a60da3a2eb
Change-Id: Ie60381a0c6ee01f828cd364a43f01517f4cb03e9
586 lines
22 KiB
C
586 lines
22 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <tmmintrin.h> // SSSE3
|
|
|
|
#include <string.h>
|
|
|
|
#include "./vpx_dsp_rtcd.h"
|
|
#include "vpx_dsp/vpx_filter.h"
|
|
#include "vpx_dsp/x86/convolve.h"
|
|
#include "vpx_dsp/x86/convolve_ssse3.h"
|
|
#include "vpx_dsp/x86/mem_sse2.h"
|
|
#include "vpx_dsp/x86/transpose_sse2.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vpx_ports/mem.h"
|
|
|
|
// These are reused by the avx2 intrinsics.
|
|
// vpx_filter_block1d8_v8_intrin_ssse3()
|
|
// vpx_filter_block1d8_h8_intrin_ssse3()
|
|
// vpx_filter_block1d4_h8_intrin_ssse3()
|
|
|
|
static INLINE __m128i shuffle_filter_convolve8_8_ssse3(
|
|
const __m128i *const s, const int16_t *const filter) {
|
|
__m128i f[4];
|
|
shuffle_filter_ssse3(filter, f);
|
|
return convolve8_8_ssse3(s, f);
|
|
}
|
|
|
|
void vpx_filter_block1d4_h8_intrin_ssse3(
|
|
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
|
|
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
|
|
__m128i firstFilters, secondFilters, shuffle1, shuffle2;
|
|
__m128i srcRegFilt1, srcRegFilt2;
|
|
__m128i addFilterReg64, filtersReg, srcReg;
|
|
unsigned int i;
|
|
|
|
// create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
|
|
addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
|
|
filtersReg = _mm_loadu_si128((const __m128i *)filter);
|
|
// converting the 16 bit (short) to 8 bit (byte) and have the same data
|
|
// in both lanes of 128 bit register.
|
|
filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
|
|
|
|
// duplicate only the first 16 bits in the filter into the first lane
|
|
firstFilters = _mm_shufflelo_epi16(filtersReg, 0);
|
|
// duplicate only the third 16 bit in the filter into the first lane
|
|
secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu);
|
|
// duplicate only the seconds 16 bits in the filter into the second lane
|
|
// firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3
|
|
firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u);
|
|
// duplicate only the forth 16 bits in the filter into the second lane
|
|
// secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7
|
|
secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu);
|
|
|
|
// loading the local filters
|
|
shuffle1 = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6);
|
|
shuffle2 = _mm_setr_epi8(4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10);
|
|
|
|
for (i = 0; i < output_height; i++) {
|
|
srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
|
|
|
|
// filter the source buffer
|
|
srcRegFilt1 = _mm_shuffle_epi8(srcReg, shuffle1);
|
|
srcRegFilt2 = _mm_shuffle_epi8(srcReg, shuffle2);
|
|
|
|
// multiply 2 adjacent elements with the filter and add the result
|
|
srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
|
|
srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);
|
|
|
|
// sum the results together, saturating only on the final step
|
|
// the specific order of the additions prevents outranges
|
|
srcRegFilt1 = _mm_add_epi16(srcRegFilt1, srcRegFilt2);
|
|
|
|
// extract the higher half of the register
|
|
srcRegFilt2 = _mm_srli_si128(srcRegFilt1, 8);
|
|
|
|
// add the rounding offset early to avoid another saturated add
|
|
srcRegFilt1 = _mm_add_epi16(srcRegFilt1, addFilterReg64);
|
|
srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
|
|
|
|
// shift by 7 bit each 16 bits
|
|
srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
|
|
|
|
// shrink to 8 bit each 16 bits
|
|
srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
|
|
src_ptr += src_pitch;
|
|
|
|
// save only 4 bytes
|
|
*((int *)&output_ptr[0]) = _mm_cvtsi128_si32(srcRegFilt1);
|
|
|
|
output_ptr += output_pitch;
|
|
}
|
|
}
|
|
|
|
void vpx_filter_block1d8_h8_intrin_ssse3(
|
|
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
|
|
ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
|
|
unsigned int i;
|
|
__m128i f[4], filt[4], s[4];
|
|
|
|
shuffle_filter_ssse3(filter, f);
|
|
filt[0] = _mm_setr_epi8(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8);
|
|
filt[1] = _mm_setr_epi8(2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10);
|
|
filt[2] = _mm_setr_epi8(4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12);
|
|
filt[3] =
|
|
_mm_setr_epi8(6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14);
|
|
|
|
for (i = 0; i < output_height; i++) {
|
|
const __m128i srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
|
|
|
|
// filter the source buffer
|
|
s[0] = _mm_shuffle_epi8(srcReg, filt[0]);
|
|
s[1] = _mm_shuffle_epi8(srcReg, filt[1]);
|
|
s[2] = _mm_shuffle_epi8(srcReg, filt[2]);
|
|
s[3] = _mm_shuffle_epi8(srcReg, filt[3]);
|
|
s[0] = convolve8_8_ssse3(s, f);
|
|
|
|
// shrink to 8 bit each 16 bits
|
|
s[0] = _mm_packus_epi16(s[0], s[0]);
|
|
|
|
src_ptr += src_pitch;
|
|
|
|
// save only 8 bytes
|
|
_mm_storel_epi64((__m128i *)&output_ptr[0], s[0]);
|
|
|
|
output_ptr += output_pitch;
|
|
}
|
|
}
|
|
|
|
void vpx_filter_block1d8_v8_intrin_ssse3(
|
|
const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
|
|
ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
|
|
unsigned int i;
|
|
__m128i f[4], s[8], ss[4];
|
|
|
|
shuffle_filter_ssse3(filter, f);
|
|
|
|
// load the first 7 rows of 8 bytes
|
|
s[0] = _mm_loadl_epi64((const __m128i *)(src_ptr + 0 * src_pitch));
|
|
s[1] = _mm_loadl_epi64((const __m128i *)(src_ptr + 1 * src_pitch));
|
|
s[2] = _mm_loadl_epi64((const __m128i *)(src_ptr + 2 * src_pitch));
|
|
s[3] = _mm_loadl_epi64((const __m128i *)(src_ptr + 3 * src_pitch));
|
|
s[4] = _mm_loadl_epi64((const __m128i *)(src_ptr + 4 * src_pitch));
|
|
s[5] = _mm_loadl_epi64((const __m128i *)(src_ptr + 5 * src_pitch));
|
|
s[6] = _mm_loadl_epi64((const __m128i *)(src_ptr + 6 * src_pitch));
|
|
|
|
for (i = 0; i < output_height; i++) {
|
|
// load the last 8 bytes
|
|
s[7] = _mm_loadl_epi64((const __m128i *)(src_ptr + 7 * src_pitch));
|
|
|
|
// merge the result together
|
|
ss[0] = _mm_unpacklo_epi8(s[0], s[1]);
|
|
ss[1] = _mm_unpacklo_epi8(s[2], s[3]);
|
|
|
|
// merge the result together
|
|
ss[2] = _mm_unpacklo_epi8(s[4], s[5]);
|
|
ss[3] = _mm_unpacklo_epi8(s[6], s[7]);
|
|
|
|
ss[0] = convolve8_8_ssse3(ss, f);
|
|
// shrink to 8 bit each 16 bits
|
|
ss[0] = _mm_packus_epi16(ss[0], ss[0]);
|
|
|
|
src_ptr += src_pitch;
|
|
|
|
// shift down a row
|
|
s[0] = s[1];
|
|
s[1] = s[2];
|
|
s[2] = s[3];
|
|
s[3] = s[4];
|
|
s[4] = s[5];
|
|
s[5] = s[6];
|
|
s[6] = s[7];
|
|
|
|
// save only 8 bytes convolve result
|
|
_mm_storel_epi64((__m128i *)&output_ptr[0], ss[0]);
|
|
|
|
output_ptr += out_pitch;
|
|
}
|
|
}
|
|
|
|
filter8_1dfunction vpx_filter_block1d16_v8_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d16_h8_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d8_v8_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d8_h8_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d4_v8_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d4_h8_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d16_v8_avg_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d16_h8_avg_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d8_v8_avg_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d8_h8_avg_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d4_v8_avg_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d4_h8_avg_ssse3;
|
|
|
|
filter8_1dfunction vpx_filter_block1d16_v2_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d16_h2_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d8_v2_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d8_h2_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d4_v2_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d4_h2_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d16_v2_avg_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d16_h2_avg_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d8_v2_avg_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d8_h2_avg_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d4_v2_avg_ssse3;
|
|
filter8_1dfunction vpx_filter_block1d4_h2_avg_ssse3;
|
|
|
|
// void vpx_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
|
|
// uint8_t *dst, ptrdiff_t dst_stride,
|
|
// const InterpKernel *filter, int x0_q4,
|
|
// int32_t x_step_q4, int y0_q4, int y_step_q4,
|
|
// int w, int h);
|
|
// void vpx_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
|
|
// uint8_t *dst, ptrdiff_t dst_stride,
|
|
// const InterpKernel *filter, int x0_q4,
|
|
// int32_t x_step_q4, int y0_q4, int y_step_q4,
|
|
// int w, int h);
|
|
// void vpx_convolve8_avg_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
|
|
// uint8_t *dst, ptrdiff_t dst_stride,
|
|
// const InterpKernel *filter, int x0_q4,
|
|
// int32_t x_step_q4, int y0_q4,
|
|
// int y_step_q4, int w, int h);
|
|
// void vpx_convolve8_avg_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
|
|
// uint8_t *dst, ptrdiff_t dst_stride,
|
|
// const InterpKernel *filter, int x0_q4,
|
|
// int32_t x_step_q4, int y0_q4,
|
|
// int y_step_q4, int w, int h);
|
|
FUN_CONV_1D(horiz, x0_q4, x_step_q4, h, src, , ssse3);
|
|
FUN_CONV_1D(vert, y0_q4, y_step_q4, v, src - src_stride * 3, , ssse3);
|
|
FUN_CONV_1D(avg_horiz, x0_q4, x_step_q4, h, src, avg_, ssse3);
|
|
FUN_CONV_1D(avg_vert, y0_q4, y_step_q4, v, src - src_stride * 3, avg_, ssse3);
|
|
|
|
static void filter_horiz_w8_ssse3(const uint8_t *const src,
|
|
const ptrdiff_t src_stride,
|
|
uint8_t *const dst,
|
|
const int16_t *const x_filter) {
|
|
__m128i s[8], ss[4], temp;
|
|
|
|
load_8bit_8x8(src, src_stride, s);
|
|
// 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71
|
|
// 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73
|
|
// 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75
|
|
// 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77
|
|
transpose_16bit_4x8(s, ss);
|
|
temp = shuffle_filter_convolve8_8_ssse3(ss, x_filter);
|
|
// shrink to 8 bit each 16 bits
|
|
temp = _mm_packus_epi16(temp, temp);
|
|
// save only 8 bytes convolve result
|
|
_mm_storel_epi64((__m128i *)dst, temp);
|
|
}
|
|
|
|
static void transpose8x8_to_dst(const uint8_t *const src,
|
|
const ptrdiff_t src_stride, uint8_t *const dst,
|
|
const ptrdiff_t dst_stride) {
|
|
__m128i s[8];
|
|
|
|
load_8bit_8x8(src, src_stride, s);
|
|
transpose_8bit_8x8(s, s);
|
|
store_8bit_8x8(s, dst, dst_stride);
|
|
}
|
|
|
|
static void scaledconvolve_horiz_w8(const uint8_t *src,
|
|
const ptrdiff_t src_stride, uint8_t *dst,
|
|
const ptrdiff_t dst_stride,
|
|
const InterpKernel *const x_filters,
|
|
const int x0_q4, const int x_step_q4,
|
|
const int w, const int h) {
|
|
DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]);
|
|
int x, y, z;
|
|
src -= SUBPEL_TAPS / 2 - 1;
|
|
|
|
// This function processes 8x8 areas. The intermediate height is not always
|
|
// a multiple of 8, so force it to be a multiple of 8 here.
|
|
y = h + (8 - (h & 0x7));
|
|
|
|
do {
|
|
int x_q4 = x0_q4;
|
|
for (x = 0; x < w; x += 8) {
|
|
// process 8 src_x steps
|
|
for (z = 0; z < 8; ++z) {
|
|
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
|
|
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
|
|
if (x_q4 & SUBPEL_MASK) {
|
|
filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter);
|
|
} else {
|
|
int i;
|
|
for (i = 0; i < 8; ++i) {
|
|
temp[z * 8 + i] = src_x[i * src_stride + 3];
|
|
}
|
|
}
|
|
x_q4 += x_step_q4;
|
|
}
|
|
|
|
// transpose the 8x8 filters values back to dst
|
|
transpose8x8_to_dst(temp, 8, dst + x, dst_stride);
|
|
}
|
|
|
|
src += src_stride * 8;
|
|
dst += dst_stride * 8;
|
|
} while (y -= 8);
|
|
}
|
|
|
|
static void filter_horiz_w4_ssse3(const uint8_t *const src,
|
|
const ptrdiff_t src_stride,
|
|
uint8_t *const dst,
|
|
const int16_t *const filter) {
|
|
__m128i s[4], ss[2];
|
|
__m128i temp;
|
|
|
|
load_8bit_8x4(src, src_stride, s);
|
|
transpose_16bit_4x4(s, ss);
|
|
// 00 01 10 11 20 21 30 31
|
|
s[0] = ss[0];
|
|
// 02 03 12 13 22 23 32 33
|
|
s[1] = _mm_srli_si128(ss[0], 8);
|
|
// 04 05 14 15 24 25 34 35
|
|
s[2] = ss[1];
|
|
// 06 07 16 17 26 27 36 37
|
|
s[3] = _mm_srli_si128(ss[1], 8);
|
|
|
|
temp = shuffle_filter_convolve8_8_ssse3(s, filter);
|
|
// shrink to 8 bit each 16 bits
|
|
temp = _mm_packus_epi16(temp, temp);
|
|
// save only 4 bytes
|
|
*(int *)dst = _mm_cvtsi128_si32(temp);
|
|
}
|
|
|
|
static void transpose4x4_to_dst(const uint8_t *const src,
|
|
const ptrdiff_t src_stride, uint8_t *const dst,
|
|
const ptrdiff_t dst_stride) {
|
|
__m128i s[4];
|
|
|
|
load_8bit_4x4(src, src_stride, s);
|
|
s[0] = transpose_8bit_4x4(s);
|
|
s[1] = _mm_srli_si128(s[0], 4);
|
|
s[2] = _mm_srli_si128(s[0], 8);
|
|
s[3] = _mm_srli_si128(s[0], 12);
|
|
store_8bit_4x4(s, dst, dst_stride);
|
|
}
|
|
|
|
static void scaledconvolve_horiz_w4(const uint8_t *src,
|
|
const ptrdiff_t src_stride, uint8_t *dst,
|
|
const ptrdiff_t dst_stride,
|
|
const InterpKernel *const x_filters,
|
|
const int x0_q4, const int x_step_q4,
|
|
const int w, const int h) {
|
|
DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]);
|
|
int x, y, z;
|
|
src -= SUBPEL_TAPS / 2 - 1;
|
|
|
|
for (y = 0; y < h; y += 4) {
|
|
int x_q4 = x0_q4;
|
|
for (x = 0; x < w; x += 4) {
|
|
// process 4 src_x steps
|
|
for (z = 0; z < 4; ++z) {
|
|
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
|
|
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
|
|
if (x_q4 & SUBPEL_MASK) {
|
|
filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter);
|
|
} else {
|
|
int i;
|
|
for (i = 0; i < 4; ++i) {
|
|
temp[z * 4 + i] = src_x[i * src_stride + 3];
|
|
}
|
|
}
|
|
x_q4 += x_step_q4;
|
|
}
|
|
|
|
// transpose the 4x4 filters values back to dst
|
|
transpose4x4_to_dst(temp, 4, dst + x, dst_stride);
|
|
}
|
|
|
|
src += src_stride * 4;
|
|
dst += dst_stride * 4;
|
|
}
|
|
}
|
|
|
|
static __m128i filter_vert_kernel(const __m128i *const s,
|
|
const int16_t *const filter) {
|
|
__m128i ss[4];
|
|
__m128i temp;
|
|
|
|
// 00 10 01 11 02 12 03 13
|
|
ss[0] = _mm_unpacklo_epi8(s[0], s[1]);
|
|
// 20 30 21 31 22 32 23 33
|
|
ss[1] = _mm_unpacklo_epi8(s[2], s[3]);
|
|
// 40 50 41 51 42 52 43 53
|
|
ss[2] = _mm_unpacklo_epi8(s[4], s[5]);
|
|
// 60 70 61 71 62 72 63 73
|
|
ss[3] = _mm_unpacklo_epi8(s[6], s[7]);
|
|
|
|
temp = shuffle_filter_convolve8_8_ssse3(ss, filter);
|
|
// shrink to 8 bit each 16 bits
|
|
return _mm_packus_epi16(temp, temp);
|
|
}
|
|
|
|
static void filter_vert_w4_ssse3(const uint8_t *const src,
|
|
const ptrdiff_t src_stride, uint8_t *const dst,
|
|
const int16_t *const filter) {
|
|
__m128i s[8];
|
|
__m128i temp;
|
|
|
|
load_8bit_4x8(src, src_stride, s);
|
|
temp = filter_vert_kernel(s, filter);
|
|
// save only 4 bytes
|
|
*(int *)dst = _mm_cvtsi128_si32(temp);
|
|
}
|
|
|
|
static void scaledconvolve_vert_w4(
|
|
const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
|
|
const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
|
|
const int y0_q4, const int y_step_q4, const int w, const int h) {
|
|
int y;
|
|
int y_q4 = y0_q4;
|
|
|
|
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
|
|
for (y = 0; y < h; ++y) {
|
|
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
|
|
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
|
|
|
|
if (y_q4 & SUBPEL_MASK) {
|
|
filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
|
|
} else {
|
|
memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
|
|
}
|
|
|
|
y_q4 += y_step_q4;
|
|
}
|
|
}
|
|
|
|
static void filter_vert_w8_ssse3(const uint8_t *const src,
|
|
const ptrdiff_t src_stride, uint8_t *const dst,
|
|
const int16_t *const filter) {
|
|
__m128i s[8], temp;
|
|
|
|
load_8bit_8x8(src, src_stride, s);
|
|
temp = filter_vert_kernel(s, filter);
|
|
// save only 8 bytes convolve result
|
|
_mm_storel_epi64((__m128i *)dst, temp);
|
|
}
|
|
|
|
static void scaledconvolve_vert_w8(
|
|
const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
|
|
const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
|
|
const int y0_q4, const int y_step_q4, const int w, const int h) {
|
|
int y;
|
|
int y_q4 = y0_q4;
|
|
|
|
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
|
|
for (y = 0; y < h; ++y) {
|
|
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
|
|
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
|
|
if (y_q4 & SUBPEL_MASK) {
|
|
filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
|
|
} else {
|
|
memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
|
|
}
|
|
y_q4 += y_step_q4;
|
|
}
|
|
}
|
|
|
|
static void filter_vert_w16_ssse3(const uint8_t *src,
|
|
const ptrdiff_t src_stride,
|
|
uint8_t *const dst,
|
|
const int16_t *const filter, const int w) {
|
|
int i;
|
|
__m128i f[4];
|
|
shuffle_filter_ssse3(filter, f);
|
|
|
|
for (i = 0; i < w; i += 16) {
|
|
__m128i s[8], s_lo[4], s_hi[4], temp_lo, temp_hi;
|
|
|
|
loadu_8bit_16x8(src, src_stride, s);
|
|
|
|
// merge the result together
|
|
s_lo[0] = _mm_unpacklo_epi8(s[0], s[1]);
|
|
s_hi[0] = _mm_unpackhi_epi8(s[0], s[1]);
|
|
s_lo[1] = _mm_unpacklo_epi8(s[2], s[3]);
|
|
s_hi[1] = _mm_unpackhi_epi8(s[2], s[3]);
|
|
s_lo[2] = _mm_unpacklo_epi8(s[4], s[5]);
|
|
s_hi[2] = _mm_unpackhi_epi8(s[4], s[5]);
|
|
s_lo[3] = _mm_unpacklo_epi8(s[6], s[7]);
|
|
s_hi[3] = _mm_unpackhi_epi8(s[6], s[7]);
|
|
temp_lo = convolve8_8_ssse3(s_lo, f);
|
|
temp_hi = convolve8_8_ssse3(s_hi, f);
|
|
|
|
// shrink to 8 bit each 16 bits, the first lane contain the first convolve
|
|
// result and the second lane contain the second convolve result
|
|
temp_hi = _mm_packus_epi16(temp_lo, temp_hi);
|
|
src += 16;
|
|
// save 16 bytes convolve result
|
|
_mm_store_si128((__m128i *)&dst[i], temp_hi);
|
|
}
|
|
}
|
|
|
|
static void scaledconvolve_vert_w16(
|
|
const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
|
|
const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
|
|
const int y0_q4, const int y_step_q4, const int w, const int h) {
|
|
int y;
|
|
int y_q4 = y0_q4;
|
|
|
|
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
|
|
for (y = 0; y < h; ++y) {
|
|
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
|
|
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
|
|
if (y_q4 & SUBPEL_MASK) {
|
|
filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter,
|
|
w);
|
|
} else {
|
|
memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
|
|
}
|
|
y_q4 += y_step_q4;
|
|
}
|
|
}
|
|
|
|
void vpx_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
|
|
ptrdiff_t dst_stride, const InterpKernel *filter,
|
|
int x0_q4, int x_step_q4, int y0_q4, int y_step_q4,
|
|
int w, int h) {
|
|
// Note: Fixed size intermediate buffer, temp, places limits on parameters.
|
|
// 2d filtering proceeds in 2 steps:
|
|
// (1) Interpolate horizontally into an intermediate buffer, temp.
|
|
// (2) Interpolate temp vertically to derive the sub-pixel result.
|
|
// Deriving the maximum number of rows in the temp buffer (135):
|
|
// --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
|
|
// --Largest block size is 64x64 pixels.
|
|
// --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
|
|
// original frame (in 1/16th pixel units).
|
|
// --Must round-up because block may be located at sub-pixel position.
|
|
// --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
|
|
// --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
|
|
// --Require an additional 8 rows for the horiz_w8 transpose tail.
|
|
// When calling in frame scaling function, the smallest scaling factor is x1/4
|
|
// ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still
|
|
// big enough.
|
|
DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]);
|
|
const int intermediate_height =
|
|
(((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
|
|
|
|
assert(w <= 64);
|
|
assert(h <= 64);
|
|
assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32));
|
|
assert(x_step_q4 <= 64);
|
|
|
|
if (w >= 8) {
|
|
scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1),
|
|
src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
|
|
intermediate_height);
|
|
} else {
|
|
scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1),
|
|
src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
|
|
intermediate_height);
|
|
}
|
|
|
|
if (w >= 16) {
|
|
scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
|
|
dst_stride, filter, y0_q4, y_step_q4, w, h);
|
|
} else if (w == 8) {
|
|
scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
|
|
dst_stride, filter, y0_q4, y_step_q4, w, h);
|
|
} else {
|
|
scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
|
|
dst_stride, filter, y0_q4, y_step_q4, w, h);
|
|
}
|
|
}
|
|
|
|
// void vp9_convolve8_ssse3(const uint8_t *src, ptrdiff_t src_stride,
|
|
// uint8_t *dst, ptrdiff_t dst_stride,
|
|
// const InterpKernel *filter, int x0_q4,
|
|
// int32_t x_step_q4, int y0_q4, int y_step_q4,
|
|
// int w, int h);
|
|
// void vpx_convolve8_avg_ssse3(const uint8_t *src, ptrdiff_t src_stride,
|
|
// uint8_t *dst, ptrdiff_t dst_stride,
|
|
// const InterpKernel *filter, int x0_q4,
|
|
// int32_t x_step_q4, int y0_q4, int y_step_q4,
|
|
// int w, int h);
|
|
FUN_CONV_2D(, ssse3);
|
|
FUN_CONV_2D(avg_, ssse3);
|