vpx/vp8/encoder/onyx_if.c
Tim Kopp f204a9a482 Fixed OUTPUT_YUV_SRC behavior for VP8
By enabling the OUTPUT_YUV_SRC compiler flag, the encoder will write the raw
input to bd.yuv.

The functionality was mostly implemented, but in its previous state did not
compile.

Change-Id: Ia331ad0f4c6e6f9f51e8d42cd33ba8cc146b3dbf
2014-05-30 09:39:07 -07:00

5544 lines
177 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "./vpx_scale_rtcd.h"
#include "vp8/common/onyxc_int.h"
#include "vp8/common/blockd.h"
#include "onyx_int.h"
#include "vp8/common/systemdependent.h"
#include "quantize.h"
#include "vp8/common/alloccommon.h"
#include "mcomp.h"
#include "firstpass.h"
#include "vpx/internal/vpx_psnr.h"
#include "vpx_scale/vpx_scale.h"
#include "vp8/common/extend.h"
#include "ratectrl.h"
#include "vp8/common/quant_common.h"
#include "segmentation.h"
#if CONFIG_POSTPROC
#include "vp8/common/postproc.h"
#endif
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/swapyv12buffer.h"
#include "vp8/common/threading.h"
#include "vpx_ports/vpx_timer.h"
#if ARCH_ARM
#include "vpx_ports/arm.h"
#endif
#if CONFIG_MULTI_RES_ENCODING
#include "mr_dissim.h"
#endif
#include "encodeframe.h"
#include <math.h>
#include <stdio.h>
#include <limits.h>
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
extern int vp8_update_coef_context(VP8_COMP *cpi);
extern void vp8_update_coef_probs(VP8_COMP *cpi);
#endif
extern void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
extern void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val);
extern void vp8cx_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *post, int filt_lvl, int low_var_thresh, int flag);
extern void print_parms(VP8_CONFIG *ocf, char *filenam);
extern unsigned int vp8_get_processor_freq();
extern void print_tree_update_probs();
extern int vp8cx_create_encoder_threads(VP8_COMP *cpi);
extern void vp8cx_remove_encoder_threads(VP8_COMP *cpi);
int vp8_estimate_entropy_savings(VP8_COMP *cpi);
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest);
extern void vp8_temporal_filter_prepare_c(VP8_COMP *cpi, int distance);
static void set_default_lf_deltas(VP8_COMP *cpi);
extern const int vp8_gf_interval_table[101];
#if CONFIG_INTERNAL_STATS
#include "math.h"
extern double vp8_calc_ssim
(
YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest,
int lumamask,
double *weight
);
extern double vp8_calc_ssimg
(
YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest,
double *ssim_y,
double *ssim_u,
double *ssim_v
);
#endif
#ifdef OUTPUT_YUV_SRC
FILE *yuv_file;
#endif
#if 0
FILE *framepsnr;
FILE *kf_list;
FILE *keyfile;
#endif
#if 0
extern int skip_true_count;
extern int skip_false_count;
#endif
#ifdef VP8_ENTROPY_STATS
extern int intra_mode_stats[10][10][10];
#endif
#ifdef SPEEDSTATS
unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int tot_pm = 0;
unsigned int cnt_pm = 0;
unsigned int tot_ef = 0;
unsigned int cnt_ef = 0;
#endif
#ifdef MODE_STATS
extern unsigned __int64 Sectionbits[50];
extern int y_modes[5] ;
extern int uv_modes[4] ;
extern int b_modes[10] ;
extern int inter_y_modes[10] ;
extern int inter_uv_modes[4] ;
extern unsigned int inter_b_modes[15];
#endif
extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
extern const int qrounding_factors[129];
extern const int qzbin_factors[129];
extern void vp8cx_init_quantizer(VP8_COMP *cpi);
extern const int vp8cx_base_skip_false_prob[128];
/* Tables relating active max Q to active min Q */
static const unsigned char kf_low_motion_minq[QINDEX_RANGE] =
{
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,
3,3,3,3,3,3,4,4,4,5,5,5,5,5,6,6,
6,6,7,7,8,8,8,8,9,9,10,10,10,10,11,11,
11,11,12,12,13,13,13,13,14,14,15,15,15,15,16,16,
16,16,17,17,18,18,18,18,19,20,20,21,21,22,23,23
};
static const unsigned char kf_high_motion_minq[QINDEX_RANGE] =
{
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,
3,3,3,3,4,4,4,4,5,5,5,5,5,5,6,6,
6,6,7,7,8,8,8,8,9,9,10,10,10,10,11,11,
11,11,12,12,13,13,13,13,14,14,15,15,15,15,16,16,
16,16,17,17,18,18,18,18,19,19,20,20,20,20,21,21,
21,21,22,22,23,23,24,25,25,26,26,27,28,28,29,30
};
static const unsigned char gf_low_motion_minq[QINDEX_RANGE] =
{
0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,
3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,
7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,
11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,
19,19,20,20,21,21,22,22,23,23,24,24,25,25,26,26,
27,27,28,28,29,29,30,30,31,31,32,32,33,33,34,34,
35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,
43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58
};
static const unsigned char gf_mid_motion_minq[QINDEX_RANGE] =
{
0,0,0,0,1,1,1,1,1,1,2,2,3,3,3,4,
4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,
9,10,10,10,10,11,11,11,12,12,12,12,13,13,13,14,
14,14,15,15,16,16,17,17,18,18,19,19,20,20,21,21,
22,22,23,23,24,24,25,25,26,26,27,27,28,28,29,29,
30,30,31,31,32,32,33,33,34,34,35,35,36,36,37,37,
38,39,39,40,40,41,41,42,42,43,43,44,45,46,47,48,
49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64
};
static const unsigned char gf_high_motion_minq[QINDEX_RANGE] =
{
0,0,0,0,1,1,1,1,1,2,2,2,3,3,3,4,
4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,
9,10,10,10,11,11,12,12,13,13,14,14,15,15,16,16,
17,17,18,18,19,19,20,20,21,21,22,22,23,23,24,24,
25,25,26,26,27,27,28,28,29,29,30,30,31,31,32,32,
33,33,34,34,35,35,36,36,37,37,38,38,39,39,40,40,
41,41,42,42,43,44,45,46,47,48,49,50,51,52,53,54,
55,56,57,58,59,60,62,64,66,68,70,72,74,76,78,80
};
static const unsigned char inter_minq[QINDEX_RANGE] =
{
0,0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,
9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,20,
20,21,22,22,23,24,24,25,26,27,27,28,29,30,30,31,
32,33,33,34,35,36,36,37,38,39,39,40,41,42,42,43,
44,45,46,46,47,48,49,50,50,51,52,53,54,55,55,56,
57,58,59,60,60,61,62,63,64,65,66,67,67,68,69,70,
71,72,73,74,75,75,76,77,78,79,80,81,82,83,84,85,
86,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100
};
#ifdef PACKET_TESTING
extern FILE *vpxlogc;
#endif
static void save_layer_context(VP8_COMP *cpi)
{
LAYER_CONTEXT *lc = &cpi->layer_context[cpi->current_layer];
/* Save layer dependent coding state */
lc->target_bandwidth = cpi->target_bandwidth;
lc->starting_buffer_level = cpi->oxcf.starting_buffer_level;
lc->optimal_buffer_level = cpi->oxcf.optimal_buffer_level;
lc->maximum_buffer_size = cpi->oxcf.maximum_buffer_size;
lc->starting_buffer_level_in_ms = cpi->oxcf.starting_buffer_level_in_ms;
lc->optimal_buffer_level_in_ms = cpi->oxcf.optimal_buffer_level_in_ms;
lc->maximum_buffer_size_in_ms = cpi->oxcf.maximum_buffer_size_in_ms;
lc->buffer_level = cpi->buffer_level;
lc->bits_off_target = cpi->bits_off_target;
lc->total_actual_bits = cpi->total_actual_bits;
lc->worst_quality = cpi->worst_quality;
lc->active_worst_quality = cpi->active_worst_quality;
lc->best_quality = cpi->best_quality;
lc->active_best_quality = cpi->active_best_quality;
lc->ni_av_qi = cpi->ni_av_qi;
lc->ni_tot_qi = cpi->ni_tot_qi;
lc->ni_frames = cpi->ni_frames;
lc->avg_frame_qindex = cpi->avg_frame_qindex;
lc->rate_correction_factor = cpi->rate_correction_factor;
lc->key_frame_rate_correction_factor = cpi->key_frame_rate_correction_factor;
lc->gf_rate_correction_factor = cpi->gf_rate_correction_factor;
lc->zbin_over_quant = cpi->mb.zbin_over_quant;
lc->inter_frame_target = cpi->inter_frame_target;
lc->total_byte_count = cpi->total_byte_count;
lc->filter_level = cpi->common.filter_level;
lc->last_frame_percent_intra = cpi->last_frame_percent_intra;
memcpy (lc->count_mb_ref_frame_usage,
cpi->mb.count_mb_ref_frame_usage,
sizeof(cpi->mb.count_mb_ref_frame_usage));
}
static void restore_layer_context(VP8_COMP *cpi, const int layer)
{
LAYER_CONTEXT *lc = &cpi->layer_context[layer];
/* Restore layer dependent coding state */
cpi->current_layer = layer;
cpi->target_bandwidth = lc->target_bandwidth;
cpi->oxcf.target_bandwidth = lc->target_bandwidth;
cpi->oxcf.starting_buffer_level = lc->starting_buffer_level;
cpi->oxcf.optimal_buffer_level = lc->optimal_buffer_level;
cpi->oxcf.maximum_buffer_size = lc->maximum_buffer_size;
cpi->oxcf.starting_buffer_level_in_ms = lc->starting_buffer_level_in_ms;
cpi->oxcf.optimal_buffer_level_in_ms = lc->optimal_buffer_level_in_ms;
cpi->oxcf.maximum_buffer_size_in_ms = lc->maximum_buffer_size_in_ms;
cpi->buffer_level = lc->buffer_level;
cpi->bits_off_target = lc->bits_off_target;
cpi->total_actual_bits = lc->total_actual_bits;
cpi->active_worst_quality = lc->active_worst_quality;
cpi->active_best_quality = lc->active_best_quality;
cpi->ni_av_qi = lc->ni_av_qi;
cpi->ni_tot_qi = lc->ni_tot_qi;
cpi->ni_frames = lc->ni_frames;
cpi->avg_frame_qindex = lc->avg_frame_qindex;
cpi->rate_correction_factor = lc->rate_correction_factor;
cpi->key_frame_rate_correction_factor = lc->key_frame_rate_correction_factor;
cpi->gf_rate_correction_factor = lc->gf_rate_correction_factor;
cpi->mb.zbin_over_quant = lc->zbin_over_quant;
cpi->inter_frame_target = lc->inter_frame_target;
cpi->total_byte_count = lc->total_byte_count;
cpi->common.filter_level = lc->filter_level;
cpi->last_frame_percent_intra = lc->last_frame_percent_intra;
memcpy (cpi->mb.count_mb_ref_frame_usage,
lc->count_mb_ref_frame_usage,
sizeof(cpi->mb.count_mb_ref_frame_usage));
}
static int rescale(int val, int num, int denom)
{
int64_t llnum = num;
int64_t llden = denom;
int64_t llval = val;
return (int)(llval * llnum / llden);
}
static void init_temporal_layer_context(VP8_COMP *cpi,
VP8_CONFIG *oxcf,
const int layer,
double prev_layer_framerate)
{
LAYER_CONTEXT *lc = &cpi->layer_context[layer];
lc->framerate = cpi->output_framerate / cpi->oxcf.rate_decimator[layer];
lc->target_bandwidth = cpi->oxcf.target_bitrate[layer] * 1000;
lc->starting_buffer_level_in_ms = oxcf->starting_buffer_level;
lc->optimal_buffer_level_in_ms = oxcf->optimal_buffer_level;
lc->maximum_buffer_size_in_ms = oxcf->maximum_buffer_size;
lc->starting_buffer_level =
rescale((int)(oxcf->starting_buffer_level),
lc->target_bandwidth, 1000);
if (oxcf->optimal_buffer_level == 0)
lc->optimal_buffer_level = lc->target_bandwidth / 8;
else
lc->optimal_buffer_level =
rescale((int)(oxcf->optimal_buffer_level),
lc->target_bandwidth, 1000);
if (oxcf->maximum_buffer_size == 0)
lc->maximum_buffer_size = lc->target_bandwidth / 8;
else
lc->maximum_buffer_size =
rescale((int)(oxcf->maximum_buffer_size),
lc->target_bandwidth, 1000);
/* Work out the average size of a frame within this layer */
if (layer > 0)
lc->avg_frame_size_for_layer =
(int)((cpi->oxcf.target_bitrate[layer] -
cpi->oxcf.target_bitrate[layer-1]) * 1000 /
(lc->framerate - prev_layer_framerate));
lc->active_worst_quality = cpi->oxcf.worst_allowed_q;
lc->active_best_quality = cpi->oxcf.best_allowed_q;
lc->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
lc->buffer_level = lc->starting_buffer_level;
lc->bits_off_target = lc->starting_buffer_level;
lc->total_actual_bits = 0;
lc->ni_av_qi = 0;
lc->ni_tot_qi = 0;
lc->ni_frames = 0;
lc->rate_correction_factor = 1.0;
lc->key_frame_rate_correction_factor = 1.0;
lc->gf_rate_correction_factor = 1.0;
lc->inter_frame_target = 0;
}
// Upon a run-time change in temporal layers, reset the layer context parameters
// for any "new" layers. For "existing" layers, let them inherit the parameters
// from the previous layer state (at the same layer #). In future we may want
// to better map the previous layer state(s) to the "new" ones.
static void reset_temporal_layer_change(VP8_COMP *cpi,
VP8_CONFIG *oxcf,
const int prev_num_layers)
{
int i;
double prev_layer_framerate = 0;
const int curr_num_layers = cpi->oxcf.number_of_layers;
// If the previous state was 1 layer, get current layer context from cpi.
// We need this to set the layer context for the new layers below.
if (prev_num_layers == 1)
{
cpi->current_layer = 0;
save_layer_context(cpi);
}
for (i = 0; i < curr_num_layers; i++)
{
LAYER_CONTEXT *lc = &cpi->layer_context[i];
if (i >= prev_num_layers)
{
init_temporal_layer_context(cpi, oxcf, i, prev_layer_framerate);
}
// The initial buffer levels are set based on their starting levels.
// We could set the buffer levels based on the previous state (normalized
// properly by the layer bandwidths) but we would need to keep track of
// the previous set of layer bandwidths (i.e., target_bitrate[i])
// before the layer change. For now, reset to the starting levels.
lc->buffer_level = cpi->oxcf.starting_buffer_level_in_ms *
cpi->oxcf.target_bitrate[i];
lc->bits_off_target = lc->buffer_level;
// TDOD(marpan): Should we set the rate_correction_factor and
// active_worst/best_quality to values derived from the previous layer
// state (to smooth-out quality dips/rate fluctuation at transition)?
// We need to treat the 1 layer case separately: oxcf.target_bitrate[i]
// is not set for 1 layer, and the restore_layer_context/save_context()
// are not called in the encoding loop, so we need to call it here to
// pass the layer context state to |cpi|.
if (curr_num_layers == 1)
{
lc->target_bandwidth = cpi->oxcf.target_bandwidth;
lc->buffer_level = cpi->oxcf.starting_buffer_level_in_ms *
lc->target_bandwidth / 1000;
lc->bits_off_target = lc->buffer_level;
restore_layer_context(cpi, 0);
}
prev_layer_framerate = cpi->output_framerate /
cpi->oxcf.rate_decimator[i];
}
}
static void setup_features(VP8_COMP *cpi)
{
// If segmentation enabled set the update flags
if ( cpi->mb.e_mbd.segmentation_enabled )
{
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
else
{
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
}
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 0;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
vpx_memset(cpi->mb.e_mbd.last_ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
vpx_memset(cpi->mb.e_mbd.last_mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
set_default_lf_deltas(cpi);
}
static void dealloc_raw_frame_buffers(VP8_COMP *cpi);
static void dealloc_compressor_data(VP8_COMP *cpi)
{
vpx_free(cpi->tplist);
cpi->tplist = NULL;
/* Delete last frame MV storage buffers */
vpx_free(cpi->lfmv);
cpi->lfmv = 0;
vpx_free(cpi->lf_ref_frame_sign_bias);
cpi->lf_ref_frame_sign_bias = 0;
vpx_free(cpi->lf_ref_frame);
cpi->lf_ref_frame = 0;
/* Delete sementation map */
vpx_free(cpi->segmentation_map);
cpi->segmentation_map = 0;
vpx_free(cpi->active_map);
cpi->active_map = 0;
vp8_de_alloc_frame_buffers(&cpi->common);
vp8_yv12_de_alloc_frame_buffer(&cpi->pick_lf_lvl_frame);
vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source);
dealloc_raw_frame_buffers(cpi);
vpx_free(cpi->tok);
cpi->tok = 0;
/* Structure used to monitor GF usage */
vpx_free(cpi->gf_active_flags);
cpi->gf_active_flags = 0;
/* Activity mask based per mb zbin adjustments */
vpx_free(cpi->mb_activity_map);
cpi->mb_activity_map = 0;
vpx_free(cpi->mb.pip);
cpi->mb.pip = 0;
#if CONFIG_MULTITHREAD
vpx_free(cpi->mt_current_mb_col);
cpi->mt_current_mb_col = NULL;
#endif
}
static void enable_segmentation(VP8_COMP *cpi)
{
/* Set the appropriate feature bit */
cpi->mb.e_mbd.segmentation_enabled = 1;
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
static void disable_segmentation(VP8_COMP *cpi)
{
/* Clear the appropriate feature bit */
cpi->mb.e_mbd.segmentation_enabled = 0;
}
/* Valid values for a segment are 0 to 3
* Segmentation map is arrange as [Rows][Columns]
*/
static void set_segmentation_map(VP8_COMP *cpi, unsigned char *segmentation_map)
{
/* Copy in the new segmentation map */
vpx_memcpy(cpi->segmentation_map, segmentation_map, (cpi->common.mb_rows * cpi->common.mb_cols));
/* Signal that the map should be updated. */
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
/* The values given for each segment can be either deltas (from the default
* value chosen for the frame) or absolute values.
*
* Valid range for abs values is:
* (0-127 for MB_LVL_ALT_Q), (0-63 for SEGMENT_ALT_LF)
* Valid range for delta values are:
* (+/-127 for MB_LVL_ALT_Q), (+/-63 for SEGMENT_ALT_LF)
*
* abs_delta = SEGMENT_DELTADATA (deltas)
* abs_delta = SEGMENT_ABSDATA (use the absolute values given).
*
*/
static void set_segment_data(VP8_COMP *cpi, signed char *feature_data, unsigned char abs_delta)
{
cpi->mb.e_mbd.mb_segement_abs_delta = abs_delta;
vpx_memcpy(cpi->segment_feature_data, feature_data, sizeof(cpi->segment_feature_data));
}
static void segmentation_test_function(VP8_COMP *cpi)
{
unsigned char *seg_map;
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
// Create a temporary map for segmentation data.
CHECK_MEM_ERROR(seg_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
// Set the segmentation Map
set_segmentation_map(cpi, seg_map);
// Activate segmentation.
enable_segmentation(cpi);
// Set up the quant segment data
feature_data[MB_LVL_ALT_Q][0] = 0;
feature_data[MB_LVL_ALT_Q][1] = 4;
feature_data[MB_LVL_ALT_Q][2] = 0;
feature_data[MB_LVL_ALT_Q][3] = 0;
// Set up the loop segment data
feature_data[MB_LVL_ALT_LF][0] = 0;
feature_data[MB_LVL_ALT_LF][1] = 0;
feature_data[MB_LVL_ALT_LF][2] = 0;
feature_data[MB_LVL_ALT_LF][3] = 0;
// Initialise the feature data structure
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA);
// Delete sementation map
vpx_free(seg_map);
seg_map = 0;
}
/* A simple function to cyclically refresh the background at a lower Q */
static void cyclic_background_refresh(VP8_COMP *cpi, int Q, int lf_adjustment)
{
unsigned char *seg_map = cpi->segmentation_map;
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
int i;
int block_count = cpi->cyclic_refresh_mode_max_mbs_perframe;
int mbs_in_frame = cpi->common.mb_rows * cpi->common.mb_cols;
cpi->cyclic_refresh_q = Q / 2;
// Set every macroblock to be eligible for update.
// For key frame this will reset seg map to 0.
vpx_memset(cpi->segmentation_map, 0, mbs_in_frame);
if (cpi->common.frame_type != KEY_FRAME)
{
/* Cycle through the macro_block rows */
/* MB loop to set local segmentation map */
i = cpi->cyclic_refresh_mode_index;
assert(i < mbs_in_frame);
do
{
/* If the MB is as a candidate for clean up then mark it for
* possible boost/refresh (segment 1) The segment id may get
* reset to 0 later if the MB gets coded anything other than
* last frame 0,0 as only (last frame 0,0) MBs are eligable for
* refresh : that is to say Mbs likely to be background blocks.
*/
if (cpi->cyclic_refresh_map[i] == 0)
{
seg_map[i] = 1;
block_count --;
}
else if (cpi->cyclic_refresh_map[i] < 0)
cpi->cyclic_refresh_map[i]++;
i++;
if (i == mbs_in_frame)
i = 0;
}
while(block_count && i != cpi->cyclic_refresh_mode_index);
cpi->cyclic_refresh_mode_index = i;
}
/* Activate segmentation. */
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
enable_segmentation(cpi);
/* Set up the quant segment data */
feature_data[MB_LVL_ALT_Q][0] = 0;
feature_data[MB_LVL_ALT_Q][1] = (cpi->cyclic_refresh_q - Q);
feature_data[MB_LVL_ALT_Q][2] = 0;
feature_data[MB_LVL_ALT_Q][3] = 0;
/* Set up the loop segment data */
feature_data[MB_LVL_ALT_LF][0] = 0;
feature_data[MB_LVL_ALT_LF][1] = lf_adjustment;
feature_data[MB_LVL_ALT_LF][2] = 0;
feature_data[MB_LVL_ALT_LF][3] = 0;
/* Initialise the feature data structure */
set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA);
}
static void set_default_lf_deltas(VP8_COMP *cpi)
{
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 1;
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
/* Test of ref frame deltas */
cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2;
cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0;
cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2;
cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2;
cpi->mb.e_mbd.mode_lf_deltas[0] = 4; /* BPRED */
if(cpi->oxcf.Mode == MODE_REALTIME)
cpi->mb.e_mbd.mode_lf_deltas[1] = -12; /* Zero */
else
cpi->mb.e_mbd.mode_lf_deltas[1] = -2; /* Zero */
cpi->mb.e_mbd.mode_lf_deltas[2] = 2; /* New mv */
cpi->mb.e_mbd.mode_lf_deltas[3] = 4; /* Split mv */
}
/* Convenience macros for mapping speed and mode into a continuous
* range
*/
#define GOOD(x) (x+1)
#define RT(x) (x+7)
static int speed_map(int speed, const int *map)
{
int res;
do
{
res = *map++;
} while(speed >= *map++);
return res;
}
static const int thresh_mult_map_znn[] = {
/* map common to zero, nearest, and near */
0, GOOD(2), 1500, GOOD(3), 2000, RT(0), 1000, RT(2), 2000, INT_MAX
};
static const int thresh_mult_map_vhpred[] = {
1000, GOOD(2), 1500, GOOD(3), 2000, RT(0), 1000, RT(1), 2000,
RT(7), INT_MAX, INT_MAX
};
static const int thresh_mult_map_bpred[] = {
2000, GOOD(0), 2500, GOOD(2), 5000, GOOD(3), 7500, RT(0), 2500, RT(1), 5000,
RT(6), INT_MAX, INT_MAX
};
static const int thresh_mult_map_tm[] = {
1000, GOOD(2), 1500, GOOD(3), 2000, RT(0), 0, RT(1), 1000, RT(2), 2000,
RT(7), INT_MAX, INT_MAX
};
static const int thresh_mult_map_new1[] = {
1000, GOOD(2), 2000, RT(0), 2000, INT_MAX
};
static const int thresh_mult_map_new2[] = {
1000, GOOD(2), 2000, GOOD(3), 2500, GOOD(5), 4000, RT(0), 2000, RT(2), 2500,
RT(5), 4000, INT_MAX
};
static const int thresh_mult_map_split1[] = {
2500, GOOD(0), 1700, GOOD(2), 10000, GOOD(3), 25000, GOOD(4), INT_MAX,
RT(0), 5000, RT(1), 10000, RT(2), 25000, RT(3), INT_MAX, INT_MAX
};
static const int thresh_mult_map_split2[] = {
5000, GOOD(0), 4500, GOOD(2), 20000, GOOD(3), 50000, GOOD(4), INT_MAX,
RT(0), 10000, RT(1), 20000, RT(2), 50000, RT(3), INT_MAX, INT_MAX
};
static const int mode_check_freq_map_zn2[] = {
/* {zero,nearest}{2,3} */
0, RT(10), 1<<1, RT(11), 1<<2, RT(12), 1<<3, INT_MAX
};
static const int mode_check_freq_map_vhbpred[] = {
0, GOOD(5), 2, RT(0), 0, RT(3), 2, RT(5), 4, INT_MAX
};
static const int mode_check_freq_map_near2[] = {
0, GOOD(5), 2, RT(0), 0, RT(3), 2, RT(10), 1<<2, RT(11), 1<<3, RT(12), 1<<4,
INT_MAX
};
static const int mode_check_freq_map_new1[] = {
0, RT(10), 1<<1, RT(11), 1<<2, RT(12), 1<<3, INT_MAX
};
static const int mode_check_freq_map_new2[] = {
0, GOOD(5), 4, RT(0), 0, RT(3), 4, RT(10), 1<<3, RT(11), 1<<4, RT(12), 1<<5,
INT_MAX
};
static const int mode_check_freq_map_split1[] = {
0, GOOD(2), 2, GOOD(3), 7, RT(1), 2, RT(2), 7, INT_MAX
};
static const int mode_check_freq_map_split2[] = {
0, GOOD(1), 2, GOOD(2), 4, GOOD(3), 15, RT(1), 4, RT(2), 15, INT_MAX
};
void vp8_set_speed_features(VP8_COMP *cpi)
{
SPEED_FEATURES *sf = &cpi->sf;
int Mode = cpi->compressor_speed;
int Speed = cpi->Speed;
int i;
VP8_COMMON *cm = &cpi->common;
int last_improved_quant = sf->improved_quant;
int ref_frames;
/* Initialise default mode frequency sampling variables */
for (i = 0; i < MAX_MODES; i ++)
{
cpi->mode_check_freq[i] = 0;
}
cpi->mb.mbs_tested_so_far = 0;
/* best quality defaults */
sf->RD = 1;
sf->search_method = NSTEP;
sf->improved_quant = 1;
sf->improved_dct = 1;
sf->auto_filter = 1;
sf->recode_loop = 1;
sf->quarter_pixel_search = 1;
sf->half_pixel_search = 1;
sf->iterative_sub_pixel = 1;
sf->optimize_coefficients = 1;
sf->use_fastquant_for_pick = 0;
sf->no_skip_block4x4_search = 1;
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
sf->improved_mv_pred = 1;
/* default thresholds to 0 */
for (i = 0; i < MAX_MODES; i++)
sf->thresh_mult[i] = 0;
/* Count enabled references */
ref_frames = 1;
if (cpi->ref_frame_flags & VP8_LAST_FRAME)
ref_frames++;
if (cpi->ref_frame_flags & VP8_GOLD_FRAME)
ref_frames++;
if (cpi->ref_frame_flags & VP8_ALTR_FRAME)
ref_frames++;
/* Convert speed to continuous range, with clamping */
if (Mode == 0)
Speed = 0;
else if (Mode == 2)
Speed = RT(Speed);
else
{
if (Speed > 5)
Speed = 5;
Speed = GOOD(Speed);
}
sf->thresh_mult[THR_ZERO1] =
sf->thresh_mult[THR_NEAREST1] =
sf->thresh_mult[THR_NEAR1] =
sf->thresh_mult[THR_DC] = 0; /* always */
sf->thresh_mult[THR_ZERO2] =
sf->thresh_mult[THR_ZERO3] =
sf->thresh_mult[THR_NEAREST2] =
sf->thresh_mult[THR_NEAREST3] =
sf->thresh_mult[THR_NEAR2] =
sf->thresh_mult[THR_NEAR3] = speed_map(Speed, thresh_mult_map_znn);
sf->thresh_mult[THR_V_PRED] =
sf->thresh_mult[THR_H_PRED] = speed_map(Speed, thresh_mult_map_vhpred);
sf->thresh_mult[THR_B_PRED] = speed_map(Speed, thresh_mult_map_bpred);
sf->thresh_mult[THR_TM] = speed_map(Speed, thresh_mult_map_tm);
sf->thresh_mult[THR_NEW1] = speed_map(Speed, thresh_mult_map_new1);
sf->thresh_mult[THR_NEW2] =
sf->thresh_mult[THR_NEW3] = speed_map(Speed, thresh_mult_map_new2);
sf->thresh_mult[THR_SPLIT1] = speed_map(Speed, thresh_mult_map_split1);
sf->thresh_mult[THR_SPLIT2] =
sf->thresh_mult[THR_SPLIT3] = speed_map(Speed, thresh_mult_map_split2);
cpi->mode_check_freq[THR_ZERO1] =
cpi->mode_check_freq[THR_NEAREST1] =
cpi->mode_check_freq[THR_NEAR1] =
cpi->mode_check_freq[THR_TM] =
cpi->mode_check_freq[THR_DC] = 0; /* always */
cpi->mode_check_freq[THR_ZERO2] =
cpi->mode_check_freq[THR_ZERO3] =
cpi->mode_check_freq[THR_NEAREST2] =
cpi->mode_check_freq[THR_NEAREST3] = speed_map(Speed,
mode_check_freq_map_zn2);
cpi->mode_check_freq[THR_NEAR2] =
cpi->mode_check_freq[THR_NEAR3] = speed_map(Speed,
mode_check_freq_map_near2);
cpi->mode_check_freq[THR_V_PRED] =
cpi->mode_check_freq[THR_H_PRED] =
cpi->mode_check_freq[THR_B_PRED] = speed_map(Speed,
mode_check_freq_map_vhbpred);
cpi->mode_check_freq[THR_NEW1] = speed_map(Speed,
mode_check_freq_map_new1);
cpi->mode_check_freq[THR_NEW2] =
cpi->mode_check_freq[THR_NEW3] = speed_map(Speed,
mode_check_freq_map_new2);
cpi->mode_check_freq[THR_SPLIT1] = speed_map(Speed,
mode_check_freq_map_split1);
cpi->mode_check_freq[THR_SPLIT2] =
cpi->mode_check_freq[THR_SPLIT3] = speed_map(Speed,
mode_check_freq_map_split2);
Speed = cpi->Speed;
switch (Mode)
{
#if !(CONFIG_REALTIME_ONLY)
case 0: /* best quality mode */
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
break;
case 1:
case 3:
if (Speed > 0)
{
/* Disable coefficient optimization above speed 0 */
sf->optimize_coefficients = 0;
sf->use_fastquant_for_pick = 1;
sf->no_skip_block4x4_search = 0;
sf->first_step = 1;
}
if (Speed > 2)
{
sf->improved_quant = 0;
sf->improved_dct = 0;
/* Only do recode loop on key frames, golden frames and
* alt ref frames
*/
sf->recode_loop = 2;
}
if (Speed > 3)
{
sf->auto_filter = 1;
sf->recode_loop = 0; /* recode loop off */
sf->RD = 0; /* Turn rd off */
}
if (Speed > 4)
{
sf->auto_filter = 0; /* Faster selection of loop filter */
}
break;
#endif
case 2:
sf->optimize_coefficients = 0;
sf->recode_loop = 0;
sf->auto_filter = 1;
sf->iterative_sub_pixel = 1;
sf->search_method = NSTEP;
if (Speed > 0)
{
sf->improved_quant = 0;
sf->improved_dct = 0;
sf->use_fastquant_for_pick = 1;
sf->no_skip_block4x4_search = 0;
sf->first_step = 1;
}
if (Speed > 2)
sf->auto_filter = 0; /* Faster selection of loop filter */
if (Speed > 3)
{
sf->RD = 0;
sf->auto_filter = 1;
}
if (Speed > 4)
{
sf->auto_filter = 0; /* Faster selection of loop filter */
sf->search_method = HEX;
sf->iterative_sub_pixel = 0;
}
if (Speed > 6)
{
unsigned int sum = 0;
unsigned int total_mbs = cm->MBs;
int thresh;
unsigned int total_skip;
int min = 2000;
if (cpi->oxcf.encode_breakout > 2000)
min = cpi->oxcf.encode_breakout;
min >>= 7;
for (i = 0; i < min; i++)
{
sum += cpi->mb.error_bins[i];
}
total_skip = sum;
sum = 0;
/* i starts from 2 to make sure thresh started from 2048 */
for (; i < 1024; i++)
{
sum += cpi->mb.error_bins[i];
if (10 * sum >= (unsigned int)(cpi->Speed - 6)*(total_mbs - total_skip))
break;
}
i--;
thresh = (i << 7);
if (thresh < 2000)
thresh = 2000;
if (ref_frames > 1)
{
sf->thresh_mult[THR_NEW1 ] = thresh;
sf->thresh_mult[THR_NEAREST1 ] = thresh >> 1;
sf->thresh_mult[THR_NEAR1 ] = thresh >> 1;
}
if (ref_frames > 2)
{
sf->thresh_mult[THR_NEW2] = thresh << 1;
sf->thresh_mult[THR_NEAREST2 ] = thresh;
sf->thresh_mult[THR_NEAR2 ] = thresh;
}
if (ref_frames > 3)
{
sf->thresh_mult[THR_NEW3] = thresh << 1;
sf->thresh_mult[THR_NEAREST3 ] = thresh;
sf->thresh_mult[THR_NEAR3 ] = thresh;
}
sf->improved_mv_pred = 0;
}
if (Speed > 8)
sf->quarter_pixel_search = 0;
if(cm->version == 0)
{
cm->filter_type = NORMAL_LOOPFILTER;
if (Speed >= 14)
cm->filter_type = SIMPLE_LOOPFILTER;
}
else
{
cm->filter_type = SIMPLE_LOOPFILTER;
}
/* This has a big hit on quality. Last resort */
if (Speed >= 15)
sf->half_pixel_search = 0;
vpx_memset(cpi->mb.error_bins, 0, sizeof(cpi->mb.error_bins));
}; /* switch */
/* Slow quant, dct and trellis not worthwhile for first pass
* so make sure they are always turned off.
*/
if ( cpi->pass == 1 )
{
sf->improved_quant = 0;
sf->optimize_coefficients = 0;
sf->improved_dct = 0;
}
if (cpi->sf.search_method == NSTEP)
{
vp8_init3smotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
}
else if (cpi->sf.search_method == DIAMOND)
{
vp8_init_dsmotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
}
if (cpi->sf.improved_dct)
{
cpi->mb.short_fdct8x4 = vp8_short_fdct8x4;
cpi->mb.short_fdct4x4 = vp8_short_fdct4x4;
}
else
{
/* No fast FDCT defined for any platform at this time. */
cpi->mb.short_fdct8x4 = vp8_short_fdct8x4;
cpi->mb.short_fdct4x4 = vp8_short_fdct4x4;
}
cpi->mb.short_walsh4x4 = vp8_short_walsh4x4;
if (cpi->sf.improved_quant)
{
cpi->mb.quantize_b = vp8_regular_quantize_b;
cpi->mb.quantize_b_pair = vp8_regular_quantize_b_pair;
}
else
{
cpi->mb.quantize_b = vp8_fast_quantize_b;
cpi->mb.quantize_b_pair = vp8_fast_quantize_b_pair;
}
if (cpi->sf.improved_quant != last_improved_quant)
vp8cx_init_quantizer(cpi);
if (cpi->sf.iterative_sub_pixel == 1)
{
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively;
}
else if (cpi->sf.quarter_pixel_search)
{
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step;
}
else if (cpi->sf.half_pixel_search)
{
cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step;
}
else
{
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
}
if (cpi->sf.optimize_coefficients == 1 && cpi->pass!=1)
cpi->mb.optimize = 1;
else
cpi->mb.optimize = 0;
if (cpi->common.full_pixel)
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
#ifdef SPEEDSTATS
frames_at_speed[cpi->Speed]++;
#endif
}
#undef GOOD
#undef RT
static void alloc_raw_frame_buffers(VP8_COMP *cpi)
{
#if VP8_TEMPORAL_ALT_REF
int width = (cpi->oxcf.Width + 15) & ~15;
int height = (cpi->oxcf.Height + 15) & ~15;
#endif
cpi->lookahead = vp8_lookahead_init(cpi->oxcf.Width, cpi->oxcf.Height,
cpi->oxcf.lag_in_frames);
if(!cpi->lookahead)
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
#if VP8_TEMPORAL_ALT_REF
if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer,
width, height, VP8BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
#endif
}
static void dealloc_raw_frame_buffers(VP8_COMP *cpi)
{
#if VP8_TEMPORAL_ALT_REF
vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer);
#endif
vp8_lookahead_destroy(cpi->lookahead);
}
static int vp8_alloc_partition_data(VP8_COMP *cpi)
{
vpx_free(cpi->mb.pip);
cpi->mb.pip = vpx_calloc((cpi->common.mb_cols + 1) *
(cpi->common.mb_rows + 1),
sizeof(PARTITION_INFO));
if(!cpi->mb.pip)
return 1;
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
return 0;
}
void vp8_alloc_compressor_data(VP8_COMP *cpi)
{
VP8_COMMON *cm = & cpi->common;
int width = cm->Width;
int height = cm->Height;
if (vp8_alloc_frame_buffers(cm, width, height))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
if (vp8_alloc_partition_data(cpi))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate partition data");
if ((width & 0xf) != 0)
width += 16 - (width & 0xf);
if ((height & 0xf) != 0)
height += 16 - (height & 0xf);
if (vp8_yv12_alloc_frame_buffer(&cpi->pick_lf_lvl_frame,
width, height, VP8BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source,
width, height, VP8BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
vpx_free(cpi->tok);
{
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
unsigned int tokens = 8 * 24 * 16; /* one MB for each thread */
#else
unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16;
#endif
CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
}
/* Data used for real time vc mode to see if gf needs refreshing */
cpi->zeromv_count = 0;
/* Structures used to monitor GF usage */
vpx_free(cpi->gf_active_flags);
CHECK_MEM_ERROR(cpi->gf_active_flags,
vpx_calloc(sizeof(*cpi->gf_active_flags),
cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
vpx_free(cpi->mb_activity_map);
CHECK_MEM_ERROR(cpi->mb_activity_map,
vpx_calloc(sizeof(*cpi->mb_activity_map),
cm->mb_rows * cm->mb_cols));
/* allocate memory for storing last frame's MVs for MV prediction. */
vpx_free(cpi->lfmv);
CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cm->mb_rows+2) * (cm->mb_cols+2),
sizeof(*cpi->lfmv)));
vpx_free(cpi->lf_ref_frame_sign_bias);
CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias,
vpx_calloc((cm->mb_rows+2) * (cm->mb_cols+2),
sizeof(*cpi->lf_ref_frame_sign_bias)));
vpx_free(cpi->lf_ref_frame);
CHECK_MEM_ERROR(cpi->lf_ref_frame,
vpx_calloc((cm->mb_rows+2) * (cm->mb_cols+2),
sizeof(*cpi->lf_ref_frame)));
/* Create the encoder segmentation map and set all entries to 0 */
vpx_free(cpi->segmentation_map);
CHECK_MEM_ERROR(cpi->segmentation_map,
vpx_calloc(cm->mb_rows * cm->mb_cols,
sizeof(*cpi->segmentation_map)));
cpi->cyclic_refresh_mode_index = 0;
vpx_free(cpi->active_map);
CHECK_MEM_ERROR(cpi->active_map,
vpx_calloc(cm->mb_rows * cm->mb_cols,
sizeof(*cpi->active_map)));
vpx_memset(cpi->active_map , 1, (cm->mb_rows * cm->mb_cols));
#if CONFIG_MULTITHREAD
if (width < 640)
cpi->mt_sync_range = 1;
else if (width <= 1280)
cpi->mt_sync_range = 4;
else if (width <= 2560)
cpi->mt_sync_range = 8;
else
cpi->mt_sync_range = 16;
if (cpi->oxcf.multi_threaded > 1)
{
vpx_free(cpi->mt_current_mb_col);
CHECK_MEM_ERROR(cpi->mt_current_mb_col,
vpx_malloc(sizeof(*cpi->mt_current_mb_col) * cm->mb_rows));
}
#endif
vpx_free(cpi->tplist);
CHECK_MEM_ERROR(cpi->tplist, vpx_malloc(sizeof(TOKENLIST) * cm->mb_rows));
}
/* Quant MOD */
static const int q_trans[] =
{
0, 1, 2, 3, 4, 5, 7, 8,
9, 10, 12, 13, 15, 17, 18, 19,
20, 21, 23, 24, 25, 26, 27, 28,
29, 30, 31, 33, 35, 37, 39, 41,
43, 45, 47, 49, 51, 53, 55, 57,
59, 61, 64, 67, 70, 73, 76, 79,
82, 85, 88, 91, 94, 97, 100, 103,
106, 109, 112, 115, 118, 121, 124, 127,
};
int vp8_reverse_trans(int x)
{
int i;
for (i = 0; i < 64; i++)
if (q_trans[i] >= x)
return i;
return 63;
}
void vp8_new_framerate(VP8_COMP *cpi, double framerate)
{
if(framerate < .1)
framerate = 30;
cpi->framerate = framerate;
cpi->output_framerate = framerate;
cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth /
cpi->output_framerate);
cpi->av_per_frame_bandwidth = cpi->per_frame_bandwidth;
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth *
cpi->oxcf.two_pass_vbrmin_section / 100);
/* Set Maximum gf/arf interval */
cpi->max_gf_interval = ((int)(cpi->output_framerate / 2.0) + 2);
if(cpi->max_gf_interval < 12)
cpi->max_gf_interval = 12;
/* Extended interval for genuinely static scenes */
cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
/* Special conditions when altr ref frame enabled in lagged compress mode */
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames)
{
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
}
if ( cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval )
cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
}
static void init_config(VP8_COMP *cpi, VP8_CONFIG *oxcf)
{
VP8_COMMON *cm = &cpi->common;
cpi->oxcf = *oxcf;
cpi->auto_gold = 1;
cpi->auto_adjust_gold_quantizer = 1;
cm->version = oxcf->Version;
vp8_setup_version(cm);
/* frame rate is not available on the first frame, as it's derived from
* the observed timestamps. The actual value used here doesn't matter
* too much, as it will adapt quickly. If the reciprocal of the timebase
* seems like a reasonable framerate, then use that as a guess, otherwise
* use 30.
*/
cpi->framerate = (double)(oxcf->timebase.den) /
(double)(oxcf->timebase.num);
if (cpi->framerate > 180)
cpi->framerate = 30;
cpi->ref_framerate = cpi->framerate;
/* change includes all joint functionality */
vp8_change_config(cpi, oxcf);
/* Initialize active best and worst q and average q values. */
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
/* Initialise the starting buffer levels */
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->total_actual_bits = 0;
cpi->total_target_vs_actual = 0;
/* Temporal scalabilty */
if (cpi->oxcf.number_of_layers > 1)
{
unsigned int i;
double prev_layer_framerate=0;
for (i=0; i<cpi->oxcf.number_of_layers; i++)
{
init_temporal_layer_context(cpi, oxcf, i, prev_layer_framerate);
prev_layer_framerate = cpi->output_framerate /
cpi->oxcf.rate_decimator[i];
}
}
#if VP8_TEMPORAL_ALT_REF
{
int i;
cpi->fixed_divide[0] = 0;
for (i = 1; i < 512; i++)
cpi->fixed_divide[i] = 0x80000 / i;
}
#endif
}
static void update_layer_contexts (VP8_COMP *cpi)
{
VP8_CONFIG *oxcf = &cpi->oxcf;
/* Update snapshots of the layer contexts to reflect new parameters */
if (oxcf->number_of_layers > 1)
{
unsigned int i;
double prev_layer_framerate=0;
assert(oxcf->number_of_layers <= VPX_TS_MAX_LAYERS);
for (i=0; i<oxcf->number_of_layers; i++)
{
LAYER_CONTEXT *lc = &cpi->layer_context[i];
lc->framerate =
cpi->ref_framerate / oxcf->rate_decimator[i];
lc->target_bandwidth = oxcf->target_bitrate[i] * 1000;
lc->starting_buffer_level = rescale(
(int)oxcf->starting_buffer_level_in_ms,
lc->target_bandwidth, 1000);
if (oxcf->optimal_buffer_level == 0)
lc->optimal_buffer_level = lc->target_bandwidth / 8;
else
lc->optimal_buffer_level = rescale(
(int)oxcf->optimal_buffer_level_in_ms,
lc->target_bandwidth, 1000);
if (oxcf->maximum_buffer_size == 0)
lc->maximum_buffer_size = lc->target_bandwidth / 8;
else
lc->maximum_buffer_size = rescale(
(int)oxcf->maximum_buffer_size_in_ms,
lc->target_bandwidth, 1000);
/* Work out the average size of a frame within this layer */
if (i > 0)
lc->avg_frame_size_for_layer =
(int)((oxcf->target_bitrate[i] -
oxcf->target_bitrate[i-1]) * 1000 /
(lc->framerate - prev_layer_framerate));
prev_layer_framerate = lc->framerate;
}
}
}
void vp8_change_config(VP8_COMP *cpi, VP8_CONFIG *oxcf)
{
VP8_COMMON *cm = &cpi->common;
int last_w, last_h, prev_number_of_layers;
if (!cpi)
return;
if (!oxcf)
return;
#if CONFIG_MULTITHREAD
/* wait for the last picture loopfilter thread done */
if (cpi->b_lpf_running)
{
sem_wait(&cpi->h_event_end_lpf);
cpi->b_lpf_running = 0;
}
#endif
if (cm->version != oxcf->Version)
{
cm->version = oxcf->Version;
vp8_setup_version(cm);
}
last_w = cpi->oxcf.Width;
last_h = cpi->oxcf.Height;
prev_number_of_layers = cpi->oxcf.number_of_layers;
cpi->oxcf = *oxcf;
switch (cpi->oxcf.Mode)
{
case MODE_REALTIME:
cpi->pass = 0;
cpi->compressor_speed = 2;
if (cpi->oxcf.cpu_used < -16)
{
cpi->oxcf.cpu_used = -16;
}
if (cpi->oxcf.cpu_used > 16)
cpi->oxcf.cpu_used = 16;
break;
case MODE_GOODQUALITY:
cpi->pass = 0;
cpi->compressor_speed = 1;
if (cpi->oxcf.cpu_used < -5)
{
cpi->oxcf.cpu_used = -5;
}
if (cpi->oxcf.cpu_used > 5)
cpi->oxcf.cpu_used = 5;
break;
case MODE_BESTQUALITY:
cpi->pass = 0;
cpi->compressor_speed = 0;
break;
case MODE_FIRSTPASS:
cpi->pass = 1;
cpi->compressor_speed = 1;
break;
case MODE_SECONDPASS:
cpi->pass = 2;
cpi->compressor_speed = 1;
if (cpi->oxcf.cpu_used < -5)
{
cpi->oxcf.cpu_used = -5;
}
if (cpi->oxcf.cpu_used > 5)
cpi->oxcf.cpu_used = 5;
break;
case MODE_SECONDPASS_BEST:
cpi->pass = 2;
cpi->compressor_speed = 0;
break;
}
if (cpi->pass == 0)
cpi->auto_worst_q = 1;
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
if (oxcf->fixed_q >= 0)
{
if (oxcf->worst_allowed_q < 0)
cpi->oxcf.fixed_q = q_trans[0];
else
cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q];
if (oxcf->alt_q < 0)
cpi->oxcf.alt_q = q_trans[0];
else
cpi->oxcf.alt_q = q_trans[oxcf->alt_q];
if (oxcf->key_q < 0)
cpi->oxcf.key_q = q_trans[0];
else
cpi->oxcf.key_q = q_trans[oxcf->key_q];
if (oxcf->gold_q < 0)
cpi->oxcf.gold_q = q_trans[0];
else
cpi->oxcf.gold_q = q_trans[oxcf->gold_q];
}
cpi->baseline_gf_interval =
cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL;
cpi->ref_frame_flags = VP8_ALTR_FRAME | VP8_GOLD_FRAME | VP8_LAST_FRAME;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
cm->refresh_entropy_probs = 1;
#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
cpi->oxcf.token_partitions = 3;
#endif
if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3)
cm->multi_token_partition =
(TOKEN_PARTITION) cpi->oxcf.token_partitions;
setup_features(cpi);
{
int i;
for (i = 0; i < MAX_MB_SEGMENTS; i++)
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
/* At the moment the first order values may not be > MAXQ */
if (cpi->oxcf.fixed_q > MAXQ)
cpi->oxcf.fixed_q = MAXQ;
/* local file playback mode == really big buffer */
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK)
{
cpi->oxcf.starting_buffer_level = 60000;
cpi->oxcf.optimal_buffer_level = 60000;
cpi->oxcf.maximum_buffer_size = 240000;
cpi->oxcf.starting_buffer_level_in_ms = 60000;
cpi->oxcf.optimal_buffer_level_in_ms = 60000;
cpi->oxcf.maximum_buffer_size_in_ms = 240000;
}
/* Convert target bandwidth from Kbit/s to Bit/s */
cpi->oxcf.target_bandwidth *= 1000;
cpi->oxcf.starting_buffer_level =
rescale((int)cpi->oxcf.starting_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
/* Set or reset optimal and maximum buffer levels. */
if (cpi->oxcf.optimal_buffer_level == 0)
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.optimal_buffer_level =
rescale((int)cpi->oxcf.optimal_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
if (cpi->oxcf.maximum_buffer_size == 0)
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.maximum_buffer_size =
rescale((int)cpi->oxcf.maximum_buffer_size,
cpi->oxcf.target_bandwidth, 1000);
// Under a configuration change, where maximum_buffer_size may change,
// keep buffer level clipped to the maximum allowed buffer size.
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) {
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
cpi->buffer_level = cpi->bits_off_target;
}
/* Set up frame rate and related parameters rate control values. */
vp8_new_framerate(cpi, cpi->framerate);
/* Set absolute upper and lower quality limits */
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
cpi->best_quality = cpi->oxcf.best_allowed_q;
/* active values should only be modified if out of new range */
if (cpi->active_worst_quality > cpi->oxcf.worst_allowed_q)
{
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
}
/* less likely */
else if (cpi->active_worst_quality < cpi->oxcf.best_allowed_q)
{
cpi->active_worst_quality = cpi->oxcf.best_allowed_q;
}
if (cpi->active_best_quality < cpi->oxcf.best_allowed_q)
{
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
}
/* less likely */
else if (cpi->active_best_quality > cpi->oxcf.worst_allowed_q)
{
cpi->active_best_quality = cpi->oxcf.worst_allowed_q;
}
cpi->buffered_mode = cpi->oxcf.optimal_buffer_level > 0;
cpi->cq_target_quality = cpi->oxcf.cq_level;
/* Only allow dropped frames in buffered mode */
cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode;
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
// Check if the number of temporal layers has changed, and if so reset the
// pattern counter and set/initialize the temporal layer context for the
// new layer configuration.
if (cpi->oxcf.number_of_layers != prev_number_of_layers)
{
// If the number of temporal layers are changed we must start at the
// base of the pattern cycle, so reset temporal_pattern_counter.
cpi->temporal_pattern_counter = 0;
reset_temporal_layer_change(cpi, oxcf, prev_number_of_layers);
}
cm->Width = cpi->oxcf.Width;
cm->Height = cpi->oxcf.Height;
/* TODO(jkoleszar): if an internal spatial resampling is active,
* and we downsize the input image, maybe we should clear the
* internal scale immediately rather than waiting for it to
* correct.
*/
/* VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) */
if (cpi->oxcf.Sharpness > 7)
cpi->oxcf.Sharpness = 7;
cm->sharpness_level = cpi->oxcf.Sharpness;
if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL)
{
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
/* always go to the next whole number */
cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs;
cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs;
}
if (last_w != cpi->oxcf.Width || last_h != cpi->oxcf.Height)
cpi->force_next_frame_intra = 1;
if (((cm->Width + 15) & 0xfffffff0) !=
cm->yv12_fb[cm->lst_fb_idx].y_width ||
((cm->Height + 15) & 0xfffffff0) !=
cm->yv12_fb[cm->lst_fb_idx].y_height ||
cm->yv12_fb[cm->lst_fb_idx].y_width == 0)
{
dealloc_raw_frame_buffers(cpi);
alloc_raw_frame_buffers(cpi);
vp8_alloc_compressor_data(cpi);
}
if (cpi->oxcf.fixed_q >= 0)
{
cpi->last_q[0] = cpi->oxcf.fixed_q;
cpi->last_q[1] = cpi->oxcf.fixed_q;
}
cpi->Speed = cpi->oxcf.cpu_used;
/* force to allowlag to 0 if lag_in_frames is 0; */
if (cpi->oxcf.lag_in_frames == 0)
{
cpi->oxcf.allow_lag = 0;
}
/* Limit on lag buffers as these are not currently dynamically allocated */
else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS)
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
/* YX Temp */
cpi->alt_ref_source = NULL;
cpi->is_src_frame_alt_ref = 0;
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity)
{
if (!cpi->denoiser.yv12_mc_running_avg.buffer_alloc)
{
int width = (cpi->oxcf.Width + 15) & ~15;
int height = (cpi->oxcf.Height + 15) & ~15;
vp8_denoiser_allocate(&cpi->denoiser, width, height);
}
}
#endif
#if 0
/* Experimental RD Code */
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
}
#ifndef M_LOG2_E
#define M_LOG2_E 0.693147180559945309417
#endif
#define log2f(x) (log (x) / (float) M_LOG2_E)
static void cal_mvsadcosts(int *mvsadcost[2])
{
int i = 1;
mvsadcost [0] [0] = 300;
mvsadcost [1] [0] = 300;
do
{
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost [0][i] = (int) z;
mvsadcost [1][i] = (int) z;
mvsadcost [0][-i] = (int) z;
mvsadcost [1][-i] = (int) z;
}
while (++i <= mvfp_max);
}
struct VP8_COMP* vp8_create_compressor(VP8_CONFIG *oxcf)
{
int i;
VP8_COMP *cpi;
VP8_COMMON *cm;
cpi = vpx_memalign(32, sizeof(VP8_COMP));
/* Check that the CPI instance is valid */
if (!cpi)
return 0;
cm = &cpi->common;
vpx_memset(cpi, 0, sizeof(VP8_COMP));
if (setjmp(cm->error.jmp))
{
cpi->common.error.setjmp = 0;
vp8_remove_compressor(&cpi);
return 0;
}
cpi->common.error.setjmp = 1;
CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1));
vp8_create_common(&cpi->common);
init_config(cpi, oxcf);
memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob, sizeof(vp8cx_base_skip_false_prob));
cpi->common.current_video_frame = 0;
cpi->temporal_pattern_counter = 0;
cpi->kf_overspend_bits = 0;
cpi->kf_bitrate_adjustment = 0;
cpi->frames_till_gf_update_due = 0;
cpi->gf_overspend_bits = 0;
cpi->non_gf_bitrate_adjustment = 0;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
cpi->prob_intra_coded = 63;
/* Prime the recent reference frame usage counters.
* Hereafter they will be maintained as a sort of moving average
*/
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
/* Set reference frame sign bias for ALTREF frame to 1 (for now) */
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
cpi->twopass.gf_decay_rate = 0;
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->gold_is_last = 0 ;
cpi->alt_is_last = 0 ;
cpi->gold_is_alt = 0 ;
cpi->active_map_enabled = 0;
#if 0
/* Experimental code for lagged and one pass */
/* Initialise one_pass GF frames stats */
/* Update stats used for GF selection */
if (cpi->pass == 0)
{
cpi->one_pass_frame_index = 0;
for (i = 0; i < MAX_LAG_BUFFERS; i++)
{
cpi->one_pass_frame_stats[i].frames_so_far = 0;
cpi->one_pass_frame_stats[i].frame_intra_error = 0.0;
cpi->one_pass_frame_stats[i].frame_coded_error = 0.0;
cpi->one_pass_frame_stats[i].frame_pcnt_inter = 0.0;
cpi->one_pass_frame_stats[i].frame_pcnt_motion = 0.0;
cpi->one_pass_frame_stats[i].frame_mvr = 0.0;
cpi->one_pass_frame_stats[i].frame_mvr_abs = 0.0;
cpi->one_pass_frame_stats[i].frame_mvc = 0.0;
cpi->one_pass_frame_stats[i].frame_mvc_abs = 0.0;
}
}
#endif
/* Should we use the cyclic refresh method.
* Currently this is tied to error resilliant mode
*/
cpi->cyclic_refresh_mode_enabled = cpi->oxcf.error_resilient_mode;
cpi->cyclic_refresh_mode_max_mbs_perframe = (cpi->common.mb_rows * cpi->common.mb_cols) / 5;
cpi->cyclic_refresh_mode_index = 0;
cpi->cyclic_refresh_q = 32;
if (cpi->cyclic_refresh_mode_enabled)
{
CHECK_MEM_ERROR(cpi->cyclic_refresh_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
}
else
cpi->cyclic_refresh_map = (signed char *) NULL;
#ifdef VP8_ENTROPY_STATS
init_context_counters();
#endif
/*Initialize the feed-forward activity masking.*/
cpi->activity_avg = 90<<12;
/* Give a sensible default for the first frame. */
cpi->frames_since_key = 8;
cpi->key_frame_frequency = cpi->oxcf.key_freq;
cpi->this_key_frame_forced = 0;
cpi->next_key_frame_forced = 0;
cpi->source_alt_ref_pending = 0;
cpi->source_alt_ref_active = 0;
cpi->common.refresh_alt_ref_frame = 0;
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
cpi->b_calculate_ssimg = 0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr)
{
cpi->total_sq_error = 0.0;
cpi->total_sq_error2 = 0.0;
cpi->total_y = 0.0;
cpi->total_u = 0.0;
cpi->total_v = 0.0;
cpi->total = 0.0;
cpi->totalp_y = 0.0;
cpi->totalp_u = 0.0;
cpi->totalp_v = 0.0;
cpi->totalp = 0.0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
}
if (cpi->b_calculate_ssimg)
{
cpi->total_ssimg_y = 0;
cpi->total_ssimg_u = 0;
cpi->total_ssimg_v = 0;
cpi->total_ssimg_all = 0;
}
#endif
cpi->first_time_stamp_ever = 0x7FFFFFFF;
cpi->frames_till_gf_update_due = 0;
cpi->key_frame_count = 1;
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
cpi->ni_tot_qi = 0;
cpi->ni_frames = 0;
cpi->total_byte_count = 0;
cpi->drop_frame = 0;
cpi->rate_correction_factor = 1.0;
cpi->key_frame_rate_correction_factor = 1.0;
cpi->gf_rate_correction_factor = 1.0;
cpi->twopass.est_max_qcorrection_factor = 1.0;
for (i = 0; i < KEY_FRAME_CONTEXT; i++)
{
cpi->prior_key_frame_distance[i] = (int)cpi->output_framerate;
}
#ifdef OUTPUT_YUV_SRC
yuv_file = fopen("bd.yuv", "ab");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
#endif
cpi->output_pkt_list = oxcf->output_pkt_list;
#if !(CONFIG_REALTIME_ONLY)
if (cpi->pass == 1)
{
vp8_init_first_pass(cpi);
}
else if (cpi->pass == 2)
{
size_t packet_sz = sizeof(FIRSTPASS_STATS);
int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = (void*)((char *)cpi->twopass.stats_in
+ (packets - 1) * packet_sz);
vp8_init_second_pass(cpi);
}
#endif
if (cpi->compressor_speed == 2)
{
cpi->avg_encode_time = 0;
cpi->avg_pick_mode_time = 0;
}
vp8_set_speed_features(cpi);
/* Set starting values of RD threshold multipliers (128 = *1) */
for (i = 0; i < MAX_MODES; i++)
{
cpi->mb.rd_thresh_mult[i] = 128;
}
#ifdef VP8_ENTROPY_STATS
init_mv_ref_counts();
#endif
#if CONFIG_MULTITHREAD
if(vp8cx_create_encoder_threads(cpi))
{
vp8_remove_compressor(&cpi);
return 0;
}
#endif
cpi->fn_ptr[BLOCK_16X16].sdf = vp8_sad16x16;
cpi->fn_ptr[BLOCK_16X16].vf = vp8_variance16x16;
cpi->fn_ptr[BLOCK_16X16].svf = vp8_sub_pixel_variance16x16;
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_h = vp8_variance_halfpixvar16x16_h;
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_v = vp8_variance_halfpixvar16x16_v;
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_hv = vp8_variance_halfpixvar16x16_hv;
cpi->fn_ptr[BLOCK_16X16].sdx3f = vp8_sad16x16x3;
cpi->fn_ptr[BLOCK_16X16].sdx8f = vp8_sad16x16x8;
cpi->fn_ptr[BLOCK_16X16].sdx4df = vp8_sad16x16x4d;
cpi->fn_ptr[BLOCK_16X8].sdf = vp8_sad16x8;
cpi->fn_ptr[BLOCK_16X8].vf = vp8_variance16x8;
cpi->fn_ptr[BLOCK_16X8].svf = vp8_sub_pixel_variance16x8;
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_16X8].sdx3f = vp8_sad16x8x3;
cpi->fn_ptr[BLOCK_16X8].sdx8f = vp8_sad16x8x8;
cpi->fn_ptr[BLOCK_16X8].sdx4df = vp8_sad16x8x4d;
cpi->fn_ptr[BLOCK_8X16].sdf = vp8_sad8x16;
cpi->fn_ptr[BLOCK_8X16].vf = vp8_variance8x16;
cpi->fn_ptr[BLOCK_8X16].svf = vp8_sub_pixel_variance8x16;
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_8X16].sdx3f = vp8_sad8x16x3;
cpi->fn_ptr[BLOCK_8X16].sdx8f = vp8_sad8x16x8;
cpi->fn_ptr[BLOCK_8X16].sdx4df = vp8_sad8x16x4d;
cpi->fn_ptr[BLOCK_8X8].sdf = vp8_sad8x8;
cpi->fn_ptr[BLOCK_8X8].vf = vp8_variance8x8;
cpi->fn_ptr[BLOCK_8X8].svf = vp8_sub_pixel_variance8x8;
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_8X8].sdx3f = vp8_sad8x8x3;
cpi->fn_ptr[BLOCK_8X8].sdx8f = vp8_sad8x8x8;
cpi->fn_ptr[BLOCK_8X8].sdx4df = vp8_sad8x8x4d;
cpi->fn_ptr[BLOCK_4X4].sdf = vp8_sad4x4;
cpi->fn_ptr[BLOCK_4X4].vf = vp8_variance4x4;
cpi->fn_ptr[BLOCK_4X4].svf = vp8_sub_pixel_variance4x4;
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_4X4].sdx3f = vp8_sad4x4x3;
cpi->fn_ptr[BLOCK_4X4].sdx8f = vp8_sad4x4x8;
cpi->fn_ptr[BLOCK_4X4].sdx4df = vp8_sad4x4x4d;
#if ARCH_X86 || ARCH_X86_64
cpi->fn_ptr[BLOCK_16X16].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_16X8].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_8X16].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_8X8].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_4X4].copymem = vp8_copy32xn;
#endif
cpi->full_search_sad = vp8_full_search_sad;
cpi->diamond_search_sad = vp8_diamond_search_sad;
cpi->refining_search_sad = vp8_refining_search_sad;
/* make sure frame 1 is okay */
cpi->mb.error_bins[0] = cpi->common.MBs;
/* vp8cx_init_quantizer() is first called here. Add check in
* vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only
* called later when needed. This will avoid unnecessary calls of
* vp8cx_init_quantizer() for every frame.
*/
vp8cx_init_quantizer(cpi);
vp8_loop_filter_init(cm);
cpi->common.error.setjmp = 0;
#if CONFIG_MULTI_RES_ENCODING
/* Calculate # of MBs in a row in lower-resolution level image. */
if (cpi->oxcf.mr_encoder_id > 0)
vp8_cal_low_res_mb_cols(cpi);
#endif
/* setup RD costs to MACROBLOCK struct */
cpi->mb.mvcost[0] = &cpi->rd_costs.mvcosts[0][mv_max+1];
cpi->mb.mvcost[1] = &cpi->rd_costs.mvcosts[1][mv_max+1];
cpi->mb.mvsadcost[0] = &cpi->rd_costs.mvsadcosts[0][mvfp_max+1];
cpi->mb.mvsadcost[1] = &cpi->rd_costs.mvsadcosts[1][mvfp_max+1];
cal_mvsadcosts(cpi->mb.mvsadcost);
cpi->mb.mbmode_cost = cpi->rd_costs.mbmode_cost;
cpi->mb.intra_uv_mode_cost = cpi->rd_costs.intra_uv_mode_cost;
cpi->mb.bmode_costs = cpi->rd_costs.bmode_costs;
cpi->mb.inter_bmode_costs = cpi->rd_costs.inter_bmode_costs;
cpi->mb.token_costs = cpi->rd_costs.token_costs;
/* setup block ptrs & offsets */
vp8_setup_block_ptrs(&cpi->mb);
vp8_setup_block_dptrs(&cpi->mb.e_mbd);
return cpi;
}
void vp8_remove_compressor(VP8_COMP **ptr)
{
VP8_COMP *cpi = *ptr;
if (!cpi)
return;
if (cpi && (cpi->common.current_video_frame > 0))
{
#if !(CONFIG_REALTIME_ONLY)
if (cpi->pass == 2)
{
vp8_end_second_pass(cpi);
}
#endif
#ifdef VP8_ENTROPY_STATS
print_context_counters();
print_tree_update_probs();
print_mode_context();
#endif
#if CONFIG_INTERNAL_STATS
if (cpi->pass != 1)
{
FILE *f = fopen("opsnr.stt", "a");
double time_encoded = (cpi->last_end_time_stamp_seen
- cpi->first_time_stamp_ever) / 10000000.000;
double total_encode_time = (cpi->time_receive_data +
cpi->time_compress_data) / 1000.000;
double dr = (double)cpi->bytes * 8.0 / 1000.0 / time_encoded;
if (cpi->b_calculate_psnr)
{
YV12_BUFFER_CONFIG *lst_yv12 =
&cpi->common.yv12_fb[cpi->common.lst_fb_idx];
if (cpi->oxcf.number_of_layers > 1)
{
int i;
fprintf(f, "Layer\tBitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t"
"GLPsnrP\tVPXSSIM\t\n");
for (i=0; i<(int)cpi->oxcf.number_of_layers; i++)
{
double dr = (double)cpi->bytes_in_layer[i] *
8.0 / 1000.0 / time_encoded;
double samples = 3.0 / 2 * cpi->frames_in_layer[i] *
lst_yv12->y_width * lst_yv12->y_height;
double total_psnr =
vpx_sse_to_psnr(samples, 255.0,
cpi->total_error2[i]);
double total_psnr2 =
vpx_sse_to_psnr(samples, 255.0,
cpi->total_error2_p[i]);
double total_ssim = 100 * pow(cpi->sum_ssim[i] /
cpi->sum_weights[i], 8.0);
fprintf(f, "%5d\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%7.3f\n",
i, dr,
cpi->sum_psnr[i] / cpi->frames_in_layer[i],
total_psnr,
cpi->sum_psnr_p[i] / cpi->frames_in_layer[i],
total_psnr2, total_ssim);
}
}
else
{
double samples = 3.0 / 2 * cpi->count *
lst_yv12->y_width * lst_yv12->y_height;
double total_psnr = vpx_sse_to_psnr(samples, 255.0,
cpi->total_sq_error);
double total_psnr2 = vpx_sse_to_psnr(samples, 255.0,
cpi->total_sq_error2);
double total_ssim = 100 * pow(cpi->summed_quality /
cpi->summed_weights, 8.0);
fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t"
"GLPsnrP\tVPXSSIM\t Time(us)\n");
fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%8.0f\n",
dr, cpi->total / cpi->count, total_psnr,
cpi->totalp / cpi->count, total_psnr2,
total_ssim, total_encode_time);
}
}
if (cpi->b_calculate_ssimg)
{
if (cpi->oxcf.number_of_layers > 1)
{
int i;
fprintf(f, "Layer\tBitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t"
"Time(us)\n");
for (i=0; i<(int)cpi->oxcf.number_of_layers; i++)
{
double dr = (double)cpi->bytes_in_layer[i] *
8.0 / 1000.0 / time_encoded;
fprintf(f, "%5d\t%7.3f\t%6.4f\t"
"%6.4f\t%6.4f\t%6.4f\t%8.0f\n",
i, dr,
cpi->total_ssimg_y_in_layer[i] /
cpi->frames_in_layer[i],
cpi->total_ssimg_u_in_layer[i] /
cpi->frames_in_layer[i],
cpi->total_ssimg_v_in_layer[i] /
cpi->frames_in_layer[i],
cpi->total_ssimg_all_in_layer[i] /
cpi->frames_in_layer[i],
total_encode_time);
}
}
else
{
fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t"
"Time(us)\n");
fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
cpi->total_ssimg_y / cpi->count,
cpi->total_ssimg_u / cpi->count,
cpi->total_ssimg_v / cpi->count,
cpi->total_ssimg_all / cpi->count, total_encode_time);
}
}
fclose(f);
#if 0
f = fopen("qskip.stt", "a");
fprintf(f, "minq:%d -maxq:%d skiptrue:skipfalse = %d:%d\n", cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q, skiptruecount, skipfalsecount);
fclose(f);
#endif
}
#endif
#ifdef SPEEDSTATS
if (cpi->compressor_speed == 2)
{
int i;
FILE *f = fopen("cxspeed.stt", "a");
cnt_pm /= cpi->common.MBs;
for (i = 0; i < 16; i++)
fprintf(f, "%5d", frames_at_speed[i]);
fprintf(f, "\n");
fclose(f);
}
#endif
#ifdef MODE_STATS
{
extern int count_mb_seg[4];
FILE *f = fopen("modes.stt", "a");
double dr = (double)cpi->framerate * (double)bytes * (double)8 / (double)count / (double)1000 ;
fprintf(f, "intra_mode in Intra Frames:\n");
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d\n", y_modes[0], y_modes[1], y_modes[2], y_modes[3], y_modes[4]);
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", uv_modes[0], uv_modes[1], uv_modes[2], uv_modes[3]);
fprintf(f, "B: ");
{
int i;
for (i = 0; i < 10; i++)
fprintf(f, "%8d, ", b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "Modes in Inter Frames:\n");
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n",
inter_y_modes[0], inter_y_modes[1], inter_y_modes[2], inter_y_modes[3], inter_y_modes[4],
inter_y_modes[5], inter_y_modes[6], inter_y_modes[7], inter_y_modes[8], inter_y_modes[9]);
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", inter_uv_modes[0], inter_uv_modes[1], inter_uv_modes[2], inter_uv_modes[3]);
fprintf(f, "B: ");
{
int i;
for (i = 0; i < 15; i++)
fprintf(f, "%8d, ", inter_b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], count_mb_seg[2], count_mb_seg[3]);
fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], inter_b_modes[NEW4X4]);
fclose(f);
}
#endif
#ifdef VP8_ENTROPY_STATS
{
int i, j, k;
FILE *fmode = fopen("modecontext.c", "w");
fprintf(fmode, "\n#include \"entropymode.h\"\n\n");
fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts ");
fprintf(fmode, "[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n");
for (i = 0; i < 10; i++)
{
fprintf(fmode, " { /* Above Mode : %d */\n", i);
for (j = 0; j < 10; j++)
{
fprintf(fmode, " {");
for (k = 0; k < 10; k++)
{
if (!intra_mode_stats[i][j][k])
fprintf(fmode, " %5d, ", 1);
else
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
}
fprintf(fmode, "}, /* left_mode %d */\n", j);
}
fprintf(fmode, " },\n");
}
fprintf(fmode, "};\n");
fclose(fmode);
}
#endif
#if defined(SECTIONBITS_OUTPUT)
if (0)
{
int i;
FILE *f = fopen("tokenbits.stt", "a");
for (i = 0; i < 28; i++)
fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
fprintf(f, "\n");
fclose(f);
}
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
#endif
}
#if CONFIG_MULTITHREAD
vp8cx_remove_encoder_threads(cpi);
#endif
#if CONFIG_TEMPORAL_DENOISING
vp8_denoiser_free(&cpi->denoiser);
#endif
dealloc_compressor_data(cpi);
vpx_free(cpi->mb.ss);
vpx_free(cpi->tok);
vpx_free(cpi->cyclic_refresh_map);
vp8_remove_common(&cpi->common);
vpx_free(cpi);
*ptr = 0;
#ifdef OUTPUT_YUV_SRC
fclose(yuv_file);
#endif
#if 0
if (keyfile)
fclose(keyfile);
if (framepsnr)
fclose(framepsnr);
if (kf_list)
fclose(kf_list);
#endif
}
static uint64_t calc_plane_error(unsigned char *orig, int orig_stride,
unsigned char *recon, int recon_stride,
unsigned int cols, unsigned int rows)
{
unsigned int row, col;
uint64_t total_sse = 0;
int diff;
for (row = 0; row + 16 <= rows; row += 16)
{
for (col = 0; col + 16 <= cols; col += 16)
{
unsigned int sse;
vp8_mse16x16(orig + col, orig_stride,
recon + col, recon_stride,
&sse);
total_sse += sse;
}
/* Handle odd-sized width */
if (col < cols)
{
unsigned int border_row, border_col;
unsigned char *border_orig = orig;
unsigned char *border_recon = recon;
for (border_row = 0; border_row < 16; border_row++)
{
for (border_col = col; border_col < cols; border_col++)
{
diff = border_orig[border_col] - border_recon[border_col];
total_sse += diff * diff;
}
border_orig += orig_stride;
border_recon += recon_stride;
}
}
orig += orig_stride * 16;
recon += recon_stride * 16;
}
/* Handle odd-sized height */
for (; row < rows; row++)
{
for (col = 0; col < cols; col++)
{
diff = orig[col] - recon[col];
total_sse += diff * diff;
}
orig += orig_stride;
recon += recon_stride;
}
vp8_clear_system_state();
return total_sse;
}
static void generate_psnr_packet(VP8_COMP *cpi)
{
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
struct vpx_codec_cx_pkt pkt;
uint64_t sse;
int i;
unsigned int width = cpi->common.Width;
unsigned int height = cpi->common.Height;
pkt.kind = VPX_CODEC_PSNR_PKT;
sse = calc_plane_error(orig->y_buffer, orig->y_stride,
recon->y_buffer, recon->y_stride,
width, height);
pkt.data.psnr.sse[0] = sse;
pkt.data.psnr.sse[1] = sse;
pkt.data.psnr.samples[0] = width * height;
pkt.data.psnr.samples[1] = width * height;
width = (width + 1) / 2;
height = (height + 1) / 2;
sse = calc_plane_error(orig->u_buffer, orig->uv_stride,
recon->u_buffer, recon->uv_stride,
width, height);
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[2] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[2] = width * height;
sse = calc_plane_error(orig->v_buffer, orig->uv_stride,
recon->v_buffer, recon->uv_stride,
width, height);
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[3] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[3] = width * height;
for (i = 0; i < 4; i++)
pkt.data.psnr.psnr[i] = vpx_sse_to_psnr(pkt.data.psnr.samples[i], 255.0,
(double)(pkt.data.psnr.sse[i]));
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int vp8_use_as_reference(VP8_COMP *cpi, int ref_frame_flags)
{
if (ref_frame_flags > 7)
return -1 ;
cpi->ref_frame_flags = ref_frame_flags;
return 0;
}
int vp8_update_reference(VP8_COMP *cpi, int ref_frame_flags)
{
if (ref_frame_flags > 7)
return -1 ;
cpi->common.refresh_golden_frame = 0;
cpi->common.refresh_alt_ref_frame = 0;
cpi->common.refresh_last_frame = 0;
if (ref_frame_flags & VP8_LAST_FRAME)
cpi->common.refresh_last_frame = 1;
if (ref_frame_flags & VP8_GOLD_FRAME)
cpi->common.refresh_golden_frame = 1;
if (ref_frame_flags & VP8_ALTR_FRAME)
cpi->common.refresh_alt_ref_frame = 1;
return 0;
}
int vp8_get_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag, YV12_BUFFER_CONFIG *sd)
{
VP8_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP8_LAST_FRAME)
ref_fb_idx = cm->lst_fb_idx;
else if (ref_frame_flag == VP8_GOLD_FRAME)
ref_fb_idx = cm->gld_fb_idx;
else if (ref_frame_flag == VP8_ALTR_FRAME)
ref_fb_idx = cm->alt_fb_idx;
else
return -1;
vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd);
return 0;
}
int vp8_set_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag, YV12_BUFFER_CONFIG *sd)
{
VP8_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP8_LAST_FRAME)
ref_fb_idx = cm->lst_fb_idx;
else if (ref_frame_flag == VP8_GOLD_FRAME)
ref_fb_idx = cm->gld_fb_idx;
else if (ref_frame_flag == VP8_ALTR_FRAME)
ref_fb_idx = cm->alt_fb_idx;
else
return -1;
vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]);
return 0;
}
int vp8_update_entropy(VP8_COMP *cpi, int update)
{
VP8_COMMON *cm = &cpi->common;
cm->refresh_entropy_probs = update;
return 0;
}
#if OUTPUT_YUV_SRC
void vp8_write_yuv_frame(FILE *yuv_file, YV12_BUFFER_CONFIG *s)
{
unsigned char *src = s->y_buffer;
int h = s->y_height;
do
{
fwrite(src, s->y_width, 1, yuv_file);
src += s->y_stride;
}
while (--h);
src = s->u_buffer;
h = s->uv_height;
do
{
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
}
while (--h);
src = s->v_buffer;
h = s->uv_height;
do
{
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
}
while (--h);
}
#endif
static void scale_and_extend_source(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
/* are we resizing the image */
if (cm->horiz_scale != 0 || cm->vert_scale != 0)
{
#if CONFIG_SPATIAL_RESAMPLING
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
int tmp_height;
if (cm->vert_scale == 3)
tmp_height = 9;
else
tmp_height = 11;
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
vpx_scale_frame(sd, &cpi->scaled_source, cm->temp_scale_frame.y_buffer,
tmp_height, hs, hr, vs, vr, 0);
vp8_yv12_extend_frame_borders(&cpi->scaled_source);
cpi->Source = &cpi->scaled_source;
#endif
}
else
cpi->Source = sd;
}
static int resize_key_frame(VP8_COMP *cpi)
{
#if CONFIG_SPATIAL_RESAMPLING
VP8_COMMON *cm = &cpi->common;
/* Do we need to apply resampling for one pass cbr.
* In one pass this is more limited than in two pass cbr.
* The test and any change is only made once per key frame sequence.
*/
if (cpi->oxcf.allow_spatial_resampling && (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER))
{
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
int new_width, new_height;
/* If we are below the resample DOWN watermark then scale down a
* notch.
*/
if (cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100))
{
cm->horiz_scale = (cm->horiz_scale < ONETWO) ? cm->horiz_scale + 1 : ONETWO;
cm->vert_scale = (cm->vert_scale < ONETWO) ? cm->vert_scale + 1 : ONETWO;
}
/* Should we now start scaling back up */
else if (cpi->buffer_level > (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))
{
cm->horiz_scale = (cm->horiz_scale > NORMAL) ? cm->horiz_scale - 1 : NORMAL;
cm->vert_scale = (cm->vert_scale > NORMAL) ? cm->vert_scale - 1 : NORMAL;
}
/* Get the new height and width */
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
/* If the image size has changed we need to reallocate the buffers
* and resample the source image
*/
if ((cm->Width != new_width) || (cm->Height != new_height))
{
cm->Width = new_width;
cm->Height = new_height;
vp8_alloc_compressor_data(cpi);
scale_and_extend_source(cpi->un_scaled_source, cpi);
return 1;
}
}
#endif
return 0;
}
static void update_alt_ref_frame_stats(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
/* Select an interval before next GF or altref */
if (!cpi->auto_gold)
cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL;
if ((cpi->pass != 2) && cpi->frames_till_gf_update_due)
{
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
/* Set the bits per frame that we should try and recover in
* subsequent inter frames to account for the extra GF spend...
* note that his does not apply for GF updates that occur
* coincident with a key frame as the extra cost of key frames is
* dealt with elsewhere.
*/
cpi->gf_overspend_bits += cpi->projected_frame_size;
cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
}
/* Update data structure that monitors level of reference to last GF */
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
/* this frame refreshes means next frames don't unless specified by user */
cpi->frames_since_golden = 0;
/* Clear the alternate reference update pending flag. */
cpi->source_alt_ref_pending = 0;
/* Set the alternate reference frame active flag */
cpi->source_alt_ref_active = 1;
}
static void update_golden_frame_stats(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
/* Update the Golden frame usage counts. */
if (cm->refresh_golden_frame)
{
/* Select an interval before next GF */
if (!cpi->auto_gold)
cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL;
if ((cpi->pass != 2) && (cpi->frames_till_gf_update_due > 0))
{
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
/* Set the bits per frame that we should try and recover in
* subsequent inter frames to account for the extra GF spend...
* note that his does not apply for GF updates that occur
* coincident with a key frame as the extra cost of key frames
* is dealt with elsewhere.
*/
if ((cm->frame_type != KEY_FRAME) && !cpi->source_alt_ref_active)
{
/* Calcluate GF bits to be recovered
* Projected size - av frame bits available for inter
* frames for clip as a whole
*/
cpi->gf_overspend_bits += (cpi->projected_frame_size - cpi->inter_frame_target);
}
cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
}
/* Update data structure that monitors level of reference to last GF */
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
/* this frame refreshes means next frames don't unless specified by
* user
*/
cm->refresh_golden_frame = 0;
cpi->frames_since_golden = 0;
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
/* ******** Fixed Q test code only ************ */
/* If we are going to use the ALT reference for the next group of
* frames set a flag to say so.
*/
if (cpi->oxcf.fixed_q >= 0 &&
cpi->oxcf.play_alternate && !cpi->common.refresh_alt_ref_frame)
{
cpi->source_alt_ref_pending = 1;
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
}
if (!cpi->source_alt_ref_pending)
cpi->source_alt_ref_active = 0;
/* Decrement count down till next gf */
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
}
else if (!cpi->common.refresh_alt_ref_frame)
{
/* Decrement count down till next gf */
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
if (cpi->frames_till_alt_ref_frame)
cpi->frames_till_alt_ref_frame --;
cpi->frames_since_golden ++;
if (cpi->frames_since_golden > 1)
{
cpi->recent_ref_frame_usage[INTRA_FRAME] +=
cpi->mb.count_mb_ref_frame_usage[INTRA_FRAME];
cpi->recent_ref_frame_usage[LAST_FRAME] +=
cpi->mb.count_mb_ref_frame_usage[LAST_FRAME];
cpi->recent_ref_frame_usage[GOLDEN_FRAME] +=
cpi->mb.count_mb_ref_frame_usage[GOLDEN_FRAME];
cpi->recent_ref_frame_usage[ALTREF_FRAME] +=
cpi->mb.count_mb_ref_frame_usage[ALTREF_FRAME];
}
}
}
/* This function updates the reference frame probability estimates that
* will be used during mode selection
*/
static void update_rd_ref_frame_probs(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
const int *const rfct = cpi->mb.count_mb_ref_frame_usage;
const int rf_intra = rfct[INTRA_FRAME];
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
if (cm->frame_type == KEY_FRAME)
{
cpi->prob_intra_coded = 255;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
}
else if (!(rf_intra + rf_inter))
{
cpi->prob_intra_coded = 63;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
}
/* update reference frame costs since we can do better than what we got
* last frame.
*/
if (cpi->oxcf.number_of_layers == 1)
{
if (cpi->common.refresh_alt_ref_frame)
{
cpi->prob_intra_coded += 40;
if (cpi->prob_intra_coded > 255)
cpi->prob_intra_coded = 255;
cpi->prob_last_coded = 200;
cpi->prob_gf_coded = 1;
}
else if (cpi->frames_since_golden == 0)
{
cpi->prob_last_coded = 214;
}
else if (cpi->frames_since_golden == 1)
{
cpi->prob_last_coded = 192;
cpi->prob_gf_coded = 220;
}
else if (cpi->source_alt_ref_active)
{
cpi->prob_gf_coded -= 20;
if (cpi->prob_gf_coded < 10)
cpi->prob_gf_coded = 10;
}
if (!cpi->source_alt_ref_active)
cpi->prob_gf_coded = 255;
}
}
/* 1 = key, 0 = inter */
static int decide_key_frame(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
int code_key_frame = 0;
cpi->kf_boost = 0;
if (cpi->Speed > 11)
return 0;
/* Clear down mmx registers */
vp8_clear_system_state();
if ((cpi->compressor_speed == 2) && (cpi->Speed >= 5) && (cpi->sf.RD == 0))
{
double change = 1.0 * abs((int)(cpi->mb.intra_error -
cpi->last_intra_error)) / (1 + cpi->last_intra_error);
double change2 = 1.0 * abs((int)(cpi->mb.prediction_error -
cpi->last_prediction_error)) / (1 + cpi->last_prediction_error);
double minerror = cm->MBs * 256;
cpi->last_intra_error = cpi->mb.intra_error;
cpi->last_prediction_error = cpi->mb.prediction_error;
if (10 * cpi->mb.intra_error / (1 + cpi->mb.prediction_error) < 15
&& cpi->mb.prediction_error > minerror
&& (change > .25 || change2 > .25))
{
/*(change > 1.4 || change < .75)&& cpi->this_frame_percent_intra > cpi->last_frame_percent_intra + 3*/
return 1;
}
return 0;
}
/* If the following are true we might as well code a key frame */
if (((cpi->this_frame_percent_intra == 100) &&
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 2))) ||
((cpi->this_frame_percent_intra > 95) &&
(cpi->this_frame_percent_intra >= (cpi->last_frame_percent_intra + 5))))
{
code_key_frame = 1;
}
/* in addition if the following are true and this is not a golden frame
* then code a key frame Note that on golden frames there often seems
* to be a pop in intra useage anyway hence this restriction is
* designed to prevent spurious key frames. The Intra pop needs to be
* investigated.
*/
else if (((cpi->this_frame_percent_intra > 60) &&
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 2))) ||
((cpi->this_frame_percent_intra > 75) &&
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 3 / 2))) ||
((cpi->this_frame_percent_intra > 90) &&
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 10))))
{
if (!cm->refresh_golden_frame)
code_key_frame = 1;
}
return code_key_frame;
}
#if !(CONFIG_REALTIME_ONLY)
static void Pass1Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags)
{
(void) size;
(void) dest;
(void) frame_flags;
vp8_set_quantizer(cpi, 26);
vp8_first_pass(cpi);
}
#endif
#if 0
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame)
{
/* write the frame */
FILE *yframe;
int i;
char filename[255];
sprintf(filename, "cx\\y%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->y_height; i++)
fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\u%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\v%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
fclose(yframe);
}
#endif
/* return of 0 means drop frame */
/* Function to test for conditions that indeicate we should loop
* back and recode a frame.
*/
static int recode_loop_test( VP8_COMP *cpi,
int high_limit, int low_limit,
int q, int maxq, int minq )
{
int force_recode = 0;
VP8_COMMON *cm = &cpi->common;
/* Is frame recode allowed at all
* Yes if either recode mode 1 is selected or mode two is selcted
* and the frame is a key frame. golden frame or alt_ref_frame
*/
if ( (cpi->sf.recode_loop == 1) ||
( (cpi->sf.recode_loop == 2) &&
( (cm->frame_type == KEY_FRAME) ||
cm->refresh_golden_frame ||
cm->refresh_alt_ref_frame ) ) )
{
/* General over and under shoot tests */
if ( ((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
((cpi->projected_frame_size < low_limit) && (q > minq)) )
{
force_recode = 1;
}
/* Special Constrained quality tests */
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
{
/* Undershoot and below auto cq level */
if ( (q > cpi->cq_target_quality) &&
(cpi->projected_frame_size <
((cpi->this_frame_target * 7) >> 3)))
{
force_recode = 1;
}
/* Severe undershoot and between auto and user cq level */
else if ( (q > cpi->oxcf.cq_level) &&
(cpi->projected_frame_size < cpi->min_frame_bandwidth) &&
(cpi->active_best_quality > cpi->oxcf.cq_level))
{
force_recode = 1;
cpi->active_best_quality = cpi->oxcf.cq_level;
}
}
}
return force_recode;
}
static void update_reference_frames(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
YV12_BUFFER_CONFIG *yv12_fb = cm->yv12_fb;
/* At this point the new frame has been encoded.
* If any buffer copy / swapping is signaled it should be done here.
*/
if (cm->frame_type == KEY_FRAME)
{
yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FRAME | VP8_ALTR_FRAME ;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->gld_fb_idx = cm->new_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[GOLDEN_FRAME] = cm->current_video_frame;
cpi->current_ref_frames[ALTREF_FRAME] = cm->current_video_frame;
#endif
}
else /* For non key frames */
{
if (cm->refresh_alt_ref_frame)
{
assert(!cm->copy_buffer_to_arf);
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_ALTR_FRAME;
cm->yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->new_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[ALTREF_FRAME] = cm->current_video_frame;
#endif
}
else if (cm->copy_buffer_to_arf)
{
assert(!(cm->copy_buffer_to_arf & ~0x3));
if (cm->copy_buffer_to_arf == 1)
{
if(cm->alt_fb_idx != cm->lst_fb_idx)
{
yv12_fb[cm->lst_fb_idx].flags |= VP8_ALTR_FRAME;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->lst_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[ALTREF_FRAME] =
cpi->current_ref_frames[LAST_FRAME];
#endif
}
}
else /* if (cm->copy_buffer_to_arf == 2) */
{
if(cm->alt_fb_idx != cm->gld_fb_idx)
{
yv12_fb[cm->gld_fb_idx].flags |= VP8_ALTR_FRAME;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->gld_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[ALTREF_FRAME] =
cpi->current_ref_frames[GOLDEN_FRAME];
#endif
}
}
}
if (cm->refresh_golden_frame)
{
assert(!cm->copy_buffer_to_gf);
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FRAME;
cm->yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
cm->gld_fb_idx = cm->new_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[GOLDEN_FRAME] = cm->current_video_frame;
#endif
}
else if (cm->copy_buffer_to_gf)
{
assert(!(cm->copy_buffer_to_arf & ~0x3));
if (cm->copy_buffer_to_gf == 1)
{
if(cm->gld_fb_idx != cm->lst_fb_idx)
{
yv12_fb[cm->lst_fb_idx].flags |= VP8_GOLD_FRAME;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
cm->gld_fb_idx = cm->lst_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[GOLDEN_FRAME] =
cpi->current_ref_frames[LAST_FRAME];
#endif
}
}
else /* if (cm->copy_buffer_to_gf == 2) */
{
if(cm->alt_fb_idx != cm->gld_fb_idx)
{
yv12_fb[cm->alt_fb_idx].flags |= VP8_GOLD_FRAME;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
cm->gld_fb_idx = cm->alt_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[GOLDEN_FRAME] =
cpi->current_ref_frames[ALTREF_FRAME];
#endif
}
}
}
}
if (cm->refresh_last_frame)
{
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_LAST_FRAME;
cm->yv12_fb[cm->lst_fb_idx].flags &= ~VP8_LAST_FRAME;
cm->lst_fb_idx = cm->new_fb_idx;
#if CONFIG_MULTI_RES_ENCODING
cpi->current_ref_frames[LAST_FRAME] = cm->current_video_frame;
#endif
}
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity)
{
/* we shouldn't have to keep multiple copies as we know in advance which
* buffer we should start - for now to get something up and running
* I've chosen to copy the buffers
*/
if (cm->frame_type == KEY_FRAME)
{
int i;
vp8_yv12_copy_frame(
cpi->Source,
&cpi->denoiser.yv12_running_avg[LAST_FRAME]);
vp8_yv12_extend_frame_borders(
&cpi->denoiser.yv12_running_avg[LAST_FRAME]);
for (i = 2; i < MAX_REF_FRAMES - 1; i++)
vp8_yv12_copy_frame(
&cpi->denoiser.yv12_running_avg[LAST_FRAME],
&cpi->denoiser.yv12_running_avg[i]);
}
else /* For non key frames */
{
vp8_yv12_extend_frame_borders(
&cpi->denoiser.yv12_running_avg[INTRA_FRAME]);
if (cm->refresh_alt_ref_frame || cm->copy_buffer_to_arf)
{
vp8_yv12_copy_frame(
&cpi->denoiser.yv12_running_avg[INTRA_FRAME],
&cpi->denoiser.yv12_running_avg[ALTREF_FRAME]);
}
if (cm->refresh_golden_frame || cm->copy_buffer_to_gf)
{
vp8_yv12_copy_frame(
&cpi->denoiser.yv12_running_avg[INTRA_FRAME],
&cpi->denoiser.yv12_running_avg[GOLDEN_FRAME]);
}
if(cm->refresh_last_frame)
{
vp8_yv12_copy_frame(
&cpi->denoiser.yv12_running_avg[INTRA_FRAME],
&cpi->denoiser.yv12_running_avg[LAST_FRAME]);
}
}
}
#endif
}
void vp8_loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm)
{
const FRAME_TYPE frame_type = cm->frame_type;
if (cm->no_lpf)
{
cm->filter_level = 0;
}
else
{
struct vpx_usec_timer timer;
vp8_clear_system_state();
vpx_usec_timer_start(&timer);
if (cpi->sf.auto_filter == 0)
vp8cx_pick_filter_level_fast(cpi->Source, cpi);
else
vp8cx_pick_filter_level(cpi->Source, cpi);
if (cm->filter_level > 0)
{
vp8cx_set_alt_lf_level(cpi, cm->filter_level);
}
vpx_usec_timer_mark(&timer);
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
}
#if CONFIG_MULTITHREAD
if (cpi->b_multi_threaded)
sem_post(&cpi->h_event_end_lpf); /* signal that we have set filter_level */
#endif
if (cm->filter_level > 0)
{
vp8_loop_filter_frame(cm, &cpi->mb.e_mbd, frame_type);
}
vp8_yv12_extend_frame_borders(cm->frame_to_show);
}
static void encode_frame_to_data_rate
(
VP8_COMP *cpi,
unsigned long *size,
unsigned char *dest,
unsigned char* dest_end,
unsigned int *frame_flags
)
{
int Q;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
int Loop = 0;
int loop_count;
VP8_COMMON *cm = &cpi->common;
int active_worst_qchanged = 0;
#if !(CONFIG_REALTIME_ONLY)
int q_low;
int q_high;
int zbin_oq_high;
int zbin_oq_low = 0;
int top_index;
int bottom_index;
int overshoot_seen = 0;
int undershoot_seen = 0;
#endif
int drop_mark = (int)(cpi->oxcf.drop_frames_water_mark *
cpi->oxcf.optimal_buffer_level / 100);
int drop_mark75 = drop_mark * 2 / 3;
int drop_mark50 = drop_mark / 4;
int drop_mark25 = drop_mark / 8;
/* Clear down mmx registers to allow floating point in what follows */
vp8_clear_system_state();
#if CONFIG_MULTITHREAD
/* wait for the last picture loopfilter thread done */
if (cpi->b_lpf_running)
{
sem_wait(&cpi->h_event_end_lpf);
cpi->b_lpf_running = 0;
}
#endif
if(cpi->force_next_frame_intra)
{
cm->frame_type = KEY_FRAME; /* delayed intra frame */
cpi->force_next_frame_intra = 0;
}
/* For an alt ref frame in 2 pass we skip the call to the second pass
* function that sets the target bandwidth
*/
#if !(CONFIG_REALTIME_ONLY)
if (cpi->pass == 2)
{
if (cpi->common.refresh_alt_ref_frame)
{
/* Per frame bit target for the alt ref frame */
cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
/* per second target bitrate */
cpi->target_bandwidth = (int)(cpi->twopass.gf_bits *
cpi->output_framerate);
}
}
else
#endif
cpi->per_frame_bandwidth = (int)(cpi->target_bandwidth / cpi->output_framerate);
/* Default turn off buffer to buffer copying */
cm->copy_buffer_to_gf = 0;
cm->copy_buffer_to_arf = 0;
/* Clear zbin over-quant value and mode boost values. */
cpi->mb.zbin_over_quant = 0;
cpi->mb.zbin_mode_boost = 0;
/* Enable or disable mode based tweaking of the zbin
* For 2 Pass Only used where GF/ARF prediction quality
* is above a threshold
*/
cpi->mb.zbin_mode_boost_enabled = 1;
if (cpi->pass == 2)
{
if ( cpi->gfu_boost <= 400 )
{
cpi->mb.zbin_mode_boost_enabled = 0;
}
}
/* Current default encoder behaviour for the altref sign bias */
if (cpi->source_alt_ref_active)
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
else
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0;
/* Check to see if a key frame is signaled
* For two pass with auto key frame enabled cm->frame_type may already
* be set, but not for one pass.
*/
if ((cm->current_video_frame == 0) ||
(cm->frame_flags & FRAMEFLAGS_KEY) ||
(cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0)))
{
/* Key frame from VFW/auto-keyframe/first frame */
cm->frame_type = KEY_FRAME;
}
#if CONFIG_MULTI_RES_ENCODING
/* In multi-resolution encoding, frame_type is decided by lowest-resolution
* encoder. Same frame_type is adopted while encoding at other resolution.
*/
if (cpi->oxcf.mr_encoder_id)
{
LOWER_RES_FRAME_INFO* low_res_frame_info
= (LOWER_RES_FRAME_INFO*)cpi->oxcf.mr_low_res_mode_info;
cm->frame_type = low_res_frame_info->frame_type;
if(cm->frame_type != KEY_FRAME)
{
cpi->mr_low_res_mv_avail = 1;
cpi->mr_low_res_mv_avail &= !(low_res_frame_info->is_frame_dropped);
if (cpi->ref_frame_flags & VP8_LAST_FRAME)
cpi->mr_low_res_mv_avail &= (cpi->current_ref_frames[LAST_FRAME]
== low_res_frame_info->low_res_ref_frames[LAST_FRAME]);
if (cpi->ref_frame_flags & VP8_GOLD_FRAME)
cpi->mr_low_res_mv_avail &= (cpi->current_ref_frames[GOLDEN_FRAME]
== low_res_frame_info->low_res_ref_frames[GOLDEN_FRAME]);
if (cpi->ref_frame_flags & VP8_ALTR_FRAME)
cpi->mr_low_res_mv_avail &= (cpi->current_ref_frames[ALTREF_FRAME]
== low_res_frame_info->low_res_ref_frames[ALTREF_FRAME]);
}
}
#endif
/* Set various flags etc to special state if it is a key frame */
if (cm->frame_type == KEY_FRAME)
{
int i;
// Set the loop filter deltas and segmentation map update
setup_features(cpi);
/* The alternate reference frame cannot be active for a key frame */
cpi->source_alt_ref_active = 0;
/* Reset the RD threshold multipliers to default of * 1 (128) */
for (i = 0; i < MAX_MODES; i++)
{
cpi->mb.rd_thresh_mult[i] = 128;
}
}
#if 0
/* Experimental code for lagged compress and one pass
* Initialise one_pass GF frames stats
* Update stats used for GF selection
*/
{
cpi->one_pass_frame_index = cm->current_video_frame % MAX_LAG_BUFFERS;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frames_so_far = 0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_intra_error = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_coded_error = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_inter = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_motion = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr_abs = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc_abs = 0.0;
}
#endif
update_rd_ref_frame_probs(cpi);
if (cpi->drop_frames_allowed)
{
/* The reset to decimation 0 is only done here for one pass.
* Once it is set two pass leaves decimation on till the next kf.
*/
if ((cpi->buffer_level > drop_mark) && (cpi->decimation_factor > 0))
cpi->decimation_factor --;
if (cpi->buffer_level > drop_mark75 && cpi->decimation_factor > 0)
cpi->decimation_factor = 1;
else if (cpi->buffer_level < drop_mark25 && (cpi->decimation_factor == 2 || cpi->decimation_factor == 3))
{
cpi->decimation_factor = 3;
}
else if (cpi->buffer_level < drop_mark50 && (cpi->decimation_factor == 1 || cpi->decimation_factor == 2))
{
cpi->decimation_factor = 2;
}
else if (cpi->buffer_level < drop_mark75 && (cpi->decimation_factor == 0 || cpi->decimation_factor == 1))
{
cpi->decimation_factor = 1;
}
}
/* The following decimates the frame rate according to a regular
* pattern (i.e. to 1/2 or 2/3 frame rate) This can be used to help
* prevent buffer under-run in CBR mode. Alternatively it might be
* desirable in some situations to drop frame rate but throw more bits
* at each frame.
*
* Note that dropping a key frame can be problematic if spatial
* resampling is also active
*/
if (cpi->decimation_factor > 0)
{
switch (cpi->decimation_factor)
{
case 1:
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 3 / 2;
break;
case 2:
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
break;
case 3:
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
break;
}
/* Note that we should not throw out a key frame (especially when
* spatial resampling is enabled).
*/
if (cm->frame_type == KEY_FRAME)
{
cpi->decimation_count = cpi->decimation_factor;
}
else if (cpi->decimation_count > 0)
{
cpi->decimation_count --;
cpi->bits_off_target += cpi->av_per_frame_bandwidth;
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size)
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
#if CONFIG_MULTI_RES_ENCODING
vp8_store_drop_frame_info(cpi);
#endif
cm->current_video_frame++;
cpi->frames_since_key++;
// We advance the temporal pattern for dropped frames.
cpi->temporal_pattern_counter++;
#if CONFIG_INTERNAL_STATS
cpi->count ++;
#endif
cpi->buffer_level = cpi->bits_off_target;
if (cpi->oxcf.number_of_layers > 1)
{
unsigned int i;
/* Propagate bits saved by dropping the frame to higher
* layers
*/
for (i=cpi->current_layer+1; i<cpi->oxcf.number_of_layers; i++)
{
LAYER_CONTEXT *lc = &cpi->layer_context[i];
lc->bits_off_target += (int)(lc->target_bandwidth /
lc->framerate);
if (lc->bits_off_target > lc->maximum_buffer_size)
lc->bits_off_target = lc->maximum_buffer_size;
lc->buffer_level = lc->bits_off_target;
}
}
return;
}
else
cpi->decimation_count = cpi->decimation_factor;
}
else
cpi->decimation_count = 0;
/* Decide how big to make the frame */
if (!vp8_pick_frame_size(cpi))
{
/*TODO: 2 drop_frame and return code could be put together. */
#if CONFIG_MULTI_RES_ENCODING
vp8_store_drop_frame_info(cpi);
#endif
cm->current_video_frame++;
cpi->frames_since_key++;
// We advance the temporal pattern for dropped frames.
cpi->temporal_pattern_counter++;
return;
}
/* Reduce active_worst_allowed_q for CBR if our buffer is getting too full.
* This has a knock on effect on active best quality as well.
* For CBR if the buffer reaches its maximum level then we can no longer
* save up bits for later frames so we might as well use them up
* on the current frame.
*/
if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
(cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) && cpi->buffered_mode)
{
/* Max adjustment is 1/4 */
int Adjustment = cpi->active_worst_quality / 4;
if (Adjustment)
{
int buff_lvl_step;
if (cpi->buffer_level < cpi->oxcf.maximum_buffer_size)
{
buff_lvl_step = (int)
((cpi->oxcf.maximum_buffer_size -
cpi->oxcf.optimal_buffer_level) /
Adjustment);
if (buff_lvl_step)
Adjustment = (int)
((cpi->buffer_level -
cpi->oxcf.optimal_buffer_level) /
buff_lvl_step);
else
Adjustment = 0;
}
cpi->active_worst_quality -= Adjustment;
if(cpi->active_worst_quality < cpi->active_best_quality)
cpi->active_worst_quality = cpi->active_best_quality;
}
}
/* Set an active best quality and if necessary active worst quality
* There is some odd behavior for one pass here that needs attention.
*/
if ( (cpi->pass == 2) || (cpi->ni_frames > 150))
{
vp8_clear_system_state();
Q = cpi->active_worst_quality;
if ( cm->frame_type == KEY_FRAME )
{
if ( cpi->pass == 2 )
{
if (cpi->gfu_boost > 600)
cpi->active_best_quality = kf_low_motion_minq[Q];
else
cpi->active_best_quality = kf_high_motion_minq[Q];
/* Special case for key frames forced because we have reached
* the maximum key frame interval. Here force the Q to a range
* based on the ambient Q to reduce the risk of popping
*/
if ( cpi->this_key_frame_forced )
{
if ( cpi->active_best_quality > cpi->avg_frame_qindex * 7/8)
cpi->active_best_quality = cpi->avg_frame_qindex * 7/8;
else if ( cpi->active_best_quality < cpi->avg_frame_qindex >> 2 )
cpi->active_best_quality = cpi->avg_frame_qindex >> 2;
}
}
/* One pass more conservative */
else
cpi->active_best_quality = kf_high_motion_minq[Q];
}
else if (cpi->oxcf.number_of_layers==1 &&
(cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame))
{
/* Use the lower of cpi->active_worst_quality and recent
* average Q as basis for GF/ARF Q limit unless last frame was
* a key frame.
*/
if ( (cpi->frames_since_key > 1) &&
(cpi->avg_frame_qindex < cpi->active_worst_quality) )
{
Q = cpi->avg_frame_qindex;
}
/* For constrained quality dont allow Q less than the cq level */
if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < cpi->cq_target_quality) )
{
Q = cpi->cq_target_quality;
}
if ( cpi->pass == 2 )
{
if ( cpi->gfu_boost > 1000 )
cpi->active_best_quality = gf_low_motion_minq[Q];
else if ( cpi->gfu_boost < 400 )
cpi->active_best_quality = gf_high_motion_minq[Q];
else
cpi->active_best_quality = gf_mid_motion_minq[Q];
/* Constrained quality use slightly lower active best. */
if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY )
{
cpi->active_best_quality =
cpi->active_best_quality * 15/16;
}
}
/* One pass more conservative */
else
cpi->active_best_quality = gf_high_motion_minq[Q];
}
else
{
cpi->active_best_quality = inter_minq[Q];
/* For the constant/constrained quality mode we dont want
* q to fall below the cq level.
*/
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(cpi->active_best_quality < cpi->cq_target_quality) )
{
/* If we are strongly undershooting the target rate in the last
* frames then use the user passed in cq value not the auto
* cq value.
*/
if ( cpi->rolling_actual_bits < cpi->min_frame_bandwidth )
cpi->active_best_quality = cpi->oxcf.cq_level;
else
cpi->active_best_quality = cpi->cq_target_quality;
}
}
/* If CBR and the buffer is as full then it is reasonable to allow
* higher quality on the frames to prevent bits just going to waste.
*/
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
{
/* Note that the use of >= here elliminates the risk of a devide
* by 0 error in the else if clause
*/
if (cpi->buffer_level >= cpi->oxcf.maximum_buffer_size)
cpi->active_best_quality = cpi->best_quality;
else if (cpi->buffer_level > cpi->oxcf.optimal_buffer_level)
{
int Fraction = (int)
(((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) * 128)
/ (cpi->oxcf.maximum_buffer_size -
cpi->oxcf.optimal_buffer_level));
int min_qadjustment = ((cpi->active_best_quality -
cpi->best_quality) * Fraction) / 128;
cpi->active_best_quality -= min_qadjustment;
}
}
}
/* Make sure constrained quality mode limits are adhered to for the first
* few frames of one pass encodes
*/
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
{
if ( (cm->frame_type == KEY_FRAME) ||
cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame )
{
cpi->active_best_quality = cpi->best_quality;
}
else if (cpi->active_best_quality < cpi->cq_target_quality)
{
cpi->active_best_quality = cpi->cq_target_quality;
}
}
/* Clip the active best and worst quality values to limits */
if (cpi->active_worst_quality > cpi->worst_quality)
cpi->active_worst_quality = cpi->worst_quality;
if (cpi->active_best_quality < cpi->best_quality)
cpi->active_best_quality = cpi->best_quality;
if ( cpi->active_worst_quality < cpi->active_best_quality )
cpi->active_worst_quality = cpi->active_best_quality;
/* Determine initial Q to try */
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
#if !(CONFIG_REALTIME_ONLY)
/* Set highest allowed value for Zbin over quant */
if (cm->frame_type == KEY_FRAME)
zbin_oq_high = 0;
else if ((cpi->oxcf.number_of_layers == 1) && ((cm->refresh_alt_ref_frame ||
(cm->refresh_golden_frame && !cpi->source_alt_ref_active))))
{
zbin_oq_high = 16;
}
else
zbin_oq_high = ZBIN_OQ_MAX;
#endif
/* Setup background Q adjustment for error resilient mode.
* For multi-layer encodes only enable this for the base layer.
*/
if (cpi->cyclic_refresh_mode_enabled)
{
if (cpi->current_layer==0)
cyclic_background_refresh(cpi, Q, 0);
else
disable_segmentation(cpi);
}
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit);
#if !(CONFIG_REALTIME_ONLY)
/* Limit Q range for the adaptive loop. */
bottom_index = cpi->active_best_quality;
top_index = cpi->active_worst_quality;
q_low = cpi->active_best_quality;
q_high = cpi->active_worst_quality;
#endif
vp8_save_coding_context(cpi);
loop_count = 0;
scale_and_extend_source(cpi->un_scaled_source, cpi);
#if !(CONFIG_REALTIME_ONLY) && CONFIG_POSTPROC && !(CONFIG_TEMPORAL_DENOISING)
if (cpi->oxcf.noise_sensitivity > 0)
{
unsigned char *src;
int l = 0;
switch (cpi->oxcf.noise_sensitivity)
{
case 1:
l = 20;
break;
case 2:
l = 40;
break;
case 3:
l = 60;
break;
case 4:
l = 80;
break;
case 5:
l = 100;
break;
case 6:
l = 150;
break;
}
if (cm->frame_type == KEY_FRAME)
{
vp8_de_noise(cm, cpi->Source, cpi->Source, l , 1, 0);
}
else
{
vp8_de_noise(cm, cpi->Source, cpi->Source, l , 1, 0);
src = cpi->Source->y_buffer;
if (cpi->Source->y_stride < 0)
{
src += cpi->Source->y_stride * (cpi->Source->y_height - 1);
}
}
}
#endif
#ifdef OUTPUT_YUV_SRC
vp8_write_yuv_frame(yuv_file, cpi->Source);
#endif
do
{
vp8_clear_system_state();
vp8_set_quantizer(cpi, Q);
/* setup skip prob for costing in mode/mv decision */
if (cpi->common.mb_no_coeff_skip)
{
cpi->prob_skip_false = cpi->base_skip_false_prob[Q];
if (cm->frame_type != KEY_FRAME)
{
if (cpi->common.refresh_alt_ref_frame)
{
if (cpi->last_skip_false_probs[2] != 0)
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
/*
if(cpi->last_skip_false_probs[2]!=0 && abs(Q- cpi->last_skip_probs_q[2])<=16 )
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
else if (cpi->last_skip_false_probs[2]!=0)
cpi->prob_skip_false = (cpi->last_skip_false_probs[2] + cpi->prob_skip_false ) / 2;
*/
}
else if (cpi->common.refresh_golden_frame)
{
if (cpi->last_skip_false_probs[1] != 0)
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
/*
if(cpi->last_skip_false_probs[1]!=0 && abs(Q- cpi->last_skip_probs_q[1])<=16 )
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
else if (cpi->last_skip_false_probs[1]!=0)
cpi->prob_skip_false = (cpi->last_skip_false_probs[1] + cpi->prob_skip_false ) / 2;
*/
}
else
{
if (cpi->last_skip_false_probs[0] != 0)
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
/*
if(cpi->last_skip_false_probs[0]!=0 && abs(Q- cpi->last_skip_probs_q[0])<=16 )
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
else if(cpi->last_skip_false_probs[0]!=0)
cpi->prob_skip_false = (cpi->last_skip_false_probs[0] + cpi->prob_skip_false ) / 2;
*/
}
/* as this is for cost estimate, let's make sure it does not
* go extreme eitehr way
*/
if (cpi->prob_skip_false < 5)
cpi->prob_skip_false = 5;
if (cpi->prob_skip_false > 250)
cpi->prob_skip_false = 250;
if (cpi->oxcf.number_of_layers == 1 && cpi->is_src_frame_alt_ref)
cpi->prob_skip_false = 1;
}
#if 0
if (cpi->pass != 1)
{
FILE *f = fopen("skip.stt", "a");
fprintf(f, "%d, %d, %4d ", cpi->common.refresh_golden_frame, cpi->common.refresh_alt_ref_frame, cpi->prob_skip_false);
fclose(f);
}
#endif
}
if (cm->frame_type == KEY_FRAME)
{
if(resize_key_frame(cpi))
{
/* If the frame size has changed, need to reset Q, quantizer,
* and background refresh.
*/
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
if (cpi->cyclic_refresh_mode_enabled)
{
if (cpi->current_layer==0)
cyclic_background_refresh(cpi, Q, 0);
else
disable_segmentation(cpi);
}
vp8_set_quantizer(cpi, Q);
}
vp8_setup_key_frame(cpi);
}
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
{
if(cpi->oxcf.error_resilient_mode)
cm->refresh_entropy_probs = 0;
if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
{
if (cm->frame_type == KEY_FRAME)
cm->refresh_entropy_probs = 1;
}
if (cm->refresh_entropy_probs == 0)
{
/* save a copy for later refresh */
vpx_memcpy(&cm->lfc, &cm->fc, sizeof(cm->fc));
}
vp8_update_coef_context(cpi);
vp8_update_coef_probs(cpi);
/* transform / motion compensation build reconstruction frame
* +pack coef partitions
*/
vp8_encode_frame(cpi);
/* cpi->projected_frame_size is not needed for RT mode */
}
#else
/* transform / motion compensation build reconstruction frame */
vp8_encode_frame(cpi);
cpi->projected_frame_size -= vp8_estimate_entropy_savings(cpi);
cpi->projected_frame_size = (cpi->projected_frame_size > 0) ? cpi->projected_frame_size : 0;
#endif
vp8_clear_system_state();
/* Test to see if the stats generated for this frame indicate that
* we should have coded a key frame (assuming that we didn't)!
*/
if (cpi->pass != 2 && cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME
&& cpi->compressor_speed != 2)
{
#if !(CONFIG_REALTIME_ONLY)
if (decide_key_frame(cpi))
{
/* Reset all our sizing numbers and recode */
cm->frame_type = KEY_FRAME;
vp8_pick_frame_size(cpi);
/* Clear the Alt reference frame active flag when we have
* a key frame
*/
cpi->source_alt_ref_active = 0;
// Set the loop filter deltas and segmentation map update
setup_features(cpi);
vp8_restore_coding_context(cpi);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit);
/* Limit Q range for the adaptive loop. */
bottom_index = cpi->active_best_quality;
top_index = cpi->active_worst_quality;
q_low = cpi->active_best_quality;
q_high = cpi->active_worst_quality;
loop_count++;
Loop = 1;
continue;
}
#endif
}
vp8_clear_system_state();
if (frame_over_shoot_limit == 0)
frame_over_shoot_limit = 1;
/* Are we are overshooting and up against the limit of active max Q. */
if (((cpi->pass != 2) || (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) &&
(Q == cpi->active_worst_quality) &&
(cpi->active_worst_quality < cpi->worst_quality) &&
(cpi->projected_frame_size > frame_over_shoot_limit))
{
int over_size_percent = ((cpi->projected_frame_size - frame_over_shoot_limit) * 100) / frame_over_shoot_limit;
/* If so is there any scope for relaxing it */
while ((cpi->active_worst_quality < cpi->worst_quality) && (over_size_percent > 0))
{
cpi->active_worst_quality++;
/* Assume 1 qstep = about 4% on frame size. */
over_size_percent = (int)(over_size_percent * 0.96);
}
#if !(CONFIG_REALTIME_ONLY)
top_index = cpi->active_worst_quality;
#endif
/* If we have updated the active max Q do not call
* vp8_update_rate_correction_factors() this loop.
*/
active_worst_qchanged = 1;
}
else
active_worst_qchanged = 0;
#if !(CONFIG_REALTIME_ONLY)
/* Special case handling for forced key frames */
if ( (cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced )
{
int last_q = Q;
int kf_err = vp8_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx]);
/* The key frame is not good enough */
if ( kf_err > ((cpi->ambient_err * 7) >> 3) )
{
/* Lower q_high */
q_high = (Q > q_low) ? (Q - 1) : q_low;
/* Adjust Q */
Q = (q_high + q_low) >> 1;
}
/* The key frame is much better than the previous frame */
else if ( kf_err < (cpi->ambient_err >> 1) )
{
/* Raise q_low */
q_low = (Q < q_high) ? (Q + 1) : q_high;
/* Adjust Q */
Q = (q_high + q_low + 1) >> 1;
}
/* Clamp Q to upper and lower limits: */
if (Q > q_high)
Q = q_high;
else if (Q < q_low)
Q = q_low;
Loop = Q != last_q;
}
/* Is the projected frame size out of range and are we allowed
* to attempt to recode.
*/
else if ( recode_loop_test( cpi,
frame_over_shoot_limit, frame_under_shoot_limit,
Q, top_index, bottom_index ) )
{
int last_q = Q;
int Retries = 0;
/* Frame size out of permitted range. Update correction factor
* & compute new Q to try...
*/
/* Frame is too large */
if (cpi->projected_frame_size > cpi->this_frame_target)
{
/* Raise Qlow as to at least the current value */
q_low = (Q < q_high) ? (Q + 1) : q_high;
/* If we are using over quant do the same for zbin_oq_low */
if (cpi->mb.zbin_over_quant > 0)
zbin_oq_low = (cpi->mb.zbin_over_quant < zbin_oq_high) ?
(cpi->mb.zbin_over_quant + 1) : zbin_oq_high;
if (undershoot_seen)
{
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 1);
Q = (q_high + q_low + 1) / 2;
/* Adjust cpi->zbin_over_quant (only allowed when Q
* is max)
*/
if (Q < MAXQ)
cpi->mb.zbin_over_quant = 0;
else
{
zbin_oq_low = (cpi->mb.zbin_over_quant < zbin_oq_high) ?
(cpi->mb.zbin_over_quant + 1) : zbin_oq_high;
cpi->mb.zbin_over_quant =
(zbin_oq_high + zbin_oq_low) / 2;
}
}
else
{
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
while (((Q < q_low) ||
(cpi->mb.zbin_over_quant < zbin_oq_low)) &&
(Retries < 10))
{
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
Retries ++;
}
}
overshoot_seen = 1;
}
/* Frame is too small */
else
{
if (cpi->mb.zbin_over_quant == 0)
/* Lower q_high if not using over quant */
q_high = (Q > q_low) ? (Q - 1) : q_low;
else
/* else lower zbin_oq_high */
zbin_oq_high = (cpi->mb.zbin_over_quant > zbin_oq_low) ?
(cpi->mb.zbin_over_quant - 1) : zbin_oq_low;
if (overshoot_seen)
{
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 1);
Q = (q_high + q_low) / 2;
/* Adjust cpi->zbin_over_quant (only allowed when Q
* is max)
*/
if (Q < MAXQ)
cpi->mb.zbin_over_quant = 0;
else
cpi->mb.zbin_over_quant =
(zbin_oq_high + zbin_oq_low) / 2;
}
else
{
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
/* Special case reset for qlow for constrained quality.
* This should only trigger where there is very substantial
* undershoot on a frame and the auto cq level is above
* the user passsed in value.
*/
if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < q_low) )
{
q_low = Q;
}
while (((Q > q_high) ||
(cpi->mb.zbin_over_quant > zbin_oq_high)) &&
(Retries < 10))
{
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
Retries ++;
}
}
undershoot_seen = 1;
}
/* Clamp Q to upper and lower limits: */
if (Q > q_high)
Q = q_high;
else if (Q < q_low)
Q = q_low;
/* Clamp cpi->zbin_over_quant */
cpi->mb.zbin_over_quant = (cpi->mb.zbin_over_quant < zbin_oq_low) ?
zbin_oq_low : (cpi->mb.zbin_over_quant > zbin_oq_high) ?
zbin_oq_high : cpi->mb.zbin_over_quant;
Loop = Q != last_q;
}
else
#endif
Loop = 0;
if (cpi->is_src_frame_alt_ref)
Loop = 0;
if (Loop == 1)
{
vp8_restore_coding_context(cpi);
loop_count++;
#if CONFIG_INTERNAL_STATS
cpi->tot_recode_hits++;
#endif
}
}
while (Loop == 1);
#if 0
/* Experimental code for lagged and one pass
* Update stats used for one pass GF selection
*/
{
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_coded_error = (double)cpi->prediction_error;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_intra_error = (double)cpi->intra_error;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_pcnt_inter = (double)(100 - cpi->this_frame_percent_intra) / 100.0;
}
#endif
/* Special case code to reduce pulsing when key frames are forced at a
* fixed interval. Note the reconstruction error if it is the frame before
* the force key frame
*/
if ( cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0) )
{
cpi->ambient_err = vp8_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx]);
}
/* This frame's MVs are saved and will be used in next frame's MV predictor.
* Last frame has one more line(add to bottom) and one more column(add to
* right) than cm->mip. The edge elements are initialized to 0.
*/
#if CONFIG_MULTI_RES_ENCODING
if(!cpi->oxcf.mr_encoder_id && cm->show_frame)
#else
if(cm->show_frame) /* do not save for altref frame */
#endif
{
int mb_row;
int mb_col;
/* Point to beginning of allocated MODE_INFO arrays. */
MODE_INFO *tmp = cm->mip;
if(cm->frame_type != KEY_FRAME)
{
for (mb_row = 0; mb_row < cm->mb_rows+1; mb_row ++)
{
for (mb_col = 0; mb_col < cm->mb_cols+1; mb_col ++)
{
if(tmp->mbmi.ref_frame != INTRA_FRAME)
cpi->lfmv[mb_col + mb_row*(cm->mode_info_stride+1)].as_int = tmp->mbmi.mv.as_int;
cpi->lf_ref_frame_sign_bias[mb_col + mb_row*(cm->mode_info_stride+1)] = cm->ref_frame_sign_bias[tmp->mbmi.ref_frame];
cpi->lf_ref_frame[mb_col + mb_row*(cm->mode_info_stride+1)] = tmp->mbmi.ref_frame;
tmp++;
}
}
}
}
/* Count last ref frame 0,0 usage on current encoded frame. */
{
int mb_row;
int mb_col;
/* Point to beginning of MODE_INFO arrays. */
MODE_INFO *tmp = cm->mi;
cpi->zeromv_count = 0;
if(cm->frame_type != KEY_FRAME)
{
for (mb_row = 0; mb_row < cm->mb_rows; mb_row ++)
{
for (mb_col = 0; mb_col < cm->mb_cols; mb_col ++)
{
if(tmp->mbmi.mode == ZEROMV)
cpi->zeromv_count++;
tmp++;
}
tmp++;
}
}
}
#if CONFIG_MULTI_RES_ENCODING
vp8_cal_dissimilarity(cpi);
#endif
/* Update the GF useage maps.
* This is done after completing the compression of a frame when all
* modes etc. are finalized but before loop filter
*/
if (cpi->oxcf.number_of_layers == 1)
vp8_update_gf_useage_maps(cpi, cm, &cpi->mb);
if (cm->frame_type == KEY_FRAME)
cm->refresh_last_frame = 1;
#if 0
{
FILE *f = fopen("gfactive.stt", "a");
fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame);
fclose(f);
}
#endif
/* For inter frames the current default behavior is that when
* cm->refresh_golden_frame is set we copy the old GF over to the ARF buffer
* This is purely an encoder decision at present.
*/
if (!cpi->oxcf.error_resilient_mode && cm->refresh_golden_frame)
cm->copy_buffer_to_arf = 2;
else
cm->copy_buffer_to_arf = 0;
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
#if CONFIG_MULTITHREAD
if (cpi->b_multi_threaded)
{
/* start loopfilter in separate thread */
sem_post(&cpi->h_event_start_lpf);
cpi->b_lpf_running = 1;
}
else
#endif
{
vp8_loopfilter_frame(cpi, cm);
}
update_reference_frames(cpi);
#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
if (cpi->oxcf.error_resilient_mode)
{
cm->refresh_entropy_probs = 0;
}
#endif
#if CONFIG_MULTITHREAD
/* wait that filter_level is picked so that we can continue with stream packing */
if (cpi->b_multi_threaded)
sem_wait(&cpi->h_event_end_lpf);
#endif
/* build the bitstream */
vp8_pack_bitstream(cpi, dest, dest_end, size);
#if CONFIG_MULTITHREAD
/* if PSNR packets are generated we have to wait for the lpf */
if (cpi->b_lpf_running && cpi->b_calculate_psnr)
{
sem_wait(&cpi->h_event_end_lpf);
cpi->b_lpf_running = 0;
}
#endif
/* Move storing frame_type out of the above loop since it is also
* needed in motion search besides loopfilter */
cm->last_frame_type = cm->frame_type;
/* Update rate control heuristics */
cpi->total_byte_count += (*size);
cpi->projected_frame_size = (*size) << 3;
if (cpi->oxcf.number_of_layers > 1)
{
unsigned int i;
for (i=cpi->current_layer+1; i<cpi->oxcf.number_of_layers; i++)
cpi->layer_context[i].total_byte_count += (*size);
}
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 2);
cpi->last_q[cm->frame_type] = cm->base_qindex;
if (cm->frame_type == KEY_FRAME)
{
vp8_adjust_key_frame_context(cpi);
}
/* Keep a record of ambient average Q. */
if (cm->frame_type != KEY_FRAME)
cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
/* Keep a record from which we can calculate the average Q excluding
* GF updates and key frames
*/
if ((cm->frame_type != KEY_FRAME) && ((cpi->oxcf.number_of_layers > 1) ||
(!cm->refresh_golden_frame && !cm->refresh_alt_ref_frame)))
{
cpi->ni_frames++;
/* Calculate the average Q for normal inter frames (not key or GFU
* frames).
*/
if ( cpi->pass == 2 )
{
cpi->ni_tot_qi += Q;
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
}
else
{
/* Damp value for first few frames */
if (cpi->ni_frames > 150 )
{
cpi->ni_tot_qi += Q;
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
}
/* For one pass, early in the clip ... average the current frame Q
* value with the worstq entered by the user as a dampening measure
*/
else
{
cpi->ni_tot_qi += Q;
cpi->ni_av_qi = ((cpi->ni_tot_qi / cpi->ni_frames) + cpi->worst_quality + 1) / 2;
}
/* If the average Q is higher than what was used in the last
* frame (after going through the recode loop to keep the frame
* size within range) then use the last frame value - 1. The -1
* is designed to stop Q and hence the data rate, from
* progressively falling away during difficult sections, but at
* the same time reduce the number of itterations around the
* recode loop.
*/
if (Q > cpi->ni_av_qi)
cpi->ni_av_qi = Q - 1;
}
}
/* Update the buffer level variable. */
/* Non-viewable frames are a special case and are treated as pure overhead. */
if ( !cm->show_frame )
cpi->bits_off_target -= cpi->projected_frame_size;
else
cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
/* Clip the buffer level to the maximum specified buffer size */
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size)
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
/* Rolling monitors of whether we are over or underspending used to
* help regulate min and Max Q in two pass.
*/
cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
cpi->rolling_actual_bits = ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
cpi->long_rolling_target_bits = ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
cpi->long_rolling_actual_bits = ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / 32;
/* Actual bits spent */
cpi->total_actual_bits += cpi->projected_frame_size;
/* Debug stats */
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
cpi->buffer_level = cpi->bits_off_target;
/* Propagate values to higher temporal layers */
if (cpi->oxcf.number_of_layers > 1)
{
unsigned int i;
for (i=cpi->current_layer+1; i<cpi->oxcf.number_of_layers; i++)
{
LAYER_CONTEXT *lc = &cpi->layer_context[i];
int bits_off_for_this_layer =
(int)(lc->target_bandwidth / lc->framerate -
cpi->projected_frame_size);
lc->bits_off_target += bits_off_for_this_layer;
/* Clip buffer level to maximum buffer size for the layer */
if (lc->bits_off_target > lc->maximum_buffer_size)
lc->bits_off_target = lc->maximum_buffer_size;
lc->total_actual_bits += cpi->projected_frame_size;
lc->total_target_vs_actual += bits_off_for_this_layer;
lc->buffer_level = lc->bits_off_target;
}
}
/* Update bits left to the kf and gf groups to account for overshoot
* or undershoot on these frames
*/
if (cm->frame_type == KEY_FRAME)
{
cpi->twopass.kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
if (cpi->twopass.kf_group_bits < 0)
cpi->twopass.kf_group_bits = 0 ;
}
else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame)
{
cpi->twopass.gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
if (cpi->twopass.gf_group_bits < 0)
cpi->twopass.gf_group_bits = 0 ;
}
if (cm->frame_type != KEY_FRAME)
{
if (cpi->common.refresh_alt_ref_frame)
{
cpi->last_skip_false_probs[2] = cpi->prob_skip_false;
cpi->last_skip_probs_q[2] = cm->base_qindex;
}
else if (cpi->common.refresh_golden_frame)
{
cpi->last_skip_false_probs[1] = cpi->prob_skip_false;
cpi->last_skip_probs_q[1] = cm->base_qindex;
}
else
{
cpi->last_skip_false_probs[0] = cpi->prob_skip_false;
cpi->last_skip_probs_q[0] = cm->base_qindex;
/* update the baseline */
cpi->base_skip_false_prob[cm->base_qindex] = cpi->prob_skip_false;
}
}
#if 0 && CONFIG_INTERNAL_STATS
{
FILE *f = fopen("tmp.stt", "a");
vp8_clear_system_state();
if (cpi->twopass.total_left_stats.coded_error != 0.0)
fprintf(f, "%10d %10d %10d %10d %10d %10"PRId64" %10"PRId64
"%10"PRId64" %10d %6d %6d %6d %6d %5d %5d %5d %8d "
"%8.2lf %"PRId64" %10.3lf %10"PRId64" %8d\n",
cpi->common.current_video_frame, cpi->this_frame_target,
cpi->projected_frame_size,
(cpi->projected_frame_size - cpi->this_frame_target),
cpi->total_target_vs_actual,
cpi->buffer_level,
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
cpi->total_actual_bits, cm->base_qindex,
cpi->active_best_quality, cpi->active_worst_quality,
cpi->ni_av_qi, cpi->cq_target_quality,
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
(double)cpi->twopass.bits_left /
cpi->twopass.total_left_stats.coded_error,
cpi->tot_recode_hits);
else
fprintf(f, "%10d %10d %10d %10d %10d %10"PRId64" %10"PRId64
"%10"PRId64" %10d %6d %6d %6d %6d %5d %5d %5d %8d "
"%8.2lf %"PRId64" %10.3lf %8d\n",
cpi->common.current_video_frame, cpi->this_frame_target,
cpi->projected_frame_size,
(cpi->projected_frame_size - cpi->this_frame_target),
cpi->total_target_vs_actual,
cpi->buffer_level,
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
cpi->total_actual_bits, cm->base_qindex,
cpi->active_best_quality, cpi->active_worst_quality,
cpi->ni_av_qi, cpi->cq_target_quality,
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
cpi->tot_recode_hits);
fclose(f);
{
FILE *fmodes = fopen("Modes.stt", "a");
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
cpi->common.current_video_frame,
cm->frame_type, cm->refresh_golden_frame,
cm->refresh_alt_ref_frame);
fprintf(fmodes, "\n");
fclose(fmodes);
}
}
#endif
if (cm->refresh_golden_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN;
if (cm->refresh_alt_ref_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF;
if (cm->refresh_last_frame & cm->refresh_golden_frame)
/* both refreshed */
cpi->gold_is_last = 1;
else if (cm->refresh_last_frame ^ cm->refresh_golden_frame)
/* 1 refreshed but not the other */
cpi->gold_is_last = 0;
if (cm->refresh_last_frame & cm->refresh_alt_ref_frame)
/* both refreshed */
cpi->alt_is_last = 1;
else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame)
/* 1 refreshed but not the other */
cpi->alt_is_last = 0;
if (cm->refresh_alt_ref_frame & cm->refresh_golden_frame)
/* both refreshed */
cpi->gold_is_alt = 1;
else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame)
/* 1 refreshed but not the other */
cpi->gold_is_alt = 0;
cpi->ref_frame_flags = VP8_ALTR_FRAME | VP8_GOLD_FRAME | VP8_LAST_FRAME;
if (cpi->gold_is_last)
cpi->ref_frame_flags &= ~VP8_GOLD_FRAME;
if (cpi->alt_is_last)
cpi->ref_frame_flags &= ~VP8_ALTR_FRAME;
if (cpi->gold_is_alt)
cpi->ref_frame_flags &= ~VP8_ALTR_FRAME;
if (!cpi->oxcf.error_resilient_mode)
{
if (cpi->oxcf.play_alternate && cm->refresh_alt_ref_frame && (cm->frame_type != KEY_FRAME))
/* Update the alternate reference frame stats as appropriate. */
update_alt_ref_frame_stats(cpi);
else
/* Update the Golden frame stats as appropriate. */
update_golden_frame_stats(cpi);
}
if (cm->frame_type == KEY_FRAME)
{
/* Tell the caller that the frame was coded as a key frame */
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
/* As this frame is a key frame the next defaults to an inter frame. */
cm->frame_type = INTER_FRAME;
cpi->last_frame_percent_intra = 100;
}
else
{
*frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY;
cpi->last_frame_percent_intra = cpi->this_frame_percent_intra;
}
/* Clear the one shot update flags for segmentation map and mode/ref
* loop filter deltas.
*/
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
/* Dont increment frame counters if this was an altref buffer update
* not a real frame
*/
if (cm->show_frame)
{
cm->current_video_frame++;
cpi->frames_since_key++;
cpi->temporal_pattern_counter++;
}
/* reset to normal state now that we are done. */
#if 0
{
char filename[512];
FILE *recon_file;
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
recon_file = fopen(filename, "wb");
fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc,
cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file);
fclose(recon_file);
}
#endif
/* DEBUG */
/* vp8_write_yuv_frame("encoder_recon.yuv", cm->frame_to_show); */
}
#if !(CONFIG_REALTIME_ONLY)
static void Pass2Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned char * dest_end, unsigned int *frame_flags)
{
if (!cpi->common.refresh_alt_ref_frame)
vp8_second_pass(cpi);
encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags);
cpi->twopass.bits_left -= 8 * *size;
if (!cpi->common.refresh_alt_ref_frame)
{
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
*cpi->oxcf.two_pass_vbrmin_section / 100);
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->framerate);
}
}
#endif
int vp8_receive_raw_frame(VP8_COMP *cpi, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, int64_t time_stamp, int64_t end_time)
{
struct vpx_usec_timer timer;
int res = 0;
vpx_usec_timer_start(&timer);
/* Reinit the lookahead buffer if the frame size changes */
if (sd->y_width != cpi->oxcf.Width || sd->y_height != cpi->oxcf.Height)
{
assert(cpi->oxcf.lag_in_frames < 2);
dealloc_raw_frame_buffers(cpi);
alloc_raw_frame_buffers(cpi);
}
if(vp8_lookahead_push(cpi->lookahead, sd, time_stamp, end_time,
frame_flags, cpi->active_map_enabled ? cpi->active_map : NULL))
res = -1;
vpx_usec_timer_mark(&timer);
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
return res;
}
static int frame_is_reference(const VP8_COMP *cpi)
{
const VP8_COMMON *cm = &cpi->common;
const MACROBLOCKD *xd = &cpi->mb.e_mbd;
return cm->frame_type == KEY_FRAME || cm->refresh_last_frame
|| cm->refresh_golden_frame || cm->refresh_alt_ref_frame
|| cm->copy_buffer_to_gf || cm->copy_buffer_to_arf
|| cm->refresh_entropy_probs
|| xd->mode_ref_lf_delta_update
|| xd->update_mb_segmentation_map || xd->update_mb_segmentation_data;
}
int vp8_get_compressed_data(VP8_COMP *cpi, unsigned int *frame_flags, unsigned long *size, unsigned char *dest, unsigned char *dest_end, int64_t *time_stamp, int64_t *time_end, int flush)
{
VP8_COMMON *cm;
struct vpx_usec_timer tsctimer;
struct vpx_usec_timer ticktimer;
struct vpx_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
if (!cpi)
return -1;
cm = &cpi->common;
if (setjmp(cpi->common.error.jmp))
{
cpi->common.error.setjmp = 0;
return VPX_CODEC_CORRUPT_FRAME;
}
cpi->common.error.setjmp = 1;
vpx_usec_timer_start(&cmptimer);
cpi->source = NULL;
#if !(CONFIG_REALTIME_ONLY)
/* Should we code an alternate reference frame */
if (cpi->oxcf.error_resilient_mode == 0 &&
cpi->oxcf.play_alternate &&
cpi->source_alt_ref_pending)
{
if ((cpi->source = vp8_lookahead_peek(cpi->lookahead,
cpi->frames_till_gf_update_due,
PEEK_FORWARD)))
{
cpi->alt_ref_source = cpi->source;
if (cpi->oxcf.arnr_max_frames > 0)
{
vp8_temporal_filter_prepare_c(cpi,
cpi->frames_till_gf_update_due);
force_src_buffer = &cpi->alt_ref_buffer;
}
cpi->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due;
cm->refresh_alt_ref_frame = 1;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 0;
cm->show_frame = 0;
/* Clear Pending alt Ref flag. */
cpi->source_alt_ref_pending = 0;
cpi->is_src_frame_alt_ref = 0;
}
}
#endif
if (!cpi->source)
{
/* Read last frame source if we are encoding first pass. */
if (cpi->pass == 1 && cm->current_video_frame > 0)
{
if((cpi->last_source = vp8_lookahead_peek(cpi->lookahead, 1,
PEEK_BACKWARD)) == NULL)
return -1;
}
if ((cpi->source = vp8_lookahead_pop(cpi->lookahead, flush)))
{
cm->show_frame = 1;
cpi->is_src_frame_alt_ref = cpi->alt_ref_source
&& (cpi->source == cpi->alt_ref_source);
if(cpi->is_src_frame_alt_ref)
cpi->alt_ref_source = NULL;
}
}
if (cpi->source)
{
cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img;
cpi->un_scaled_source = cpi->Source;
*time_stamp = cpi->source->ts_start;
*time_end = cpi->source->ts_end;
*frame_flags = cpi->source->flags;
if (cpi->pass == 1 && cm->current_video_frame > 0)
{
cpi->last_frame_unscaled_source = &cpi->last_source->img;
}
}
else
{
*size = 0;
#if !(CONFIG_REALTIME_ONLY)
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done)
{
vp8_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
}
#endif
return -1;
}
if (cpi->source->ts_start < cpi->first_time_stamp_ever)
{
cpi->first_time_stamp_ever = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
}
/* adjust frame rates based on timestamps given */
if (cm->show_frame)
{
int64_t this_duration;
int step = 0;
if (cpi->source->ts_start == cpi->first_time_stamp_ever)
{
this_duration = cpi->source->ts_end - cpi->source->ts_start;
step = 1;
}
else
{
int64_t last_duration;
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
last_duration = cpi->last_end_time_stamp_seen
- cpi->last_time_stamp_seen;
/* do a step update if the duration changes by 10% */
if (last_duration)
step = (int)(((this_duration - last_duration) *
10 / last_duration));
}
if (this_duration)
{
if (step)
cpi->ref_framerate = 10000000.0 / this_duration;
else
{
double avg_duration, interval;
/* Average this frame's rate into the last second's average
* frame rate. If we haven't seen 1 second yet, then average
* over the whole interval seen.
*/
interval = (double)(cpi->source->ts_end -
cpi->first_time_stamp_ever);
if(interval > 10000000.0)
interval = 10000000;
avg_duration = 10000000.0 / cpi->ref_framerate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
cpi->ref_framerate = 10000000.0 / avg_duration;
}
if (cpi->oxcf.number_of_layers > 1)
{
unsigned int i;
/* Update frame rates for each layer */
assert(cpi->oxcf.number_of_layers <= VPX_TS_MAX_LAYERS);
for (i=0; i<cpi->oxcf.number_of_layers; i++)
{
LAYER_CONTEXT *lc = &cpi->layer_context[i];
lc->framerate = cpi->ref_framerate /
cpi->oxcf.rate_decimator[i];
}
}
else
vp8_new_framerate(cpi, cpi->ref_framerate);
}
cpi->last_time_stamp_seen = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
}
if (cpi->oxcf.number_of_layers > 1)
{
int layer;
update_layer_contexts (cpi);
/* Restore layer specific context & set frame rate */
layer = cpi->oxcf.layer_id[
cpi->temporal_pattern_counter % cpi->oxcf.periodicity];
restore_layer_context (cpi, layer);
vp8_new_framerate(cpi, cpi->layer_context[layer].framerate);
}
if (cpi->compressor_speed == 2)
{
vpx_usec_timer_start(&tsctimer);
vpx_usec_timer_start(&ticktimer);
}
cpi->lf_zeromv_pct = (cpi->zeromv_count * 100)/cm->MBs;
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
{
int i;
const int num_part = (1 << cm->multi_token_partition);
/* the available bytes in dest */
const unsigned long dest_size = dest_end - dest;
const int tok_part_buff_size = (dest_size * 9) / (10 * num_part);
unsigned char *dp = dest;
cpi->partition_d[0] = dp;
dp += dest_size/10; /* reserve 1/10 for control partition */
cpi->partition_d_end[0] = dp;
for(i = 0; i < num_part; i++)
{
cpi->partition_d[i + 1] = dp;
dp += tok_part_buff_size;
cpi->partition_d_end[i + 1] = dp;
}
}
#endif
/* start with a 0 size frame */
*size = 0;
/* Clear down mmx registers */
vp8_clear_system_state();
cm->frame_type = INTER_FRAME;
cm->frame_flags = *frame_flags;
#if 0
if (cm->refresh_alt_ref_frame)
{
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 0;
}
else
{
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
}
#endif
/* find a free buffer for the new frame */
{
int i = 0;
for(; i < NUM_YV12_BUFFERS; i++)
{
if(!cm->yv12_fb[i].flags)
{
cm->new_fb_idx = i;
break;
}
}
assert(i < NUM_YV12_BUFFERS );
}
#if !(CONFIG_REALTIME_ONLY)
if (cpi->pass == 1)
{
Pass1Encode(cpi, size, dest, frame_flags);
}
else if (cpi->pass == 2)
{
Pass2Encode(cpi, size, dest, dest_end, frame_flags);
}
else
#endif
encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags);
if (cpi->compressor_speed == 2)
{
unsigned int duration, duration2;
vpx_usec_timer_mark(&tsctimer);
vpx_usec_timer_mark(&ticktimer);
duration = (int)(vpx_usec_timer_elapsed(&ticktimer));
duration2 = (unsigned int)((double)duration / 2);
if (cm->frame_type != KEY_FRAME)
{
if (cpi->avg_encode_time == 0)
cpi->avg_encode_time = duration;
else
cpi->avg_encode_time = (7 * cpi->avg_encode_time + duration) >> 3;
}
if (duration2)
{
{
if (cpi->avg_pick_mode_time == 0)
cpi->avg_pick_mode_time = duration2;
else
cpi->avg_pick_mode_time = (7 * cpi->avg_pick_mode_time + duration2) >> 3;
}
}
}
if (cm->refresh_entropy_probs == 0)
{
vpx_memcpy(&cm->fc, &cm->lfc, sizeof(cm->fc));
}
/* Save the contexts separately for alt ref, gold and last. */
/* (TODO jbb -> Optimize this with pointers to avoid extra copies. ) */
if(cm->refresh_alt_ref_frame)
vpx_memcpy(&cpi->lfc_a, &cm->fc, sizeof(cm->fc));
if(cm->refresh_golden_frame)
vpx_memcpy(&cpi->lfc_g, &cm->fc, sizeof(cm->fc));
if(cm->refresh_last_frame)
vpx_memcpy(&cpi->lfc_n, &cm->fc, sizeof(cm->fc));
/* if its a dropped frame honor the requests on subsequent frames */
if (*size > 0)
{
cpi->droppable = !frame_is_reference(cpi);
/* return to normal state */
cm->refresh_entropy_probs = 1;
cm->refresh_alt_ref_frame = 0;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
cm->frame_type = INTER_FRAME;
}
/* Save layer specific state */
if (cpi->oxcf.number_of_layers > 1)
save_layer_context (cpi);
vpx_usec_timer_mark(&cmptimer);
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame)
{
generate_psnr_packet(cpi);
}
#if CONFIG_INTERNAL_STATS
if (cpi->pass != 1)
{
cpi->bytes += *size;
if (cm->show_frame)
{
cpi->common.show_frame_mi = cpi->common.mi;
cpi->count ++;
if (cpi->b_calculate_psnr)
{
uint64_t ye,ue,ve;
double frame_psnr;
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
int y_samples = orig->y_height * orig->y_width ;
int uv_samples = orig->uv_height * orig->uv_width ;
int t_samples = y_samples + 2 * uv_samples;
double sq_error;
ye = calc_plane_error(orig->y_buffer, orig->y_stride,
recon->y_buffer, recon->y_stride, orig->y_width, orig->y_height);
ue = calc_plane_error(orig->u_buffer, orig->uv_stride,
recon->u_buffer, recon->uv_stride, orig->uv_width, orig->uv_height);
ve = calc_plane_error(orig->v_buffer, orig->uv_stride,
recon->v_buffer, recon->uv_stride, orig->uv_width, orig->uv_height);
sq_error = (double)(ye + ue + ve);
frame_psnr = vpx_sse_to_psnr(t_samples, 255.0, sq_error);
cpi->total_y += vpx_sse_to_psnr(y_samples, 255.0, (double)ye);
cpi->total_u += vpx_sse_to_psnr(uv_samples, 255.0, (double)ue);
cpi->total_v += vpx_sse_to_psnr(uv_samples, 255.0, (double)ve);
cpi->total_sq_error += sq_error;
cpi->total += frame_psnr;
#if CONFIG_POSTPROC
{
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
double sq_error2;
double frame_psnr2, frame_ssim2 = 0;
double weight = 0;
vp8_deblock(cm, cm->frame_to_show, &cm->post_proc_buffer, cm->filter_level * 10 / 6, 1, 0);
vp8_clear_system_state();
ye = calc_plane_error(orig->y_buffer, orig->y_stride,
pp->y_buffer, pp->y_stride, orig->y_width, orig->y_height);
ue = calc_plane_error(orig->u_buffer, orig->uv_stride,
pp->u_buffer, pp->uv_stride, orig->uv_width, orig->uv_height);
ve = calc_plane_error(orig->v_buffer, orig->uv_stride,
pp->v_buffer, pp->uv_stride, orig->uv_width, orig->uv_height);
sq_error2 = (double)(ye + ue + ve);
frame_psnr2 = vpx_sse_to_psnr(t_samples, 255.0, sq_error2);
cpi->totalp_y += vpx_sse_to_psnr(y_samples,
255.0, (double)ye);
cpi->totalp_u += vpx_sse_to_psnr(uv_samples,
255.0, (double)ue);
cpi->totalp_v += vpx_sse_to_psnr(uv_samples,
255.0, (double)ve);
cpi->total_sq_error2 += sq_error2;
cpi->totalp += frame_psnr2;
frame_ssim2 = vp8_calc_ssim(cpi->Source,
&cm->post_proc_buffer, 1, &weight);
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
if (cpi->oxcf.number_of_layers > 1)
{
unsigned int i;
for (i=cpi->current_layer;
i<cpi->oxcf.number_of_layers; i++)
{
cpi->frames_in_layer[i]++;
cpi->bytes_in_layer[i] += *size;
cpi->sum_psnr[i] += frame_psnr;
cpi->sum_psnr_p[i] += frame_psnr2;
cpi->total_error2[i] += sq_error;
cpi->total_error2_p[i] += sq_error2;
cpi->sum_ssim[i] += frame_ssim2 * weight;
cpi->sum_weights[i] += weight;
}
}
}
#endif
}
if (cpi->b_calculate_ssimg)
{
double y, u, v, frame_all;
frame_all = vp8_calc_ssimg(cpi->Source, cm->frame_to_show,
&y, &u, &v);
if (cpi->oxcf.number_of_layers > 1)
{
unsigned int i;
for (i=cpi->current_layer;
i<cpi->oxcf.number_of_layers; i++)
{
if (!cpi->b_calculate_psnr)
cpi->frames_in_layer[i]++;
cpi->total_ssimg_y_in_layer[i] += y;
cpi->total_ssimg_u_in_layer[i] += u;
cpi->total_ssimg_v_in_layer[i] += v;
cpi->total_ssimg_all_in_layer[i] += frame_all;
}
}
else
{
cpi->total_ssimg_y += y;
cpi->total_ssimg_u += u;
cpi->total_ssimg_v += v;
cpi->total_ssimg_all += frame_all;
}
}
}
}
#if 0
if (cpi->common.frame_type != 0 && cpi->common.base_qindex == cpi->oxcf.worst_allowed_q)
{
skiptruecount += cpi->skip_true_count;
skipfalsecount += cpi->skip_false_count;
}
#endif
#if 0
if (cpi->pass != 1)
{
FILE *f = fopen("skip.stt", "a");
fprintf(f, "frame:%4d flags:%4x Q:%4d P:%4d Size:%5d\n", cpi->common.current_video_frame, *frame_flags, cpi->common.base_qindex, cpi->prob_skip_false, *size);
if (cpi->is_src_frame_alt_ref == 1)
fprintf(f, "skipcount: %4d framesize: %d\n", cpi->skip_true_count , *size);
fclose(f);
}
#endif
#endif
cpi->common.error.setjmp = 0;
return 0;
}
int vp8_get_preview_raw_frame(VP8_COMP *cpi, YV12_BUFFER_CONFIG *dest, vp8_ppflags_t *flags)
{
if (cpi->common.refresh_alt_ref_frame)
return -1;
else
{
int ret;
#if CONFIG_MULTITHREAD
if(cpi->b_lpf_running)
{
sem_wait(&cpi->h_event_end_lpf);
cpi->b_lpf_running = 0;
}
#endif
#if CONFIG_POSTPROC
cpi->common.show_frame_mi = cpi->common.mi;
ret = vp8_post_proc_frame(&cpi->common, dest, flags);
#else
if (cpi->common.frame_to_show)
{
*dest = *cpi->common.frame_to_show;
dest->y_width = cpi->common.Width;
dest->y_height = cpi->common.Height;
dest->uv_height = cpi->common.Height / 2;
ret = 0;
}
else
{
ret = -1;
}
#endif
vp8_clear_system_state();
return ret;
}
}
int vp8_set_roimap(VP8_COMP *cpi, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[4], int delta_lf[4], unsigned int threshold[4])
{
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
int internal_delta_q[MAX_MB_SEGMENTS];
const int range = 63;
int i;
// This method is currently incompatible with the cyclic refresh method
if ( cpi->cyclic_refresh_mode_enabled )
return -1;
// Check number of rows and columns match
if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols)
return -1;
// Range check the delta Q values and convert the external Q range values
// to internal ones.
if ( (abs(delta_q[0]) > range) || (abs(delta_q[1]) > range) ||
(abs(delta_q[2]) > range) || (abs(delta_q[3]) > range) )
return -1;
// Range check the delta lf values
if ( (abs(delta_lf[0]) > range) || (abs(delta_lf[1]) > range) ||
(abs(delta_lf[2]) > range) || (abs(delta_lf[3]) > range) )
return -1;
if (!map)
{
disable_segmentation(cpi);
return 0;
}
// Translate the external delta q values to internal values.
for ( i = 0; i < MAX_MB_SEGMENTS; i++ )
internal_delta_q[i] =
( delta_q[i] >= 0 ) ? q_trans[delta_q[i]] : -q_trans[-delta_q[i]];
/* Set the segmentation Map */
set_segmentation_map(cpi, map);
/* Activate segmentation. */
enable_segmentation(cpi);
/* Set up the quant segment data */
feature_data[MB_LVL_ALT_Q][0] = internal_delta_q[0];
feature_data[MB_LVL_ALT_Q][1] = internal_delta_q[1];
feature_data[MB_LVL_ALT_Q][2] = internal_delta_q[2];
feature_data[MB_LVL_ALT_Q][3] = internal_delta_q[3];
/* Set up the loop segment data s */
feature_data[MB_LVL_ALT_LF][0] = delta_lf[0];
feature_data[MB_LVL_ALT_LF][1] = delta_lf[1];
feature_data[MB_LVL_ALT_LF][2] = delta_lf[2];
feature_data[MB_LVL_ALT_LF][3] = delta_lf[3];
cpi->segment_encode_breakout[0] = threshold[0];
cpi->segment_encode_breakout[1] = threshold[1];
cpi->segment_encode_breakout[2] = threshold[2];
cpi->segment_encode_breakout[3] = threshold[3];
/* Initialise the feature data structure */
set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA);
return 0;
}
int vp8_set_active_map(VP8_COMP *cpi, unsigned char *map, unsigned int rows, unsigned int cols)
{
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols)
{
if (map)
{
vpx_memcpy(cpi->active_map, map, rows * cols);
cpi->active_map_enabled = 1;
}
else
cpi->active_map_enabled = 0;
return 0;
}
else
{
return -1 ;
}
}
int vp8_set_internal_size(VP8_COMP *cpi, VPX_SCALING horiz_mode, VPX_SCALING vert_mode)
{
if (horiz_mode <= ONETWO)
cpi->common.horiz_scale = horiz_mode;
else
return -1;
if (vert_mode <= ONETWO)
cpi->common.vert_scale = vert_mode;
else
return -1;
return 0;
}
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest)
{
int i, j;
int Total = 0;
unsigned char *src = source->y_buffer;
unsigned char *dst = dest->y_buffer;
/* Loop through the Y plane raw and reconstruction data summing
* (square differences)
*/
for (i = 0; i < source->y_height; i += 16)
{
for (j = 0; j < source->y_width; j += 16)
{
unsigned int sse;
Total += vp8_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride, &sse);
}
src += 16 * source->y_stride;
dst += 16 * dest->y_stride;
}
return Total;
}
int vp8_get_quantizer(VP8_COMP *cpi)
{
return cpi->common.base_qindex;
}