vpx/examples/vpx_temporal_scalable_patterns.c
Marco Paniconi d32e000ae0 Update some comments in vpx_temporal_scalable_patterns.
Change-Id: I747d26c544cc56feaaf7c75403f2f4c16a496bb7
2014-02-26 14:30:09 -08:00

645 lines
24 KiB
C

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// This is an example demonstrating how to implement a multi-layer VP9
// encoding scheme based on temporal scalability for video applications
// that benefit from a scalable bitstream.
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define VPX_CODEC_DISABLE_COMPAT 1
#include "vpx/vp8cx.h"
#include "vpx/vpx_encoder.h"
#include "./tools_common.h"
#include "./video_writer.h"
static const char *exec_name;
void usage_exit() {
exit(EXIT_FAILURE);
}
static int mode_to_num_layers[12] = {1, 2, 2, 3, 3, 3, 3, 5, 2, 3, 3, 3};
// For rate control encoding stats.
struct RateControlMetrics {
// Number of input frames per layer.
int layer_input_frames[VPX_TS_MAX_LAYERS];
// Total (cumulative) number of encoded frames per layer.
int layer_tot_enc_frames[VPX_TS_MAX_LAYERS];
// Number of encoded non-key frames per layer.
int layer_enc_frames[VPX_TS_MAX_LAYERS];
// Framerate per layer layer (cumulative).
double layer_framerate[VPX_TS_MAX_LAYERS];
// Target average frame size per layer (per-frame-bandwidth per layer).
double layer_pfb[VPX_TS_MAX_LAYERS];
// Actual average frame size per layer.
double layer_avg_frame_size[VPX_TS_MAX_LAYERS];
// Average rate mismatch per layer (|target - actual| / target).
double layer_avg_rate_mismatch[VPX_TS_MAX_LAYERS];
// Actual encoding bitrate per layer (cumulative).
double layer_encoding_bitrate[VPX_TS_MAX_LAYERS];
};
// Note: these rate control metrics assume only 1 key frame in the
// sequence (i.e., first frame only). So for temporal pattern# 7
// (which has key frame for every frame on base layer), the metrics
// computation will be off/wrong.
// TODO(marpan): Update these metrics to account for multiple key frames
// in the stream.
static void set_rate_control_metrics(struct RateControlMetrics *rc,
vpx_codec_enc_cfg_t *cfg) {
unsigned int i = 0;
// Set the layer (cumulative) framerate and the target layer (non-cumulative)
// per-frame-bandwidth, for the rate control encoding stats below.
const double framerate = cfg->g_timebase.den / cfg->g_timebase.num;
rc->layer_framerate[0] = framerate / cfg->ts_rate_decimator[0];
rc->layer_pfb[0] = 1000.0 * cfg->ts_target_bitrate[0] /
rc->layer_framerate[0];
for (i = 0; i < cfg->ts_number_layers; ++i) {
if (i > 0) {
rc->layer_framerate[i] = framerate / cfg->ts_rate_decimator[i];
rc->layer_pfb[i] = 1000.0 *
(cfg->ts_target_bitrate[i] - cfg->ts_target_bitrate[i - 1]) /
(rc->layer_framerate[i] - rc->layer_framerate[i - 1]);
}
rc->layer_input_frames[i] = 0;
rc->layer_enc_frames[i] = 0;
rc->layer_tot_enc_frames[i] = 0;
rc->layer_encoding_bitrate[i] = 0.0;
rc->layer_avg_frame_size[i] = 0.0;
rc->layer_avg_rate_mismatch[i] = 0.0;
}
}
static void printout_rate_control_summary(struct RateControlMetrics *rc,
vpx_codec_enc_cfg_t *cfg,
int frame_cnt) {
unsigned int i = 0;
int tot_num_frames = 0;
printf("Total number of processed frames: %d\n\n", frame_cnt -1);
printf("Rate control layer stats for %d layer(s):\n\n",
cfg->ts_number_layers);
for (i = 0; i < cfg->ts_number_layers; ++i) {
const int num_dropped = (i > 0) ?
(rc->layer_input_frames[i] - rc->layer_enc_frames[i]) :
(rc->layer_input_frames[i] - rc->layer_enc_frames[i] - 1);
tot_num_frames += rc->layer_input_frames[i];
rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[i] *
rc->layer_encoding_bitrate[i] / tot_num_frames;
rc->layer_avg_frame_size[i] = rc->layer_avg_frame_size[i] /
rc->layer_enc_frames[i];
rc->layer_avg_rate_mismatch[i] = 100.0 * rc->layer_avg_rate_mismatch[i] /
rc->layer_enc_frames[i];
printf("For layer#: %d \n", i);
printf("Bitrate (target vs actual): %d %f \n", cfg->ts_target_bitrate[i],
rc->layer_encoding_bitrate[i]);
printf("Average frame size (target vs actual): %f %f \n", rc->layer_pfb[i],
rc->layer_avg_frame_size[i]);
printf("Average rate_mismatch: %f \n", rc->layer_avg_rate_mismatch[i]);
printf("Number of input frames, encoded (non-key) frames, "
"and perc dropped frames: %d %d %f \n", rc->layer_input_frames[i],
rc->layer_enc_frames[i],
100.0 * num_dropped / rc->layer_input_frames[i]);
printf("\n");
}
if ((frame_cnt - 1) != tot_num_frames)
die("Error: Number of input frames not equal to output! \n");
}
// Temporal scaling parameters:
// NOTE: The 3 prediction frames cannot be used interchangeably due to
// differences in the way they are handled throughout the code. The
// frames should be allocated to layers in the order LAST, GF, ARF.
// Other combinations work, but may produce slightly inferior results.
static void set_temporal_layer_pattern(int layering_mode,
vpx_codec_enc_cfg_t *cfg,
int *layer_flags,
int *flag_periodicity) {
switch (layering_mode) {
case 0: {
// 1-layer.
int ids[1] = {0};
cfg->ts_periodicity = 1;
*flag_periodicity = 1;
cfg->ts_number_layers = 1;
cfg->ts_rate_decimator[0] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// Update L only.
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF;
break;
}
case 1: {
// 2-layers, 2-frame period.
int ids[2] = {0, 1};
cfg->ts_periodicity = 2;
*flag_periodicity = 2;
cfg->ts_number_layers = 2;
cfg->ts_rate_decimator[0] = 2;
cfg->ts_rate_decimator[1] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
#if 1
// 0=L, 1=GF, Intra-layer prediction enabled.
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF;
layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_REF_ARF;
#else
// 0=L, 1=GF, Intra-layer prediction disabled.
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF;
layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_REF_LAST;
#endif
break;
}
case 2: {
// 2-layers, 3-frame period.
int ids[3] = {0, 1, 1};
cfg->ts_periodicity = 3;
*flag_periodicity = 3;
cfg->ts_number_layers = 2;
cfg->ts_rate_decimator[0] = 3;
cfg->ts_rate_decimator[1] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, Intra-layer prediction enabled.
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
layer_flags[1] =
layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
break;
}
case 3: {
// 3-layers, 6-frame period.
int ids[6] = {0, 2, 2, 1, 2, 2};
cfg->ts_periodicity = 6;
*flag_periodicity = 6;
cfg->ts_number_layers = 3;
cfg->ts_rate_decimator[0] = 6;
cfg->ts_rate_decimator[1] = 3;
cfg->ts_rate_decimator[2] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled.
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_LAST;
layer_flags[1] =
layer_flags[2] =
layer_flags[4] =
layer_flags[5] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_LAST;
break;
}
case 4: {
// 3-layers, 4-frame period.
int ids[4] = {0, 2, 1, 2};
cfg->ts_periodicity = 4;
*flag_periodicity = 4;
cfg->ts_number_layers = 3;
cfg->ts_rate_decimator[0] = 4;
cfg->ts_rate_decimator[1] = 2;
cfg->ts_rate_decimator[2] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, 2=ARF, Intra-layer prediction disabled.
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
layer_flags[1] =
layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
break;
}
case 5: {
// 3-layers, 4-frame period.
int ids[4] = {0, 2, 1, 2};
cfg->ts_periodicity = 4;
*flag_periodicity = 4;
cfg->ts_number_layers = 3;
cfg->ts_rate_decimator[0] = 4;
cfg->ts_rate_decimator[1] = 2;
cfg->ts_rate_decimator[2] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled in layer 1, disabled
// in layer 2.
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
layer_flags[2] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_ARF;
layer_flags[1] =
layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
break;
}
case 6: {
// 3-layers, 4-frame period.
int ids[4] = {0, 2, 1, 2};
cfg->ts_periodicity = 4;
*flag_periodicity = 4;
cfg->ts_number_layers = 3;
cfg->ts_rate_decimator[0] = 4;
cfg->ts_rate_decimator[1] = 2;
cfg->ts_rate_decimator[2] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled.
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
layer_flags[2] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_ARF;
layer_flags[1] =
layer_flags[3] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
break;
}
case 7: {
// NOTE: Probably of academic interest only.
// 5-layers, 16-frame period.
int ids[16] = {0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4};
cfg->ts_periodicity = 16;
*flag_periodicity = 16;
cfg->ts_number_layers = 5;
cfg->ts_rate_decimator[0] = 16;
cfg->ts_rate_decimator[1] = 8;
cfg->ts_rate_decimator[2] = 4;
cfg->ts_rate_decimator[3] = 2;
cfg->ts_rate_decimator[4] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
layer_flags[0] = VPX_EFLAG_FORCE_KF;
layer_flags[1] =
layer_flags[3] =
layer_flags[5] =
layer_flags[7] =
layer_flags[9] =
layer_flags[11] =
layer_flags[13] =
layer_flags[15] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF;
layer_flags[2] =
layer_flags[6] =
layer_flags[10] =
layer_flags[14] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_GF;
layer_flags[4] =
layer_flags[12] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_UPD_ARF;
layer_flags[8] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF;
break;
}
case 8: {
// 2-layers, with sync point at first frame of layer 1.
int ids[2] = {0, 1};
cfg->ts_periodicity = 2;
*flag_periodicity = 8;
cfg->ts_number_layers = 2;
cfg->ts_rate_decimator[0] = 2;
cfg->ts_rate_decimator[1] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF.
// ARF is used as predictor for all frames, and is only updated on
// key frame. Sync point every 8 frames.
// Layer 0: predict from L and ARF, update L and G.
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_UPD_ARF;
// Layer 1: sync point: predict from L and ARF, and update G.
layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_ARF;
// Layer 0, predict from L and ARF, update L.
layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF;
// Layer 1: predict from L, G and ARF, and update G.
layer_flags[3] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_ENTROPY;
// Layer 0.
layer_flags[4] = layer_flags[2];
// Layer 1.
layer_flags[5] = layer_flags[3];
// Layer 0.
layer_flags[6] = layer_flags[4];
// Layer 1.
layer_flags[7] = layer_flags[5];
break;
}
case 9: {
// 3-layers: Sync points for layer 1 and 2 every 8 frames.
int ids[4] = {0, 2, 1, 2};
cfg->ts_periodicity = 4;
*flag_periodicity = 8;
cfg->ts_number_layers = 3;
cfg->ts_rate_decimator[0] = 4;
cfg->ts_rate_decimator[1] = 2;
cfg->ts_rate_decimator[2] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, 2=ARF.
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
layer_flags[3] =
layer_flags[5] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
layer_flags[4] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
layer_flags[6] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_ARF;
layer_flags[7] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_ENTROPY;
break;
}
case 10: {
// 3-layers structure where ARF is used as predictor for all frames,
// and is only updated on key frame.
// Sync points for layer 1 and 2 every 8 frames.
int ids[4] = {0, 2, 1, 2};
cfg->ts_periodicity = 4;
*flag_periodicity = 8;
cfg->ts_number_layers = 3;
cfg->ts_rate_decimator[0] = 4;
cfg->ts_rate_decimator[1] = 2;
cfg->ts_rate_decimator[2] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, 2=ARF.
// Layer 0: predict from L and ARF; update L and G.
layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_REF_GF;
// Layer 2: sync point: predict from L and ARF; update none.
layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_ENTROPY;
// Layer 1: sync point: predict from L and ARF; update G.
layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_LAST;
// Layer 2: predict from L, G, ARF; update none.
layer_flags[3] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY;
// Layer 0: predict from L and ARF; update L.
layer_flags[4] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_REF_GF;
// Layer 2: predict from L, G, ARF; update none.
layer_flags[5] = layer_flags[3];
// Layer 1: predict from L, G, ARF; update G.
layer_flags[6] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
// Layer 2: predict from L, G, ARF; update none.
layer_flags[7] = layer_flags[3];
break;
}
case 11:
default: {
// 3-layers structure as in case 10, but no sync/refresh points for
// layer 1 and 2.
int ids[4] = {0, 2, 1, 2};
cfg->ts_periodicity = 4;
*flag_periodicity = 8;
cfg->ts_number_layers = 3;
cfg->ts_rate_decimator[0] = 4;
cfg->ts_rate_decimator[1] = 2;
cfg->ts_rate_decimator[2] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, 2=ARF.
// Layer 0: predict from L and ARF; update L.
layer_flags[0] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_REF_GF;
layer_flags[4] = layer_flags[0];
// Layer 1: predict from L, G, ARF; update G.
layer_flags[2] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
layer_flags[6] = layer_flags[2];
// Layer 2: predict from L, G, ARF; update none.
layer_flags[1] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY;
layer_flags[3] = layer_flags[1];
layer_flags[5] = layer_flags[1];
layer_flags[7] = layer_flags[1];
break;
}
}
}
int main(int argc, char **argv) {
VpxVideoWriter *outfile[VPX_TS_MAX_LAYERS];
vpx_codec_ctx_t codec;
vpx_codec_enc_cfg_t cfg;
int frame_cnt = 0;
vpx_image_t raw;
vpx_codec_err_t res;
unsigned int width;
unsigned int height;
int frame_avail;
int got_data;
int flags = 0;
unsigned int i;
int pts = 0; // PTS starts at 0.
int frame_duration = 1; // 1 timebase tick per frame.
int layering_mode = 0;
int layer_flags[VPX_TS_MAX_PERIODICITY] = {0};
int flag_periodicity = 1;
int max_intra_size_pct;
vpx_svc_layer_id_t layer_id = {0, 0};
const VpxInterface *encoder = NULL;
FILE *infile = NULL;
struct RateControlMetrics rc;
exec_name = argv[0];
// Check usage and arguments.
if (argc < 11) {
die("Usage: %s <infile> <outfile> <codec_type(vp8/vp9)> <width> <height> "
"<rate_num> <rate_den> <frame_drop_threshold> <mode> "
"<Rate_0> ... <Rate_nlayers-1> \n", argv[0]);
}
encoder = get_vpx_encoder_by_name(argv[3]);
if (!encoder)
die("Unsupported codec.");
printf("Using %s\n", vpx_codec_iface_name(encoder->interface()));
width = strtol(argv[4], NULL, 0);
height = strtol(argv[5], NULL, 0);
if (width < 16 || width % 2 || height < 16 || height % 2) {
die("Invalid resolution: %d x %d", width, height);
}
layering_mode = strtol(argv[9], NULL, 0);
if (layering_mode < 0 || layering_mode > 12) {
die("Invalid mode (0..12) %s", argv[9]);
}
if (argc != 10 + mode_to_num_layers[layering_mode]) {
die("Invalid number of arguments");
}
if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, width, height, 32)) {
die("Failed to allocate image", width, height);
}
// Populate encoder configuration.
res = vpx_codec_enc_config_default(encoder->interface(), &cfg, 0);
if (res) {
printf("Failed to get config: %s\n", vpx_codec_err_to_string(res));
return EXIT_FAILURE;
}
// Update the default configuration with our settings.
cfg.g_w = width;
cfg.g_h = height;
// Timebase format e.g. 30fps: numerator=1, demoninator = 30.
cfg.g_timebase.num = strtol(argv[6], NULL, 0);
cfg.g_timebase.den = strtol(argv[7], NULL, 0);
for (i = 10; (int)i < 10 + mode_to_num_layers[layering_mode]; ++i) {
cfg.ts_target_bitrate[i - 10] = strtol(argv[i], NULL, 0);
}
// Real time parameters.
cfg.rc_dropframe_thresh = strtol(argv[8], NULL, 0);
cfg.rc_end_usage = VPX_CBR;
cfg.rc_resize_allowed = 0;
cfg.rc_min_quantizer = 2;
cfg.rc_max_quantizer = 56;
cfg.rc_undershoot_pct = 50;
cfg.rc_overshoot_pct = 50;
cfg.rc_buf_initial_sz = 500;
cfg.rc_buf_optimal_sz = 600;
cfg.rc_buf_sz = 1000;
// Enable error resilient mode.
cfg.g_error_resilient = 1;
cfg.g_lag_in_frames = 0;
cfg.kf_mode = VPX_KF_DISABLED;
// Disable automatic keyframe placement.
cfg.kf_min_dist = cfg.kf_max_dist = 3000;
set_temporal_layer_pattern(layering_mode,
&cfg,
layer_flags,
&flag_periodicity);
set_rate_control_metrics(&rc, &cfg);
// Target bandwidth for the whole stream.
// Set to ts_target_bitrate for highest layer (total bitrate).
cfg.rc_target_bitrate = cfg.ts_target_bitrate[cfg.ts_number_layers - 1];
// Open input file.
if (!(infile = fopen(argv[1], "rb"))) {
die("Failed to open %s for reading", argv[1]);
}
// Open an output file for each stream.
for (i = 0; i < cfg.ts_number_layers; ++i) {
char file_name[PATH_MAX];
VpxVideoInfo info;
info.codec_fourcc = encoder->fourcc;
info.frame_width = cfg.g_w;
info.frame_height = cfg.g_h;
info.time_base.numerator = cfg.g_timebase.num;
info.time_base.denominator = cfg.g_timebase.den;
snprintf(file_name, sizeof(file_name), "%s_%d.ivf", argv[2], i);
outfile[i] = vpx_video_writer_open(file_name, kContainerIVF, &info);
if (!outfile[i])
die("Failed to open %s for writing", file_name);
}
// No spatial layers in this encoder.
cfg.ss_number_layers = 1;
// Initialize codec.
if (vpx_codec_enc_init(&codec, encoder->interface(), &cfg, 0))
die_codec(&codec, "Failed to initialize encoder");
vpx_codec_control(&codec, VP8E_SET_CPUUSED, -6);
vpx_codec_control(&codec, VP8E_SET_NOISE_SENSITIVITY, 1);
if (strncmp(encoder->name, "vp9", 3) == 0) {
vpx_codec_control(&codec, VP8E_SET_CPUUSED, 3);
vpx_codec_control(&codec, VP8E_SET_NOISE_SENSITIVITY, 0);
if (vpx_codec_control(&codec, VP9E_SET_SVC, 1)) {
die_codec(&codec, "Failed to set SVC");
}
}
vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 1);
vpx_codec_control(&codec, VP8E_SET_TOKEN_PARTITIONS, 1);
// This controls the maximum target size of the key frame.
// For generating smaller key frames, use a smaller max_intra_size_pct
// value, like 100 or 200.
max_intra_size_pct = (int) (((double)cfg.rc_buf_optimal_sz * 0.5)
* ((double) cfg.g_timebase.den / cfg.g_timebase.num) / 10.0);
vpx_codec_control(&codec, VP8E_SET_MAX_INTRA_BITRATE_PCT, max_intra_size_pct);
frame_avail = 1;
while (frame_avail || got_data) {
vpx_codec_iter_t iter = NULL;
const vpx_codec_cx_pkt_t *pkt;
// Update the temporal layer_id. No spatial layers in this test.
layer_id.spatial_layer_id = 0;
layer_id.temporal_layer_id =
cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity];
if (strncmp(encoder->name, "vp9", 3) == 0) {
vpx_codec_control(&codec, VP9E_SET_SVC_LAYER_ID, &layer_id);
}
flags = layer_flags[frame_cnt % flag_periodicity];
frame_avail = vpx_img_read(&raw, infile);
if (frame_avail)
++rc.layer_input_frames[layer_id.temporal_layer_id];
if (vpx_codec_encode(&codec, frame_avail? &raw : NULL, pts, 1, flags,
VPX_DL_REALTIME)) {
die_codec(&codec, "Failed to encode frame");
}
// Reset KF flag.
if (layering_mode != 7) {
layer_flags[0] &= ~VPX_EFLAG_FORCE_KF;
}
got_data = 0;
while ( (pkt = vpx_codec_get_cx_data(&codec, &iter)) ) {
got_data = 1;
switch (pkt->kind) {
case VPX_CODEC_CX_FRAME_PKT:
for (i = cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity];
i < cfg.ts_number_layers; ++i) {
vpx_video_writer_write_frame(outfile[i], pkt->data.frame.buf,
pkt->data.frame.sz, pts);
++rc.layer_tot_enc_frames[i];
rc.layer_encoding_bitrate[i] += 8.0 * pkt->data.frame.sz;
// Keep count of rate control stats per layer (for non-key frames).
if (i == cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity] &&
!(pkt->data.frame.flags & VPX_FRAME_IS_KEY)) {
rc.layer_avg_frame_size[i] += 8.0 * pkt->data.frame.sz;
rc.layer_avg_rate_mismatch[i] +=
fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[i]) /
rc.layer_pfb[i];
++rc.layer_enc_frames[i];
}
}
break;
default:
break;
}
}
++frame_cnt;
pts += frame_duration;
}
fclose(infile);
printout_rate_control_summary(&rc, &cfg, frame_cnt);
if (vpx_codec_destroy(&codec))
die_codec(&codec, "Failed to destroy codec");
// Try to rewrite the output file headers with the actual frame count.
for (i = 0; i < cfg.ts_number_layers; ++i)
vpx_video_writer_close(outfile[i]);
return EXIT_SUCCESS;
}