONTEXT *fc, vp9_reader *r) {
int i, j;
for (i = 0; i < SR_USFILTER_CONTEXTS; ++i)
for (j = 0; j < SR_USFILTER_NUM - 1; ++j)
vp9_diff_update_prob(r, &fc->sr_usfilter_probs[i][j]);
}
#endif // CONFIG_SR_MODE && SR_USE_MULTI_F
static REFERENCE_MODE read_frame_reference_mode(const VP9_COMMON *cm,
vp9_reader *r) {
if (is_compound_reference_allowed(cm)) {
return vp9_read_bit(r) ? (vp9_read_bit(r) ? REFERENCE_MODE_SELECT
: COMPOUND_REFERENCE)
: SINGLE_REFERENCE;
} else {
return SINGLE_REFERENCE;
}
}
static void read_frame_reference_mode_probs(VP9_COMMON *cm, vp9_reader *r) {
FRAME_CONTEXT *const fc = &cm->fc;
int i, j;
if (cm->reference_mode == REFERENCE_MODE_SELECT)
for (i = 0; i < COMP_INTER_CONTEXTS; ++i)
vp9_diff_update_prob(r, &fc->comp_inter_prob[i]);
if (cm->reference_mode != COMPOUND_REFERENCE)
for (i = 0; i < REF_CONTEXTS; ++i) {
for (j = 0; j < (SINGLE_REFS - 1); ++j) {
vp9_diff_update_prob(r, &fc->single_ref_probs[i][j]);
}
}
if (cm->reference_mode != SINGLE_REFERENCE)
for (i = 0; i < REF_CONTEXTS; ++i) {
for (j = 0; j < (COMP_REFS - 1); ++j) {
vp9_diff_update_prob(r, &fc->comp_ref_probs[i][j]);
}
}
}
static void update_mv_probs(vp9_prob *p, int n, vp9_reader *r) {
int i;
for (i = 0; i < n; ++i)
if (vp9_read(r, MV_UPDATE_PROB))
p[i] = (vp9_read_literal(r, 7) << 1) | 1;
}
static void read_mv_probs(nmv_context *ctx, int allow_hp, vp9_reader *r) {
int i, j;
update_mv_probs(ctx->joints, MV_JOINTS - 1, r);
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
update_mv_probs(&comp_ctx->sign, 1, r);
update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r);
update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r);
update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r);
}
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
for (j = 0; j < CLASS0_SIZE; ++j)
update_mv_probs(comp_ctx->class0_fp[j], MV_FP_SIZE - 1, r);
update_mv_probs(comp_ctx->fp, 3, r);
}
if (allow_hp) {
for (i = 0; i < 2; ++i) {
nmv_component *const comp_ctx = &ctx->comps[i];
update_mv_probs(&comp_ctx->class0_hp, 1, r);
update_mv_probs(&comp_ctx->hp, 1, r);
}
}
}
static void setup_plane_dequants(VP9_COMMON *cm, MACROBLOCKD *xd, int q_index) {
int i;
#if CONFIG_NEW_QUANT
int dq;
#endif // CONFIG_NEW_QUANT
xd->plane[0].dequant = cm->y_dequant[q_index];
#if CONFIG_NEW_QUANT
for (dq = 0; dq < QUANT_PROFILES; dq ++) {
xd->plane[0].dequant_val_nuq[dq] =
(const dequant_val_type_nuq *)cm->y_dequant_val_nuq[dq][q_index];
}
#endif // CONFIG_NEW_QUANT
#if CONFIG_TX_SKIP
xd->plane[0].dequant_pxd = cm->y_dequant_pxd[q_index];
#if CONFIG_NEW_QUANT
for (dq = 0; dq < QUANT_PROFILES; dq ++) {
xd->plane[0].dequant_val_nuq_pxd[dq] =
(const dequant_val_type_nuq *)cm->y_dequant_val_nuq_pxd[dq][q_index];
}
#endif // CONFIG_NEW_QUANT
#endif // CONFIG_TX_SKIP
for (i = 1; i < MAX_MB_PLANE; i++) {
xd->plane[i].dequant = cm->uv_dequant[q_index];
#if CONFIG_NEW_QUANT
for (dq = 0; dq < QUANT_PROFILES; dq ++) {
xd->plane[i].dequant_val_nuq[dq] =
(const dequant_val_type_nuq *)cm->uv_dequant_val_nuq[dq][q_index];
}
#endif // CONFIG_NEW_QUANT
#if CONFIG_TX_SKIP
xd->plane[i].dequant_pxd = cm->uv_dequant_pxd[q_index];
#if CONFIG_NEW_QUANT
for (dq = 0; dq < QUANT_PROFILES; dq ++) {
xd->plane[i].dequant_val_nuq_pxd[dq] =
(const dequant_val_type_nuq *)cm->uv_dequant_val_nuq_pxd[dq][q_index];
}
#endif // CONFIG_NEW_QUANT
#endif // CONFIG_TX_SKIP
}
}
#if CONFIG_TX_SKIP
static void vp9_intra_dpcm_add(tran_low_t *dqcoeff, uint8_t *dst, int stride,
PREDICTION_MODE mode, int bs, int shift) {
int r, c, temp;
switch (mode) {
case H_PRED:
for (r = 0; r < bs; r++) {
temp = dst[r * stride] + (dqcoeff[r * bs] >> shift);
dst[r * stride] = clip_pixel(temp);
}
for (r = 0; r < bs; r++)
for (c = 1; c < bs; c++) {
temp = dst[r * stride + c - 1] +
(dqcoeff[r * bs + c] >> shift);
dst[r * stride + c] = clip_pixel(temp);
}
break;
case V_PRED:
for (c = 0; c < bs; c++) {
temp = dst[c] + (dqcoeff[c] >> shift);
dst[c] = clip_pixel(temp);
}
for (r = 1; r < bs; r++)
for (c = 0; c < bs; c++) {
temp = dst[(r - 1) * stride + c] +
(dqcoeff[r * bs + c] >> shift);
dst[r * stride + c] = clip_pixel(temp);
}
break;
case TM_PRED:
for (c = 0; c < bs; c++) {
temp = dst[c] + (dqcoeff[c] >> shift);
dst[c] = clip_pixel(temp);
}
for (r = 1; r < bs; r++) {
temp = dst[r * stride] + (dqcoeff[r * bs] >> shift);
dst[r * stride] = clip_pixel(temp);
}
for (r = 1; r < bs; r++)
for (c = 1; c < bs; c++) {
temp = dst[stride * r + c - 1] + dst[stride * (r - 1) + c] -
dst[stride * (r - 1) + c - 1];
temp = clip_pixel(temp);
temp = temp + (dqcoeff[r * bs + c] >> shift);
dst[stride * r + c] = clip_pixel(temp);
}
break;
default:
break;
}
}
static void vp9_intra_dpcm_add_nocoeff(uint8_t *dst, int stride,
PREDICTION_MODE mode, int bs) {
int r, c, temp;
switch (mode) {
case H_PRED:
for (r = 0; r < bs; r++)
vpx_memset(dst + r * stride + 1, dst[r * stride], bs - 1);
break;
case V_PRED:
for (r = 1; r < bs; r++)
vpx_memcpy(dst + r * stride, dst, bs * sizeof(*dst));
break;
case TM_PRED:
for (r = 1; r < bs; r++)
for (c = 1; c < bs; c++) {
temp = dst[stride * r + c - 1] + dst[stride * (r - 1) + c] -
dst[stride * (r - 1) + c - 1];
dst[stride * r + c] = clip_pixel(temp);
}
break;
default:
break;
}
}
#if CONFIG_VP9_HIGHBITDEPTH
static void vp9_highbd_intra_dpcm_add(tran_low_t *dqcoeff, uint8_t *dst8,
int stride, PREDICTION_MODE mode,
int bs, int shift, int bd) {
int r, c, temp;
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
switch (mode) {
case H_PRED:
for (r = 0; r < bs; r++)
dst[r * stride] = clip_pixel_highbd(dst[r * stride] +
(dqcoeff[r * bs] >> shift), bd);
for (r = 0; r < bs; r++)
for (c = 1; c < bs; c++)
dst[r * stride + c] =
clip_pixel_highbd(dst[r * stride + c - 1] +
(dqcoeff[r * bs + c] >> shift), bd);
break;
case V_PRED:
for (c = 0; c < bs; c++)
dst[c] = clip_pixel_highbd(dst[c] + (dqcoeff[c] >> shift), bd);
for (r = 1; r < bs; r++)
for (c = 0; c < bs; c++)
dst[r * stride + c] =
clip_pixel_highbd(dst[(r - 1) * stride + c] +
(dqcoeff[r * bs + c] >> shift), bd);
break;
case TM_PRED:
for (c = 0; c < bs; c++)
dst[c] = clip_pixel_highbd(dst[c] + (dqcoeff[c] >> shift), bd);
for (r = 1; r < bs; r++)
dst[r * stride] = clip_pixel_highbd(dst[r * stride] +
(dqcoeff[r * bs] >> shift), bd);
for (r = 1; r < bs; r++)
for (c = 1; c < bs; c++) {
temp = dst[stride * r + c - 1] + dst[stride * (r - 1) + c] -
dst[stride * (r - 1) + c - 1];
temp = clip_pixel_highbd(temp, bd);
dst[stride * r + c] =
clip_pixel_highbd(temp + (dqcoeff[r * bs + c] >> shift), bd);
}
break;
default:
break;
}
}
static void vp9_highbd_intra_dpcm_add_nocoeff(uint8_t *dst8, int stride,
PREDICTION_MODE mode, int bs, int bd) {
int r, c, temp;
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
switch (mode) {
case H_PRED:
for (r = 0; r < bs; r++)
for (c = 1; c < bs; c++)
dst[r * stride + c] = dst[r * stride];
break;
case V_PRED:
for (r = 1; r < bs; r++)
vpx_memcpy(dst + r * stride, dst, bs * sizeof(dst[0]));
break;
case TM_PRED:
for (r = 1; r < bs; r++)
for (c = 1; c < bs; c++) {
temp = dst[stride * r + c - 1] + dst[stride * (r - 1) + c] -
dst[stride * (r - 1) + c - 1];
dst[stride * r + c] = clip_pixel_highbd(temp, bd);
}
break;
default:
break;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif // CONFIG_TX_SKIP
#if CONFIG_SR_MODE
static void inverse_transform_block_sr(
MACROBLOCKD* xd, int plane, int block, TX_SIZE tx_size,
int16_t *dst, int stride, int eob) {
// only perform inverse transform but don't add
struct macroblockd_plane *const pd = &xd->plane[plane];
int bs = (4 << (tx_size + 1));
if (eob > 0) {
TX_TYPE tx_type = DCT_DCT;
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
if (xd->lossless) {
tx_type = DCT_DCT;
vp9_iwht4x4(dqcoeff, dst, stride, eob);
} else {
const PLANE_TYPE plane_type = pd->plane_type;
switch (tx_size) {
case TX_4X4:
tx_type = get_tx_type_4x4(plane_type, xd, block);
vp9_iht4x4(tx_type, dqcoeff, dst, stride, eob);
break;
case TX_8X8:
tx_type = get_tx_type(plane_type, xd);
vp9_iht8x8(tx_type, dqcoeff, dst, stride, eob);
break;
case TX_16X16:
tx_type = get_tx_type(plane_type, xd);
vp9_iht16x16(tx_type, dqcoeff, dst, stride, eob);
break;
case TX_32X32:
tx_type = get_tx_type_large(plane_type, xd);
vp9_idct32x32(dqcoeff, dst, stride, eob);
break;
#if CONFIG_TX64X64
case TX_64X64:
tx_type = get_tx_type_large(plane_type, xd);
vp9_idct64x64(dqcoeff, dst, stride, eob);
break;
#endif // CONFIG_TX64X64
default:
assert(0 && "Invalid transform size");
return;
}
}
// Safer to set it all zeros
vpx_memset(dqcoeff, 0, bs * bs * sizeof(dqcoeff[0]));
/*
if (eob == 1) {
vpx_memset(dqcoeff, 0, 2 * sizeof(dqcoeff[0]));
} else {
if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10)
vpx_memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
else if (tx_size == TX_32X32 && eob <= 34)
vpx_memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
else
vpx_memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
}
*/
}
}
#endif // CONFIG_SR_MODE
static void inverse_transform_block(MACROBLOCKD* xd, int plane, int block,
TX_SIZE tx_size, uint8_t *dst, int stride,
int eob) {
struct macroblockd_plane *const pd = &xd->plane[plane];
#if CONFIG_SR_MODE
int bs = 4 << tx_size;
#endif // CONFIG_SR_MODE
#if CONFIG_TX_SKIP
MB_MODE_INFO *mbmi = &xd->mi[0].src_mi->mbmi;
int shift = mbmi->tx_skip_shift;
PREDICTION_MODE mode = (plane == 0) ? get_y_mode(xd->mi[0].src_mi, block):
mbmi->uv_mode;
(void) mode;
#endif
if (eob > 0) {
TX_TYPE tx_type = DCT_DCT;
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
#if CONFIG_TX_SKIP
if (xd->lossless && !mbmi->tx_skip[plane != 0]) {
#else
if (xd->lossless) {
#endif // CONFIG_TX_SKIP
tx_type = DCT_DCT;
vp9_highbd_iwht4x4_add(dqcoeff, dst, stride, eob, xd->bd);
} else {
const PLANE_TYPE plane_type = pd->plane_type;
#if CONFIG_TX_SKIP
if (mbmi->tx_skip[plane != 0]) {
int bs = 4 << tx_size;
if (tx_size <= TX_32X32 &&
(mode == V_PRED || mode == H_PRED || mode == TM_PRED))
vp9_highbd_intra_dpcm_add(dqcoeff, dst, stride, mode, bs, shift,
xd->bd);
else
vp9_highbd_tx_identity_add(dqcoeff, dst, stride, bs, shift,
xd->bd);
tx_type = DCT_DCT;
if (tx_size == TX_4X4)
tx_type = get_tx_type_4x4(pd->plane_type, xd, block);
else if (tx_size <= TX_16X16)
tx_type = get_tx_type(pd->plane_type, xd);
} else {
#endif // CONFIG_TX_SKIP
switch (tx_size) {
case TX_4X4:
tx_type = get_tx_type_4x4(plane_type, xd, block);
vp9_highbd_iht4x4_add(tx_type, dqcoeff, dst, stride, eob,
xd->bd);
break;
case TX_8X8:
tx_type = get_tx_type(plane_type, xd);
vp9_highbd_iht8x8_add(tx_type, dqcoeff, dst, stride, eob,
xd->bd);
break;
case TX_16X16:
tx_type = get_tx_type(plane_type, xd);
vp9_highbd_iht16x16_add(tx_type, dqcoeff, dst, stride, eob,
xd->bd);
break;
case TX_32X32:
tx_type = get_tx_type_large(plane_type, xd);
vp9_highbd_idct32x32_add(dqcoeff, dst, stride, eob, xd->bd);
break;
#if CONFIG_TX64X64
case TX_64X64:
tx_type = get_tx_type_large(plane_type, xd);
vp9_highbd_idct64x64_add(dqcoeff, dst, stride, eob, xd->bd);
break;
#endif // CONFIG_TX64X64
default:
assert(0 && "Invalid transform size");
}
#if CONFIG_TX_SKIP
}
#endif // CONFIG_TX_SKIP
}
} else {
#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_TX_SKIP
if (xd->lossless && !mbmi->tx_skip[plane != 0]) {
#else
if (xd->lossless) {
#endif
tx_type = DCT_DCT;
vp9_iwht4x4_add(dqcoeff, dst, stride, eob);
} else {
const PLANE_TYPE plane_type = pd->plane_type;
#if CONFIG_TX_SKIP
if (mbmi->tx_skip[plane != 0]) {
int bs = 4 << tx_size;
if (tx_size <= TX_32X32 &&
(mode == H_PRED || mode == V_PRED || mode == TM_PRED))
vp9_intra_dpcm_add(dqcoeff, dst, stride, mode, bs, shift);
else
vp9_tx_identity_add(dqcoeff, dst, stride, bs, shift);
tx_type = DCT_DCT;
if (tx_size == TX_4X4)
tx_type = get_tx_type_4x4(pd->plane_type, xd, block);
else if (tx_size <= TX_16X16)
tx_type = get_tx_type(pd->plane_type, xd);
} else {
#endif // CONFIG_TX_SKIP
switch (tx_size) {
case TX_4X4:
tx_type = get_tx_type_4x4(plane_type, xd, block);
vp9_iht4x4_add(tx_type, dqcoeff, dst, stride, eob);
break;
case TX_8X8:
tx_type = get_tx_type(plane_type, xd);
vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob);
break;
case TX_16X16:
tx_type = get_tx_type(plane_type, xd);
vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob);
break;
case TX_32X32:
tx_type = get_tx_type_large(plane_type, xd);
#if CONFIG_EXT_TX && CONFIG_WAVELETS
if (tx_type == WAVELET1_DCT_DCT)
vp9_idwtdct32x32_add(dqcoeff, dst, stride);
else
#endif // CONFIG_EXT_TX && CONFIG_WAVELETS
vp9_idct32x32_add(dqcoeff, dst, stride, eob);
break;
#if CONFIG_TX64X64
case TX_64X64:
tx_type = get_tx_type_large(plane_type, xd);
#if CONFIG_EXT_TX && CONFIG_WAVELETS
if (tx_type == WAVELET1_DCT_DCT)
vp9_idwtdct64x64_add(dqcoeff, dst, stride);
else
#endif // CONFIG_EXT_TX && CONFIG_WAVELETS
vp9_idct64x64_add(dqcoeff, dst, stride, eob);
break;
#endif // CONFIG_TX64X64
default:
assert(0 && "Invalid transform size");
return;
}
#if CONFIG_TX_SKIP
}
#endif // CONFIG_TX_SKIP
}
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_SR_MODE // Safer to set it all zeros
vpx_memset(dqcoeff, 0, bs * bs * sizeof(dqcoeff[0]));
#else // CONFIG_SR_MODE
if (eob == 1) {
vpx_memset(dqcoeff, 0, 2 * sizeof(dqcoeff[0]));
} else {
if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10)
vpx_memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0]));
else if (tx_size == TX_32X32 && eob <= 34)
vpx_memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0]));
else
vpx_memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0]));
}
#endif // CONFIG_SR_MODE
}
}
struct intra_args {
VP9_COMMON *cm;
MACROBLOCKD *xd;
vp9_reader *r;
};
#if CONFIG_SR_MODE
static int dec_sr_trfm_quant(VP9_COMMON *cm, MACROBLOCKD *xd, int plane,
int block, BLOCK_SIZE plane_bsize, int x, int y,
TX_SIZE tx_size, vp9_reader *r,
uint8_t *dst, int dst_stride) {
DECLARE_ALIGNED_ARRAY(16, int16_t, tmp_buf, 64 * 64);
int tmp_stride = 64;
int eob, bs = 4 << tx_size;
#if SR_USE_MULTI_F
MODE_INFO *const mi = xd->mi[0].src_mi;
int f_idx = mi->mbmi.us_filter_idx;
int f_hor = idx_to_h(f_idx);
int f_ver = idx_to_v(f_idx);
#endif // SR_USE_MULTI_F
if (plane == 0)
assert(bs == 32 || bs == 16);
tx_size--;
eob = vp9_decode_block_tokens(cm, xd, plane, block, plane_bsize,
x, y, tx_size, r);
if (eob <= 0)
return eob;
inverse_transform_block_sr(xd, plane, block, tx_size,
tmp_buf, tmp_stride, eob);
#if SR_USE_MULTI_F
sr_recon(tmp_buf, tmp_stride, dst, dst_stride, bs, bs, f_hor, f_ver);
#else // SR_USE_MULTI_F
sr_recon(tmp_buf, tmp_stride, dst, dst_stride, bs, bs);
#endif // SR_USE_MULTI_F
return eob;
}
#endif // CONFIG_SR_MODE
static void predict_and_reconstruct_intra_block(int plane, int block,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct intra_args *const args = (struct intra_args *)arg;
VP9_COMMON *const cm = args->cm;
MACROBLOCKD *const xd = args->xd;
struct macroblockd_plane *const pd = &xd->plane[plane];
MODE_INFO *const mi = xd->mi[0].src_mi;
const PREDICTION_MODE mode = (plane == 0) ? get_y_mode(mi, block)
: mi->mbmi.uv_mode;
int x, y;
uint8_t *dst;
#if CONFIG_TX_SKIP
int no_coeff = 0;
#endif
int eob;
#if CONFIG_FILTERINTRA
int fbit;
if (plane == 0)
if (mi->mbmi.sb_type < BLOCK_8X8)
fbit = mi->b_filter_info[block];
else
fbit = is_filter_enabled(tx_size) ? mi->mbmi.filterbit : 0;
else
fbit = is_filter_enabled(tx_size) ? mi->mbmi.uv_filterbit : 0;
#endif
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y);
dst = &pd->dst.buf[4 * y * pd->dst.stride + 4 * x];
vp9_predict_intra_block(xd, block >> (tx_size << 1),
b_width_log2_lookup[plane_bsize], tx_size, mode,
#if CONFIG_FILTERINTRA
fbit,
#endif
dst, pd->dst.stride, dst, pd->dst.stride,
x, y, plane);
if (!mi->mbmi.skip) {
#if CONFIG_SR_MODE
if (mi->mbmi.sr && plane == 0) {
// if (mi->mbmi.sr) {
eob = dec_sr_trfm_quant(cm, xd, plane, block, plane_bsize,
x, y, tx_size, args->r,
dst, pd->dst.stride);
} else {
#endif // CONFIG_SR_MODE
eob = vp9_decode_block_tokens(cm, xd, plane, block,
plane_bsize, x, y, tx_size,
args->r);
inverse_transform_block(xd, plane, block, tx_size, dst, pd->dst.stride,
eob);
#if CONFIG_SR_MODE
}
#endif // CONFIG_SR_MODE
#if CONFIG_TX_SKIP
no_coeff = !eob;
#endif
}
#if CONFIG_TX_SKIP
if ((mi->mbmi.skip || no_coeff) && mi->mbmi.tx_skip[plane != 0] &&
mode == TM_PRED && tx_size <= TX_32X32) {
int bs = 4 * (1 << tx_size);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
vp9_highbd_intra_dpcm_add_nocoeff(dst, pd->dst.stride, mode, bs, xd->bd);
else
vp9_intra_dpcm_add_nocoeff(dst, pd->dst.stride, mode, bs);
#else
vp9_intra_dpcm_add_nocoeff(dst, pd->dst.stride, mode, bs);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
#endif
#if CONFIG_TX_SKIP && CONFIG_FILTERINTRA
if ((mi->mbmi.skip || no_coeff) && mi->mbmi.tx_skip[plane != 0] &&
(mode == H_PRED || mode == V_PRED) && fbit && tx_size <= TX_32X32) {
int bs = 4 * (1 << tx_size);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
vp9_highbd_intra_dpcm_add_nocoeff(dst, pd->dst.stride, mode, bs, xd->bd);
else
vp9_intra_dpcm_add_nocoeff(dst, pd->dst.stride, mode, bs);
#else
vp9_intra_dpcm_add_nocoeff(dst, pd->dst.stride, mode, bs);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
#endif // CONFIG_TX_SKIP && CONFIG_FILTERINTRA
}
struct inter_args {
VP9_COMMON *cm;
MACROBLOCKD *xd;
vp9_reader *r;
int *eobtotal;
};
static void reconstruct_inter_block(int plane, int block,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct inter_args *args = (struct inter_args *)arg;
VP9_COMMON *const cm = args->cm;
MACROBLOCKD *const xd = args->xd;
struct macroblockd_plane *const pd = &xd->plane[plane];
int x, y, eob;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y);
#if CONFIG_SR_MODE
if (xd->mi[0].src_mi->mbmi.sr && plane == 0) {
// if (xd->mi[0].src_mi->mbmi.sr) {
eob = dec_sr_trfm_quant(
cm, xd, plane, block, plane_bsize, x, y, tx_size, args->r,
&pd->dst.buf[4 * y * pd->dst.stride + 4 * x], pd->dst.stride);
} else {
#endif // CONFIG_SR_MODE
eob = vp9_decode_block_tokens(cm, xd, plane, block, plane_bsize, x, y,
tx_size, args->r);
inverse_transform_block(xd, plane, block, tx_size,
&pd->dst.buf[4 * y * pd->dst.stride + 4 * x],
pd->dst.stride, eob);
#if CONFIG_SR_MODE
}
#endif // CONFIG_SR_MODE
*args->eobtotal += eob;
}
static MB_MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
BLOCK_SIZE bsize, int mi_row, int mi_col) {
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
const int offset = mi_row * cm->mi_stride + mi_col;
int x, y;
xd->mi = cm->mi + offset;
xd->mi[0].src_mi = &xd->mi[0]; // Point to self.
xd->mi[0].mbmi.sb_type = bsize;
for (y = 0; y < y_mis; ++y)
for (x = !y; x < x_mis; ++x) {
xd->mi[y * cm->mi_stride + x].src_mi = &xd->mi[0];
}
set_skip_context(xd, mi_row, mi_col);
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
return &xd->mi[0].mbmi;
}
#if CONFIG_SUPERTX
static MB_MODE_INFO *set_offsets_extend(VP9_COMMON *const cm,
MACROBLOCKD *const xd,
const TileInfo *const tile,
BLOCK_SIZE bsize_pred,
int mi_row_pred, int mi_col_pred,
int mi_row_ori, int mi_col_ori) {
// Used in supertx
// (mi_row_ori, mi_col_ori): location for mv
// (mi_row_pred, mi_col_pred, bsize_pred): region to predict
const int bw = num_8x8_blocks_wide_lookup[bsize_pred];
const int bh = num_8x8_blocks_high_lookup[bsize_pred];
const int offset = mi_row_ori * cm->mi_stride + mi_col_ori;
xd->mi = cm->mi + offset;
xd->mi[0].src_mi = &xd->mi[0];
set_mi_row_col(xd, tile, mi_row_pred, bh, mi_col_pred, bw,
cm->mi_rows, cm->mi_cols);
xd->up_available = (mi_row_ori != 0);
xd->left_available = (mi_col_ori > tile->mi_col_start);
return &xd->mi[0].mbmi;
}
static MB_MODE_INFO *set_mb_offsets(VP9_COMMON *const cm,
MACROBLOCKD *const xd,
const TileInfo *const tile,
BLOCK_SIZE bsize,
int mi_row, int mi_col) {
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
const int offset = mi_row * cm->mi_stride + mi_col;
int x, y;
xd->mi = cm->mi + offset;
xd->mi[0].src_mi = &xd->mi[0];
xd->mi[0].mbmi.sb_type = bsize;
for (y = 0; y < y_mis; ++y)
for (x = !y; x < x_mis; ++x)
xd->mi[y * cm->mi_stride + x] = xd->mi[0];
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
return &xd->mi[0].mbmi;
}
static void set_offsets_topblock(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
BLOCK_SIZE bsize, int mi_row, int mi_col) {
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int offset = mi_row * cm->mi_stride + mi_col;
xd->mi = cm->mi + offset;
xd->mi[0].src_mi = &xd->mi[0];
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
}
static void set_param_topblock(VP9_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
#if CONFIG_EXT_TX
int txfm,
#endif // CONFIG_EXT_TX
#if CONFIG_NEW_QUANT && QUANT_PROFILES > 1
int dq_off_index,
#endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1
int skip) {
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
const int offset = mi_row * cm->mi_stride + mi_col;
int x, y;
xd->mi = cm->mi + offset;
xd->mi[0].src_mi = &xd->mi[0];
for (y = 0; y < y_mis; ++y)
for (x = 0; x < x_mis; ++x) {
xd->mi[y * cm->mi_stride + x].mbmi.skip = skip;
#if CONFIG_EXT_TX
xd->mi[y * cm->mi_stride + x].mbmi.ext_txfrm = txfm;
#endif // CONFIG_EXT_TX
#if CONFIG_NEW_QUANT && QUANT_PROFILES > 1
xd->mi[y * cm->mi_stride + x].mbmi.dq_off_index = dq_off_index;
#endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1
}
}
static void set_ref(VP9_COMMON *const cm, MACROBLOCKD *const xd,
int idx, int mi_row, int mi_col) {
MB_MODE_INFO *const mbmi = &xd->mi[0].mbmi;
RefBuffer *ref_buffer = &cm->frame_refs[mbmi->ref_frame[idx] - LAST_FRAME];
xd->block_refs[idx] = ref_buffer;
if (!vp9_is_valid_scale(&ref_buffer->sf))
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid scale factors");
vp9_setup_pre_planes(xd, idx, ref_buffer->buf, mi_row, mi_col,
&ref_buffer->sf);
xd->corrupted |= ref_buffer->buf->corrupted;
}
static void dec_predict_b_extend(
VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile, int block,
int mi_row_ori, int mi_col_ori,
int mi_row_pred, int mi_col_pred,
int mi_row_top, int mi_col_top,
uint8_t * dst_buf[3], int dst_stride[3],
BLOCK_SIZE bsize_top,
BLOCK_SIZE bsize_pred,
int b_sub8x8, int bextend) {
// Used in supertx
// (mi_row_ori, mi_col_ori): location for mv
// (mi_row_pred, mi_col_pred, bsize_pred): region to predict
// (mi_row_top, mi_col_top, bsize_top): region of the top partition size
// block: sub location of sub8x8 blocks
// b_sub8x8: 1: ori is sub8x8; 0: ori is not sub8x8
// bextend: 1: region to predict is an extension of ori; 0: not
int r = (mi_row_pred - mi_row_top) * MI_SIZE;
int c = (mi_col_pred - mi_col_top) * MI_SIZE;
const int mi_width_top = num_8x8_blocks_wide_lookup[bsize_top];
const int mi_height_top = num_8x8_blocks_high_lookup[bsize_top];
MB_MODE_INFO *mbmi;
if (mi_row_pred < mi_row_top || mi_col_pred < mi_col_top ||
mi_row_pred >= mi_row_top + mi_height_top ||
mi_col_pred >= mi_col_top + mi_width_top ||
mi_row_pred >= cm->mi_rows || mi_col_pred >= cm->mi_cols)
return;
mbmi = set_offsets_extend(cm, xd, tile, bsize_pred,
mi_row_pred, mi_col_pred,
mi_row_ori, mi_col_ori);
set_ref(cm, xd, 0, mi_row_pred, mi_col_pred);
if (has_second_ref(&xd->mi[0].mbmi))
set_ref(cm, xd, 1, mi_row_pred, mi_col_pred);
if (!bextend) {
mbmi->tx_size = b_width_log2_lookup[bsize_top];
}
xd->plane[0].dst.stride = dst_stride[0];
xd->plane[1].dst.stride = dst_stride[1];
xd->plane[2].dst.stride = dst_stride[2];
xd->plane[0].dst.buf = dst_buf[0] +
(r >> xd->plane[0].subsampling_y) * dst_stride[0] +
(c >> xd->plane[0].subsampling_x);
xd->plane[1].dst.buf = dst_buf[1] +
(r >> xd->plane[1].subsampling_y) * dst_stride[1] +
(c >> xd->plane[1].subsampling_x);
xd->plane[2].dst.buf = dst_buf[2] +
(r >> xd->plane[2].subsampling_y) * dst_stride[2] +
(c >> xd->plane[2].subsampling_x);
#if CONFIG_WEDGE_PARTITION
if (!b_sub8x8)
vp9_dec_build_inter_predictors_sb_extend(xd, mi_row_ori, mi_col_ori,
mi_row_pred, mi_col_pred,
bsize_pred);
else
vp9_dec_build_inter_predictors_sb_sub8x8_extend(
xd, mi_row_ori, mi_col_ori,
mi_row_pred, mi_col_pred, bsize_pred, block);
#else
if (!b_sub8x8)
vp9_dec_build_inter_predictors_sb(xd, mi_row_pred, mi_col_pred, bsize_pred);
else
vp9_dec_build_inter_predictors_sb_sub8x8(xd, mi_row_pred, mi_col_pred,
bsize_pred, block);
#endif // CONFIG_WEDGE_PARTITION
}
static void dec_extend_dir(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile, int block,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize,
int mi_row, int mi_col,
int mi_row_top, int mi_col_top,
uint8_t * dst_buf[3], int dst_stride[3], int dir) {
// dir: 0-lower, 1-upper, 2-left, 3-right
// 4-lowerleft, 5-upperleft, 6-lowerright, 7-upperright
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
int xss = xd->plane[1].subsampling_x;
int yss = xd->plane[1].subsampling_y;
int b_sub8x8 = (bsize < BLOCK_8X8) ? 1 : 0;
BLOCK_SIZE extend_bsize;
int unit, mi_row_pred, mi_col_pred;
if (dir == 0 || dir == 1) {
extend_bsize = (mi_width == 1 || bsize < BLOCK_8X8 || xss < yss) ?
BLOCK_8X8 : BLOCK_16X8;
unit = num_8x8_blocks_wide_lookup[extend_bsize];
mi_row_pred = mi_row + ((dir == 0) ? mi_height : -1);
mi_col_pred = mi_col;
dec_predict_b_extend(cm, xd, tile, block, mi_row, mi_col,
mi_row_pred, mi_col_pred,
mi_row_top, mi_col_top,
dst_buf, dst_stride,
top_bsize, extend_bsize, b_sub8x8, 1);
if (mi_width > unit) {
int i;
assert(!b_sub8x8);
for (i = 0; i < mi_width/unit - 1; i++) {
mi_col_pred += unit;
dec_predict_b_extend(cm, xd, tile, block, mi_row, mi_col,
mi_row_pred, mi_col_pred,
mi_row_top, mi_col_top,
dst_buf, dst_stride,
top_bsize, extend_bsize, b_sub8x8, 1);
}
}
} else if (dir == 2 || dir == 3) {
extend_bsize = (mi_height == 1 || bsize < BLOCK_8X8 || yss < xss) ?
BLOCK_8X8 : BLOCK_8X16;
unit = num_8x8_blocks_high_lookup[extend_bsize];
mi_row_pred = mi_row;
mi_col_pred = mi_col + ((dir == 3) ? mi_width : -1);
dec_predict_b_extend(cm, xd, tile, block, mi_row, mi_col,
mi_row_pred, mi_col_pred,
mi_row_top, mi_col_top,
dst_buf, dst_stride,
top_bsize, extend_bsize, b_sub8x8, 1);
if (mi_height > unit) {
int i;
for (i = 0; i < mi_height/unit - 1; i++) {
mi_row_pred += unit;
dec_predict_b_extend(cm, xd, tile, block, mi_row, mi_col,
mi_row_pred, mi_col_pred,
mi_row_top, mi_col_top,
dst_buf, dst_stride,
top_bsize, extend_bsize, b_sub8x8, 1);
}
}
} else {
extend_bsize = BLOCK_8X8;
mi_row_pred = mi_row + ((dir == 4 || dir == 6) ? mi_height : -1);
mi_col_pred = mi_col + ((dir == 6 || dir == 7) ? mi_width : -1);
dec_predict_b_extend(cm, xd, tile, block, mi_row, mi_col,
mi_row_pred, mi_col_pred,
mi_row_top, mi_col_top,
dst_buf, dst_stride,
top_bsize, extend_bsize, b_sub8x8, 1);
}
}
static void dec_extend_all(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile, int block,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize,
int mi_row, int mi_col,
int mi_row_top, int mi_col_top,
uint8_t * dst_buf[3], int dst_stride[3]) {
dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 0);
dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 1);
dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 2);
dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 3);
dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 4);
dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 5);
dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 6);
dec_extend_dir(cm, xd, tile, block, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 7);
}
static void dec_predict_sb_complex(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
int mi_row, int mi_col,
int mi_row_top, int mi_col_top,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize,
uint8_t *dst_buf[3], int dst_stride[3]) {
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
#if !CONFIG_EXT_PARTITION
MB_MODE_INFO *mbmi;
#endif
int i, offset = mi_row * cm->mi_stride + mi_col;
#if CONFIG_EXT_PARTITION
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
uint8_t *dst_buf1[3], *dst_buf2[3], *dst_buf3[3];
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf1,
MAX_MB_PLANE * MAXTXLEN * MAXTXLEN * sizeof(uint16_t));
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf2,
MAX_MB_PLANE * MAXTXLEN * MAXTXLEN * sizeof(uint16_t));
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf3,
MAX_MB_PLANE * MAXTXLEN * MAXTXLEN * sizeof(uint16_t));
int dst_stride1[3] = {MAXTXLEN, MAXTXLEN, MAXTXLEN};
int dst_stride2[3] = {MAXTXLEN, MAXTXLEN, MAXTXLEN};
int dst_stride3[3] = {MAXTXLEN, MAXTXLEN, MAXTXLEN};
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAXTXLEN * MAXTXLEN * len);
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAXTXLEN * MAXTXLEN * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAXTXLEN * MAXTXLEN * len);
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAXTXLEN * MAXTXLEN * len);
dst_buf3[0] = CONVERT_TO_BYTEPTR(tmp_buf3);
dst_buf3[1] = CONVERT_TO_BYTEPTR(tmp_buf3 + MAXTXLEN * MAXTXLEN * len);
dst_buf3[2] = CONVERT_TO_BYTEPTR(tmp_buf3 + 2 * MAXTXLEN * MAXTXLEN * len);
} else {
#endif
dst_buf1[0] = tmp_buf1;
dst_buf1[1] = tmp_buf1 + MAXTXLEN * MAXTXLEN;
dst_buf1[2] = tmp_buf1 + 2 * MAXTXLEN * MAXTXLEN;
dst_buf2[0] = tmp_buf2;
dst_buf2[1] = tmp_buf2 + MAXTXLEN * MAXTXLEN;
dst_buf2[2] = tmp_buf2 + 2 * MAXTXLEN * MAXTXLEN;
dst_buf3[0] = tmp_buf3;
dst_buf3[1] = tmp_buf3 + MAXTXLEN * MAXTXLEN;
dst_buf3[2] = tmp_buf3 + 2 * MAXTXLEN * MAXTXLEN;
#if CONFIG_VP9_HIGHBITDEPTH
}
#endif
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
xd->mi = cm->mi + offset;
xd->mi[0].src_mi = &xd->mi[0];
#if CONFIG_EXT_PARTITION
partition = get_partition(cm->mi, cm->mi_stride, cm->mi_rows, cm->mi_cols,
mi_row, mi_col, bsize);
#else
mbmi = &xd->mi[0].mbmi;
partition = partition_lookup[bsl][mbmi->sb_type];
#endif
subsize = get_subsize(bsize, partition);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
}
switch (partition) {
case PARTITION_NONE:
assert(bsize < top_bsize);
dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, bsize, 0, 0);
dec_extend_all(cm, xd, tile, 0, bsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
break;
case PARTITION_HORZ:
if (bsize == BLOCK_8X8) {
// For sub8x8, predict in 8x8 unit
// First half
dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, BLOCK_8X8, 1, 0);
if (bsize < top_bsize)
dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
// Second half
dec_predict_b_extend(cm, xd, tile, 2, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, BLOCK_8X8, 1, 1);
if (bsize < top_bsize)
dec_extend_all(cm, xd, tile, 2, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
// weighted average to smooth the boundary
xd->plane[0].dst.buf = dst_buf[0];
xd->plane[0].dst.stride = dst_stride[0];
vp9_build_masked_inter_predictor_complex(xd,
dst_buf[0], dst_stride[0],
dst_buf1[0], dst_stride1[0],
&xd->plane[0],
mi_row, mi_col,
mi_row_top, mi_col_top,
bsize, top_bsize,
PARTITION_HORZ, 0);
} else {
// First half
dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 0);
if (mi_row + hbs < cm->mi_rows) {
// Second half
dec_predict_b_extend(cm, xd, tile, 0, mi_row + hbs, mi_col,
mi_row + hbs, mi_col,
mi_row_top, mi_col_top,
dst_buf1, dst_stride1,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(cm, xd, tile, 0, subsize, top_bsize,
mi_row + hbs, mi_col,
mi_row_top, mi_col_top,
dst_buf1, dst_stride1);
else
dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize,
mi_row + hbs, mi_col,
mi_row_top, mi_col_top,
dst_buf1, dst_stride1, 1);
// weighted average to smooth the boundary
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp9_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
&xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top,
bsize, top_bsize, PARTITION_HORZ, i);
}
}
}
break;
case PARTITION_VERT:
if (bsize == BLOCK_8X8) {
// First half
dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, BLOCK_8X8, 1, 0);
if (bsize < top_bsize)
dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
// Second half
dec_predict_b_extend(cm, xd, tile, 1, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, BLOCK_8X8, 1, 1);
if (bsize < top_bsize)
dec_extend_all(cm, xd, tile, 1, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
// Smooth
xd->plane[0].dst.buf = dst_buf[0];
xd->plane[0].dst.stride = dst_stride[0];
vp9_build_masked_inter_predictor_complex(xd,
dst_buf[0], dst_stride[0],
dst_buf1[0], dst_stride1[0],
&xd->plane[0],
mi_row, mi_col,
mi_row_top, mi_col_top,
bsize, top_bsize,
PARTITION_VERT, 0);
} else {
// First half
dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 3);
// Second half
if (mi_col + hbs < cm->mi_cols) {
dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col + hbs,
mi_row, mi_col + hbs,
mi_row_top, mi_col_top,
dst_buf1, dst_stride1,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(cm, xd, tile, 0, subsize, top_bsize,
mi_row, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf1, dst_stride1);
else
dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize,
mi_row, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf1, dst_stride1, 2);
// Smooth
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp9_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
&xd->plane[i], mi_row, mi_col, mi_row_top, mi_col_top,
bsize, top_bsize, PARTITION_VERT, i);
}
}
}
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8) {
dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, BLOCK_8X8, 1, 0);
dec_predict_b_extend(cm, xd, tile, 1, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, BLOCK_8X8, 1, 1);
dec_predict_b_extend(cm, xd, tile, 2, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf2, dst_stride2,
top_bsize, BLOCK_8X8, 1, 1);
dec_predict_b_extend(cm, xd, tile, 3, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf3, dst_stride3,
top_bsize, BLOCK_8X8, 1, 1);
if (bsize < top_bsize) {
dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
dec_extend_all(cm, xd, tile, 1, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_extend_all(cm, xd, tile, 2, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf2, dst_stride2);
dec_extend_all(cm, xd, tile, 3, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf3, dst_stride3);
}
} else {
dec_predict_sb_complex(cm, xd, tile, mi_row, mi_col,
mi_row_top, mi_col_top, subsize, top_bsize,
dst_buf, dst_stride);
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols)
dec_predict_sb_complex(cm, xd, tile, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, subsize, top_bsize,
dst_buf1, dst_stride1);
if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols)
dec_predict_sb_complex(cm, xd, tile, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, subsize, top_bsize,
dst_buf2, dst_stride2);
if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols)
dec_predict_sb_complex(cm, xd, tile, mi_row + hbs, mi_col + hbs,
mi_row_top, mi_col_top, subsize, top_bsize,
dst_buf3, dst_stride3);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
if (bsize == BLOCK_8X8 && i != 0)
continue; // Skip <4x4 chroma smoothing
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
vp9_build_masked_inter_predictor_complex(xd,
dst_buf[i], dst_stride[i],
dst_buf1[i],
dst_stride1[i],
&xd->plane[i],
mi_row, mi_col,
mi_row_top, mi_col_top,
bsize, top_bsize,
PARTITION_VERT, i);
if (mi_row + hbs < cm->mi_rows) {
vp9_build_masked_inter_predictor_complex(xd,
dst_buf2[i],
dst_stride2[i],
dst_buf3[i],
dst_stride3[i],
&xd->plane[i],
mi_row, mi_col,
mi_row_top, mi_col_top,
bsize, top_bsize,
PARTITION_VERT, i);
vp9_build_masked_inter_predictor_complex(xd,
dst_buf[i],
dst_stride[i],
dst_buf2[i],
dst_stride2[i],
&xd->plane[i],
mi_row, mi_col,
mi_row_top, mi_col_top,
bsize, top_bsize,
PARTITION_HORZ, i);
}
} else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) {
vp9_build_masked_inter_predictor_complex(xd,
dst_buf[i],
dst_stride[i],
dst_buf2[i],
dst_stride2[i],
&xd->plane[i],
mi_row, mi_col,
mi_row_top, mi_col_top,
bsize, top_bsize,
PARTITION_HORZ, i);
}
}
break;
#if CONFIG_EXT_PARTITION
case PARTITION_HORZ_A:
dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, bsize2, 0, 0);
dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top,
dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(cm, xd, tile, 0, mi_row + hbs, mi_col,
mi_row + hbs, mi_col, mi_row_top, mi_col_top,
dst_buf2, dst_stride2, top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(cm, xd, tile, 0, subsize, top_bsize,
mi_row + hbs, mi_col, mi_row_top, mi_col_top,
dst_buf2, dst_stride2);
else
dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize,
mi_row + hbs, mi_col, mi_row_top, mi_col_top,
dst_buf2, dst_stride2, 1);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp9_build_masked_inter_predictor_complex(xd,
dst_buf[i], dst_stride[i],
dst_buf1[i], dst_stride1[i],
&xd->plane[i],
mi_row, mi_col,
mi_row_top, mi_col_top,
bsize, top_bsize,
PARTITION_VERT, i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
vp9_build_masked_inter_predictor_complex(xd,
dst_buf[i], dst_stride[i],
dst_buf2[i], dst_stride2[i],
&xd->plane[i],
mi_row, mi_col,
mi_row_top, mi_col_top,
bsize, top_bsize,
PARTITION_HORZ, i);
}
break;
case PARTITION_VERT_A:
dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, bsize2, 0, 0);
dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
dec_predict_b_extend(cm, xd, tile, 0, mi_row + hbs, mi_col,
mi_row + hbs, mi_col, mi_row_top, mi_col_top,
dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col + hbs,
mi_row, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf2, dst_stride2,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(cm, xd, tile, 0, subsize, top_bsize,
mi_row, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf2, dst_stride2);
else
dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize,
mi_row, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf2, dst_stride2, 2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp9_build_masked_inter_predictor_complex(xd,
dst_buf[i], dst_stride[i],
dst_buf1[i], dst_stride1[i],
&xd->plane[i],
mi_row, mi_col,
mi_row_top, mi_col_top,
bsize, top_bsize,
PARTITION_HORZ, i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
vp9_build_masked_inter_predictor_complex(xd,
dst_buf[i], dst_stride[i],
dst_buf2[i], dst_stride2[i],
&xd->plane[i],
mi_row, mi_col,
mi_row_top, mi_col_top,
bsize, top_bsize,
PARTITION_VERT, i);
}
break;
case PARTITION_HORZ_B:
dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 0);
dec_predict_b_extend(cm, xd, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
mi_col, mi_row_top, mi_col_top,
dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(cm, xd, tile, 0, mi_row + hbs, mi_col + hbs,
mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0);
dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize,
mi_row + hbs, mi_col + hbs,
mi_row_top, mi_col_top, dst_buf2, dst_stride2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf1[i];
xd->plane[i].dst.stride = dst_stride1[i];
vp9_build_masked_inter_predictor_complex(xd,
dst_buf1[i], dst_stride1[i],
dst_buf2[i], dst_stride2[i],
&xd->plane[i],
mi_row, mi_col,
mi_row_top, mi_col_top,
bsize, top_bsize,
PARTITION_VERT, i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp9_build_masked_inter_predictor_complex(xd,
dst_buf[i], dst_stride[i],
dst_buf1[i], dst_stride1[i],
&xd->plane[i],
mi_row, mi_col,
mi_row_top, mi_col_top,
bsize, top_bsize,
PARTITION_HORZ, i);
}
break;
case PARTITION_VERT_B:
dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, subsize, 0, 0);
if (bsize < top_bsize)
dec_extend_all(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride);
else
dec_extend_dir(cm, xd, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, 3);
dec_predict_b_extend(cm, xd, tile, 0, mi_row, mi_col + hbs,
mi_row, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf1, dst_stride1, top_bsize, bsize2, 0, 0);
dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, dst_buf1, dst_stride1);
dec_predict_b_extend(cm, xd, tile, 0, mi_row + hbs, mi_col + hbs,
mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf2, dst_stride2, top_bsize, bsize2, 0, 0);
dec_extend_all(cm, xd, tile, 0, bsize2, top_bsize,
mi_row + hbs, mi_col + hbs,
mi_row_top, mi_col_top, dst_buf2, dst_stride2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf1[i];
xd->plane[i].dst.stride = dst_stride1[i];
vp9_build_masked_inter_predictor_complex(xd,
dst_buf1[i], dst_stride1[i],
dst_buf2[i], dst_stride2[i],
&xd->plane[i],
mi_row, mi_col,
mi_row_top, mi_col_top,
bsize, top_bsize,
PARTITION_HORZ, i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp9_build_masked_inter_predictor_complex(xd,
dst_buf[i], dst_stride[i],
dst_buf1[i], dst_stride1[i],
&xd->plane[i],
mi_row, mi_col,
mi_row_top, mi_col_top,
bsize, top_bsize,
PARTITION_VERT, i);
}
break;
#endif
default:
assert(0);
}
}
#endif // CONFIG_SUPERTX
static void decode_block(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
PARTITION_TYPE partition,
#endif
#endif
int mi_row, int mi_col,
vp9_reader *r, BLOCK_SIZE bsize) {
const int less8x8 = bsize < BLOCK_8X8;
#if CONFIG_TX_SKIP
int q_idx;
#endif
#if CONFIG_SUPERTX
MB_MODE_INFO *mbmi;
if (supertx_enabled) {
mbmi = set_mb_offsets(cm, xd, tile, bsize, mi_row, mi_col);
} else {
mbmi = set_offsets(cm, xd, tile, bsize, mi_row, mi_col);
}
vp9_read_mode_info(cm, xd, tile, supertx_enabled,
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row, mi_col, r);
#else
MB_MODE_INFO *mbmi = set_offsets(cm, xd, tile, bsize, mi_row, mi_col);
vp9_read_mode_info(cm, xd, tile,
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row, mi_col, r);
#endif // CONFIG_SUPERTX
#if CONFIG_TX_SKIP
q_idx = vp9_get_qindex(&cm->seg, mbmi->segment_id, cm->base_qindex);
mbmi->tx_skip_shift = q_idx > TX_SKIP_SHIFT_THRESH ?
TX_SKIP_SHIFT_HQ : TX_SKIP_SHIFT_LQ;
#endif
#if CONFIG_SUPERTX
if (!supertx_enabled) {
#endif
if (less8x8)
bsize = BLOCK_8X8;
if (mbmi->skip) {
reset_skip_context(xd, bsize);
} else {
if (cm->seg.enabled) {
setup_plane_dequants(cm, xd, vp9_get_qindex(&cm->seg, mbmi->segment_id,
cm->base_qindex));
}
}
if (!is_inter_block(mbmi)
#if CONFIG_INTRABC
&& !is_intrabc_mode(mbmi->mode)
#endif // CONFIG_INTRABC
) {
struct intra_args arg = { cm, xd, r };
vp9_foreach_transformed_block(xd, bsize,
predict_and_reconstruct_intra_block, &arg);
} else {
// Prediction
vp9_dec_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
// Reconstruction
if (!mbmi->skip) {
int eobtotal = 0;
struct inter_args arg = { cm, xd, r, &eobtotal };
vp9_foreach_transformed_block(xd, bsize, reconstruct_inter_block, &arg);
#if CONFIG_BITSTREAM_FIXES
#else
if (!less8x8 && eobtotal == 0)
mbmi->skip = 1; // skip loopfilter
#endif
}
}
#if CONFIG_SUPERTX
}
#endif
xd->corrupted |= vp9_reader_has_error(r);
}
static PARTITION_TYPE read_partition(VP9_COMMON *cm, MACROBLOCKD *xd, int hbs,
int mi_row, int mi_col, BLOCK_SIZE bsize,
vp9_reader *r) {
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
const vp9_prob *const probs = get_partition_probs(cm, ctx);
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
PARTITION_TYPE p;
if (has_rows && has_cols) {
#if CONFIG_EXT_PARTITION
if (bsize <= BLOCK_8X8)
p = (PARTITION_TYPE)vp9_read_tree(r, vp9_partition_tree, probs);
else
p = (PARTITION_TYPE)vp9_read_tree(r, vp9_ext_partition_tree, probs);
#else
p = (PARTITION_TYPE)vp9_read_tree(r, vp9_partition_tree, probs);
#endif
} else if (!has_rows && has_cols) {
p = vp9_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ;
} else if (has_rows && !has_cols) {
p = vp9_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT;
} else {
p = PARTITION_SPLIT;
}
if (!cm->frame_parallel_decoding_mode)
++cm->counts.partition[ctx][p];
return p;
}
#if CONFIG_SUPERTX
static int read_skip_without_seg(VP9_COMMON *cm, const MACROBLOCKD *xd,
vp9_reader *r) {
const int ctx = vp9_get_skip_context(xd);
const int skip = vp9_read(r, cm->fc.skip_probs[ctx]);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.skip[ctx][skip];
return skip;
}
#endif // CONFIG_SUPERTX
static void decode_partition(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col,
vp9_reader* r, BLOCK_SIZE bsize) {
const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2;
PARTITION_TYPE partition;
BLOCK_SIZE subsize, uv_subsize;
#if CONFIG_EXT_PARTITION
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
#if CONFIG_SUPERTX
const int read_token = !supertx_enabled;
int skip = 0;
TX_SIZE supertx_size = b_width_log2_lookup[bsize];
#if CONFIG_EXT_TX
int txfm = NORM;
#endif
#if CONFIG_NEW_QUANT && QUANT_PROFILES > 1
int dq_off_index = 0;
#endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1
#endif // CONFIG_SUPERTX
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
partition = read_partition(cm, xd, hbs, mi_row, mi_col, bsize, r);
subsize = get_subsize(bsize, partition);
uv_subsize = ss_size_lookup[subsize][cm->subsampling_x][cm->subsampling_y];
if (subsize >= BLOCK_8X8 && uv_subsize == BLOCK_INVALID)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid block size.");
#if CONFIG_SUPERTX
if (cm->frame_type != KEY_FRAME &&
partition != PARTITION_NONE &&
bsize <= MAX_SUPERTX_BLOCK_SIZE &&
!supertx_enabled && !xd->lossless) {
const int supertx_context =
partition_supertx_context_lookup[partition];
supertx_enabled = vp9_read(
r, cm->fc.supertx_prob[supertx_context][supertx_size]);
cm->counts.supertx[supertx_context][supertx_size][supertx_enabled]++;
}
if (supertx_enabled && read_token) {
int offset = mi_row * cm->mi_stride + mi_col;
xd->mi = cm->mi + offset;
xd->mi[0].src_mi = &xd->mi[0];
set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[bsize],
mi_col, num_8x8_blocks_wide_lookup[bsize],
cm->mi_rows, cm->mi_cols);
set_skip_context(xd, mi_row, mi_col);
// Here skip is read without using any segment level feature
skip = read_skip_without_seg(cm, xd, r);
if (skip)
reset_skip_context(xd, bsize);
#if CONFIG_EXT_TX
if (!skip) {
if (supertx_size <= TX_16X16) {
txfm = vp9_read_tree(r, vp9_ext_tx_tree,
cm->fc.ext_tx_prob[supertx_size]);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.ext_tx[supertx_size][txfm];
#if CONFIG_WAVELETS
} else {
txfm = vp9_read_tree(r, vp9_ext_tx_large_tree,
cm->fc.ext_tx_prob[supertx_size]);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.ext_tx[supertx_size][txfm];
#endif // CONFIG_WAVELETS
}
}
#endif // CONFIG_EXT_TX
#if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES
if (cm->base_qindex > Q_THRESHOLD_MIN &&
cm->base_qindex < Q_THRESHOLD_MAX &&
switchable_dq_profile_used(get_entropy_context_sb(xd, bsize), bsize) &&
!skip &&
!vp9_segfeature_active(
&cm->seg, xd->mi[0].mbmi.segment_id, SEG_LVL_SKIP)) {
dq_off_index = vp9_read_dq_profile(cm, r);
} else {
dq_off_index = 0;
}
#endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES
}
#endif // CONFIG_SUPERTX
if (subsize < BLOCK_8X8) {
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row, mi_col, r, subsize);
} else {
switch (partition) {
case PARTITION_NONE:
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row, mi_col, r, subsize);
break;
case PARTITION_HORZ:
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row, mi_col, r, subsize);
if (mi_row + hbs < cm->mi_rows)
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row + hbs, mi_col, r, subsize);
break;
case PARTITION_VERT:
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row, mi_col, r, subsize);
if (mi_col + hbs < cm->mi_cols)
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row, mi_col + hbs, r, subsize);
break;
case PARTITION_SPLIT:
#if CONFIG_SUPERTX
decode_partition(cm, xd, tile, supertx_enabled,
mi_row, mi_col, r, subsize);
decode_partition(cm, xd, tile, supertx_enabled,
mi_row, mi_col + hbs, r, subsize);
decode_partition(cm, xd, tile, supertx_enabled,
mi_row + hbs, mi_col, r, subsize);
decode_partition(cm, xd, tile, supertx_enabled,
mi_row + hbs, mi_col + hbs, r, subsize);
#else
decode_partition(cm, xd, tile, mi_row, mi_col, r, subsize);
decode_partition(cm, xd, tile, mi_row, mi_col + hbs, r, subsize);
decode_partition(cm, xd, tile, mi_row + hbs, mi_col, r, subsize);
decode_partition(cm, xd, tile, mi_row + hbs, mi_col + hbs, r, subsize);
#endif
break;
#if CONFIG_EXT_PARTITION
case PARTITION_HORZ_A:
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row, mi_col, r, bsize2);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row, mi_col + hbs, r, bsize2);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row + hbs, mi_col, r, subsize);
break;
case PARTITION_HORZ_B:
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row, mi_col, r, subsize);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row + hbs, mi_col, r, bsize2);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row + hbs, mi_col + hbs, r, bsize2);
break;
case PARTITION_VERT_A:
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row, mi_col, r, bsize2);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row + hbs, mi_col, r, bsize2);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row, mi_col + hbs, r, subsize);
break;
case PARTITION_VERT_B:
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row, mi_col, r, subsize);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row, mi_col + hbs, r, bsize2);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
#if CONFIG_COPY_MODE
#if CONFIG_EXT_PARTITION
partition,
#endif
#endif
mi_row + hbs, mi_col + hbs, r, bsize2);
break;
#endif
default:
assert(0 && "Invalid partition type");
}
}
#if CONFIG_SUPERTX
if (supertx_enabled && read_token) {
uint8_t *dst_buf[3];
int dst_stride[3], i;
vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
for (i = 0; i < MAX_MB_PLANE; i++) {
dst_buf[i] = xd->plane[i].dst.buf;
dst_stride[i] = xd->plane[i].dst.stride;
}
dec_predict_sb_complex(cm, xd, tile, mi_row, mi_col, mi_row, mi_col,
bsize, bsize, dst_buf, dst_stride);
if (!skip) {
int eobtotal = 0;
struct inter_args arg = { cm, xd, r, &eobtotal };
set_offsets_topblock(cm, xd, tile, bsize, mi_row, mi_col);
if (cm->seg.enabled) {
setup_plane_dequants(cm, xd, vp9_get_qindex(&cm->seg,
xd->mi[0].mbmi.segment_id,
cm->base_qindex));
}
#if CONFIG_EXT_TX
xd->mi[0].mbmi.ext_txfrm = txfm;
#endif
#if CONFIG_NEW_QUANT && QUANT_PROFILES > 1
xd->mi[0].mbmi.dq_off_index = dq_off_index;
#endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1
vp9_foreach_transformed_block(xd, bsize, reconstruct_inter_block, &arg);
if (!(subsize < BLOCK_8X8) && eobtotal == 0)
skip = 1;
}
set_param_topblock(cm, xd, bsize, mi_row, mi_col,
#if CONFIG_EXT_TX
txfm,
#endif
#if CONFIG_NEW_QUANT && QUANT_PROFILES > 1
dq_off_index,
#endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1
skip);
}
#endif // CONFIG_SUPERTX
#if CONFIG_EXT_PARTITION
if (bsize >= BLOCK_8X8) {
switch (partition) {
case PARTITION_SPLIT:
if (bsize > BLOCK_8X8)
break;
case PARTITION_NONE:
case PARTITION_HORZ:
case PARTITION_VERT:
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
break;
case PARTITION_HORZ_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
break;
case PARTITION_HORZ_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
break;
case PARTITION_VERT_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
break;
case PARTITION_VERT_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
break;
default:
assert(0 && "Invalid partition type");
}
}
#else
// update partition context
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
#endif
}
static void setup_token_decoder(const uint8_t *data,
const uint8_t *data_end,
size_t read_size,
struct vpx_internal_error_info *error_info,
vp9_reader *r,
vpx_decrypt_cb decrypt_cb,
void *decrypt_state) {
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, read_size, data_end))
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (vp9_reader_init(r, data, read_size, decrypt_cb, decrypt_state))
vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs,
vp9_reader *r) {
int i, j, k, l, m;
if (vp9_read_bit(r))
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l)
for (m = 0; m < UNCONSTRAINED_NODES; ++m)
vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]);
}
#if CONFIG_TX_SKIP
static void read_coef_probs_common_pxd(vp9_coeff_probs_pxd *coef_probs,
vp9_reader *r) {
int i, j, l, m;
if (vp9_read_bit(r))
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (l = 0; l < COEFF_CONTEXTS; ++l)
for (m = 0; m < ENTROPY_NODES; ++m)
vp9_diff_update_prob(r, &coef_probs[i][j][l][m]);
}
#endif // CONFIG_TX_SKIP
static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode,
vp9_reader *r) {
const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
TX_SIZE tx_size;
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
read_coef_probs_common(fc->coef_probs[tx_size], r);
#if CONFIG_TX_SKIP
if (FOR_SCREEN_CONTENT)
for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
read_coef_probs_common_pxd(fc->coef_probs_pxd[tx_size], r);
#endif // CONFIG_TX_SKIP
}
static void setup_segmentation(struct segmentation *seg,
struct vp9_read_bit_buffer *rb) {
int i, j;
seg->update_map = 0;
seg->update_data = 0;
seg->enabled = vp9_rb_read_bit(rb);
if (!seg->enabled)
return;
// Segmentation map update
seg->update_map = vp9_rb_read_bit(rb);
if (seg->update_map) {
for (i = 0; i < SEG_TREE_PROBS; i++)
seg->tree_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8)
: MAX_PROB;
seg->temporal_update = vp9_rb_read_bit(rb);
if (seg->temporal_update) {
for (i = 0; i < PREDICTION_PROBS; i++)
seg->pred_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8)
: MAX_PROB;
} else {
for (i = 0; i < PREDICTION_PROBS; i++)
seg->pred_probs[i] = MAX_PROB;
}
}
// Segmentation data update
seg->update_data = vp9_rb_read_bit(rb);
if (seg->update_data) {
seg->abs_delta = vp9_rb_read_bit(rb);
vp9_clearall_segfeatures(seg);
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = vp9_rb_read_bit(rb);
if (feature_enabled) {
vp9_enable_segfeature(seg, i, j);
data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j));
if (vp9_is_segfeature_signed(j))
data = vp9_rb_read_bit(rb) ? -data : data;
}
vp9_set_segdata(seg, i, j, data);
}
}
}
}
static void setup_loopfilter(VP9_COMMON *cm,
struct vp9_read_bit_buffer *rb) {
struct loopfilter *lf = &cm->lf;
lf->filter_level = vp9_rb_read_literal(rb, 6);
lf->sharpness_level = vp9_rb_read_literal(rb, 3);
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
lf->mode_ref_delta_update = 0;
lf->mode_ref_delta_enabled = vp9_rb_read_bit(rb);
if (lf->mode_ref_delta_enabled) {
lf->mode_ref_delta_update = vp9_rb_read_bit(rb);
if (lf->mode_ref_delta_update) {
int i;
for (i = 0; i < MAX_REF_LF_DELTAS; i++)
if (vp9_rb_read_bit(rb))
lf->ref_deltas[i] = vp9_rb_read_signed_literal(rb, 6);
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
if (vp9_rb_read_bit(rb))
lf->mode_deltas[i] = vp9_rb_read_signed_literal(rb, 6);
}
}
#if CONFIG_LOOP_POSTFILTER
lf->bilateral_level = vp9_rb_read_bit(rb);
if (lf->bilateral_level) {
int level = vp9_rb_read_literal(rb, vp9_bilateral_level_bits(cm));
lf->bilateral_level = level + (level >= lf->last_bilateral_level);
} else {
lf->bilateral_level = lf->last_bilateral_level;
}
if (cm->frame_type != KEY_FRAME)
cm->lf.last_bilateral_level = cm->lf.bilateral_level;
else
cm->lf.last_bilateral_level = 0;
#endif // CONFIG_LOOP_POSTFILTER
}
static int read_delta_q(struct vp9_read_bit_buffer *rb, int *delta_q) {
const int old = *delta_q;
*delta_q = vp9_rb_read_bit(rb) ? vp9_rb_read_signed_literal(rb, 4) : 0;
return old != *delta_q;
}
static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd,
struct vp9_read_bit_buffer *rb) {
int update = 0;
cm->base_qindex = vp9_rb_read_literal(rb, QINDEX_BITS);
update |= read_delta_q(rb, &cm->y_dc_delta_q);
update |= read_delta_q(rb, &cm->uv_dc_delta_q);
update |= read_delta_q(rb, &cm->uv_ac_delta_q);
if (update || cm->bit_depth != cm->dequant_bit_depth) {
vp9_init_dequantizer(cm);
cm->dequant_bit_depth = cm->bit_depth;
}
xd->lossless = cm->base_qindex == 0 &&
cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 &&
cm->uv_ac_delta_q == 0;
#if CONFIG_VP9_HIGHBITDEPTH
xd->bd = (int)cm->bit_depth;
#endif
}
static INTERP_FILTER read_interp_filter(struct vp9_read_bit_buffer *rb) {
#if CONFIG_BITSTREAM_FIXES
return vp9_rb_read_bit(rb) ? SWITCHABLE : vp9_rb_read_literal(rb, 2);
#else
const INTERP_FILTER literal_to_filter[] = { EIGHTTAP_SMOOTH,
EIGHTTAP,
EIGHTTAP_SHARP,
BILINEAR };
return vp9_rb_read_bit(rb) ? SWITCHABLE
: literal_to_filter[vp9_rb_read_literal(rb, 2)];
#endif
}
void vp9_read_frame_size(struct vp9_read_bit_buffer *rb,
int *width, int *height) {
*width = vp9_rb_read_literal(rb, 16) + 1;
*height = vp9_rb_read_literal(rb, 16) + 1;
}
static void setup_display_size(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
cm->display_width = cm->width;
cm->display_height = cm->height;
if (vp9_rb_read_bit(rb))
vp9_read_frame_size(rb, &cm->display_width, &cm->display_height);
}
static void resize_context_buffers(VP9_COMMON *cm, int width, int height) {
#if CONFIG_SIZE_LIMIT
if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Width and height beyond allowed size.");
#endif
if (cm->width != width || cm->height != height) {
const int new_mi_rows =
ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
const int new_mi_cols =
ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
// Allocations in vp9_alloc_context_buffers() depend on individual
// dimensions as well as the overall size.
if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) {
if (vp9_alloc_context_buffers(cm, width, height))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate context buffers");
} else {
vp9_set_mb_mi(cm, width, height);
}
vp9_init_context_buffers(cm);
cm->width = width;
cm->height = height;
}
}
static void setup_frame_size(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
int width, height;
vp9_read_frame_size(rb, &width, &height);
resize_context_buffers(cm, width, height);
setup_display_size(cm, rb);
if (vp9_realloc_frame_buffer(
get_frame_new_buffer(cm), cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_DEC_BORDER_IN_PIXELS,
&cm->frame_bufs[cm->new_fb_idx].raw_frame_buffer, cm->get_fb_cb,
cm->cb_priv)) {
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
cm->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
cm->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
cm->frame_bufs[cm->new_fb_idx].buf.color_space =
(vpx_color_space_t)cm->color_space;
cm->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
}
static INLINE int valid_ref_frame_img_fmt(vpx_bit_depth_t ref_bit_depth,
int ref_xss, int ref_yss,
vpx_bit_depth_t this_bit_depth,
int this_xss, int this_yss) {
return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
ref_yss == this_yss;
}
static void setup_frame_size_with_refs(VP9_COMMON *cm,
struct vp9_read_bit_buffer *rb) {
int width, height;
int found = 0, i;
int has_valid_ref_frame = 0;
for (i = 0; i < REFS_PER_FRAME; ++i) {
if (vp9_rb_read_bit(rb)) {
YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf;
width = buf->y_crop_width;
height = buf->y_crop_height;
if (buf->corrupted) {
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Frame reference is corrupt");
}
found = 1;
break;
}
}
if (!found)
vp9_read_frame_size(rb, &width, &height);
if (width <= 0 || height <= 0)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame size");
// Check to make sure at least one of frames that this frame references
// has valid dimensions.
for (i = 0; i < REFS_PER_FRAME; ++i) {
RefBuffer *const ref_frame = &cm->frame_refs[i];
has_valid_ref_frame |= valid_ref_frame_size(ref_frame->buf->y_crop_width,
ref_frame->buf->y_crop_height,
width, height);
}
if (!has_valid_ref_frame)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Referenced frame has invalid size");
for (i = 0; i < REFS_PER_FRAME; ++i) {
RefBuffer *const ref_frame = &cm->frame_refs[i];
if (!valid_ref_frame_img_fmt(
ref_frame->buf->bit_depth,
ref_frame->buf->subsampling_x,
ref_frame->buf->subsampling_y,
cm->bit_depth,
cm->subsampling_x,
cm->subsampling_y))
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Referenced frame has incompatible color space");
}
resize_context_buffers(cm, width, height);
setup_display_size(cm, rb);
if (vp9_realloc_frame_buffer(
get_frame_new_buffer(cm), cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
VP9_DEC_BORDER_IN_PIXELS,
&cm->frame_bufs[cm->new_fb_idx].raw_frame_buffer, cm->get_fb_cb,
cm->cb_priv)) {
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
cm->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
cm->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
cm->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
}
static void setup_tile_info(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
#if CONFIG_ROW_TILE
cm->tile_width = vp9_rb_read_literal(rb, 6);
cm->tile_height = vp9_rb_read_literal(rb, 6);
cm->tile_width = clamp(cm->tile_width,
1, 64) << MI_BLOCK_SIZE_LOG2;
cm->tile_height = clamp(cm->tile_height,
1, 64) << MI_BLOCK_SIZE_LOG2;
cm->tile_width = MIN(cm->tile_width, cm->mi_cols);
cm->tile_height = MIN(cm->tile_height, cm->mi_rows);
// Get tile numbers
cm->tile_cols = 1;
while (cm->tile_cols * cm->tile_width < cm->mi_cols)
++cm->tile_cols;
cm->tile_rows = 1;
while (cm->tile_rows * cm->tile_height < cm->mi_rows)
++cm->tile_rows;
// Read the number of bytes used to store tile size
cm->tile_col_size_bytes = vp9_rb_read_literal(rb, 2) + 1;
cm->tile_size_bytes = vp9_rb_read_literal(rb, 2) + 1;
#else
int min_log2_tiles, max_log2_tiles, max_ones;
vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tiles, &max_log2_tiles);
// columns
max_ones = max_log2_tiles - min_log2_tiles;
cm->log2_tile_cols = min_log2_tiles;
while (max_ones-- && vp9_rb_read_bit(rb))
++cm->log2_tile_cols;
if (cm->log2_tile_cols > 10)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid number of tile columns");
// rows
cm->log2_tile_rows = vp9_rb_read_bit(rb);
if (cm->log2_tile_rows)
cm->log2_tile_rows += vp9_rb_read_bit(rb);
cm->tile_cols = 1 << cm->log2_tile_cols;
cm->tile_rows = 1 << cm->log2_tile_rows;
cm->tile_width = (mi_cols_aligned_to_sb(cm->mi_cols) >> cm->log2_tile_cols);
cm->tile_height = (mi_cols_aligned_to_sb(cm->mi_rows) >> cm->log2_tile_rows);
// round to integer multiples of 8
cm->tile_width = mi_cols_aligned_to_sb(cm->tile_width);
cm->tile_height = mi_cols_aligned_to_sb(cm->tile_height);
#endif
}
#if CONFIG_ROW_TILE
// set mem read function according to the number of bytes used.
static INLINE void setup_size_read(int num_bytes, MemRead *read) {
*read = mem_get_be32;
if (num_bytes == 3) {
*read = mem_get_be24;
} else if (num_bytes == 2) {
*read = mem_get_be16;
} else if (num_bytes == 1) {
*read = mem_get_be8;
}
}
#endif
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'.
#if CONFIG_ROW_TILE
static void get_tile_buffer(const uint8_t *const data_end,
int is_last,
struct vpx_internal_error_info *error_info,
const uint8_t **data,
vpx_decrypt_cb decrypt_cb, void *decrypt_state,
TileBuffer (*tile_buffers)[1024],
int tile_size_bytes, int col, int row) {
#else
static void get_tile_buffer(const uint8_t *const data_end,
int is_last,
struct vpx_internal_error_info *error_info,
const uint8_t **data,
vpx_decrypt_cb decrypt_cb, void *decrypt_state,
TileBuffer *buf) {
#endif
size_t size;
#if CONFIG_ROW_TILE
size_t copy_size = 0;
const uint8_t *copy_data = NULL;
// mem read function
MemRead read_tile_size;
setup_size_read(tile_size_bytes, &read_tile_size);
#endif
if (!is_last) {
#if CONFIG_ROW_TILE
if (!read_is_valid(*data, tile_size_bytes, data_end))
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (decrypt_cb) {
uint8_t be_data[4];
decrypt_cb(decrypt_state, *data, be_data, tile_size_bytes);
// Only read number of bytes in cm->tile_size_bytes.
size = read_tile_size(be_data);
} else {
size = read_tile_size(*data);
}
if ((size >> (tile_size_bytes * 8 - 1)) == 1) {
int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f;
// Currently, only use tiles in same column as reference tiles.
copy_data = tile_buffers[row - offset][col].data;
copy_size = tile_buffers[row - offset][col].size;
size = 0;
}
*data += tile_size_bytes;
#else
if (!read_is_valid(*data, 4, data_end))
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (decrypt_cb) {
uint8_t be_data[4];
decrypt_cb(decrypt_state, *data, be_data, 4);
size = mem_get_be32(be_data);
} else {
size = mem_get_be32(*data);
}
*data += 4;
#endif
if (size > (size_t)(data_end - *data))
vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile size");
} else {
size = data_end - *data;
}
#if CONFIG_ROW_TILE
if (size > 0) {
tile_buffers[row][col].data = *data;
tile_buffers[row][col].size = size;
} else {
tile_buffers[row][col].data = copy_data;
tile_buffers[row][col].size = copy_size;
}
#else
buf->data = *data;
buf->size = size;
#endif
*data += size;
}
#if CONFIG_ROW_TILE
static void get_tile_buffers(VP9Decoder *pbi,
const uint8_t *data, const uint8_t *data_end,
int tile_cols, int tile_rows,
TileBuffer (*tile_buffers)[1024]) {
VP9_COMMON *const cm = &pbi->common;
int r, c;
const uint8_t *orig_data = data;
const uint8_t *tile_end_col[1024];
size_t tile_col_size;
int tile_col_limit = (pbi->dec_tile_col == -1) ? INT_MAX :
MIN(pbi->dec_tile_col, tile_cols - 1);
int tile_row_limit = (pbi->dec_tile_row == -1) ? INT_MAX :
MIN(pbi->dec_tile_row, tile_rows - 1);
int tile_col_size_bytes = cm->tile_col_size_bytes;
int tile_size_bytes = cm->tile_size_bytes;
// tile col size read function
MemRead read_tile_col_size;
setup_size_read(tile_col_size_bytes, &read_tile_col_size);
for (c = 0; c < tile_cols && c <= tile_col_limit; ++c) {
if (c < tile_cols - 1) {
tile_col_size = read_tile_col_size(data);
data += tile_col_size_bytes;
tile_end_col[c] = data + tile_col_size;
} else {
tile_col_size = data_end - data;
tile_end_col[c] = data_end;
}
data += tile_col_size;
}
data = orig_data;
if (tile_row_limit != INT_MAX && tile_col_limit != INT_MAX) {
// Decode a single tile
if (tile_col_limit > 0)
data = tile_end_col[tile_col_limit - 1];
if (tile_col_limit < tile_cols - 1)
data += tile_col_size_bytes;
for (r = 0; r <= tile_row_limit; ++r) {
// The last tile in the row also has a tile header. So here always set
// is_last = 0.
const int is_last = 0;
tile_buffers[r][tile_col_limit].col = tile_col_limit;
get_tile_buffer(tile_end_col[tile_col_limit], is_last,
&pbi->common.error, &data,
pbi->decrypt_cb, pbi->decrypt_state,
tile_buffers, tile_size_bytes, tile_col_limit, r);
}
return;
}
for (c = 0; c < tile_cols && c <= tile_col_limit; ++c) {
if (c > 0)
data = tile_end_col[c - 1];
if (c < tile_cols - 1)
data += tile_col_size_bytes;
for (r = 0; r < tile_rows && r <= tile_row_limit; ++r) {
// The last tile in the row also has a tile header. So here always set
// is_last = 0.
const int is_last = 0;
tile_buffers[r][c].col = c;
get_tile_buffer(tile_end_col[c], is_last,
&pbi->common.error, &data,
pbi->decrypt_cb, pbi->decrypt_state,
tile_buffers, tile_size_bytes, c, r);
}
}
}
#else
static void get_tile_buffers(VP9Decoder *pbi,
const uint8_t *data, const uint8_t *data_end,
int tile_cols, int tile_rows,
TileBuffer (*tile_buffers)[1024]) {
int r, c;
for (r = 0; r < tile_rows; ++r) {
for (c = 0; c < tile_cols; ++c) {
const int is_last = (r == tile_rows - 1) && (c == tile_cols - 1);
TileBuffer *const buf = &tile_buffers[r][c];
buf->col = c;
get_tile_buffer(data_end, is_last, &pbi->common.error, &data,
pbi->decrypt_cb, pbi->decrypt_state, buf);
}
}
}
#endif
static const uint8_t *decode_tiles(VP9Decoder *pbi,
const uint8_t *data,
const uint8_t *data_end) {
VP9_COMMON *const cm = &pbi->common;
const VP9WorkerInterface *const winterface = vp9_get_worker_interface();
const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols);
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
#if CONFIG_ROW_TILE
TileBuffer (*tile_buffers)[1024] = pbi->tile_buffers;
const int tile_col_limit = (pbi->dec_tile_col == -1) ? INT_MAX :
MIN(pbi->dec_tile_col, tile_cols - 1);
const int tile_row_limit = (pbi->dec_tile_row == -1) ? INT_MAX :
MIN(pbi->dec_tile_row, tile_rows - 1);
#else
TileBuffer tile_buffers[4][1024];
const int tile_col_limit = INT_MAX;
const int tile_row_limit = INT_MAX;
#endif
int tile_row, tile_col;
int mi_row, mi_col;
TileData *tile_data = NULL;
if (cm->lf.filter_level && pbi->lf_worker.data1 == NULL) {
CHECK_MEM_ERROR(cm, pbi->lf_worker.data1,
vpx_memalign(32, sizeof(LFWorkerData)));
pbi->lf_worker.hook = (VP9WorkerHook)vp9_loop_filter_worker;
if (pbi->max_threads > 1 && !winterface->reset(&pbi->lf_worker)) {
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
"Loop filter thread creation failed");
}
}
if (cm->lf.filter_level) {
LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1;
// Be sure to sync as we might be resuming after a failed frame decode.
winterface->sync(&pbi->lf_worker);
lf_data->frame_buffer = get_frame_new_buffer(cm);
lf_data->cm = cm;
vp9_copy(lf_data->planes, pbi->mb.plane);
lf_data->stop = 0;
lf_data->y_only = 0;
vp9_loop_filter_frame_init(cm, cm->lf.filter_level);
}
#if CONFIG_ROW_TILE
assert(tile_rows <= (1 << 10));
assert(tile_cols <= (1 << 10));
#else
assert(tile_rows <= 4);
assert(tile_cols <= (1 << 6));
#endif
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
vpx_memset(cm->above_context, 0,
sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_cols);
vpx_memset(cm->above_seg_context, 0,
sizeof(*cm->above_seg_context) * aligned_cols);
// Scan the frame data buffer, and get each tile data location as well as its
// size.
get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers);
if (pbi->tile_data == NULL ||
(tile_cols * tile_rows) != pbi->total_tiles) {
vpx_free(pbi->tile_data);
CHECK_MEM_ERROR(
cm,
pbi->tile_data,
vpx_memalign(32, tile_cols * tile_rows * (sizeof(*pbi->tile_data))));
pbi->total_tiles = tile_rows * tile_cols;
}
if (tile_row_limit != INT_MAX && tile_col_limit != INT_MAX) {
TileInfo tile;
const TileBuffer *const buf = &tile_buffers[tile_row_limit][tile_col_limit];
tile_data = pbi->tile_data + tile_cols * tile_row_limit + tile_col_limit;
tile_data->cm = cm;
tile_data->xd = pbi->mb;
tile_data->xd.corrupted = 0;
vp9_tile_init(&tile, tile_data->cm, tile_row_limit, tile_col_limit);
setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
&tile_data->bit_reader, pbi->decrypt_cb,
pbi->decrypt_state);
init_macroblockd(cm, &tile_data->xd);
vp9_zero(tile_data->xd.dqcoeff);
} else {
// Load all tile information into tile_data.
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileInfo tile;
const TileBuffer *const buf = &tile_buffers[tile_row][tile_col];
if (tile_row > tile_row_limit || tile_col > tile_col_limit)
continue;
tile_data = pbi->tile_data + tile_cols * tile_row + tile_col;
tile_data->cm = cm;
tile_data->xd = pbi->mb;
tile_data->xd.corrupted = 0;
vp9_tile_init(&tile, tile_data->cm, tile_row, tile_col);
setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
&tile_data->bit_reader, pbi->decrypt_cb,
pbi->decrypt_state);
init_macroblockd(cm, &tile_data->xd);
vp9_zero(tile_data->xd.dqcoeff);
}
}
}
if (tile_row_limit != INT_MAX && tile_col_limit != INT_MAX) {
TileInfo tile;
vp9_tile_init(&tile, cm, tile_row_limit, tile_col_limit);
for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end;
mi_row += MI_BLOCK_SIZE) {
tile_data = pbi->tile_data + tile_cols * tile_row_limit + tile_col_limit;
vp9_zero(tile_data->xd.left_context);
vp9_zero(tile_data->xd.left_seg_context);
for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
mi_col += MI_BLOCK_SIZE) {
decode_partition(tile_data->cm, &tile_data->xd, &tile,
#if CONFIG_SUPERTX
0,
#endif
mi_row, mi_col,
&tile_data->bit_reader, BLOCK_LARGEST);
}
pbi->mb.corrupted |= tile_data->xd.corrupted;
}
return data_end;
} else {
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
TileInfo tile;
#if CONFIG_ROW_TILE
if (tile_row_limit != INT_MAX && tile_row != tile_row_limit)
continue;
#else
vp9_tile_set_row(&tile, cm, tile_row);
#endif
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
#if CONFIG_ROW_TILE
if (tile_col_limit != INT_MAX && tile_col != tile_col_limit)
continue;
vp9_tile_init(&tile, cm, tile_row, tile_col);
vpx_memset(cm->above_context, 0, sizeof(*cm->above_context) *
MAX_MB_PLANE * 2 * aligned_cols);
vpx_memset(&cm->above_seg_context[tile.mi_col_start], 0,
sizeof(*cm->above_seg_context) *
mi_cols_aligned_to_sb(tile.mi_col_end - tile.mi_col_start));
#else
vp9_tile_set_col(&tile, cm, tile_col);
#endif
for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end;
mi_row += MI_BLOCK_SIZE) {
const int col = pbi->inv_tile_order ?
tile_cols - tile_col - 1 : tile_col;
tile_data = pbi->tile_data + tile_cols * tile_row + col;
vp9_zero(tile_data->xd.left_context);
vp9_zero(tile_data->xd.left_seg_context);
for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
mi_col += MI_BLOCK_SIZE) {
/*
printf("\n============================================\n");
printf("decode_tiles(): current_video_frame=%d, "
"mi_row=%d, mi_col=%d\n",
cm->current_video_frame, mi_row, mi_col);
*/
decode_partition(tile_data->cm, &tile_data->xd, &tile,
#if CONFIG_SUPERTX
0,
#endif
mi_row, mi_col,
&tile_data->bit_reader, BLOCK_LARGEST);
/*
printf("tile_data->xd.corrupted=%d\n", tile_data->xd.corrupted);
printf("============================================\n");
*/
}
pbi->mb.corrupted |= tile_data->xd.corrupted;
}
}
#if !CONFIG_INTRABC
// Loopfilter one row.
if (!pbi->mb.corrupted && cm->lf.filter_level) {
const int lf_start = tile.mi_row_start - MI_BLOCK_SIZE;
LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1;
// delay the loopfilter by 1 macroblock row.
if (lf_start < 0) continue;
// decoding has completed: finish up the loop filter in this thread.
if (tile.mi_row_end >= cm->mi_rows) continue;
winterface->sync(&pbi->lf_worker);
lf_data->start = lf_start;
lf_data->stop = tile.mi_row_end - MI_BLOCK_SIZE;;
if (pbi->max_threads > 1) {
winterface->launch(&pbi->lf_worker);
} else {
winterface->execute(&pbi->lf_worker);
}
}
#endif // !CONFIG_INTRABC
}
}
// Loopfilter remaining rows in the frame.
if (!pbi->mb.corrupted && cm->lf.filter_level) {
LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1;
winterface->sync(&pbi->lf_worker);
lf_data->start = lf_data->stop;
lf_data->stop = cm->mi_rows;
winterface->execute(&pbi->lf_worker);
}
#if CONFIG_ROW_TILE
return data_end;
#endif
// Get last tile data.
tile_data = pbi->tile_data + tile_cols * tile_rows - 1;
return vp9_reader_find_end(&tile_data->bit_reader);
}
static int tile_worker_hook(TileWorkerData *const tile_data,
const TileInfo *const tile) {
int mi_row, mi_col;
for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
mi_row += MI_BLOCK_SIZE) {
vp9_zero(tile_data->xd.left_context);
vp9_zero(tile_data->xd.left_seg_context);
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE) {
decode_partition(tile_data->cm, &tile_data->xd, tile,
#if CONFIG_SUPERTX
0,
#endif
mi_row, mi_col, &tile_data->bit_reader, BLOCK_64X64);
}
}
return !tile_data->xd.corrupted;
}
// sorts in descending order
static int compare_tile_buffers(const void *a, const void *b) {
const TileBuffer *const buf1 = (const TileBuffer*)a;
const TileBuffer *const buf2 = (const TileBuffer*)b;
if (buf1->size < buf2->size) {
return 1;
} else if (buf1->size == buf2->size) {
return 0;
} else {
return -1;
}
}
// TODO(jingning): Multi-thread tile decoding is not supporting
// arbitrary row/column tile numbers yet.
static const uint8_t *decode_tiles_mt(VP9Decoder *pbi,
const uint8_t *data,
const uint8_t *data_end) {
VP9_COMMON *const cm = &pbi->common;
const VP9WorkerInterface *const winterface = vp9_get_worker_interface();
const uint8_t *bit_reader_end = NULL;
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
const int num_workers = MIN(pbi->max_threads & ~1, tile_cols);
TileBuffer tile_buffers[1][1024];
int n;
int final_worker = -1;
assert(tile_cols <= (1 << 6));
assert(tile_rows == 1);
(void)tile_rows;
// TODO(jzern): See if we can remove the restriction of passing in max
// threads to the decoder.
if (pbi->num_tile_workers == 0) {
const int num_threads = pbi->max_threads & ~1;
int i;
// TODO(jzern): Allocate one less worker, as in the current code we only
// use num_threads - 1 workers.
CHECK_MEM_ERROR(cm, pbi->tile_workers,
vpx_malloc(num_threads * sizeof(*pbi->tile_workers)));
for (i = 0; i < num_threads; ++i) {
VP9Worker *const worker = &pbi->tile_workers[i];
++pbi->num_tile_workers;
winterface->init(worker);
CHECK_MEM_ERROR(cm, worker->data1,
vpx_memalign(32, sizeof(TileWorkerData)));
CHECK_MEM_ERROR(cm, worker->data2, vpx_malloc(sizeof(TileInfo)));
if (i < num_threads - 1 && !winterface->reset(worker)) {
vpx_internal_error(&cm->error, VPX_CODEC_ERROR,
"Tile decoder thread creation failed");
}
}
}
// Reset tile decoding hook
for (n = 0; n < num_workers; ++n) {
winterface->sync(&pbi->tile_workers[n]);
pbi->tile_workers[n].hook = (VP9WorkerHook)tile_worker_hook;
}
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
vpx_memset(cm->above_context, 0,
sizeof(*cm->above_context) * MAX_MB_PLANE * 2 * aligned_mi_cols);
vpx_memset(cm->above_seg_context, 0,
sizeof(*cm->above_seg_context) * aligned_mi_cols);
// Load tile data into tile_buffers
get_tile_buffers(pbi, data, data_end, tile_cols, tile_rows, tile_buffers);
// Sort the buffers based on size in descending order.
qsort(tile_buffers[0], tile_cols, sizeof(tile_buffers[0][0]),
compare_tile_buffers);
// Rearrange the tile buffers such that per-tile group the largest, and
// presumably the most difficult, tile will be decoded in the main thread.
// This should help minimize the number of instances where the main thread is
// waiting for a worker to complete.
{
int group_start = 0;
while (group_start < tile_cols) {
const TileBuffer largest = tile_buffers[0][group_start];
const int group_end = MIN(group_start + num_workers, tile_cols) - 1;
memmove(tile_buffers[0] + group_start, tile_buffers[0] + group_start + 1,
(group_end - group_start) * sizeof(tile_buffers[0][0]));
tile_buffers[0][group_end] = largest;
group_start = group_end + 1;
}
}
n = 0;
while (n < tile_cols) {
int i;
for (i = 0; i < num_workers && n < tile_cols; ++i) {
VP9Worker *const worker = &pbi->tile_workers[i];
TileWorkerData *const tile_data = (TileWorkerData*)worker->data1;
TileInfo *const tile = (TileInfo*)worker->data2;
TileBuffer *const buf = &tile_buffers[0][n];
tile_data->cm = cm;
tile_data->xd = pbi->mb;
tile_data->xd.corrupted = 0;
vp9_tile_init(tile, tile_data->cm, 0, buf->col);
setup_token_decoder(buf->data, data_end, buf->size, &cm->error,
&tile_data->bit_reader, pbi->decrypt_cb,
pbi->decrypt_state);
init_macroblockd(cm, &tile_data->xd);
vp9_zero(tile_data->xd.dqcoeff);
worker->had_error = 0;
if (i == num_workers - 1 || n == tile_cols - 1) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
if (buf->col == tile_cols - 1) {
final_worker = i;
}
++n;
}
for (; i > 0; --i) {
VP9Worker *const worker = &pbi->tile_workers[i - 1];
pbi->mb.corrupted |= !winterface->sync(worker);
}
if (final_worker > -1) {
TileWorkerData *const tile_data =
(TileWorkerData*)pbi->tile_workers[final_worker].data1;
bit_reader_end = vp9_reader_find_end(&tile_data->bit_reader);
final_worker = -1;
}
}
return bit_reader_end;
}
static void error_handler(void *data) {
VP9_COMMON *const cm = (VP9_COMMON *)data;
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
}
int vp9_read_sync_code(struct vp9_read_bit_buffer *const rb) {
return vp9_rb_read_literal(rb, 8) == VP9_SYNC_CODE_0 &&
vp9_rb_read_literal(rb, 8) == VP9_SYNC_CODE_1 &&
vp9_rb_read_literal(rb, 8) == VP9_SYNC_CODE_2;
}
BITSTREAM_PROFILE vp9_read_profile(struct vp9_read_bit_buffer *rb) {
int profile = vp9_rb_read_bit(rb);
profile |= vp9_rb_read_bit(rb) << 1;
if (profile > 2)
profile += vp9_rb_read_bit(rb);
return (BITSTREAM_PROFILE) profile;
}
static void read_bitdepth_colorspace_sampling(
VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
if (cm->profile >= PROFILE_2) {
cm->bit_depth = vp9_rb_read_bit(rb) ? VPX_BITS_12 : VPX_BITS_10;
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth = 1;
#endif
} else {
cm->bit_depth = VPX_BITS_8;
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth = 0;
#endif
}
cm->color_space = vp9_rb_read_literal(rb, 3);
if (cm->color_space != VPX_CS_SRGB) {
vp9_rb_read_bit(rb); // [16,235] (including xvycc) vs [0,255] range
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
cm->subsampling_x = vp9_rb_read_bit(rb);
cm->subsampling_y = vp9_rb_read_bit(rb);
if (cm->subsampling_x == 1 && cm->subsampling_y == 1)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"4:2:0 color not supported in profile 1 or 3");
if (vp9_rb_read_bit(rb))
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Reserved bit set");
} else {
cm->subsampling_y = cm->subsampling_x = 1;
}
} else {
if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
// Note if colorspace is SRGB then 4:4:4 chroma sampling is assumed.
// 4:2:2 or 4:4:0 chroma sampling is not allowed.
cm->subsampling_y = cm->subsampling_x = 0;
if (vp9_rb_read_bit(rb))
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Reserved bit set");
} else {
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"4:4:4 color not supported in profile 0 or 2");
}
}
}
static size_t read_uncompressed_header(VP9Decoder *pbi,
struct vp9_read_bit_buffer *rb) {
VP9_COMMON *const cm = &pbi->common;
size_t sz;
int i;
#if CONFIG_MULTI_REF
cm->last3_frame_type = cm->last2_frame_type;
cm->last2_frame_type = cm->last_frame_type;
#endif // CONFIG_MULTI_REF
cm->last_frame_type = cm->frame_type;
if (vp9_rb_read_literal(rb, 2) != VP9_FRAME_MARKER)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame marker");
cm->profile = vp9_read_profile(rb);
if (cm->profile >= MAX_PROFILES)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Unsupported bitstream profile");
cm->show_existing_frame = vp9_rb_read_bit(rb);
if (cm->show_existing_frame) {
// Show an existing frame directly.
const int frame_to_show = cm->ref_frame_map[vp9_rb_read_literal(rb, 3)];
if (frame_to_show < 0 || cm->frame_bufs[frame_to_show].ref_count < 1)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Buffer %d does not contain a decoded frame",
frame_to_show);
ref_cnt_fb(cm->frame_bufs, &cm->new_fb_idx, frame_to_show);
pbi->refresh_frame_flags = 0;
cm->lf.filter_level = 0;
cm->show_frame = 1;
return 0;
}
cm->frame_type = (FRAME_TYPE) vp9_rb_read_bit(rb);
cm->show_frame = vp9_rb_read_bit(rb);
cm->error_resilient_mode = vp9_rb_read_bit(rb);
if (cm->frame_type == KEY_FRAME) {
if (!vp9_read_sync_code(rb))
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
read_bitdepth_colorspace_sampling(cm, rb);
#if CONFIG_MULTI_REF
// TODO(zoeliu): When current frame is a KEY_FRAME, after the decoding of
// the frame, LAST2_FRAME should not get refreshed. However, if so, error
// will occur when decoding the next INTER_FRAME, during
// read_uncompressed_header(), specifically, during
// set_frame_size_with_refs(). This needs to be further investigated and
// fixed in the right way.
#endif // COFNIG_MULTI_REF
pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
for (i = 0; i < REFS_PER_FRAME; ++i) {
cm->frame_refs[i].idx = -1;
cm->frame_refs[i].buf = NULL;
}
setup_frame_size(cm, rb);
pbi->need_resync = 0;
} else {
cm->intra_only = cm->show_frame ? 0 : vp9_rb_read_bit(rb);
cm->reset_frame_context = cm->error_resilient_mode ?
0 : vp9_rb_read_literal(rb, 2);
if (cm->intra_only) {
if (!vp9_read_sync_code(rb))
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
if (cm->profile > PROFILE_0) {
read_bitdepth_colorspace_sampling(cm, rb);
} else {
// NOTE: The intra-only frame header does not include the specification
// of either the color format or color sub-sampling in profile 0. VP9
// specifies that the default color space should be YUV 4:2:0 in this
// case (normative).
cm->color_space = VPX_CS_BT_601;
cm->subsampling_y = cm->subsampling_x = 1;
cm->bit_depth = VPX_BITS_8;
#if CONFIG_VP9_HIGHBITDEPTH
cm->use_highbitdepth = 0;
#endif
}
pbi->refresh_frame_flags = vp9_rb_read_literal(rb, REF_FRAMES);
setup_frame_size(cm, rb);
pbi->need_resync = 0;
} else {
pbi->refresh_frame_flags = vp9_rb_read_literal(rb, REF_FRAMES);
for (i = 0; i < REFS_PER_FRAME; ++i) {
const int ref = vp9_rb_read_literal(rb, REF_FRAMES_LOG2);
const int idx = cm->ref_frame_map[ref];
RefBuffer *const ref_frame = &cm->frame_refs[i];
ref_frame->idx = idx;
ref_frame->buf = &cm->frame_bufs[idx].buf;
cm->ref_frame_sign_bias[LAST_FRAME + i] = vp9_rb_read_bit(rb);
}
setup_frame_size_with_refs(cm, rb);
cm->allow_high_precision_mv = vp9_rb_read_bit(rb);
cm->interp_filter = read_interp_filter(rb);
for (i = 0; i < REFS_PER_FRAME; ++i) {
RefBuffer *const ref_buf = &cm->frame_refs[i];
#if CONFIG_VP9_HIGHBITDEPTH
vp9_setup_scale_factors_for_frame(&ref_buf->sf,
ref_buf->buf->y_crop_width,
ref_buf->buf->y_crop_height,
cm->width, cm->height,
cm->use_highbitdepth);
#else
vp9_setup_scale_factors_for_frame(&ref_buf->sf,
ref_buf->buf->y_crop_width,
ref_buf->buf->y_crop_height,
cm->width, cm->height);
#endif
if (vp9_is_scaled(&ref_buf->sf))
vp9_extend_frame_borders(ref_buf->buf);
}
}
}
#if CONFIG_VP9_HIGHBITDEPTH
get_frame_new_buffer(cm)->bit_depth = cm->bit_depth;
#endif
if (pbi->need_resync) {
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Keyframe / intra-only frame required to reset decoder"
" state");
}
if (!cm->error_resilient_mode) {
cm->refresh_frame_context = vp9_rb_read_bit(rb);
cm->frame_parallel_decoding_mode = vp9_rb_read_bit(rb);
} else {
cm->refresh_frame_context = 0;
cm->frame_parallel_decoding_mode = 1;
}
// This flag will be overridden by the call to vp9_setup_past_independence
// below, forcing the use of context 0 for those frame types.
cm->frame_context_idx = vp9_rb_read_literal(rb, FRAME_CONTEXTS_LOG2);
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
#if CONFIG_ROW_TILE
vp9_dec_setup_past_independence(cm, pbi->dec_tile_row, pbi->dec_tile_col);
#else
vp9_setup_past_independence(cm);
#endif
}
setup_loopfilter(cm, rb);
setup_quantization(cm, &pbi->mb, rb);
setup_segmentation(&cm->seg, rb);
#if CONFIG_QCTX_TPROBS
if (frame_is_intra_only(cm) || cm->error_resilient_mode) {
vp9_default_coef_probs(cm);
if (cm->frame_type == KEY_FRAME ||
cm->error_resilient_mode || cm->reset_frame_context == 3) {
// Reset all frame contexts.
for (i = 0; i < FRAME_CONTEXTS; ++i)
cm->frame_contexts[i] = cm->fc;
} else if (cm->reset_frame_context == 2) {
// Reset only the frame context specified in the frame header.
cm->frame_contexts[cm->frame_context_idx] = cm->fc;
}
}
#endif // CONFIG_QCTX_TPROBS
setup_tile_info(cm, rb);
sz = vp9_rb_read_literal(rb, 16);
if (sz == 0)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid header size");
return sz;
}
#if CONFIG_EXT_TX
static void read_ext_tx_probs(FRAME_CONTEXT *fc, vp9_reader *r) {
int i, j;
if (vp9_read(r, GROUP_DIFF_UPDATE_PROB)) {
for (j = TX_4X4; j <= TX_16X16; ++j)
for (i = 0; i < EXT_TX_TYPES - 1; ++i)
vp9_diff_update_prob(r, &fc->ext_tx_prob[j][i]);
#if CONFIG_WAVELETS
for (; j < TX_SIZES; ++j)
for (i = 0; i < EXT_TX_TYPES_LARGE - 1; ++i)
vp9_diff_update_prob(r, &fc->ext_tx_prob[j][i]);
#endif
}
}
#endif // CONFIG_EXT_TX
#if CONFIG_SUPERTX
static void read_supertx_probs(FRAME_CONTEXT *fc, vp9_reader *r) {
int i, j;
if (vp9_read(r, GROUP_DIFF_UPDATE_PROB)) {
for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) {
for (j = 1; j < TX_SIZES; ++j) {
vp9_diff_update_prob(r, &fc->supertx_prob[i][j]);
}
}
}
}
#endif // CONFIG_SUPERTX
#if CONFIG_NEW_INTER
static void read_inter_compound_mode_probs(FRAME_CONTEXT *fc, vp9_reader *r) {
int i, j;
if (vp9_read(r, GROUP_DIFF_UPDATE_PROB)) {
for (j = 0; j < INTER_MODE_CONTEXTS; ++j)
for (i = 0; i < INTER_COMPOUND_MODES - 1; ++i)
vp9_diff_update_prob(r, &fc->inter_compound_mode_probs[j][i]);
}
}
#endif // CONFIG_NEW_INTER
#if CONFIG_GLOBAL_MOTION
static void read_global_motion_params(Global_Motion_Params *params,
vp9_prob *probs,
vp9_reader *r) {
GLOBAL_MOTION_TYPE gmtype = vp9_read_tree(r, vp9_global_motion_types_tree,
probs);
params->gmtype = gmtype;
switch (gmtype) {
case GLOBAL_ZERO:
break;
case GLOBAL_TRANSLATION:
params->mv.as_mv.col =
vp9_read_primitive_symmetric(r, ABS_TRANSLATION_BITS);
params->mv.as_mv.row =
vp9_read_primitive_symmetric(r, ABS_TRANSLATION_BITS);
break;
case GLOBAL_ROTZOOM:
params->mv.as_mv.col =
vp9_read_primitive_symmetric(r, ABS_TRANSLATION_BITS);
params->mv.as_mv.row =
vp9_read_primitive_symmetric(r, ABS_TRANSLATION_BITS);
params->zoom =
vp9_read_primitive_symmetric(r, ABS_ZOOM_BITS);
params->rotation =
vp9_read_primitive_symmetric(r, ABS_ROTATION_BITS);
break;
default:
assert(0);
}
}
static void read_global_motion(VP9_COMMON *cm, vp9_reader *r) {
int frame, i;
vpx_memset(cm->num_global_motion, 0, sizeof(cm->num_global_motion));
vpx_memset(cm->global_motion, 0, sizeof(cm->global_motion));
for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
cm->num_global_motion[frame] = 1;
for (i = 0; i < cm->num_global_motion[frame]; ++i) {
read_global_motion_params(
cm->global_motion[frame], cm->fc.global_motion_types_prob, r);
/*
printf("Dec Ref %d [%d]: %d %d %d %d\n",
frame, cm->current_video_frame,
cm->global_motion[frame][i].zoom,
cm->global_motion[frame][i].rotation,
cm->global_motion[frame][i].mv.as_mv.col,
cm->global_motion[frame][i].mv.as_mv.row);
*/
}
}
}
#endif // CONFIG_GLOBAL_MOTION
static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data,
size_t partition_size) {
VP9_COMMON *const cm = &pbi->common;
#if !CONFIG_TX_SKIP || CONFIG_SUPERTX
MACROBLOCKD *const xd = &pbi->mb;
#endif
FRAME_CONTEXT *const fc = &cm->fc;
vp9_reader r;
int k;
if (vp9_reader_init(&r, data, partition_size, pbi->decrypt_cb,
pbi->decrypt_state))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
#if CONFIG_TX_SKIP
cm->tx_mode = read_tx_mode(&r);
#else
cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r);
#endif
if (cm->tx_mode == TX_MODE_SELECT)
read_tx_mode_probs(&fc->tx_probs, &r);
read_coef_probs(fc, cm->tx_mode, &r);
for (k = 0; k < SKIP_CONTEXTS; ++k)
vp9_diff_update_prob(&r, &fc->skip_probs[k]);
#if CONFIG_SR_MODE
for (k = 0; k < SR_CONTEXTS; ++k)
vp9_diff_update_prob(&r, &fc->sr_probs[k]);
#if SR_USE_MULTI_F
read_sr_usfilter_probs(fc, &r);
#endif // SR_USE_MULTI_F
#endif // CONFIG_SR_MODE
if (!frame_is_intra_only(cm)) {
nmv_context *const nmvc = &fc->nmvc;
int i, j;
read_inter_mode_probs(fc, &r);
#if CONFIG_NEW_INTER
read_inter_compound_mode_probs(fc, &r);
#endif // CONFIG_NEW_INTER
#if CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES
read_dq_profile_probs(fc, &r);
#endif // CONFIG_NEW_QUANT && QUANT_PROFILES > 1 && !Q_CTX_BASED_PROFILES
if (cm->interp_filter == SWITCHABLE)
read_switchable_interp_probs(fc, &r);
for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]);
cm->reference_mode = read_frame_reference_mode(cm, &r);
if (cm->reference_mode != SINGLE_REFERENCE)
setup_compound_reference_mode(cm);
read_frame_reference_mode_probs(cm, &r);
for (j = 0; j < BLOCK_SIZE_GROUPS; j++)
for (i = 0; i < INTRA_MODES - 1; ++i)
vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]);
#if CONFIG_EXT_PARTITION
for (i = 0; i < PARTITION_TYPES - 1; ++i)
vp9_diff_update_prob(&r, &fc->partition_prob[0][i]);
for (j = 1; j < PARTITION_CONTEXTS; ++j)
for (i = 0; i < EXT_PARTITION_TYPES - 1; ++i)
vp9_diff_update_prob(&r, &fc->partition_prob[j][i]);
#else
for (j = 0; j < PARTITION_CONTEXTS; ++j)
for (i = 0; i < PARTITION_TYPES - 1; ++i)
vp9_diff_update_prob(&r, &fc->partition_prob[j][i]);
#endif
read_mv_probs(nmvc, cm->allow_high_precision_mv, &r);
#if CONFIG_EXT_TX
read_ext_tx_probs(fc, &r);
#endif
#if CONFIG_SUPERTX
if (!xd->lossless)
read_supertx_probs(fc, &r);
#endif
#if CONFIG_TX_SKIP
for (i = 0; i < 2; i++)
vp9_diff_update_prob(&r, &fc->y_tx_skip_prob[i]);
for (i = 0; i < 2; i++)
vp9_diff_update_prob(&r, &fc->uv_tx_skip_prob[i]);
#endif
#if CONFIG_COPY_MODE
for (j = 0; j < COPY_MODE_CONTEXTS; j++) {
for (i = 0; i < 1; i++)
vp9_diff_update_prob(&r, &fc->copy_mode_probs_l2[j][i]);
for (i = 0; i < COPY_MODE_COUNT - 2; i++)
vp9_diff_update_prob(&r, &fc->copy_mode_probs[j][i]);
}
#endif
#if CONFIG_INTERINTRA
if (cm->reference_mode != COMPOUND_REFERENCE) {
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i)) {
vp9_diff_update_prob(&r, &fc->interintra_prob[i]);
}
}
#if CONFIG_WEDGE_PARTITION
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i) && get_wedge_bits(i))
vp9_diff_update_prob(&r, &fc->wedge_interintra_prob[i]);
}
#endif // CONFIG_WEDGE_PARTITION
}
#endif // CONFIG_INTERINTRA
#if CONFIG_WEDGE_PARTITION
if (cm->reference_mode != SINGLE_REFERENCE) {
for (i = 0; i < BLOCK_SIZES; i++) {
if (get_wedge_bits(i))
vp9_diff_update_prob(&r, &fc->wedge_interinter_prob[i]);
}
}
#endif // CONFIG_WEDGE_PARTITION
#if CONFIG_GLOBAL_MOTION
read_global_motion(cm, &r);
#endif // CONFIG_GLOBAL_MOTION
}
#if CONFIG_INTRABC
if (frame_is_intra_only(cm))
cm->allow_intrabc_mode = vp9_read_bit(&r);
#endif // CONFIG_INTRABC
#if CONFIG_PALETTE
if (frame_is_intra_only(cm))
cm->allow_palette_mode = vp9_read_bit(&r);
#endif // CONFIG_PALETTE
return vp9_reader_has_error(&r);
}
void vp9_init_dequantizer(VP9_COMMON *cm) {
int q;
#if CONFIG_NEW_QUANT
int dq;
#endif // CONFIG_NEW_QUANT
for (q = 0; q < QINDEX_RANGE; q++) {
int b;
cm->y_dequant[q][0] = vp9_dc_quant(q, cm->y_dc_delta_q, cm->bit_depth);
cm->y_dequant[q][1] = vp9_ac_quant(q, 0, cm->bit_depth);
cm->uv_dequant[q][0] = vp9_dc_quant(q, cm->uv_dc_delta_q, cm->bit_depth);
cm->uv_dequant[q][1] = vp9_ac_quant(q, cm->uv_ac_delta_q, cm->bit_depth);
#if CONFIG_NEW_QUANT
for (dq = 0; dq < QUANT_PROFILES; dq ++) {
for (b = 0; b < COEF_BANDS; ++b) {
vp9_get_dequant_val_nuq(
cm->y_dequant[q][b != 0], q == 0, b,
cm->y_dequant_val_nuq[dq][q][b], NULL, dq);
vp9_get_dequant_val_nuq(
cm->uv_dequant[q][b != 0], q == 0, b,
cm->uv_dequant_val_nuq[dq][q][b], NULL, dq);
}
}
#endif // CONFIG_NEW_QUANT
#if CONFIG_TX_SKIP
cm->y_dequant_pxd[q][0] = cm->y_dequant[q][PXD_QUANT_INDEX];
cm->y_dequant_pxd[q][1] = cm->y_dequant[q][PXD_QUANT_INDEX];
cm->uv_dequant_pxd[q][0] = cm->uv_dequant[q][PXD_QUANT_INDEX];
cm->uv_dequant_pxd[q][1] = cm->uv_dequant[q][PXD_QUANT_INDEX];
#if CONFIG_NEW_QUANT
for (dq = 0; dq < QUANT_PROFILES; dq ++) {
for (b = 0; b < COEF_BANDS; ++b) {
vp9_get_dequant_val_nuq(
cm->y_dequant_pxd[q][b != 0], q == 0, b,
cm->y_dequant_val_nuq_pxd[dq][q][b], NULL, dq);
vp9_get_dequant_val_nuq(
cm->uv_dequant_pxd[q][b != 0], q == 0, b,
cm->uv_dequant_val_nuq_pxd[dq][q][b], NULL, dq);
}
}
#endif // CONFIG_NEW_QUANT
#endif // CONFIG_TX_SKIP
(void) b;
}
}
#ifdef NDEBUG
#define debug_check_frame_counts(cm) (void)0
#else // !NDEBUG
// Counts should only be incremented when frame_parallel_decoding_mode and
// error_resilient_mode are disabled.
static void debug_check_frame_counts(const VP9_COMMON *const cm) {
FRAME_COUNTS zero_counts;
vp9_zero(zero_counts);
assert(cm->frame_parallel_decoding_mode || cm->error_resilient_mode);
assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode,
sizeof(cm->counts.y_mode)));
assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode,
sizeof(cm->counts.uv_mode)));
assert(!memcmp(cm->counts.partition, zero_counts.partition,
sizeof(cm->counts.partition)));
assert(!memcmp(cm->counts.coef, zero_counts.coef,
sizeof(cm->counts.coef)));
assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch,
sizeof(cm->counts.eob_branch)));
assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp,
sizeof(cm->counts.switchable_interp)));
assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode,
sizeof(cm->counts.inter_mode)));
assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter,
sizeof(cm->counts.intra_inter)));
assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter,
sizeof(cm->counts.comp_inter)));
assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref,
sizeof(cm->counts.single_ref)));
assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref,
sizeof(cm->counts.comp_ref)));
assert(!memcmp(&cm->counts.tx, &zero_counts.tx, sizeof(cm->counts.tx)));
assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip)));
assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv)));
#if CONFIG_SR_MODE
assert(!memcmp(&cm->counts.sr, &zero_counts.sr, sizeof(cm->counts.sr)));
#if SR_USE_MULTI_F
assert(!memcmp(cm->counts.sr_usfilters, zero_counts.sr_usfilters,
sizeof(cm->counts.sr_usfilters)));
#endif // SR_USE_MULTI_F
#endif // CONFIG_SR_MODE
#if CONFIG_EXT_TX
assert(!memcmp(cm->counts.ext_tx, zero_counts.ext_tx,
sizeof(cm->counts.ext_tx)));
#endif // CONFIG_EXT_TX
#if CONFIG_NEW_INTER
assert(!memcmp(cm->counts.inter_compound_mode,
zero_counts.inter_compound_mode,
sizeof(cm->counts.inter_compound_mode)));
#endif // CONFIG_NEW_INTER
}
#endif // NDEBUG
static struct vp9_read_bit_buffer* init_read_bit_buffer(
VP9Decoder *pbi,
struct vp9_read_bit_buffer *rb,
const uint8_t *data,
const uint8_t *data_end,
uint8_t *clear_data /* buffer size MAX_VP9_HEADER_SIZE */) {
rb->bit_offset = 0;
rb->error_handler = error_handler;
rb->error_handler_data = &pbi->common;
if (pbi->decrypt_cb) {
const int n = (int)MIN(MAX_VP9_HEADER_SIZE, data_end - data);
pbi->decrypt_cb(pbi->decrypt_state, data, clear_data, n);
rb->bit_buffer = clear_data;
rb->bit_buffer_end = clear_data + n;
} else {
rb->bit_buffer = data;
rb->bit_buffer_end = data_end;
}
return rb;
}
void vp9_decode_frame(VP9Decoder *pbi,
const uint8_t *data, const uint8_t *data_end,
const uint8_t **p_data_end) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
struct vp9_read_bit_buffer rb = { NULL, NULL, 0, NULL, 0};
uint8_t clear_data[MAX_VP9_HEADER_SIZE];
const size_t first_partition_size = read_uncompressed_header(pbi,
init_read_bit_buffer(pbi, &rb, data, data_end, clear_data));
const int tile_rows = cm->tile_rows;
const int tile_cols = cm->tile_cols;
YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm);
xd->cur_buf = new_fb;
#if CONFIG_GLOBAL_MOTION
xd->global_motion = cm->global_motion;
#endif // CONFIG_GLOBAL_MOTION
if (!first_partition_size) {
// showing a frame directly
*p_data_end = data + (cm->profile <= PROFILE_2 ? 1 : 2);
return;
}
data += vp9_rb_bytes_read(&rb);
if (!read_is_valid(data, first_partition_size, data_end))
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt header length");
init_macroblockd(cm, &pbi->mb);
if (!cm->error_resilient_mode)
set_prev_mi(cm);
else
cm->prev_mi = NULL;
setup_plane_dequants(cm, xd, cm->base_qindex);
vp9_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
cm->fc = cm->frame_contexts[cm->frame_context_idx];
vp9_zero(cm->counts);
vp9_zero(xd->dqcoeff);
xd->corrupted = 0;
new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size);
// TODO(jzern): remove frame_parallel_decoding_mode restriction for
// single-frame tile decoding.
if (pbi->max_threads > 1 && tile_rows == 1 && tile_cols > 1 &&
cm->frame_parallel_decoding_mode) {
*p_data_end = decode_tiles_mt(pbi, data + first_partition_size, data_end);
if (!xd->corrupted) {
// If multiple threads are used to decode tiles, then we use those threads
// to do parallel loopfiltering.
vp9_loop_filter_frame_mt(new_fb, pbi, cm, cm->lf.filter_level, 0);
}
} else {
*p_data_end = decode_tiles(pbi, data + first_partition_size, data_end);
}
#if CONFIG_LOOP_POSTFILTER
vp9_loop_bilateral_init(&cm->lf_info, cm->lf.bilateral_level,
cm->frame_type == KEY_FRAME);
if (cm->lf_info.bilateral_used) {
vp9_loop_bilateral_rows(new_fb, cm, 0, cm->mi_rows, 0);
}
#endif // CONFIG_LOOP_POSTFILTER
new_fb->corrupted |= xd->corrupted;
if (!new_fb->corrupted) {
if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) {
vp9_adapt_coef_probs(cm);
if (!frame_is_intra_only(cm)) {
vp9_adapt_mode_probs(cm);
vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
}
} else {
debug_check_frame_counts(cm);
}
} else {
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data is corrupted.");
}
if (cm->refresh_frame_context)
cm->frame_contexts[cm->frame_context_idx] = cm->fc;
}