vpx/vp9/common/vp9_reconintra.c
Ronald S. Bultje 92c5d3665d SSE/SSE2 assembly for 4x4/8x8/16x16/32x32 DC intra prediction.
Change-Id: Ibe1690afc5459f3b3beca401e7734fcd03da6dd0
2013-07-10 09:28:03 -07:00

425 lines
14 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdio.h>
#include "./vpx_config.h"
#include "vp9_rtcd.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/vpx_once.h"
const TX_TYPE mode2txfm_map[MB_MODE_COUNT] = {
DCT_DCT, // DC
ADST_DCT, // V
DCT_ADST, // H
DCT_DCT, // D45
ADST_ADST, // D135
ADST_DCT, // D117
DCT_ADST, // D153
DCT_ADST, // D27
ADST_DCT, // D63
ADST_ADST, // TM
DCT_DCT, // NEARESTMV
DCT_DCT, // NEARMV
DCT_DCT, // ZEROMV
DCT_DCT // NEWMV
};
#define intra_pred_sized(type, size) \
void vp9_##type##_predictor_##size##x##size##_c(uint8_t *pred_ptr, \
ptrdiff_t stride, \
uint8_t *above_row, \
uint8_t *left_col) { \
type##_predictor(pred_ptr, stride, size, above_row, left_col); \
}
#define intra_pred_allsizes(type) \
intra_pred_sized(type, 4) \
intra_pred_sized(type, 8) \
intra_pred_sized(type, 16) \
intra_pred_sized(type, 32)
static INLINE void d27_predictor(uint8_t *pred_ptr, ptrdiff_t stride, int bs,
uint8_t *above_row, uint8_t *left_col) {
int r, c;
// first column
for (r = 0; r < bs - 1; ++r) {
pred_ptr[r * stride] = ROUND_POWER_OF_TWO(left_col[r] +
left_col[r + 1], 1);
}
pred_ptr[(bs - 1) * stride] = left_col[bs - 1];
pred_ptr++;
// second column
for (r = 0; r < bs - 2; ++r) {
pred_ptr[r * stride] = ROUND_POWER_OF_TWO(left_col[r] +
left_col[r + 1] * 2 +
left_col[r + 2], 2);
}
pred_ptr[(bs - 2) * stride] = ROUND_POWER_OF_TWO(left_col[bs - 2] +
left_col[bs - 1] * 3,
2);
pred_ptr[(bs - 1) * stride] = left_col[bs - 1];
pred_ptr++;
// rest of last row
for (c = 0; c < bs - 2; ++c) {
pred_ptr[(bs - 1) * stride + c] = left_col[bs - 1];
}
for (r = bs - 2; r >= 0; --r) {
for (c = 0; c < bs - 2; ++c) {
pred_ptr[r * stride + c] = pred_ptr[(r + 1) * stride + c - 2];
}
}
}
intra_pred_allsizes(d27)
static INLINE void d63_predictor(uint8_t *pred_ptr, ptrdiff_t stride, int bs,
uint8_t *above_row, uint8_t *left_col) {
int r, c;
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c) {
if (r & 1) {
pred_ptr[c] = ROUND_POWER_OF_TWO(above_row[r/2 + c] +
above_row[r/2 + c + 1] * 2 +
above_row[r/2 + c + 2], 2);
} else {
pred_ptr[c] = ROUND_POWER_OF_TWO(above_row[r/2 + c] +
above_row[r/2+ c + 1], 1);
}
}
pred_ptr += stride;
}
}
intra_pred_allsizes(d63)
static INLINE void d45_predictor(uint8_t *pred_ptr, ptrdiff_t stride, int bs,
uint8_t *above_row, uint8_t *left_col) {
int r, c;
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c) {
if (r + c + 2 < bs * 2)
pred_ptr[c] = ROUND_POWER_OF_TWO(above_row[r + c] +
above_row[r + c + 1] * 2 +
above_row[r + c + 2], 2);
else
pred_ptr[c] = above_row[bs * 2 - 1];
}
pred_ptr += stride;
}
}
intra_pred_allsizes(d45)
static INLINE void d117_predictor(uint8_t *pred_ptr, ptrdiff_t stride, int bs,
uint8_t *above_row, uint8_t *left_col) {
int r, c;
// first row
for (c = 0; c < bs; c++)
pred_ptr[c] = ROUND_POWER_OF_TWO(above_row[c - 1] + above_row[c], 1);
pred_ptr += stride;
// second row
pred_ptr[0] = ROUND_POWER_OF_TWO(left_col[0] +
above_row[-1] * 2 +
above_row[0], 2);
for (c = 1; c < bs; c++)
pred_ptr[c] = ROUND_POWER_OF_TWO(above_row[c - 2] +
above_row[c - 1] * 2 +
above_row[c], 2);
pred_ptr += stride;
// the rest of first col
pred_ptr[0] = ROUND_POWER_OF_TWO(above_row[-1] +
left_col[0] * 2 +
left_col[1], 2);
for (r = 3; r < bs; ++r)
pred_ptr[(r-2) * stride] = ROUND_POWER_OF_TWO(left_col[r - 3] +
left_col[r - 2] * 2 +
left_col[r - 1], 2);
// the rest of the block
for (r = 2; r < bs; ++r) {
for (c = 1; c < bs; c++)
pred_ptr[c] = pred_ptr[-2 * stride + c - 1];
pred_ptr += stride;
}
}
intra_pred_allsizes(d117)
static INLINE void d135_predictor(uint8_t *pred_ptr, ptrdiff_t stride, int bs,
uint8_t *above_row, uint8_t *left_col) {
int r, c;
pred_ptr[0] = ROUND_POWER_OF_TWO(left_col[0] +
above_row[-1] * 2 +
above_row[0], 2);
for (c = 1; c < bs; c++)
pred_ptr[c] = ROUND_POWER_OF_TWO(above_row[c - 2] +
above_row[c - 1] * 2 +
above_row[c], 2);
pred_ptr[stride] = ROUND_POWER_OF_TWO(above_row[-1] +
left_col[0] * 2 +
left_col[1], 2);
for (r = 2; r < bs; ++r)
pred_ptr[r * stride] = ROUND_POWER_OF_TWO(left_col[r - 2] +
left_col[r - 1] * 2 +
left_col[r], 2);
pred_ptr += stride;
for (r = 1; r < bs; ++r) {
for (c = 1; c < bs; c++)
pred_ptr[c] = pred_ptr[-stride + c - 1];
pred_ptr += stride;
}
}
intra_pred_allsizes(d135)
static INLINE void d153_predictor(uint8_t *pred_ptr, ptrdiff_t stride, int bs,
uint8_t *above_row, uint8_t *left_col) {
int r, c;
pred_ptr[0] = ROUND_POWER_OF_TWO(above_row[-1] + left_col[0], 1);
for (r = 1; r < bs; r++)
pred_ptr[r * stride] =
ROUND_POWER_OF_TWO(left_col[r - 1] + left_col[r], 1);
pred_ptr++;
pred_ptr[0] = ROUND_POWER_OF_TWO(left_col[0] +
above_row[-1] * 2 +
above_row[0], 2);
pred_ptr[stride] = ROUND_POWER_OF_TWO(above_row[-1] +
left_col[0] * 2 +
left_col[1], 2);
for (r = 2; r < bs; r++)
pred_ptr[r * stride] = ROUND_POWER_OF_TWO(left_col[r - 2] +
left_col[r - 1] * 2 +
left_col[r], 2);
pred_ptr++;
for (c = 0; c < bs - 2; c++)
pred_ptr[c] = ROUND_POWER_OF_TWO(above_row[c - 1] +
above_row[c] * 2 +
above_row[c + 1], 2);
pred_ptr += stride;
for (r = 1; r < bs; ++r) {
for (c = 0; c < bs - 2; c++)
pred_ptr[c] = pred_ptr[-stride + c - 2];
pred_ptr += stride;
}
}
intra_pred_allsizes(d153)
static INLINE void v_predictor(uint8_t *pred_ptr, ptrdiff_t stride, int bs,
uint8_t *above_row, uint8_t *left_col) {
int r;
for (r = 0; r < bs; r++) {
vpx_memcpy(pred_ptr, above_row, bs);
pred_ptr += stride;
}
}
intra_pred_allsizes(v)
static INLINE void h_predictor(uint8_t *pred_ptr, ptrdiff_t stride, int bs,
uint8_t *above_row, uint8_t *left_col) {
int r;
for (r = 0; r < bs; r++) {
vpx_memset(pred_ptr, left_col[r], bs);
pred_ptr += stride;
}
}
intra_pred_allsizes(h)
static INLINE void tm_predictor(uint8_t *pred_ptr, ptrdiff_t stride, int bs,
uint8_t *above_row, uint8_t *left_col) {
int r, c;
int ytop_left = above_row[-1];
for (r = 0; r < bs; r++) {
for (c = 0; c < bs; c++)
pred_ptr[c] = clip_pixel(left_col[r] + above_row[c] - ytop_left);
pred_ptr += stride;
}
}
intra_pred_allsizes(tm)
static INLINE void dc_128_predictor(uint8_t *pred_ptr, ptrdiff_t stride, int bs,
uint8_t *above_row, uint8_t *left_col) {
int r;
for (r = 0; r < bs; r++) {
vpx_memset(pred_ptr, 128, bs);
pred_ptr += stride;
}
}
intra_pred_allsizes(dc_128)
static INLINE void dc_left_predictor(uint8_t *pred_ptr, ptrdiff_t stride,
int bs,
uint8_t *above_row, uint8_t *left_col) {
int i, r;
int expected_dc = 128;
int average = 0;
const int count = bs;
for (i = 0; i < bs; i++)
average += left_col[i];
expected_dc = (average + (count >> 1)) / count;
for (r = 0; r < bs; r++) {
vpx_memset(pred_ptr, expected_dc, bs);
pred_ptr += stride;
}
}
intra_pred_allsizes(dc_left)
static INLINE void dc_top_predictor(uint8_t *pred_ptr, ptrdiff_t stride, int bs,
uint8_t *above_row, uint8_t *left_col) {
int i, r;
int expected_dc = 128;
int average = 0;
const int count = bs;
for (i = 0; i < bs; i++)
average += above_row[i];
expected_dc = (average + (count >> 1)) / count;
for (r = 0; r < bs; r++) {
vpx_memset(pred_ptr, expected_dc, bs);
pred_ptr += stride;
}
}
intra_pred_allsizes(dc_top)
static INLINE void dc_predictor(uint8_t *pred_ptr, ptrdiff_t stride, int bs,
uint8_t *above_row, uint8_t *left_col) {
int i, r;
int expected_dc = 128;
int average = 0;
const int count = 2 * bs;
for (i = 0; i < bs; i++)
average += above_row[i];
for (i = 0; i < bs; i++)
average += left_col[i];
expected_dc = (average + (count >> 1)) / count;
for (r = 0; r < bs; r++) {
vpx_memset(pred_ptr, expected_dc, bs);
pred_ptr += stride;
}
}
intra_pred_allsizes(dc)
#undef intra_pred_allsizes
typedef void (*intra_pred_fn)(uint8_t *pred_ptr, ptrdiff_t stride,
uint8_t *above_row, uint8_t *left_col);
static intra_pred_fn pred[VP9_INTRA_MODES][4];
static intra_pred_fn dc_pred[2][2][4];
static void init_intra_pred_fn_ptrs(void) {
#define intra_pred_allsizes(l, type) \
l[0] = vp9_##type##_predictor_4x4; \
l[1] = vp9_##type##_predictor_8x8; \
l[2] = vp9_##type##_predictor_16x16; \
l[3] = vp9_##type##_predictor_32x32
intra_pred_allsizes(pred[V_PRED], v);
intra_pred_allsizes(pred[H_PRED], h);
intra_pred_allsizes(pred[D27_PRED], d27);
intra_pred_allsizes(pred[D45_PRED], d45);
intra_pred_allsizes(pred[D63_PRED], d63);
intra_pred_allsizes(pred[D117_PRED], d117);
intra_pred_allsizes(pred[D135_PRED], d135);
intra_pred_allsizes(pred[D153_PRED], d153);
intra_pred_allsizes(pred[TM_PRED], tm);
intra_pred_allsizes(dc_pred[0][0], dc_128);
intra_pred_allsizes(dc_pred[0][1], dc_top);
intra_pred_allsizes(dc_pred[1][0], dc_left);
intra_pred_allsizes(dc_pred[1][1], dc);
#undef intra_pred_allsizes
}
static void build_intra_predictors(uint8_t *src, int src_stride,
uint8_t *pred_ptr, int stride,
MB_PREDICTION_MODE mode, TX_SIZE txsz,
int up_available, int left_available,
int right_available) {
int i;
DECLARE_ALIGNED_ARRAY(16, uint8_t, left_col, 64);
DECLARE_ALIGNED_ARRAY(16, uint8_t, yabove_data, 128 + 16);
uint8_t *above_row = yabove_data + 16;
const int bs = 4 << txsz;
// 127 127 127 .. 127 127 127 127 127 127
// 129 A B .. Y Z
// 129 C D .. W X
// 129 E F .. U V
// 129 G H .. S T T T T T
// ..
once(init_intra_pred_fn_ptrs);
if (left_available) {
for (i = 0; i < bs; i++)
left_col[i] = src[i * src_stride - 1];
} else {
vpx_memset(left_col, 129, bs);
}
if (up_available) {
uint8_t *above_ptr = src - src_stride;
if (bs == 4 && right_available && left_available) {
above_row = above_ptr;
} else {
vpx_memcpy(above_row, above_ptr, bs);
if (bs == 4 && right_available)
vpx_memcpy(above_row + bs, above_ptr + bs, bs);
else
vpx_memset(above_row + bs, above_row[bs - 1], bs);
above_row[-1] = left_available ? above_ptr[-1] : 129;
}
} else {
vpx_memset(above_row, 127, bs * 2);
above_row[-1] = 127;
}
if (mode == DC_PRED) {
dc_pred[left_available][up_available][txsz](pred_ptr, stride,
above_row, left_col);
} else {
pred[mode][txsz](pred_ptr, stride, above_row, left_col);
}
}
void vp9_predict_intra_block(MACROBLOCKD *xd,
int block_idx,
int bwl_in,
TX_SIZE tx_size,
int mode,
uint8_t *reference, int ref_stride,
uint8_t *predictor, int pre_stride) {
const int bwl = bwl_in - tx_size;
const int wmask = (1 << bwl) - 1;
const int have_top = (block_idx >> bwl) || xd->up_available;
const int have_left = (block_idx & wmask) || xd->left_available;
const int have_right = ((block_idx & wmask) != wmask);
assert(bwl >= 0);
build_intra_predictors(reference, ref_stride,
predictor, pre_stride,
mode,
tx_size,
have_top, have_left,
have_right);
}