vpx/vp8/encoder/onyx_if.c
Adrian Grange bbc926dca2 Added Prediction Filter to Mode Selection
Added the ability to optionally filter the prediction data
when inter modes are selected (excludes SPLITMV, for now).

The mode selection loop considers both the filtered and
non-filtered prediction data when choosing mode. The filter
can be turned on/off at the frame-level, or signaled for
each MB.

Change-Id: I1b783c71d95a361ab36c761b07e8a6b06bc36822
2012-06-27 14:51:41 -07:00

4823 lines
157 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "vp8/common/onyxc_int.h"
#include "onyx_int.h"
#include "vp8/common/systemdependent.h"
#include "quantize.h"
#include "vp8/common/alloccommon.h"
#include "mcomp.h"
#include "firstpass.h"
#include "psnr.h"
#include "vpx_scale/vpxscale.h"
#include "vp8/common/extend.h"
#include "ratectrl.h"
#include "vp8/common/quant_common.h"
#include "segmentation.h"
#include "vp8/common/g_common.h"
#include "vpx_scale/yv12extend.h"
#if CONFIG_POSTPROC
#include "vp8/common/postproc.h"
#endif
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/swapyv12buffer.h"
#include "vpx_ports/vpx_timer.h"
#include "temporal_filter.h"
#include "vp8/common/seg_common.h"
#include "mbgraph.h"
#include "vp8/common/pred_common.h"
#include "vp8/encoder/rdopt.h"
#include "bitstream.h"
#include "ratectrl.h"
#if ARCH_ARM
#include "vpx_ports/arm.h"
#endif
#include <math.h>
#include <stdio.h>
#include <limits.h>
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#define RTCD(x) &cpi->common.rtcd.x
#else
#define IF_RTCD(x) NULL
#define RTCD(x) NULL
#endif
extern void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
extern void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val);
extern void vp8cx_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
extern void vp8_dmachine_specific_config(VP8_COMP *cpi);
extern void vp8_cmachine_specific_config(VP8_COMP *cpi);
extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *post, int filt_lvl, int low_var_thresh, int flag);
extern void print_parms(VP8_CONFIG *ocf, char *filenam);
extern unsigned int vp8_get_processor_freq();
extern void print_tree_update_probs();
extern void vp8cx_create_encoder_threads(VP8_COMP *cpi);
extern void vp8cx_remove_encoder_threads(VP8_COMP *cpi);
#if HAVE_ARMV7
extern void vp8_yv12_copy_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc);
extern void vp8_yv12_copy_src_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc);
#endif
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd);
extern void vp8_temporal_filter_prepare_c(VP8_COMP *cpi, int distance);
static void set_default_lf_deltas(VP8_COMP *cpi);
extern const int vp8_gf_interval_table[101];
#if CONFIG_ENHANCED_INTERP
#define SEARCH_BEST_FILTER 0 /* to search exhaustively for best filter */
#define RESET_FOREACH_FILTER 0 /* whether to reset the encoder state
before trying each new filter */
#endif
#if CONFIG_HIGH_PRECISION_MV
#define ALTREF_HIGH_PRECISION_MV 1 /* whether to use high precision mv for altref computation */
#define HIGH_PRECISION_MV_QTHRESH 200 /* Q threshold for use of high precision mv */
/* Choose a very high value for now so
* that HIGH_PRECISION is always chosen
*/
#endif
#if CONFIG_INTERNAL_STATS
#include "math.h"
extern double vp8_calc_ssim
(
YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest,
int lumamask,
double *weight,
const vp8_variance_rtcd_vtable_t *rtcd
);
extern double vp8_calc_ssimg
(
YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest,
double *ssim_y,
double *ssim_u,
double *ssim_v,
const vp8_variance_rtcd_vtable_t *rtcd
);
#endif
//#define OUTPUT_YUV_REC
#ifdef OUTPUT_YUV_SRC
FILE *yuv_file;
#endif
#ifdef OUTPUT_YUV_REC
FILE *yuv_rec_file;
#endif
#if 0
FILE *framepsnr;
FILE *kf_list;
FILE *keyfile;
#endif
#if 0
extern int skip_true_count;
extern int skip_false_count;
#endif
#ifdef ENTROPY_STATS
extern int intra_mode_stats[VP8_BINTRAMODES][VP8_BINTRAMODES][VP8_BINTRAMODES];
#endif
#ifdef SPEEDSTATS
unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int tot_pm = 0;
unsigned int cnt_pm = 0;
unsigned int tot_ef = 0;
unsigned int cnt_ef = 0;
#endif
#if defined(SECTIONBITS_OUTPUT)
extern unsigned __int64 Sectionbits[500];
#endif
#ifdef MODE_STATS
extern INT64 Sectionbits[500];
extern unsigned int y_modes[VP8_YMODES] ;
extern unsigned int i8x8_modes[VP8_I8X8_MODES];
extern unsigned int uv_modes[VP8_UV_MODES] ;
extern unsigned int uv_modes_y[VP8_YMODES][VP8_UV_MODES];
extern unsigned int b_modes[B_MODE_COUNT];
extern unsigned int inter_y_modes[MB_MODE_COUNT] ;
extern unsigned int inter_uv_modes[VP8_UV_MODES] ;
extern unsigned int inter_b_modes[B_MODE_COUNT];
#endif
extern void (*vp8_short_fdct4x4)(short *input, short *output, int pitch);
extern void (*vp8_short_fdct8x4)(short *input, short *output, int pitch);
extern void vp8cx_init_quantizer(VP8_COMP *cpi);
#if CONFIG_NEWENTROPY
int vp8cx_base_skip_false_prob[QINDEX_RANGE][3];
#else
int vp8cx_base_skip_false_prob[QINDEX_RANGE];
#endif
// Tables relating active max Q to active min Q
static int kf_low_motion_minq[QINDEX_RANGE];
static int kf_high_motion_minq[QINDEX_RANGE];
static int gf_low_motion_minq[QINDEX_RANGE];
static int gf_high_motion_minq[QINDEX_RANGE];
static int inter_minq[QINDEX_RANGE];
// Functions to compute the active minq lookup table entries based on a
// formulaic approach to facilitate easier adjustment of the Q tables.
// The formulae were derived from computing a 3rd order polynomial best
// fit to the original data (after plotting real maxq vs minq (not q index))
int calculate_minq_index( double maxq,
double x3, double x2, double x, double c )
{
int i;
double minqtarget;
double thisq;
minqtarget = ( (x3 * maxq * maxq * maxq) +
(x2 * maxq * maxq) +
(x * maxq) +
c );
if ( minqtarget > maxq )
minqtarget = maxq;
for ( i = 0; i < QINDEX_RANGE; i++ )
{
thisq = vp8_convert_qindex_to_q(i);
if ( minqtarget <= vp8_convert_qindex_to_q(i) )
return i;
}
return QINDEX_RANGE-1;
}
void init_minq_luts()
{
int i;
double maxq;
for ( i = 0; i < QINDEX_RANGE; i++ )
{
maxq = vp8_convert_qindex_to_q(i);
kf_low_motion_minq[i] = calculate_minq_index( maxq,
0.0000003,
-0.000015,
0.074,
0.0 );
kf_high_motion_minq[i] = calculate_minq_index( maxq,
0.0000004,
-0.000125,
0.14,
0.0 );
gf_low_motion_minq[i] = calculate_minq_index( maxq,
0.0000015,
-0.0009,
0.33,
0.0 );
gf_high_motion_minq[i] = calculate_minq_index( maxq,
0.0000021,
-0.00125,
0.45,
0.0 );
inter_minq[i] = calculate_minq_index( maxq,
0.00000271,
-0.00113,
0.697,
0.0 );
}
}
void init_base_skip_probs()
{
int i;
double q;
int skip_prob, t;
for ( i = 0; i < QINDEX_RANGE; i++ )
{
q = vp8_convert_qindex_to_q(i);
// Exponential decay caluclation of baseline skip prob with clamping
// Based on crude best fit of old table.
t = (int)( 564.25 * pow( 2.71828, (-0.012*q) ) );
skip_prob = t;
if ( skip_prob < 1 )
skip_prob = 1;
else if ( skip_prob > 255 )
skip_prob = 255;
#if CONFIG_NEWENTROPY
vp8cx_base_skip_false_prob[i][1] = skip_prob;
skip_prob = t * 0.75;
if ( skip_prob < 1 )
skip_prob = 1;
else if ( skip_prob > 255 )
skip_prob = 255;
vp8cx_base_skip_false_prob[i][2] = skip_prob;
skip_prob = t * 1.25;
if ( skip_prob < 1 )
skip_prob = 1;
else if ( skip_prob > 255 )
skip_prob = 255;
vp8cx_base_skip_false_prob[i][0] = skip_prob;
#else
vp8cx_base_skip_false_prob[i] = skip_prob;
#endif
}
}
void update_base_skip_probs(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
if (cm->frame_type != KEY_FRAME)
{
update_skip_probs(cpi);
if (cm->refresh_alt_ref_frame)
{
#if CONFIG_NEWENTROPY
int k;
for (k=0; k<MBSKIP_CONTEXTS; ++k)
cpi->last_skip_false_probs[2][k] = cm->mbskip_pred_probs[k];
#else
cpi->last_skip_false_probs[2] = cpi->prob_skip_false;
#endif
cpi->last_skip_probs_q[2] = cm->base_qindex;
}
else if (cpi->common.refresh_golden_frame)
{
#if CONFIG_NEWENTROPY
int k;
for (k=0; k<MBSKIP_CONTEXTS; ++k)
cpi->last_skip_false_probs[1][k] = cm->mbskip_pred_probs[k];
#else
cpi->last_skip_false_probs[1] = cpi->prob_skip_false;
#endif
cpi->last_skip_probs_q[1] = cm->base_qindex;
}
else
{
#if CONFIG_NEWENTROPY
int k;
for (k=0; k<MBSKIP_CONTEXTS; ++k)
cpi->last_skip_false_probs[0][k] = cm->mbskip_pred_probs[k];
#else
cpi->last_skip_false_probs[0] = cpi->prob_skip_false;
#endif
cpi->last_skip_probs_q[0] = cm->base_qindex;
// update the baseline table for the current q
#if CONFIG_NEWENTROPY
for (k=0; k<MBSKIP_CONTEXTS; ++k)
cpi->base_skip_false_prob[cm->base_qindex][k] =
cm->mbskip_pred_probs[k];
#else
cpi->base_skip_false_prob[cm->base_qindex] = cpi->prob_skip_false;
#endif
}
}
}
void vp8_initialize()
{
static int init_done = 0;
if (!init_done)
{
vp8_scale_machine_specific_config();
vp8_initialize_common();
//vp8_dmachine_specific_config();
vp8_tokenize_initialize();
vp8_init_quant_tables();
vp8_init_me_luts();
init_minq_luts();
init_base_skip_probs();
init_done = 1;
}
}
#ifdef PACKET_TESTING
extern FILE *vpxlogc;
#endif
static void setup_features(VP8_COMP *cpi)
{
MACROBLOCKD *xd = &cpi->mb.e_mbd;
// Set up default state for MB feature flags
xd->segmentation_enabled = 0; // Default segmentation disabled
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs));
clearall_segfeatures( xd );
xd->mode_ref_lf_delta_enabled = 0;
xd->mode_ref_lf_delta_update = 0;
vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
vpx_memset(xd->last_ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
vpx_memset(xd->last_mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
set_default_lf_deltas(cpi);
}
static void dealloc_compressor_data(VP8_COMP *cpi)
{
vpx_free(cpi->tplist);
cpi->tplist = NULL;
// Delete last frame MV storage buffers
vpx_free(cpi->lfmv);
cpi->lfmv = 0;
vpx_free(cpi->lf_ref_frame_sign_bias);
cpi->lf_ref_frame_sign_bias = 0;
vpx_free(cpi->lf_ref_frame);
cpi->lf_ref_frame = 0;
// Delete sementation map
vpx_free(cpi->segmentation_map);
cpi->segmentation_map = 0;
vpx_free(cpi->common.last_frame_seg_map);
cpi->common.last_frame_seg_map = 0;
vpx_free(cpi->coding_context.last_frame_seg_map_copy);
cpi->coding_context.last_frame_seg_map_copy = 0;
vpx_free(cpi->active_map);
cpi->active_map = 0;
vp8_de_alloc_frame_buffers(&cpi->common);
vp8_yv12_de_alloc_frame_buffer(&cpi->last_frame_uf);
vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source);
#if VP8_TEMPORAL_ALT_REF
vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer);
#endif
vp8_lookahead_destroy(cpi->lookahead);
vpx_free(cpi->tok);
cpi->tok = 0;
// Structure used to monitor GF usage
vpx_free(cpi->gf_active_flags);
cpi->gf_active_flags = 0;
// Activity mask based per mb zbin adjustments
vpx_free(cpi->mb_activity_map);
cpi->mb_activity_map = 0;
vpx_free(cpi->mb_norm_activity_map);
cpi->mb_norm_activity_map = 0;
vpx_free(cpi->mb.pip);
cpi->mb.pip = 0;
vpx_free(cpi->twopass.total_stats);
cpi->twopass.total_stats = 0;
vpx_free(cpi->twopass.total_left_stats);
cpi->twopass.total_left_stats = 0;
vpx_free(cpi->twopass.this_frame_stats);
cpi->twopass.this_frame_stats = 0;
}
// Computes a q delta (in "q index" terms) to get from a starting q value
// to a target value
// target q value
static int compute_qdelta( VP8_COMP *cpi, double qstart, double qtarget )
{
int i;
int start_index = cpi->worst_quality;
int target_index = cpi->worst_quality;
// Convert the average q value to an index.
for ( i = cpi->best_quality; i < cpi->worst_quality; i++ )
{
start_index = i;
if ( vp8_convert_qindex_to_q(i) >= qstart )
break;
}
// Convert the q target to an index
for ( i = cpi->best_quality; i < cpi->worst_quality; i++ )
{
target_index = i;
if ( vp8_convert_qindex_to_q(i) >= qtarget )
break;
}
return target_index - start_index;
}
static void init_seg_features(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int high_q = (int)(cpi->avg_q > 48.0);
int qi_delta;
// Disable and clear down for KF
if ( cm->frame_type == KEY_FRAME )
{
// Clear down the global segmentation map
vpx_memset( cpi->segmentation_map, 0, (cm->mb_rows * cm->mb_cols));
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation
vp8_disable_segmentation((VP8_PTR)cpi);
// Clear down the segment features.
clearall_segfeatures(xd);
}
// If this is an alt ref frame
else if ( cm->refresh_alt_ref_frame )
{
// Clear down the global segmentation map
vpx_memset( cpi->segmentation_map, 0, (cm->mb_rows * cm->mb_cols));
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
cpi->static_mb_pct = 0;
// Disable segmentation and individual segment features by default
vp8_disable_segmentation((VP8_PTR)cpi);
clearall_segfeatures(xd);
// Scan frames from current to arf frame.
// This function re-enables segmentation if appropriate.
vp8_update_mbgraph_stats(cpi);
// If segmentation was enabled set those features needed for the
// arf itself.
if ( xd->segmentation_enabled )
{
xd->update_mb_segmentation_map = 1;
xd->update_mb_segmentation_data = 1;
qi_delta = compute_qdelta( cpi, cpi->avg_q, (cpi->avg_q * 0.875) );
set_segdata( xd, 1, SEG_LVL_ALT_Q, (qi_delta - 2) );
set_segdata( xd, 1, SEG_LVL_ALT_LF, -2 );
enable_segfeature(xd, 1, SEG_LVL_ALT_Q);
enable_segfeature(xd, 1, SEG_LVL_ALT_LF);
// Where relevant assume segment data is delta data
xd->mb_segment_abs_delta = SEGMENT_DELTADATA;
}
}
// All other frames if segmentation has been enabled
else if ( xd->segmentation_enabled )
{
/*
int i;
// clears prior frame seg lev refs
for (i = 0; i < MAX_MB_SEGMENTS; i++)
{
// only do it if the force drop the background stuff is off
if(!segfeature_active(xd, i, SEG_LVL_MODE))
{
disable_segfeature(xd,i,SEG_LVL_REF_FRAME);
set_segdata( xd,i, SEG_LVL_REF_FRAME, 0xffffff);
}
}
*/
// First normal frame in a valid gf or alt ref group
if ( cpi->common.frames_since_golden == 0 )
{
// Set up segment features for normal frames in an af group
if ( cpi->source_alt_ref_active )
{
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 1;
xd->mb_segment_abs_delta = SEGMENT_DELTADATA;
qi_delta = compute_qdelta( cpi, cpi->avg_q,
(cpi->avg_q * 1.125) );
set_segdata( xd, 1, SEG_LVL_ALT_Q, (qi_delta + 2) );
set_segdata( xd, 1, SEG_LVL_ALT_Q, 0 );
enable_segfeature(xd, 1, SEG_LVL_ALT_Q);
set_segdata( xd, 1, SEG_LVL_ALT_LF, -2 );
enable_segfeature(xd, 1, SEG_LVL_ALT_LF);
// Segment coding disabled for compred testing
if ( high_q || (cpi->static_mb_pct == 100) )
{
//set_segref(xd, 1, LAST_FRAME);
set_segref(xd, 1, ALTREF_FRAME);
enable_segfeature(xd, 1, SEG_LVL_REF_FRAME);
set_segdata( xd, 1, SEG_LVL_MODE, ZEROMV );
enable_segfeature(xd, 1, SEG_LVL_MODE);
// EOB segment coding not fixed for 8x8 yet
set_segdata( xd, 1, SEG_LVL_EOB, 0 );
enable_segfeature(xd, 1, SEG_LVL_EOB);
}
}
// Disable segmentation and clear down features if alt ref
// is not active for this group
else
{
vp8_disable_segmentation((VP8_PTR)cpi);
vpx_memset( cpi->segmentation_map, 0,
(cm->mb_rows * cm->mb_cols));
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
clearall_segfeatures(xd);
}
}
// Special case where we are coding over the top of a previous
// alt ref frame
// Segment coding disabled for compred testing
else if ( cpi->is_src_frame_alt_ref )
{
// Enable mode and ref frame features for segment 0 as well
enable_segfeature(xd, 0, SEG_LVL_REF_FRAME);
enable_segfeature(xd, 0, SEG_LVL_MODE);
enable_segfeature(xd, 1, SEG_LVL_REF_FRAME);
enable_segfeature(xd, 1, SEG_LVL_MODE);
// All mbs should use ALTREF_FRAME, ZEROMV exclusively
clear_segref(xd, 0);
set_segref(xd, 0, ALTREF_FRAME);
clear_segref(xd, 1);
set_segref(xd, 1, ALTREF_FRAME);
set_segdata( xd, 0, SEG_LVL_MODE, ZEROMV );
set_segdata( xd, 1, SEG_LVL_MODE, ZEROMV );
// Skip all MBs if high Q
if ( high_q )
{
enable_segfeature(xd, 0, SEG_LVL_EOB);
set_segdata( xd, 0, SEG_LVL_EOB, 0 );
enable_segfeature(xd, 1, SEG_LVL_EOB);
set_segdata( xd, 1, SEG_LVL_EOB, 0 );
}
// Enable data udpate
xd->update_mb_segmentation_data = 1;
}
// All other frames.
else
{
// No updates.. leave things as they are.
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
}
}
}
// DEBUG: Print out the segment id of each MB in the current frame.
static void print_seg_map(VP8_COMP *cpi)
{
VP8_COMMON *cm = & cpi->common;
int row,col;
int map_index = 0;
FILE *statsfile;
statsfile = fopen("segmap.stt", "a");
fprintf(statsfile, "%10d\n",
cm->current_video_frame );
for ( row = 0; row < cpi->common.mb_rows; row++ )
{
for ( col = 0; col < cpi->common.mb_cols; col++ )
{
fprintf(statsfile, "%10d",
cpi->segmentation_map[map_index]);
map_index++;
}
fprintf(statsfile, "\n");
}
fprintf(statsfile, "\n");
fclose(statsfile);
}
static void set_default_lf_deltas(VP8_COMP *cpi)
{
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 1;
vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
// Test of ref frame deltas
cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2;
cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0;
cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2;
cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2;
cpi->mb.e_mbd.mode_lf_deltas[0] = 4; // BPRED
cpi->mb.e_mbd.mode_lf_deltas[1] = -2; // Zero
cpi->mb.e_mbd.mode_lf_deltas[2] = 2; // New mv
cpi->mb.e_mbd.mode_lf_deltas[3] = 4; // Split mv
}
void vp8_set_speed_features(VP8_COMP *cpi)
{
SPEED_FEATURES *sf = &cpi->sf;
int Mode = cpi->compressor_speed;
int Speed = cpi->Speed;
int i;
VP8_COMMON *cm = &cpi->common;
// Only modes 0 and 1 supported for now in experimental code basae
if ( Mode > 1 )
Mode = 1;
// Initialise default mode frequency sampling variables
for (i = 0; i < MAX_MODES; i ++)
{
cpi->mode_check_freq[i] = 0;
cpi->mode_test_hit_counts[i] = 0;
cpi->mode_chosen_counts[i] = 0;
}
// best quality defaults
sf->RD = 1;
sf->search_method = NSTEP;
sf->improved_dct = 1;
sf->auto_filter = 1;
sf->recode_loop = 1;
sf->quarter_pixel_search = 1;
sf->half_pixel_search = 1;
sf->iterative_sub_pixel = 1;
sf->optimize_coefficients = 1;
sf->no_skip_block4x4_search = 1;
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
sf->improved_mv_pred = 1;
// default thresholds to 0
for (i = 0; i < MAX_MODES; i++)
sf->thresh_mult[i] = 0;
switch (Mode)
{
case 0: // best quality mode
#if CONFIG_PRED_FILTER
sf->thresh_mult[THR_ZEROMV ] = 0;
sf->thresh_mult[THR_ZEROMV_FILT ] = 0;
sf->thresh_mult[THR_ZEROG ] = 0;
sf->thresh_mult[THR_ZEROG_FILT ] = 0;
sf->thresh_mult[THR_ZEROA ] = 0;
sf->thresh_mult[THR_ZEROA_FILT ] = 0;
sf->thresh_mult[THR_NEARESTMV ] = 0;
sf->thresh_mult[THR_NEARESTMV_FILT] = 0;
sf->thresh_mult[THR_NEARESTG ] = 0;
sf->thresh_mult[THR_NEARESTG_FILT ] = 0;
sf->thresh_mult[THR_NEARESTA ] = 0;
sf->thresh_mult[THR_NEARESTA_FILT ] = 0;
sf->thresh_mult[THR_NEARMV ] = 0;
sf->thresh_mult[THR_NEARMV_FILT ] = 0;
sf->thresh_mult[THR_NEARG ] = 0;
sf->thresh_mult[THR_NEARG_FILT ] = 0;
sf->thresh_mult[THR_NEARA ] = 0;
sf->thresh_mult[THR_NEARA_FILT ] = 0;
sf->thresh_mult[THR_DC ] = 0;
sf->thresh_mult[THR_V_PRED ] = 1000;
sf->thresh_mult[THR_H_PRED ] = 1000;
sf->thresh_mult[THR_B_PRED ] = 2000;
sf->thresh_mult[THR_I8X8_PRED] = 2000;
sf->thresh_mult[THR_TM ] = 1000;
sf->thresh_mult[THR_NEWMV ] = 1000;
sf->thresh_mult[THR_NEWG ] = 1000;
sf->thresh_mult[THR_NEWA ] = 1000;
sf->thresh_mult[THR_NEWMV_FILT ] = 1000;
sf->thresh_mult[THR_NEWG_FILT ] = 1000;
sf->thresh_mult[THR_NEWA_FILT ] = 1000;
#else
sf->thresh_mult[THR_ZEROMV ] = 0;
sf->thresh_mult[THR_ZEROG ] = 0;
sf->thresh_mult[THR_ZEROA ] = 0;
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_NEARESTG ] = 0;
sf->thresh_mult[THR_NEARESTA ] = 0;
sf->thresh_mult[THR_NEARMV ] = 0;
sf->thresh_mult[THR_NEARG ] = 0;
sf->thresh_mult[THR_NEARA ] = 0;
sf->thresh_mult[THR_DC ] = 0;
sf->thresh_mult[THR_V_PRED ] = 1000;
sf->thresh_mult[THR_H_PRED ] = 1000;
#if CONFIG_NEWINTRAMODES
sf->thresh_mult[THR_D45_PRED ] = 1000;
sf->thresh_mult[THR_D135_PRED] = 1000;
sf->thresh_mult[THR_D117_PRED] = 1000;
sf->thresh_mult[THR_D153_PRED] = 1000;
sf->thresh_mult[THR_D27_PRED ] = 1000;
sf->thresh_mult[THR_D63_PRED ] = 1000;
#endif
sf->thresh_mult[THR_B_PRED ] = 2000;
sf->thresh_mult[THR_I8X8_PRED] = 2000;
sf->thresh_mult[THR_TM ] = 1000;
sf->thresh_mult[THR_NEWMV ] = 1000;
sf->thresh_mult[THR_NEWG ] = 1000;
sf->thresh_mult[THR_NEWA ] = 1000;
#endif
sf->thresh_mult[THR_SPLITMV ] = 2500;
sf->thresh_mult[THR_SPLITG ] = 5000;
sf->thresh_mult[THR_SPLITA ] = 5000;
sf->thresh_mult[THR_COMP_ZEROLG ] = 0;
sf->thresh_mult[THR_COMP_NEARESTLG] = 0;
sf->thresh_mult[THR_COMP_NEARLG ] = 0;
sf->thresh_mult[THR_COMP_ZEROLA ] = 0;
sf->thresh_mult[THR_COMP_NEARESTLA] = 0;
sf->thresh_mult[THR_COMP_NEARLA ] = 0;
sf->thresh_mult[THR_COMP_ZEROGA ] = 0;
sf->thresh_mult[THR_COMP_NEARESTGA] = 0;
sf->thresh_mult[THR_COMP_NEARGA ] = 0;
sf->thresh_mult[THR_COMP_NEWLG ] = 1000;
sf->thresh_mult[THR_COMP_NEWLA ] = 1000;
sf->thresh_mult[THR_COMP_NEWGA ] = 1000;
sf->thresh_mult[THR_COMP_SPLITLA ] = 2500;
sf->thresh_mult[THR_COMP_SPLITGA ] = 5000;
sf->thresh_mult[THR_COMP_SPLITLG ] = 5000;
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
#if CONFIG_ENHANCED_INTERP
sf->search_best_filter = SEARCH_BEST_FILTER;
#endif
break;
case 1:
#if CONFIG_PRED_FILTER
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_NEARESTMV_FILT] = 0;
sf->thresh_mult[THR_ZEROMV ] = 0;
sf->thresh_mult[THR_ZEROMV_FILT ] = 0;
sf->thresh_mult[THR_DC ] = 0;
sf->thresh_mult[THR_NEARMV ] = 0;
sf->thresh_mult[THR_NEARMV_FILT ] = 0;
sf->thresh_mult[THR_V_PRED ] = 1000;
sf->thresh_mult[THR_H_PRED ] = 1000;
#if CONFIG_NEWINTRAMODES
sf->thresh_mult[THR_D45_PRED ] = 1000;
sf->thresh_mult[THR_D135_PRED] = 1000;
sf->thresh_mult[THR_D117_PRED] = 1000;
sf->thresh_mult[THR_D153_PRED] = 1000;
sf->thresh_mult[THR_D27_PRED ] = 1000;
sf->thresh_mult[THR_D63_PRED ] = 1000;
#endif
sf->thresh_mult[THR_B_PRED ] = 2500;
sf->thresh_mult[THR_I8X8_PRED] = 2500;
sf->thresh_mult[THR_TM ] = 1000;
sf->thresh_mult[THR_NEARESTG ] = 1000;
sf->thresh_mult[THR_NEARESTG_FILT ] = 1000;
sf->thresh_mult[THR_NEARESTA ] = 1000;
sf->thresh_mult[THR_NEARESTA_FILT ] = 1000;
sf->thresh_mult[THR_ZEROG ] = 1000;
sf->thresh_mult[THR_ZEROA ] = 1000;
sf->thresh_mult[THR_NEARG ] = 1000;
sf->thresh_mult[THR_NEARA ] = 1000;
sf->thresh_mult[THR_ZEROG_FILT ] = 1000;
sf->thresh_mult[THR_ZEROA_FILT ] = 1000;
sf->thresh_mult[THR_NEARG_FILT ] = 1000;
sf->thresh_mult[THR_NEARA_FILT ] = 1000;
sf->thresh_mult[THR_ZEROMV ] = 0;
sf->thresh_mult[THR_ZEROG ] = 0;
sf->thresh_mult[THR_ZEROA ] = 0;
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_NEARESTG ] = 0;
sf->thresh_mult[THR_NEARESTA ] = 0;
sf->thresh_mult[THR_NEARMV ] = 0;
sf->thresh_mult[THR_NEARG ] = 0;
sf->thresh_mult[THR_NEARA ] = 0;
sf->thresh_mult[THR_ZEROMV_FILT ] = 0;
sf->thresh_mult[THR_ZEROG_FILT ] = 0;
sf->thresh_mult[THR_ZEROA_FILT ] = 0;
sf->thresh_mult[THR_NEARESTMV_FILT] = 0;
sf->thresh_mult[THR_NEARESTG_FILT ] = 0;
sf->thresh_mult[THR_NEARESTA_FILT ] = 0;
sf->thresh_mult[THR_NEARMV_FILT ] = 0;
sf->thresh_mult[THR_NEARG_FILT ] = 0;
sf->thresh_mult[THR_NEARA_FILT ] = 0;
sf->thresh_mult[THR_NEWMV ] = 1000;
sf->thresh_mult[THR_NEWG ] = 1000;
sf->thresh_mult[THR_NEWA ] = 1000;
sf->thresh_mult[THR_NEWMV_FILT ] = 1000;
sf->thresh_mult[THR_NEWG_FILT ] = 1000;
sf->thresh_mult[THR_NEWA_FILT ] = 1000;
#else
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_ZEROMV ] = 0;
sf->thresh_mult[THR_DC ] = 0;
sf->thresh_mult[THR_NEARMV ] = 0;
sf->thresh_mult[THR_V_PRED ] = 1000;
sf->thresh_mult[THR_H_PRED ] = 1000;
#if CONFIG_NEWINTRAMODES
sf->thresh_mult[THR_D45_PRED ] = 1000;
sf->thresh_mult[THR_D135_PRED] = 1000;
sf->thresh_mult[THR_D117_PRED] = 1000;
sf->thresh_mult[THR_D153_PRED] = 1000;
sf->thresh_mult[THR_D27_PRED ] = 1000;
sf->thresh_mult[THR_D63_PRED ] = 1000;
#endif
sf->thresh_mult[THR_B_PRED ] = 2500;
sf->thresh_mult[THR_I8X8_PRED] = 2500;
sf->thresh_mult[THR_TM ] = 1000;
sf->thresh_mult[THR_NEARESTG ] = 1000;
sf->thresh_mult[THR_NEARESTA ] = 1000;
sf->thresh_mult[THR_ZEROG ] = 1000;
sf->thresh_mult[THR_ZEROA ] = 1000;
sf->thresh_mult[THR_NEARG ] = 1000;
sf->thresh_mult[THR_NEARA ] = 1000;
sf->thresh_mult[THR_ZEROMV ] = 0;
sf->thresh_mult[THR_ZEROG ] = 0;
sf->thresh_mult[THR_ZEROA ] = 0;
sf->thresh_mult[THR_NEARESTMV] = 0;
sf->thresh_mult[THR_NEARESTG ] = 0;
sf->thresh_mult[THR_NEARESTA ] = 0;
sf->thresh_mult[THR_NEARMV ] = 0;
sf->thresh_mult[THR_NEARG ] = 0;
sf->thresh_mult[THR_NEARA ] = 0;
sf->thresh_mult[THR_NEWMV ] = 1000;
sf->thresh_mult[THR_NEWG ] = 1000;
sf->thresh_mult[THR_NEWA ] = 1000;
#endif
sf->thresh_mult[THR_SPLITMV ] = 1700;
sf->thresh_mult[THR_SPLITG ] = 4500;
sf->thresh_mult[THR_SPLITA ] = 4500;
sf->thresh_mult[THR_COMP_ZEROLG ] = 0;
sf->thresh_mult[THR_COMP_NEARESTLG] = 0;
sf->thresh_mult[THR_COMP_NEARLG ] = 0;
sf->thresh_mult[THR_COMP_ZEROLA ] = 0;
sf->thresh_mult[THR_COMP_NEARESTLA] = 0;
sf->thresh_mult[THR_COMP_NEARLA ] = 0;
sf->thresh_mult[THR_COMP_ZEROGA ] = 0;
sf->thresh_mult[THR_COMP_NEARESTGA] = 0;
sf->thresh_mult[THR_COMP_NEARGA ] = 0;
sf->thresh_mult[THR_COMP_NEWLG ] = 1000;
sf->thresh_mult[THR_COMP_NEWLA ] = 1000;
sf->thresh_mult[THR_COMP_NEWGA ] = 1000;
sf->thresh_mult[THR_COMP_SPLITLA ] = 1700;
sf->thresh_mult[THR_COMP_SPLITGA ] = 4500;
sf->thresh_mult[THR_COMP_SPLITLG ] = 4500;
if (Speed > 0)
{
/* Disable coefficient optimization above speed 0 */
sf->optimize_coefficients = 0;
sf->no_skip_block4x4_search = 0;
sf->first_step = 1;
cpi->mode_check_freq[THR_SPLITG] = 2;
cpi->mode_check_freq[THR_SPLITA] = 2;
cpi->mode_check_freq[THR_SPLITMV] = 0;
cpi->mode_check_freq[THR_COMP_SPLITGA] = 2;
cpi->mode_check_freq[THR_COMP_SPLITLG] = 2;
cpi->mode_check_freq[THR_COMP_SPLITLA] = 0;
}
if (Speed > 1)
{
cpi->mode_check_freq[THR_SPLITG] = 4;
cpi->mode_check_freq[THR_SPLITA] = 4;
cpi->mode_check_freq[THR_SPLITMV] = 2;
cpi->mode_check_freq[THR_COMP_SPLITGA] = 4;
cpi->mode_check_freq[THR_COMP_SPLITLG] = 4;
cpi->mode_check_freq[THR_COMP_SPLITLA] = 2;
sf->thresh_mult[THR_TM ] = 1500;
sf->thresh_mult[THR_V_PRED ] = 1500;
sf->thresh_mult[THR_H_PRED ] = 1500;
#if CONFIG_NEWINTRAMODES
sf->thresh_mult[THR_D45_PRED ] = 1500;
sf->thresh_mult[THR_D135_PRED] = 1500;
sf->thresh_mult[THR_D117_PRED] = 1500;
sf->thresh_mult[THR_D153_PRED] = 1500;
sf->thresh_mult[THR_D27_PRED ] = 1500;
sf->thresh_mult[THR_D63_PRED ] = 1500;
#endif
sf->thresh_mult[THR_B_PRED ] = 5000;
sf->thresh_mult[THR_I8X8_PRED] = 5000;
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
{
sf->thresh_mult[THR_NEWMV ] = 2000;
#if CONFIG_PRED_FILTER
sf->thresh_mult[THR_NEWMV_FILT ] = 2000;
#endif
sf->thresh_mult[THR_SPLITMV ] = 10000;
sf->thresh_mult[THR_COMP_SPLITLG ] = 20000;
}
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
sf->thresh_mult[THR_NEARESTG ] = 1500;
sf->thresh_mult[THR_ZEROG ] = 1500;
sf->thresh_mult[THR_NEARG ] = 1500;
sf->thresh_mult[THR_NEWG ] = 2000;
#if CONFIG_PRED_FILTER
sf->thresh_mult[THR_NEARESTG_FILT ] = 1500;
sf->thresh_mult[THR_ZEROG_FILT ] = 1500;
sf->thresh_mult[THR_NEARG_FILT ] = 1500;
sf->thresh_mult[THR_NEWG_FILT ] = 2000;
#endif
sf->thresh_mult[THR_SPLITG ] = 20000;
sf->thresh_mult[THR_COMP_SPLITGA ] = 20000;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
sf->thresh_mult[THR_NEARESTA ] = 1500;
sf->thresh_mult[THR_ZEROA ] = 1500;
sf->thresh_mult[THR_NEARA ] = 1500;
sf->thresh_mult[THR_NEWA ] = 2000;
#if CONFIG_PRED_FILTER
sf->thresh_mult[THR_NEARESTA_FILT ] = 1500;
sf->thresh_mult[THR_ZEROA_FILT ] = 1500;
sf->thresh_mult[THR_NEARA_FILT ] = 1500;
sf->thresh_mult[THR_NEWA_FILT ] = 2000;
#endif
sf->thresh_mult[THR_SPLITA ] = 20000;
sf->thresh_mult[THR_COMP_SPLITLA ] = 10000;
}
sf->thresh_mult[THR_COMP_ZEROLG ] = 1500;
sf->thresh_mult[THR_COMP_NEARESTLG] = 1500;
sf->thresh_mult[THR_COMP_NEARLG ] = 1500;
sf->thresh_mult[THR_COMP_ZEROLA ] = 1500;
sf->thresh_mult[THR_COMP_NEARESTLA] = 1500;
sf->thresh_mult[THR_COMP_NEARLA ] = 1500;
sf->thresh_mult[THR_COMP_ZEROGA ] = 1500;
sf->thresh_mult[THR_COMP_NEARESTGA] = 1500;
sf->thresh_mult[THR_COMP_NEARGA ] = 1500;
sf->thresh_mult[THR_COMP_NEWLG ] = 2000;
sf->thresh_mult[THR_COMP_NEWLA ] = 2000;
sf->thresh_mult[THR_COMP_NEWGA ] = 2000;
}
if (Speed > 2)
{
cpi->mode_check_freq[THR_SPLITG] = 15;
cpi->mode_check_freq[THR_SPLITA] = 15;
cpi->mode_check_freq[THR_SPLITMV] = 7;
cpi->mode_check_freq[THR_COMP_SPLITGA] = 15;
cpi->mode_check_freq[THR_COMP_SPLITLG] = 15;
cpi->mode_check_freq[THR_COMP_SPLITLA] = 7;
sf->thresh_mult[THR_TM ] = 2000;
sf->thresh_mult[THR_V_PRED ] = 2000;
sf->thresh_mult[THR_H_PRED ] = 2000;
#if CONFIG_NEWINTRAMODES
sf->thresh_mult[THR_D45_PRED ] = 2000;
sf->thresh_mult[THR_D135_PRED] = 2000;
sf->thresh_mult[THR_D117_PRED] = 2000;
sf->thresh_mult[THR_D153_PRED] = 2000;
sf->thresh_mult[THR_D27_PRED ] = 2000;
sf->thresh_mult[THR_D63_PRED ] = 2000;
#endif
sf->thresh_mult[THR_B_PRED ] = 7500;
sf->thresh_mult[THR_I8X8_PRED] = 7500;
if (cpi->ref_frame_flags & VP8_LAST_FLAG)
{
sf->thresh_mult[THR_NEWMV ] = 2000;
#if CONFIG_PRED_FILTER
sf->thresh_mult[THR_NEWMV_FILT ] = 2000;
#endif
sf->thresh_mult[THR_SPLITMV ] = 25000;
sf->thresh_mult[THR_COMP_SPLITLG ] = 50000;
}
if (cpi->ref_frame_flags & VP8_GOLD_FLAG)
{
sf->thresh_mult[THR_NEARESTG ] = 2000;
sf->thresh_mult[THR_ZEROG ] = 2000;
sf->thresh_mult[THR_NEARG ] = 2000;
sf->thresh_mult[THR_NEWG ] = 2500;
#if CONFIG_PRED_FILTER
sf->thresh_mult[THR_NEARESTG_FILT ] = 2000;
sf->thresh_mult[THR_ZEROG_FILT ] = 2000;
sf->thresh_mult[THR_NEARG_FILT ] = 2000;
sf->thresh_mult[THR_NEWG_FILT ] = 2500;
#endif
sf->thresh_mult[THR_SPLITG ] = 50000;
sf->thresh_mult[THR_COMP_SPLITGA ] = 50000;
}
if (cpi->ref_frame_flags & VP8_ALT_FLAG)
{
sf->thresh_mult[THR_NEARESTA ] = 2000;
sf->thresh_mult[THR_ZEROA ] = 2000;
sf->thresh_mult[THR_NEARA ] = 2000;
sf->thresh_mult[THR_NEWA ] = 2500;
#if CONFIG_PRED_FILTER
sf->thresh_mult[THR_NEARESTA_FILT ] = 2000;
sf->thresh_mult[THR_ZEROA_FILT ] = 2000;
sf->thresh_mult[THR_NEARA_FILT ] = 2000;
sf->thresh_mult[THR_NEWA_FILT ] = 2500;
#endif
sf->thresh_mult[THR_SPLITA ] = 50000;
sf->thresh_mult[THR_COMP_SPLITLA ] = 25000;
}
sf->thresh_mult[THR_COMP_ZEROLG ] = 2000;
sf->thresh_mult[THR_COMP_NEARESTLG] = 2000;
sf->thresh_mult[THR_COMP_NEARLG ] = 2000;
sf->thresh_mult[THR_COMP_ZEROLA ] = 2000;
sf->thresh_mult[THR_COMP_NEARESTLA] = 2000;
sf->thresh_mult[THR_COMP_NEARLA ] = 2000;
sf->thresh_mult[THR_COMP_ZEROGA ] = 2000;
sf->thresh_mult[THR_COMP_NEARESTGA] = 2000;
sf->thresh_mult[THR_COMP_NEARGA ] = 2000;
sf->thresh_mult[THR_COMP_NEWLG ] = 2500;
sf->thresh_mult[THR_COMP_NEWLA ] = 2500;
sf->thresh_mult[THR_COMP_NEWGA ] = 2500;
sf->improved_dct = 0;
// Only do recode loop on key frames, golden frames and
// alt ref frames
sf->recode_loop = 2;
}
break;
}; /* switch */
/* disable frame modes if flags not set */
if (!(cpi->ref_frame_flags & VP8_LAST_FLAG))
{
sf->thresh_mult[THR_NEWMV ] = INT_MAX;
sf->thresh_mult[THR_NEARESTMV] = INT_MAX;
sf->thresh_mult[THR_ZEROMV ] = INT_MAX;
sf->thresh_mult[THR_NEARMV ] = INT_MAX;
#if CONFIG_PRED_FILTER
sf->thresh_mult[THR_NEWMV_FILT ] = INT_MAX;
sf->thresh_mult[THR_NEARESTMV_FILT] = INT_MAX;
sf->thresh_mult[THR_ZEROMV_FILT ] = INT_MAX;
sf->thresh_mult[THR_NEARMV_FILT ] = INT_MAX;
#endif
sf->thresh_mult[THR_SPLITMV ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG))
{
sf->thresh_mult[THR_NEARESTG ] = INT_MAX;
sf->thresh_mult[THR_ZEROG ] = INT_MAX;
sf->thresh_mult[THR_NEARG ] = INT_MAX;
sf->thresh_mult[THR_NEWG ] = INT_MAX;
#if CONFIG_PRED_FILTER
sf->thresh_mult[THR_NEARESTG_FILT ] = INT_MAX;
sf->thresh_mult[THR_ZEROG_FILT ] = INT_MAX;
sf->thresh_mult[THR_NEARG_FILT ] = INT_MAX;
sf->thresh_mult[THR_NEWG_FILT ] = INT_MAX;
#endif
sf->thresh_mult[THR_SPLITG ] = INT_MAX;
}
if (!(cpi->ref_frame_flags & VP8_ALT_FLAG))
{
sf->thresh_mult[THR_NEARESTA ] = INT_MAX;
sf->thresh_mult[THR_ZEROA ] = INT_MAX;
sf->thresh_mult[THR_NEARA ] = INT_MAX;
sf->thresh_mult[THR_NEWA ] = INT_MAX;
#if CONFIG_PRED_FILTER
sf->thresh_mult[THR_NEARESTA_FILT ] = INT_MAX;
sf->thresh_mult[THR_ZEROA_FILT ] = INT_MAX;
sf->thresh_mult[THR_NEARA_FILT ] = INT_MAX;
sf->thresh_mult[THR_NEWA_FILT ] = INT_MAX;
#endif
sf->thresh_mult[THR_SPLITA ] = INT_MAX;
}
if ((cpi->ref_frame_flags & (VP8_LAST_FLAG | VP8_GOLD_FLAG)) != (VP8_LAST_FLAG | VP8_GOLD_FLAG))
{
sf->thresh_mult[THR_COMP_ZEROLG ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARESTLG] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARLG ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEWLG ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITLG ] = INT_MAX;
}
if ((cpi->ref_frame_flags & (VP8_LAST_FLAG | VP8_ALT_FLAG)) != (VP8_LAST_FLAG | VP8_ALT_FLAG))
{
sf->thresh_mult[THR_COMP_ZEROLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARESTLA] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEWLA ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITLA ] = INT_MAX;
}
if ((cpi->ref_frame_flags & (VP8_GOLD_FLAG | VP8_ALT_FLAG)) != (VP8_GOLD_FLAG | VP8_ALT_FLAG))
{
sf->thresh_mult[THR_COMP_ZEROGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARESTGA] = INT_MAX;
sf->thresh_mult[THR_COMP_NEARGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_NEWGA ] = INT_MAX;
sf->thresh_mult[THR_COMP_SPLITGA ] = INT_MAX;
}
// Slow quant, dct and trellis not worthwhile for first pass
// so make sure they are always turned off.
if ( cpi->pass == 1 )
{
sf->optimize_coefficients = 0;
sf->improved_dct = 0;
}
if (cpi->sf.search_method == NSTEP)
{
vp8_init3smotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
}
else if (cpi->sf.search_method == DIAMOND)
{
vp8_init_dsmotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
}
if (cpi->sf.improved_dct)
{
cpi->mb.vp8_short_fdct8x8 = FDCT_INVOKE(&cpi->rtcd.fdct, short8x8);
cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short8x4);
cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short4x4);
}
else
{
cpi->mb.vp8_short_fdct8x8 = FDCT_INVOKE(&cpi->rtcd.fdct, short8x8);
cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast8x4);
cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast4x4);
}
cpi->mb.short_walsh4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, walsh_short4x4);
cpi->mb.short_fhaar2x2 = FDCT_INVOKE(&cpi->rtcd.fdct, haar_short2x2);
cpi->mb.quantize_b = vp8_regular_quantize_b;
cpi->mb.quantize_b_pair = vp8_regular_quantize_b_pair;
cpi->mb.quantize_b_8x8 = vp8_regular_quantize_b_8x8;
cpi->mb.quantize_b_2x2 = vp8_regular_quantize_b_2x2;
vp8cx_init_quantizer(cpi);
#if CONFIG_RUNTIME_CPU_DETECT
cpi->mb.e_mbd.rtcd = &cpi->common.rtcd;
#endif
if (cpi->sf.iterative_sub_pixel == 1)
{
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively;
}
else if (cpi->sf.quarter_pixel_search)
{
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step;
}
else if (cpi->sf.half_pixel_search)
{
cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step;
}
if (cpi->sf.optimize_coefficients == 1 && cpi->pass!=1)
cpi->mb.optimize = 1;
else
cpi->mb.optimize = 0;
#ifdef SPEEDSTATS
frames_at_speed[cpi->Speed]++;
#endif
}
static void alloc_raw_frame_buffers(VP8_COMP *cpi)
{
int width = (cpi->oxcf.Width + 15) & ~15;
int height = (cpi->oxcf.Height + 15) & ~15;
cpi->lookahead = vp8_lookahead_init(cpi->oxcf.Width, cpi->oxcf.Height,
cpi->oxcf.lag_in_frames);
if(!cpi->lookahead)
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
#if VP8_TEMPORAL_ALT_REF
if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer,
width, height, VP8BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
#endif
}
static int vp8_alloc_partition_data(VP8_COMP *cpi)
{
vpx_free(cpi->mb.pip);
cpi->mb.pip = vpx_calloc((cpi->common.mb_cols + 1) *
(cpi->common.mb_rows + 1),
sizeof(PARTITION_INFO));
if(!cpi->mb.pip)
return 1;
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
return 0;
}
void vp8_alloc_compressor_data(VP8_COMP *cpi)
{
VP8_COMMON *cm = & cpi->common;
int width = cm->Width;
int height = cm->Height;
if (vp8_alloc_frame_buffers(cm, width, height))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
if (vp8_alloc_partition_data(cpi))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate partition data");
if ((width & 0xf) != 0)
width += 16 - (width & 0xf);
if ((height & 0xf) != 0)
height += 16 - (height & 0xf);
if (vp8_yv12_alloc_frame_buffer(&cpi->last_frame_uf,
width, height, VP8BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source,
width, height, VP8BORDERINPIXELS))
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
vpx_free(cpi->tok);
{
unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16;
CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
}
// Data used for real time vc mode to see if gf needs refreshing
cpi->inter_zz_count = 0;
cpi->gf_bad_count = 0;
cpi->gf_update_recommended = 0;
// Structures used to minitor GF usage
vpx_free(cpi->gf_active_flags);
CHECK_MEM_ERROR(cpi->gf_active_flags,
vpx_calloc(1, cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
vpx_free(cpi->mb_activity_map);
CHECK_MEM_ERROR(cpi->mb_activity_map,
vpx_calloc(sizeof(unsigned int),
cm->mb_rows * cm->mb_cols));
vpx_free(cpi->mb_norm_activity_map);
CHECK_MEM_ERROR(cpi->mb_norm_activity_map,
vpx_calloc(sizeof(unsigned int),
cm->mb_rows * cm->mb_cols));
vpx_free(cpi->twopass.total_stats);
cpi->twopass.total_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS));
vpx_free(cpi->twopass.total_left_stats);
cpi->twopass.total_left_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS));
vpx_free(cpi->twopass.this_frame_stats);
cpi->twopass.this_frame_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS));
if( !cpi->twopass.total_stats ||
!cpi->twopass.total_left_stats ||
!cpi->twopass.this_frame_stats)
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate firstpass stats");
vpx_free(cpi->tplist);
CHECK_MEM_ERROR(cpi->tplist, vpx_malloc(sizeof(TOKENLIST) * cpi->common.mb_rows));
}
// TODO perhaps change number of steps expose to outside world when setting
// max and min limits. Also this will likely want refining for the extended Q
// range.
//
// Table that converts 0-63 Q range values passed in outside to the Qindex
// range used internally.
static const int q_trans[] =
{
0, 4, 8, 12, 16, 20, 24, 28,
32, 36, 40, 44, 48, 52, 56, 60,
64, 68, 72, 76, 80, 84, 88, 92,
96, 100, 104, 108, 112, 116, 120, 124,
128, 132, 136, 140, 144, 148, 152, 156,
160, 164, 168, 172, 176, 180, 184, 188,
192, 196, 200, 204, 208, 212, 216, 220,
224, 228, 232, 236, 240, 244, 249, 255,
};
int vp8_reverse_trans(int x)
{
int i;
for (i = 0; i < 64; i++)
if (q_trans[i] >= x)
return i;
return 63;
};
void vp8_new_frame_rate(VP8_COMP *cpi, double framerate)
{
if(framerate < .1)
framerate = 30;
cpi->oxcf.frame_rate = framerate;
cpi->output_frame_rate = cpi->oxcf.frame_rate;
cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate);
cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate);
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100);
if (cpi->min_frame_bandwidth < FRAME_OVERHEAD_BITS )
cpi->min_frame_bandwidth = FRAME_OVERHEAD_BITS;
// Set Maximum gf/arf interval
cpi->max_gf_interval = ((int)(cpi->output_frame_rate / 2.0) + 2);
if(cpi->max_gf_interval < 12)
cpi->max_gf_interval = 12;
// Extended interval for genuinely static scenes
cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
// Special conditions when altr ref frame enabled in lagged compress mode
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames)
{
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1)
cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
}
if ( cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval )
cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
}
static int
rescale(int val, int num, int denom)
{
int64_t llnum = num;
int64_t llden = denom;
int64_t llval = val;
return llval * llnum / llden;
}
static void init_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
VP8_COMMON *cm = &cpi->common;
cpi->oxcf = *oxcf;
cpi->goldfreq = 7;
cm->version = oxcf->Version;
vp8_setup_version(cm);
// change includes all joint functionality
vp8_change_config(ptr, oxcf);
// Initialize active best and worst q and average q values.
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
// Initialise the starting buffer levels
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->total_actual_bits = 0;
cpi->total_target_vs_actual = 0;
cpi->static_mb_pct = 0;
#if VP8_TEMPORAL_ALT_REF
{
int i;
cpi->fixed_divide[0] = 0;
for (i = 1; i < 512; i++)
cpi->fixed_divide[i] = 0x80000 / i;
}
#endif
}
void vp8_change_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
VP8_COMMON *cm = &cpi->common;
if (!cpi)
return;
if (!oxcf)
return;
if (cm->version != oxcf->Version)
{
cm->version = oxcf->Version;
vp8_setup_version(cm);
}
cpi->oxcf = *oxcf;
switch (cpi->oxcf.Mode)
{
// Real time and one pass deprecated in test code base
case MODE_FIRSTPASS:
cpi->pass = 1;
cpi->compressor_speed = 1;
break;
case MODE_SECONDPASS:
cpi->pass = 2;
cpi->compressor_speed = 1;
if (cpi->oxcf.cpu_used < -5)
{
cpi->oxcf.cpu_used = -5;
}
if (cpi->oxcf.cpu_used > 5)
cpi->oxcf.cpu_used = 5;
break;
case MODE_SECONDPASS_BEST:
cpi->pass = 2;
cpi->compressor_speed = 0;
break;
}
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG;
//cpi->use_golden_frame_only = 0;
//cpi->use_last_frame_only = 0;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
cm->refresh_entropy_probs = 1;
setup_features(cpi);
#if CONFIG_HIGH_PRECISION_MV
cpi->mb.e_mbd.allow_high_precision_mv = 0; // Default mv precision adaptation
#endif
{
int i;
for (i = 0; i < MAX_MB_SEGMENTS; i++)
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
// At the moment the first order values may not be > MAXQ
if (cpi->oxcf.fixed_q > MAXQ)
cpi->oxcf.fixed_q = MAXQ;
// local file playback mode == really big buffer
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK)
{
cpi->oxcf.starting_buffer_level = 60000;
cpi->oxcf.optimal_buffer_level = 60000;
cpi->oxcf.maximum_buffer_size = 240000;
}
// Convert target bandwidth from Kbit/s to Bit/s
cpi->oxcf.target_bandwidth *= 1000;
cpi->oxcf.starting_buffer_level =
rescale(cpi->oxcf.starting_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
// Set or reset optimal and maximum buffer levels.
if (cpi->oxcf.optimal_buffer_level == 0)
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.optimal_buffer_level =
rescale(cpi->oxcf.optimal_buffer_level,
cpi->oxcf.target_bandwidth, 1000);
if (cpi->oxcf.maximum_buffer_size == 0)
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
else
cpi->oxcf.maximum_buffer_size =
rescale(cpi->oxcf.maximum_buffer_size,
cpi->oxcf.target_bandwidth, 1000);
// Set up frame rate and related parameters rate control values.
vp8_new_frame_rate(cpi, cpi->oxcf.frame_rate);
// Set absolute upper and lower quality limits
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
cpi->best_quality = cpi->oxcf.best_allowed_q;
// active values should only be modified if out of new range
if (cpi->active_worst_quality > cpi->oxcf.worst_allowed_q)
{
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
}
// less likely
else if (cpi->active_worst_quality < cpi->oxcf.best_allowed_q)
{
cpi->active_worst_quality = cpi->oxcf.best_allowed_q;
}
if (cpi->active_best_quality < cpi->oxcf.best_allowed_q)
{
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
}
// less likely
else if (cpi->active_best_quality > cpi->oxcf.worst_allowed_q)
{
cpi->active_best_quality = cpi->oxcf.worst_allowed_q;
}
cpi->buffered_mode = (cpi->oxcf.optimal_buffer_level > 0) ? TRUE : FALSE;
cpi->cq_target_quality = cpi->oxcf.cq_level;
if (!cm->use_bilinear_mc_filter)
#if CONFIG_ENHANCED_INTERP
cm->mcomp_filter_type = EIGHTTAP;
#else
cm->mcomp_filter_type = SIXTAP;
#endif
else
cm->mcomp_filter_type = BILINEAR;
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
cm->Width = cpi->oxcf.Width ;
cm->Height = cpi->oxcf.Height ;
cm->horiz_scale = cpi->horiz_scale;
cm->vert_scale = cpi->vert_scale ;
// VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs)
if (cpi->oxcf.Sharpness > 7)
cpi->oxcf.Sharpness = 7;
cm->sharpness_level = cpi->oxcf.Sharpness;
if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL)
{
int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs);
int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs);
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
// always go to the next whole number
cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs;
cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs;
}
if (((cm->Width + 15) & 0xfffffff0) !=
cm->yv12_fb[cm->lst_fb_idx].y_width ||
((cm->Height + 15) & 0xfffffff0) !=
cm->yv12_fb[cm->lst_fb_idx].y_height ||
cm->yv12_fb[cm->lst_fb_idx].y_width == 0)
{
alloc_raw_frame_buffers(cpi);
vp8_alloc_compressor_data(cpi);
}
if (cpi->oxcf.fixed_q >= 0)
{
cpi->last_q[0] = cpi->oxcf.fixed_q;
cpi->last_q[1] = cpi->oxcf.fixed_q;
cpi->last_boosted_qindex = cpi->oxcf.fixed_q;
}
cpi->Speed = cpi->oxcf.cpu_used;
// force to allowlag to 0 if lag_in_frames is 0;
if (cpi->oxcf.lag_in_frames == 0)
{
cpi->oxcf.allow_lag = 0;
}
// Limit on lag buffers as these are not currently dynamically allocated
else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS)
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
// YX Temp
cpi->alt_ref_source = NULL;
cpi->is_src_frame_alt_ref = 0;
#if 0
// Experimental RD Code
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
}
#define M_LOG2_E 0.693147180559945309417
#define log2f(x) (log (x) / (float) M_LOG2_E)
static void cal_mvsadcosts(int *mvsadcost[2])
{
int i = 1;
mvsadcost [0] [0] = 300;
mvsadcost [1] [0] = 300;
do
{
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost [0][i] = (int) z;
mvsadcost [1][i] = (int) z;
mvsadcost [0][-i] = (int) z;
mvsadcost [1][-i] = (int) z;
}
while (++i <= mvfp_max);
}
#if CONFIG_HIGH_PRECISION_MV
static void cal_mvsadcosts_hp(int *mvsadcost[2])
{
int i = 1;
mvsadcost [0] [0] = 300;
mvsadcost [1] [0] = 300;
do
{
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost [0][i] = (int) z;
mvsadcost [1][i] = (int) z;
mvsadcost [0][-i] = (int) z;
mvsadcost [1][-i] = (int) z;
}
while (++i <= mvfp_max_hp);
}
#endif
VP8_PTR vp8_create_compressor(VP8_CONFIG *oxcf)
{
int i;
volatile union
{
VP8_COMP *cpi;
VP8_PTR ptr;
} ctx;
VP8_COMP *cpi;
VP8_COMMON *cm;
cpi = ctx.cpi = vpx_memalign(32, sizeof(VP8_COMP));
// Check that the CPI instance is valid
if (!cpi)
return 0;
cm = &cpi->common;
vpx_memset(cpi, 0, sizeof(VP8_COMP));
if (setjmp(cm->error.jmp))
{
VP8_PTR ptr = ctx.ptr;
ctx.cpi->common.error.setjmp = 0;
vp8_remove_compressor(&ptr);
return 0;
}
cpi->common.error.setjmp = 1;
CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1));
vp8_create_common(&cpi->common);
vp8_cmachine_specific_config(cpi);
init_config((VP8_PTR)cpi, oxcf);
memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob, sizeof(vp8cx_base_skip_false_prob));
cpi->common.current_video_frame = 0;
cpi->kf_overspend_bits = 0;
cpi->kf_bitrate_adjustment = 0;
cpi->frames_till_gf_update_due = 0;
cpi->gf_overspend_bits = 0;
cpi->non_gf_bitrate_adjustment = 0;
cm->prob_last_coded = 128;
cm->prob_gf_coded = 128;
cm->prob_intra_coded = 63;
for ( i = 0; i < COMP_PRED_CONTEXTS; i++ )
cm->prob_comppred[i] = 128;
// Prime the recent reference frame useage counters.
// Hereafter they will be maintained as a sort of moving average
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
// Set reference frame sign bias for ALTREF frame to 1 (for now)
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->gold_is_last = 0 ;
cpi->alt_is_last = 0 ;
cpi->gold_is_alt = 0 ;
// allocate memory for storing last frame's MVs for MV prediction.
CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cpi->common.mb_rows+2) * (cpi->common.mb_cols+2), sizeof(int_mv)));
CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias, vpx_calloc((cpi->common.mb_rows+2) * (cpi->common.mb_cols+2), sizeof(int)));
CHECK_MEM_ERROR(cpi->lf_ref_frame, vpx_calloc((cpi->common.mb_rows+2) * (cpi->common.mb_cols+2), sizeof(int)));
// Create the encoder segmentation map and set all entries to 0
CHECK_MEM_ERROR(cpi->segmentation_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
// And a copy in common for temporal coding
CHECK_MEM_ERROR(cm->last_frame_seg_map,
vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
// And a place holder structure is the coding context
// for use if we want to save and restore it
CHECK_MEM_ERROR(cpi->coding_context.last_frame_seg_map_copy,
vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1));
vpx_memset(cpi->active_map , 1, (cpi->common.mb_rows * cpi->common.mb_cols));
cpi->active_map_enabled = 0;
for (i = 0; i < ( sizeof(cpi->mbgraph_stats) /
sizeof(cpi->mbgraph_stats[0]) ); i++)
{
CHECK_MEM_ERROR(cpi->mbgraph_stats[i].mb_stats,
vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols *
sizeof(*cpi->mbgraph_stats[i].mb_stats),
1));
}
#ifdef ENTROPY_STATS
if(cpi->pass != 1)
init_context_counters();
#endif
#ifdef MODE_STATS
vp8_zero(y_modes);
vp8_zero(i8x8_modes);
vp8_zero(uv_modes);
vp8_zero(uv_modes_y);
vp8_zero(b_modes);
vp8_zero(inter_y_modes);
vp8_zero(inter_uv_modes);
vp8_zero(inter_b_modes);
#endif
/*Initialize the feed-forward activity masking.*/
cpi->activity_avg = 90<<12;
cpi->frames_since_key = 8; // Give a sensible default for the first frame.
cpi->key_frame_frequency = cpi->oxcf.key_freq;
cpi->this_key_frame_forced = FALSE;
cpi->next_key_frame_forced = FALSE;
cpi->source_alt_ref_pending = FALSE;
cpi->source_alt_ref_active = FALSE;
cpi->common.refresh_alt_ref_frame = 0;
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
cpi->b_calculate_ssimg = 0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr)
{
cpi->total_sq_error = 0.0;
cpi->total_sq_error2 = 0.0;
cpi->total_y = 0.0;
cpi->total_u = 0.0;
cpi->total_v = 0.0;
cpi->total = 0.0;
cpi->totalp_y = 0.0;
cpi->totalp_u = 0.0;
cpi->totalp_v = 0.0;
cpi->totalp = 0.0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
}
if (cpi->b_calculate_ssimg)
{
cpi->total_ssimg_y = 0;
cpi->total_ssimg_u = 0;
cpi->total_ssimg_v = 0;
cpi->total_ssimg_all = 0;
}
#endif
#ifndef LLONG_MAX
#define LLONG_MAX 9223372036854775807LL
#endif
cpi->first_time_stamp_ever = LLONG_MAX;
cpi->frames_till_gf_update_due = 0;
cpi->key_frame_count = 1;
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
cpi->ni_tot_qi = 0;
cpi->ni_frames = 0;
cpi->tot_q = 0.0;
cpi->avg_q = vp8_convert_qindex_to_q( cpi->oxcf.worst_allowed_q );
cpi->total_byte_count = 0;
cpi->rate_correction_factor = 1.0;
cpi->key_frame_rate_correction_factor = 1.0;
cpi->gf_rate_correction_factor = 1.0;
cpi->twopass.est_max_qcorrection_factor = 1.0;
cpi->mb.mvcost[0] = &cpi->mb.mvcosts[0][mv_max+1];
cpi->mb.mvcost[1] = &cpi->mb.mvcosts[1][mv_max+1];
cpi->mb.mvsadcost[0] = &cpi->mb.mvsadcosts[0][mvfp_max+1];
cpi->mb.mvsadcost[1] = &cpi->mb.mvsadcosts[1][mvfp_max+1];
cal_mvsadcosts(cpi->mb.mvsadcost);
#if CONFIG_HIGH_PRECISION_MV
cpi->mb.mvcost_hp[0] = &cpi->mb.mvcosts_hp[0][mv_max_hp+1];
cpi->mb.mvcost_hp[1] = &cpi->mb.mvcosts_hp[1][mv_max_hp+1];
cpi->mb.mvsadcost_hp[0] = &cpi->mb.mvsadcosts_hp[0][mvfp_max_hp+1];
cpi->mb.mvsadcost_hp[1] = &cpi->mb.mvsadcosts_hp[1][mvfp_max_hp+1];
cal_mvsadcosts_hp(cpi->mb.mvsadcost_hp);
#endif
for (i = 0; i < KEY_FRAME_CONTEXT; i++)
{
cpi->prior_key_frame_distance[i] = (int)cpi->output_frame_rate;
}
#ifdef OUTPUT_YUV_SRC
yuv_file = fopen("bd.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_REC
yuv_rec_file = fopen("rec.yuv", "wb");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
#endif
cpi->output_pkt_list = oxcf->output_pkt_list;
if (cpi->pass == 1)
{
vp8_init_first_pass(cpi);
}
else if (cpi->pass == 2)
{
size_t packet_sz = sizeof(FIRSTPASS_STATS);
int packets = oxcf->two_pass_stats_in.sz / packet_sz;
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end = (void*)((char *)cpi->twopass.stats_in
+ (packets - 1) * packet_sz);
vp8_init_second_pass(cpi);
}
vp8_set_speed_features(cpi);
// Set starting values of RD threshold multipliers (128 = *1)
for (i = 0; i < MAX_MODES; i++)
{
cpi->rd_thresh_mult[i] = 128;
}
#ifdef ENTROPY_STATS
init_mv_ref_counts();
#endif
cpi->fn_ptr[BLOCK_16X16].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16);
cpi->fn_ptr[BLOCK_16X16].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16);
cpi->fn_ptr[BLOCK_16X16].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar16x16);
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_h = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_h);
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_v = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_v);
cpi->fn_ptr[BLOCK_16X16].svf_halfpix_hv = VARIANCE_INVOKE(&cpi->rtcd.variance, halfpixvar16x16_hv);
cpi->fn_ptr[BLOCK_16X16].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x3);
cpi->fn_ptr[BLOCK_16X16].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x8);
cpi->fn_ptr[BLOCK_16X16].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x4d);
cpi->fn_ptr[BLOCK_16X8].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8);
cpi->fn_ptr[BLOCK_16X8].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x8);
cpi->fn_ptr[BLOCK_16X8].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar16x8);
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_16X8].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_16X8].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x3);
cpi->fn_ptr[BLOCK_16X8].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x8);
cpi->fn_ptr[BLOCK_16X8].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x4d);
cpi->fn_ptr[BLOCK_8X16].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16);
cpi->fn_ptr[BLOCK_8X16].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var8x16);
cpi->fn_ptr[BLOCK_8X16].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar8x16);
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_8X16].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_8X16].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x3);
cpi->fn_ptr[BLOCK_8X16].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x8);
cpi->fn_ptr[BLOCK_8X16].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x4d);
cpi->fn_ptr[BLOCK_8X8].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8);
cpi->fn_ptr[BLOCK_8X8].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var8x8);
cpi->fn_ptr[BLOCK_8X8].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar8x8);
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_8X8].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_8X8].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x3);
cpi->fn_ptr[BLOCK_8X8].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x8);
cpi->fn_ptr[BLOCK_8X8].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x4d);
cpi->fn_ptr[BLOCK_4X4].sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4);
cpi->fn_ptr[BLOCK_4X4].vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var4x4);
cpi->fn_ptr[BLOCK_4X4].svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar4x4);
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_h = NULL;
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_v = NULL;
cpi->fn_ptr[BLOCK_4X4].svf_halfpix_hv = NULL;
cpi->fn_ptr[BLOCK_4X4].sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x3);
cpi->fn_ptr[BLOCK_4X4].sdx8f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x8);
cpi->fn_ptr[BLOCK_4X4].sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x4d);
#if ARCH_X86 || ARCH_X86_64
cpi->fn_ptr[BLOCK_16X16].copymem = VARIANCE_INVOKE(&cpi->rtcd.variance, copy32xn);
cpi->fn_ptr[BLOCK_16X8].copymem = VARIANCE_INVOKE(&cpi->rtcd.variance, copy32xn);
cpi->fn_ptr[BLOCK_8X16].copymem = VARIANCE_INVOKE(&cpi->rtcd.variance, copy32xn);
cpi->fn_ptr[BLOCK_8X8].copymem = VARIANCE_INVOKE(&cpi->rtcd.variance, copy32xn);
cpi->fn_ptr[BLOCK_4X4].copymem = VARIANCE_INVOKE(&cpi->rtcd.variance, copy32xn);
#endif
cpi->full_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, full_search);
cpi->diamond_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, diamond_search);
cpi->refining_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, refining_search);
// make sure frame 1 is okay
cpi->error_bins[0] = cpi->common.MBs;
//vp8cx_init_quantizer() is first called here. Add check in vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only called later
//when needed. This will avoid unnecessary calls of vp8cx_init_quantizer() for every frame.
vp8cx_init_quantizer(cpi);
vp8_loop_filter_init(cm);
cpi->common.error.setjmp = 0;
vp8_zero(cpi->y_uv_mode_count)
return (VP8_PTR) cpi;
}
void vp8_remove_compressor(VP8_PTR *ptr)
{
VP8_COMP *cpi = (VP8_COMP *)(*ptr);
int i;
if (!cpi)
return;
if (cpi && (cpi->common.current_video_frame > 0))
{
if (cpi->pass == 2)
{
vp8_end_second_pass(cpi);
}
#ifdef ENTROPY_STATS
if(cpi->pass != 1)
{
print_context_counters();
print_tree_update_probs();
print_mode_context();
}
#endif
#if CONFIG_INTERNAL_STATS
vp8_clear_system_state();
//printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count);
if (cpi->pass != 1)
{
FILE *f = fopen("opsnr.stt", "a");
double time_encoded = (cpi->last_end_time_stamp_seen
- cpi->first_time_stamp_ever) / 10000000.000;
double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000;
double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded;
#if defined(MODE_STATS)
print_mode_contexts(&cpi->common);
#endif
if (cpi->b_calculate_psnr)
{
YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
double samples = 3.0 / 2 * cpi->count * lst_yv12->y_width * lst_yv12->y_height;
double total_psnr = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error);
double total_psnr2 = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error2);
double total_ssim = 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\tVPXSSIM\t Time(us)\n");
fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n",
dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim,
total_encode_time);
// fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f %10ld\n",
// dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim,
// total_encode_time, cpi->tot_recode_hits);
}
if (cpi->b_calculate_ssimg)
{
fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(us)\n");
fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr,
cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time);
// fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f %10ld\n", dr,
// cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count,
// cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time, cpi->tot_recode_hits);
}
fclose(f);
}
#endif
#ifdef MODE_STATS
{
extern int count_mb_seg[4];
char modes_stats_file[250];
FILE *f;
double dr = (double)cpi->oxcf.frame_rate * (double)cpi->bytes * (double)8 / (double)cpi->count / (double)1000 ;
sprintf(modes_stats_file, "modes_q%03d.stt",cpi->common.base_qindex);
f = fopen(modes_stats_file, "w");
fprintf(f, "intra_mode in Intra Frames:\n");
{
int i;
fprintf(f, "Y: ");
for (i=0;i<VP8_YMODES;i++) fprintf(f, " %8d,", y_modes[i]);
fprintf(f, "\n");
}
{
int i;
fprintf(f, "I8: ");
for (i=0;i<VP8_I8X8_MODES;i++) fprintf(f, " %8d,", i8x8_modes[i]);
fprintf(f, "\n");
}
{
int i;
fprintf(f, "UV: ");
for (i=0;i<VP8_UV_MODES;i++) fprintf(f, " %8d,", uv_modes[i]);
fprintf(f, "\n");
}
{
int i, j;
fprintf(f, "KeyFrame Y-UV:\n");
for(i=0;i<VP8_YMODES;i++)
{
fprintf(f, "%2d:", i);
for (j=0; j<VP8_UV_MODES;j++) fprintf(f, "%8d, ",uv_modes_y[i][j]);
fprintf(f, "\n");
}
}
{
int i, j;
fprintf(f, "Inter Y-UV:\n");
for(i=0;i<VP8_YMODES;i++)
{
fprintf(f, "%2d:", i);
for (j=0; j<VP8_UV_MODES;j++) fprintf(f, "%8d, ",cpi->y_uv_mode_count[i][j]);
fprintf(f, "\n");
}
}
{
int i;
fprintf(f, "B: ");
for (i = 0; i < VP8_BINTRAMODES; i++)
fprintf(f, "%8d, ", b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "Modes in Inter Frames:\n");
{
int i;
fprintf(f, "Y: ");
for (i=0;i<MB_MODE_COUNT;i++) fprintf(f, " %8d,", inter_y_modes[i]);
fprintf(f, "\n");
}
{
int i;
fprintf(f, "UV: ");
for (i=0;i<VP8_UV_MODES;i++) fprintf(f, " %8d,", inter_uv_modes[i]);
fprintf(f, "\n");
}
{
int i;
fprintf(f, "B: ");
for (i = 0; i < B_MODE_COUNT; i++) fprintf(f, "%8d, ", inter_b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], count_mb_seg[2], count_mb_seg[3]);
fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], inter_b_modes[NEW4X4]);
fclose(f);
}
#endif
#ifdef ENTROPY_STATS
{
int i, j, k;
FILE *fmode = fopen("modecontext.c", "w");
fprintf(fmode, "\n#include \"entropymode.h\"\n\n");
fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts ");
fprintf(fmode, "[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n");
for (i = 0; i < 10; i++)
{
fprintf(fmode, " { //Above Mode : %d\n", i);
for (j = 0; j < 10; j++)
{
fprintf(fmode, " {");
for (k = 0; k < VP8_BINTRAMODES; k++)
{
if (!intra_mode_stats[i][j][k])
fprintf(fmode, " %5d, ", 1);
else
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
}
fprintf(fmode, "}, // left_mode %d\n", j);
}
fprintf(fmode, " },\n");
}
fprintf(fmode, "};\n");
fclose(fmode);
}
#endif
#if defined(SECTIONBITS_OUTPUT)
if (0)
{
int i;
FILE *f = fopen("tokenbits.stt", "a");
for (i = 0; i < 28; i++)
fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
fprintf(f, "\n");
fclose(f);
}
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
#endif
}
dealloc_compressor_data(cpi);
vpx_free(cpi->mb.ss);
vpx_free(cpi->tok);
for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); i++)
{
vpx_free(cpi->mbgraph_stats[i].mb_stats);
}
vp8_remove_common(&cpi->common);
vpx_free(cpi);
*ptr = 0;
#ifdef OUTPUT_YUV_SRC
fclose(yuv_file);
#endif
#ifdef OUTPUT_YUV_REC
fclose(yuv_rec_file);
#endif
#if 0
if (keyfile)
fclose(keyfile);
if (framepsnr)
fclose(framepsnr);
if (kf_list)
fclose(kf_list);
#endif
}
static uint64_t calc_plane_error(unsigned char *orig, int orig_stride,
unsigned char *recon, int recon_stride,
unsigned int cols, unsigned int rows,
vp8_variance_rtcd_vtable_t *rtcd)
{
unsigned int row, col;
uint64_t total_sse = 0;
int diff;
for (row = 0; row + 16 <= rows; row += 16)
{
for (col = 0; col + 16 <= cols; col += 16)
{
unsigned int sse;
VARIANCE_INVOKE(rtcd, mse16x16)(orig + col, orig_stride,
recon + col, recon_stride,
&sse);
total_sse += sse;
}
/* Handle odd-sized width */
if (col < cols)
{
unsigned int border_row, border_col;
unsigned char *border_orig = orig;
unsigned char *border_recon = recon;
for (border_row = 0; border_row < 16; border_row++)
{
for (border_col = col; border_col < cols; border_col++)
{
diff = border_orig[border_col] - border_recon[border_col];
total_sse += diff * diff;
}
border_orig += orig_stride;
border_recon += recon_stride;
}
}
orig += orig_stride * 16;
recon += recon_stride * 16;
}
/* Handle odd-sized height */
for (; row < rows; row++)
{
for (col = 0; col < cols; col++)
{
diff = orig[col] - recon[col];
total_sse += diff * diff;
}
orig += orig_stride;
recon += recon_stride;
}
return total_sse;
}
static void generate_psnr_packet(VP8_COMP *cpi)
{
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
struct vpx_codec_cx_pkt pkt;
uint64_t sse;
int i;
unsigned int width = cpi->common.Width;
unsigned int height = cpi->common.Height;
pkt.kind = VPX_CODEC_PSNR_PKT;
sse = calc_plane_error(orig->y_buffer, orig->y_stride,
recon->y_buffer, recon->y_stride,
width, height,
IF_RTCD(&cpi->rtcd.variance));
pkt.data.psnr.sse[0] = sse;
pkt.data.psnr.sse[1] = sse;
pkt.data.psnr.samples[0] = width * height;
pkt.data.psnr.samples[1] = width * height;
width = (width + 1) / 2;
height = (height + 1) / 2;
sse = calc_plane_error(orig->u_buffer, orig->uv_stride,
recon->u_buffer, recon->uv_stride,
width, height,
IF_RTCD(&cpi->rtcd.variance));
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[2] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[2] = width * height;
sse = calc_plane_error(orig->v_buffer, orig->uv_stride,
recon->v_buffer, recon->uv_stride,
width, height,
IF_RTCD(&cpi->rtcd.variance));
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[3] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[3] = width * height;
for (i = 0; i < 4; i++)
pkt.data.psnr.psnr[i] = vp8_mse2psnr(pkt.data.psnr.samples[i], 255.0,
pkt.data.psnr.sse[i]);
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int vp8_use_as_reference(VP8_PTR ptr, int ref_frame_flags)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
if (ref_frame_flags > 7)
return -1 ;
cpi->ref_frame_flags = ref_frame_flags;
return 0;
}
int vp8_update_reference(VP8_PTR ptr, int ref_frame_flags)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
if (ref_frame_flags > 7)
return -1 ;
cpi->common.refresh_golden_frame = 0;
cpi->common.refresh_alt_ref_frame = 0;
cpi->common.refresh_last_frame = 0;
if (ref_frame_flags & VP8_LAST_FLAG)
cpi->common.refresh_last_frame = 1;
if (ref_frame_flags & VP8_GOLD_FLAG)
cpi->common.refresh_golden_frame = 1;
if (ref_frame_flags & VP8_ALT_FLAG)
cpi->common.refresh_alt_ref_frame = 1;
return 0;
}
int vp8_get_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
VP8_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP8_LAST_FLAG)
ref_fb_idx = cm->lst_fb_idx;
else if (ref_frame_flag == VP8_GOLD_FLAG)
ref_fb_idx = cm->gld_fb_idx;
else if (ref_frame_flag == VP8_ALT_FLAG)
ref_fb_idx = cm->alt_fb_idx;
else
return -1;
vp8_yv12_copy_frame_ptr(&cm->yv12_fb[ref_fb_idx], sd);
return 0;
}
int vp8_set_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd)
{
VP8_COMP *cpi = (VP8_COMP *)(ptr);
VP8_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP8_LAST_FLAG)
ref_fb_idx = cm->lst_fb_idx;
else if (ref_frame_flag == VP8_GOLD_FLAG)
ref_fb_idx = cm->gld_fb_idx;
else if (ref_frame_flag == VP8_ALT_FLAG)
ref_fb_idx = cm->alt_fb_idx;
else
return -1;
vp8_yv12_copy_frame_ptr(sd, &cm->yv12_fb[ref_fb_idx]);
return 0;
}
int vp8_update_entropy(VP8_PTR comp, int update)
{
VP8_COMP *cpi = (VP8_COMP *) comp;
VP8_COMMON *cm = &cpi->common;
cm->refresh_entropy_probs = update;
return 0;
}
#ifdef OUTPUT_YUV_SRC
void vp8_write_yuv_frame(YV12_BUFFER_CONFIG *s)
{
unsigned char *src = s->y_buffer;
int h = s->y_height;
do
{
fwrite(src, s->y_width, 1, yuv_file);
src += s->y_stride;
}
while (--h);
src = s->u_buffer;
h = s->uv_height;
do
{
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
}
while (--h);
src = s->v_buffer;
h = s->uv_height;
do
{
fwrite(src, s->uv_width, 1, yuv_file);
src += s->uv_stride;
}
while (--h);
}
#endif
#ifdef OUTPUT_YUV_REC
void vp8_write_yuv_rec_frame(VP8_COMMON *cm)
{
YV12_BUFFER_CONFIG *s = cm->frame_to_show;
unsigned char *src = s->y_buffer;
int h = cm->Height;
do
{
fwrite(src, s->y_width, 1, yuv_rec_file);
src += s->y_stride;
}
while (--h);
src = s->u_buffer;
h = (cm->Height+1)/2;
do
{
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
}
while (--h);
src = s->v_buffer;
h = (cm->Height+1)/2;
do
{
fwrite(src, s->uv_width, 1, yuv_rec_file);
src += s->uv_stride;
}
while (--h);
}
#endif
static void update_alt_ref_frame_stats(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
// Update data structure that monitors level of reference to last GF
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
// this frame refreshes means next frames don't unless specified by user
cpi->common.frames_since_golden = 0;
// Clear the alternate reference update pending flag.
cpi->source_alt_ref_pending = FALSE;
// Set the alternate refernce frame active flag
cpi->source_alt_ref_active = TRUE;
}
static void update_golden_frame_stats(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
// Update the Golden frame usage counts.
if (cm->refresh_golden_frame)
{
// Update data structure that monitors level of reference to last GF
vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
// this frame refreshes means next frames don't unless specified by user
cm->refresh_golden_frame = 0;
cpi->common.frames_since_golden = 0;
//if ( cm->frame_type == KEY_FRAME )
//{
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
//}
//else
//{
// // Carry a potrtion of count over to begining of next gf sequence
// cpi->recent_ref_frame_usage[INTRA_FRAME] >>= 5;
// cpi->recent_ref_frame_usage[LAST_FRAME] >>= 5;
// cpi->recent_ref_frame_usage[GOLDEN_FRAME] >>= 5;
// cpi->recent_ref_frame_usage[ALTREF_FRAME] >>= 5;
//}
// ******** Fixed Q test code only ************
// If we are going to use the ALT reference for the next group of frames set a flag to say so.
if (cpi->oxcf.fixed_q >= 0 &&
cpi->oxcf.play_alternate && !cpi->common.refresh_alt_ref_frame)
{
cpi->source_alt_ref_pending = TRUE;
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
}
if (!cpi->source_alt_ref_pending)
cpi->source_alt_ref_active = FALSE;
// Decrement count down till next gf
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
}
else if (!cpi->common.refresh_alt_ref_frame)
{
// Decrement count down till next gf
if (cpi->frames_till_gf_update_due > 0)
cpi->frames_till_gf_update_due--;
if (cpi->common.frames_till_alt_ref_frame)
cpi->common.frames_till_alt_ref_frame --;
cpi->common.frames_since_golden ++;
if (cpi->common.frames_since_golden > 1)
{
cpi->recent_ref_frame_usage[INTRA_FRAME] += cpi->count_mb_ref_frame_usage[INTRA_FRAME];
cpi->recent_ref_frame_usage[LAST_FRAME] += cpi->count_mb_ref_frame_usage[LAST_FRAME];
cpi->recent_ref_frame_usage[GOLDEN_FRAME] += cpi->count_mb_ref_frame_usage[GOLDEN_FRAME];
cpi->recent_ref_frame_usage[ALTREF_FRAME] += cpi->count_mb_ref_frame_usage[ALTREF_FRAME];
}
}
}
int find_fp_qindex()
{
int i;
for ( i = 0; i < QINDEX_RANGE; i++ )
{
if ( vp8_convert_qindex_to_q(i) >= 30.0 )
{
break;
}
}
if ( i == QINDEX_RANGE )
i--;
return i;
}
static void Pass1Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags)
{
(void) size;
(void) dest;
(void) frame_flags;
vp8_set_quantizer(cpi, find_fp_qindex());
vp8_first_pass(cpi);
}
#if 1
void write_yuv_frame_to_file(YV12_BUFFER_CONFIG *frame)
{
// write the frame
int i;
FILE *fp = fopen("encode_recon.yuv", "a");
for (i = 0; i < frame->y_height; i++)
fwrite(frame->y_buffer + i * frame->y_stride,
frame->y_width, 1, fp);
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->u_buffer + i * frame->uv_stride,
frame->uv_width, 1, fp);
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->v_buffer + i * frame->uv_stride,
frame->uv_width, 1, fp);
fclose(fp);
}
#endif
//#define WRITE_RECON_BUFFER 1
#if WRITE_RECON_BUFFER
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame)
{
// write the frame
FILE *yframe;
int i;
char filename[255];
sprintf(filename, "cx\\y%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->y_height; i++)
fwrite(frame->y_buffer + i * frame->y_stride,
frame->y_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\u%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->u_buffer + i * frame->uv_stride,
frame->uv_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\v%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; i++)
fwrite(frame->v_buffer + i * frame->uv_stride,
frame->uv_width, 1, yframe);
fclose(yframe);
}
#endif
static double compute_edge_pixel_proportion(YV12_BUFFER_CONFIG *frame)
{
#define EDGE_THRESH 128
int i, j;
int num_edge_pels = 0;
int num_pels = (frame->y_height - 2) * (frame->y_width - 2);
unsigned char *prev = frame->y_buffer + 1;
unsigned char *curr = frame->y_buffer + 1 + frame->y_stride;
unsigned char *next = frame->y_buffer + 1 + 2*frame->y_stride;
for (i = 1; i < frame->y_height - 1; i++)
{
for (j = 1; j < frame->y_width - 1; j++)
{
/* Sobel hor and ver gradients */
int v = 2*(curr[1] - curr[-1]) + (prev[1] - prev[-1]) + (next[1] - next[-1]);
int h = 2*(prev[0] - next[0]) + (prev[1] - next[1]) + (prev[-1] - next[-1]);
h = (h < 0 ? -h : h);
v = (v < 0 ? -v : v);
if (h > EDGE_THRESH || v > EDGE_THRESH) num_edge_pels++;
curr++;
prev++;
next++;
}
curr += frame->y_stride - frame->y_width + 2;
prev += frame->y_stride - frame->y_width + 2;
next += frame->y_stride - frame->y_width + 2;
}
return (double)num_edge_pels/(double)num_pels;
}
// Function to test for conditions that indicate we should loop
// back and recode a frame.
static BOOL recode_loop_test( VP8_COMP *cpi,
int high_limit, int low_limit,
int q, int maxq, int minq )
{
BOOL force_recode = FALSE;
VP8_COMMON *cm = &cpi->common;
// Is frame recode allowed at all
// Yes if either recode mode 1 is selected or mode two is selcted
// and the frame is a key frame. golden frame or alt_ref_frame
if ( (cpi->sf.recode_loop == 1) ||
( (cpi->sf.recode_loop == 2) &&
( (cm->frame_type == KEY_FRAME) ||
cm->refresh_golden_frame ||
cm->refresh_alt_ref_frame ) ) )
{
// General over and under shoot tests
if ( ((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
((cpi->projected_frame_size < low_limit) && (q > minq)) )
{
force_recode = TRUE;
}
// Special Constrained quality tests
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
{
// Undershoot and below auto cq level
if ( (q > cpi->cq_target_quality) &&
(cpi->projected_frame_size <
((cpi->this_frame_target * 7) >> 3)))
{
force_recode = TRUE;
}
// Severe undershoot and between auto and user cq level
else if ( (q > cpi->oxcf.cq_level) &&
(cpi->projected_frame_size < cpi->min_frame_bandwidth) &&
(cpi->active_best_quality > cpi->oxcf.cq_level))
{
force_recode = TRUE;
cpi->active_best_quality = cpi->oxcf.cq_level;
}
}
}
return force_recode;
}
void update_reference_frames(VP8_COMMON *cm)
{
YV12_BUFFER_CONFIG *yv12_fb = cm->yv12_fb;
// At this point the new frame has been encoded.
// If any buffer copy / swapping is signaled it should be done here.
if (cm->frame_type == KEY_FRAME)
{
yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FLAG | VP8_ALT_FLAG ;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
cm->alt_fb_idx = cm->gld_fb_idx = cm->new_fb_idx;
}
else /* For non key frames */
{
if (cm->refresh_alt_ref_frame)
{
assert(!cm->copy_buffer_to_arf);
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_ALT_FLAG;
cm->yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
cm->alt_fb_idx = cm->new_fb_idx;
}
else if (cm->copy_buffer_to_arf)
{
assert(!(cm->copy_buffer_to_arf & ~0x3));
if (cm->copy_buffer_to_arf == 1)
{
if(cm->alt_fb_idx != cm->lst_fb_idx)
{
yv12_fb[cm->lst_fb_idx].flags |= VP8_ALT_FLAG;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
cm->alt_fb_idx = cm->lst_fb_idx;
}
}
else /* if (cm->copy_buffer_to_arf == 2) */
{
if(cm->alt_fb_idx != cm->gld_fb_idx)
{
yv12_fb[cm->gld_fb_idx].flags |= VP8_ALT_FLAG;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG;
cm->alt_fb_idx = cm->gld_fb_idx;
}
}
}
if (cm->refresh_golden_frame)
{
assert(!cm->copy_buffer_to_gf);
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FLAG;
cm->yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
cm->gld_fb_idx = cm->new_fb_idx;
}
else if (cm->copy_buffer_to_gf)
{
assert(!(cm->copy_buffer_to_arf & ~0x3));
if (cm->copy_buffer_to_gf == 1)
{
if(cm->gld_fb_idx != cm->lst_fb_idx)
{
yv12_fb[cm->lst_fb_idx].flags |= VP8_GOLD_FLAG;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
cm->gld_fb_idx = cm->lst_fb_idx;
}
}
else /* if (cm->copy_buffer_to_gf == 2) */
{
if(cm->alt_fb_idx != cm->gld_fb_idx)
{
yv12_fb[cm->alt_fb_idx].flags |= VP8_GOLD_FLAG;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG;
cm->gld_fb_idx = cm->alt_fb_idx;
}
}
}
}
if (cm->refresh_last_frame)
{
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_LAST_FLAG;
cm->yv12_fb[cm->lst_fb_idx].flags &= ~VP8_LAST_FLAG;
cm->lst_fb_idx = cm->new_fb_idx;
}
}
void loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm)
{
if (cm->no_lpf)
{
cm->filter_level = 0;
}
else
{
struct vpx_usec_timer timer;
vp8_clear_system_state();
vpx_usec_timer_start(&timer);
if (cpi->sf.auto_filter == 0)
vp8cx_pick_filter_level_fast(cpi->Source, cpi);
else
vp8cx_pick_filter_level(cpi->Source, cpi);
vpx_usec_timer_mark(&timer);
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
}
if (cm->filter_level > 0)
{
vp8cx_set_alt_lf_level(cpi, cm->filter_level);
vp8_loop_filter_frame(cm, &cpi->mb.e_mbd);
}
vp8_yv12_extend_frame_borders_ptr(cm->frame_to_show);
}
#if CONFIG_PRED_FILTER
void select_pred_filter_mode(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
int prob_pred_filter_off = cm->prob_pred_filter_off;
// Force filter on/off if probability is extreme
if (prob_pred_filter_off >= 255 * 0.95)
cm->pred_filter_mode = 0; // Off at the frame level
else if (prob_pred_filter_off <= 255 * 0.05)
cm->pred_filter_mode = 1; // On at the frame level
else
cm->pred_filter_mode = 2; // Selectable at the MB level
}
void update_pred_filt_prob(VP8_COMP *cpi)
{
VP8_COMMON *cm = &cpi->common;
int prob_pred_filter_off;
// Based on the selection in the previous frame determine what mode
// to use for the current frame and work out the signaling probability
if ( cpi->pred_filter_on_count + cpi->pred_filter_off_count )
{
prob_pred_filter_off = cpi->pred_filter_off_count * 256 /
( cpi->pred_filter_on_count + cpi->pred_filter_off_count);
if (prob_pred_filter_off < 1)
prob_pred_filter_off = 1;
if (prob_pred_filter_off > 255)
prob_pred_filter_off = 255;
cm->prob_pred_filter_off = prob_pred_filter_off;
}
else
cm->prob_pred_filter_off = 128;
/*
{
FILE *fp = fopen("filt_use.txt", "a");
fprintf (fp, "%d %d prob=%d\n", cpi->pred_filter_off_count,
cpi->pred_filter_on_count, cm->prob_pred_filter_off);
fclose(fp);
}
*/
}
#endif
static void encode_frame_to_data_rate
(
VP8_COMP *cpi,
unsigned long *size,
unsigned char *dest,
unsigned int *frame_flags
)
{
VP8_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int Q;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
int Loop = FALSE;
int loop_count;
int this_q;
int last_zbin_oq;
int q_low;
int q_high;
int zbin_oq_high;
int zbin_oq_low = 0;
int top_index;
int bottom_index;
int active_worst_qchanged = FALSE;
int overshoot_seen = FALSE;
int undershoot_seen = FALSE;
int loop_size_estimate = 0;
#if CONFIG_ENHANCED_INTERP
SPEED_FEATURES *sf = &cpi->sf;
#if RESET_FOREACH_FILTER
int q_low0;
int q_high0;
int zbin_oq_high0;
int zbin_oq_low0 = 0;
int Q0;
int last_zbin_oq0;
int active_best_quality0;
int active_worst_quality0;
double rate_correction_factor0;
double gf_rate_correction_factor0;
#endif
/* list of filters to search over */
int mcomp_filters_to_search[] = {EIGHTTAP, EIGHTTAP_SHARP, SIXTAP};
int mcomp_filters = sizeof(mcomp_filters_to_search)/sizeof(*mcomp_filters_to_search);
int mcomp_filter_index = 0;
INT64 mcomp_filter_cost[4];
#endif
// Clear down mmx registers to allow floating point in what follows
vp8_clear_system_state();
// For an alt ref frame in 2 pass we skip the call to the second
// pass function that sets the target bandwidth so must set it here
if (cpi->common.refresh_alt_ref_frame)
{
cpi->per_frame_bandwidth = cpi->twopass.gf_bits; // Per frame bit target for the alt ref frame
cpi->target_bandwidth = cpi->twopass.gf_bits * cpi->output_frame_rate; // per second target bitrate
}
// Default turn off buffer to buffer copying
cm->copy_buffer_to_gf = 0;
cm->copy_buffer_to_arf = 0;
// Clear zbin over-quant value and mode boost values.
cpi->zbin_over_quant = 0;
cpi->zbin_mode_boost = 0;
// Enable or disable mode based tweaking of the zbin
// For 2 Pass Only used where GF/ARF prediction quality
// is above a threshold
cpi->zbin_mode_boost = 0;
cpi->zbin_mode_boost_enabled = TRUE;
if ( cpi->gfu_boost <= 400 )
{
cpi->zbin_mode_boost_enabled = FALSE;
}
// Current default encoder behaviour for the altref sign bias
if (cpi->source_alt_ref_active)
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
else
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0;
// Check to see if a key frame is signalled
// For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass.
if ((cm->current_video_frame == 0) ||
(cm->frame_flags & FRAMEFLAGS_KEY) ||
(cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0)))
{
// Key frame from VFW/auto-keyframe/first frame
cm->frame_type = KEY_FRAME;
}
// Set default state for segment based loop filter update flags
xd->mode_ref_lf_delta_update = 0;
// Set various flags etc to special state if it is a key frame
if (cm->frame_type == KEY_FRAME)
{
int i;
// Reset the loop filter deltas and segmentation map
setup_features(cpi);
// If segmentation is enabled force a map update for key frames
if (xd->segmentation_enabled)
{
xd->update_mb_segmentation_map = 1;
xd->update_mb_segmentation_data = 1;
}
// The alternate reference frame cannot be active for a key frame
cpi->source_alt_ref_active = FALSE;
// Reset the RD threshold multipliers to default of * 1 (128)
for (i = 0; i < MAX_MODES; i++)
{
cpi->rd_thresh_mult[i] = 128;
}
}
//#if !CONFIG_COMPRED
// This function has been deprecated for now but we may want to do
// something here at a late date
//update_rd_ref_frame_probs(cpi);
//#endif
// Test code for new segment features
init_seg_features( cpi );
// Decide how big to make the frame
vp8_pick_frame_size(cpi);
vp8_clear_system_state();
// Set an active best quality and if necessary active worst quality
Q = cpi->active_worst_quality;
if ( cm->frame_type == KEY_FRAME )
{
int high = 2000;
int low = 400;
if ( cpi->kf_boost > high )
cpi->active_best_quality = kf_low_motion_minq[Q];
else if ( cpi->kf_boost < low )
cpi->active_best_quality = kf_high_motion_minq[Q];
else
{
int gap = high - low;
int offset = high - cpi->kf_boost;
int qdiff = kf_high_motion_minq[Q] - kf_low_motion_minq[Q];
int adjustment = ((offset * qdiff) + (gap>>1)) / gap;
cpi->active_best_quality = kf_low_motion_minq[Q] + adjustment;
}
// Make an adjustment based on the %s static
// The main impact of this is at lower Q to prevent overly large key
// frames unless a lot of the image is static.
if (cpi->kf_zeromotion_pct < 64 )
cpi->active_best_quality += 4 - (cpi->kf_zeromotion_pct >> 4);
// Special case for key frames forced because we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping
if ( cpi->this_key_frame_forced )
{
int delta_qindex;
int qindex = cpi->last_boosted_qindex;
delta_qindex = compute_qdelta( cpi, qindex,
(qindex * 0.75) );
cpi->active_best_quality = qindex + delta_qindex;
if (cpi->active_best_quality < cpi->best_quality)
cpi->active_best_quality = cpi->best_quality;
}
}
else if (cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame)
{
int high = 2000;
int low = 400;
// Use the lower of cpi->active_worst_quality and recent
// average Q as basis for GF/ARF Q limit unless last frame was
// a key frame.
if ( (cpi->frames_since_key > 1) &&
(cpi->avg_frame_qindex < cpi->active_worst_quality) )
{
Q = cpi->avg_frame_qindex;
}
// For constrained quality dont allow Q less than the cq level
if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < cpi->cq_target_quality) )
{
Q = cpi->cq_target_quality;
}
if ( cpi->gfu_boost > high )
cpi->active_best_quality = gf_low_motion_minq[Q];
else if ( cpi->gfu_boost < low )
cpi->active_best_quality = gf_high_motion_minq[Q];
else
{
int gap = high - low;
int offset = high - cpi->gfu_boost;
int qdiff = gf_high_motion_minq[Q] - gf_low_motion_minq[Q];
int adjustment = ((offset * qdiff) + (gap>>1)) / gap;
cpi->active_best_quality = gf_low_motion_minq[Q] + adjustment;
}
// Constrained quality use slightly lower active best.
if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY )
{
cpi->active_best_quality =
cpi->active_best_quality * 15/16;
}
}
else
{
cpi->active_best_quality = inter_minq[Q];
// For the constant/constrained quality mode we dont want
// q to fall below the cq level.
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(cpi->active_best_quality < cpi->cq_target_quality) )
{
// If we are strongly undershooting the target rate in the last
// frames then use the user passed in cq value not the auto
// cq value.
if ( cpi->rolling_actual_bits < cpi->min_frame_bandwidth )
cpi->active_best_quality = cpi->oxcf.cq_level;
else
cpi->active_best_quality = cpi->cq_target_quality;
}
}
// Clip the active best and worst quality values to limits
if (cpi->active_worst_quality > cpi->worst_quality)
cpi->active_worst_quality = cpi->worst_quality;
if (cpi->active_best_quality < cpi->best_quality)
cpi->active_best_quality = cpi->best_quality;
if (cpi->active_best_quality > cpi->worst_quality)
cpi->active_best_quality = cpi->worst_quality;
if ( cpi->active_worst_quality < cpi->active_best_quality )
cpi->active_worst_quality = cpi->active_best_quality;
// Specuial case code to try and match quality with forced key frames
if ( (cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced )
{
Q = cpi->last_boosted_qindex;
}
else
{
// Determine initial Q to try
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
}
last_zbin_oq = cpi->zbin_over_quant;
// Set highest allowed value for Zbin over quant
if (cm->frame_type == KEY_FRAME)
zbin_oq_high = 0; //ZBIN_OQ_MAX/16
else if (cm->refresh_alt_ref_frame || (cm->refresh_golden_frame && !cpi->source_alt_ref_active))
zbin_oq_high = 16;
else
zbin_oq_high = ZBIN_OQ_MAX;
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit);
// Limit Q range for the adaptive loop.
bottom_index = cpi->active_best_quality;
top_index = cpi->active_worst_quality;
q_low = cpi->active_best_quality;
q_high = cpi->active_worst_quality;
loop_count = 0;
#if CONFIG_HIGH_PRECISION_MV || CONFIG_ENHANCED_INTERP
if (cm->frame_type != KEY_FRAME)
{
#if CONFIG_ENHANCED_INTERP
/* TODO: Decide this more intelligently */
if (sf->search_best_filter)
{
cm->mcomp_filter_type = mcomp_filters_to_search[0];
mcomp_filter_index = 0;
}
else
cm->mcomp_filter_type = EIGHTTAP;
#endif
#if CONFIG_HIGH_PRECISION_MV
/* TODO: Decide this more intelligently */
xd->allow_high_precision_mv = (Q < HIGH_PRECISION_MV_QTHRESH);
#endif
}
#endif
#if CONFIG_POSTPROC
if (cpi->oxcf.noise_sensitivity > 0)
{
unsigned char *src;
int l = 0;
switch (cpi->oxcf.noise_sensitivity)
{
case 1:
l = 20;
break;
case 2:
l = 40;
break;
case 3:
l = 60;
break;
case 4:
case 5:
l = 100;
break;
case 6:
l = 150;
break;
}
if (cm->frame_type == KEY_FRAME)
{
vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0, RTCD(postproc));
}
else
{
vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0, RTCD(postproc));
src = cpi->Source->y_buffer;
if (cpi->Source->y_stride < 0)
{
src += cpi->Source->y_stride * (cpi->Source->y_height - 1);
}
}
}
#endif
#ifdef OUTPUT_YUV_SRC
vp8_write_yuv_frame(cpi->Source);
#endif
#if CONFIG_ENHANCED_INTERP && RESET_FOREACH_FILTER
if (sf->search_best_filter)
{
q_low0 = q_low;
q_high0 = q_high;
Q0 = Q;
zbin_oq_low0 = zbin_oq_low;
zbin_oq_high0 = zbin_oq_high;
last_zbin_oq0 = last_zbin_oq;
rate_correction_factor0 = cpi->rate_correction_factor;
gf_rate_correction_factor0 = cpi->gf_rate_correction_factor;
active_best_quality0 = cpi->active_best_quality;
active_worst_quality0 = cpi->active_worst_quality;
}
#endif
do
{
vp8_clear_system_state(); //__asm emms;
vp8_set_quantizer(cpi, Q);
this_q = Q;
if ( loop_count == 0 )
{
// setup skip prob for costing in mode/mv decision
if (cpi->common.mb_no_coeff_skip)
{
#if CONFIG_NEWENTROPY
int k;
for (k=0; k<MBSKIP_CONTEXTS; k++)
cm->mbskip_pred_probs[k] = cpi->base_skip_false_prob[Q][k];
#else
cpi->prob_skip_false = cpi->base_skip_false_prob[Q];
#endif
if (cm->frame_type != KEY_FRAME)
{
if (cpi->common.refresh_alt_ref_frame)
{
#if CONFIG_NEWENTROPY
for (k=0; k<MBSKIP_CONTEXTS; k++)
{
if (cpi->last_skip_false_probs[2][k] != 0)
cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[2][k];
}
#else
if (cpi->last_skip_false_probs[2] != 0)
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
#endif
}
else if (cpi->common.refresh_golden_frame)
{
#if CONFIG_NEWENTROPY
for (k=0; k<MBSKIP_CONTEXTS; k++)
{
if (cpi->last_skip_false_probs[1][k] != 0)
cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[1][k];
}
#else
if (cpi->last_skip_false_probs[1] != 0)
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
#endif
}
else
{
#if CONFIG_NEWENTROPY
int k;
for (k=0; k<MBSKIP_CONTEXTS; k++)
{
if (cpi->last_skip_false_probs[0][k] != 0)
cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[0][k];
}
#else
if (cpi->last_skip_false_probs[0] != 0)
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
#endif
}
// as this is for cost estimate, let's make sure it does not
// get extreme either way
#if CONFIG_NEWENTROPY
{
int k;
for (k=0; k<MBSKIP_CONTEXTS; ++k)
{
if (cm->mbskip_pred_probs[k] < 5)
cm->mbskip_pred_probs[k] = 5;
if (cm->mbskip_pred_probs[k] > 250)
cm->mbskip_pred_probs[k] = 250;
if (cpi->is_src_frame_alt_ref)
cm->mbskip_pred_probs[k] = 1;
}
}
#else
if (cpi->prob_skip_false < 5)
cpi->prob_skip_false = 5;
if (cpi->prob_skip_false > 250)
cpi->prob_skip_false = 250;
if (cpi->is_src_frame_alt_ref)
cpi->prob_skip_false = 1;
#endif
}
}
// Set up entropy depending on frame type.
if (cm->frame_type == KEY_FRAME)
vp8_setup_key_frame(cpi);
else
vp8_setup_inter_frame(cpi);
}
// transform / motion compensation build reconstruction frame
vp8_encode_frame(cpi);
// Update the skip mb flag probabilities based on the distribution
// seen in the last encoder iteration.
update_base_skip_probs( cpi );
vp8_clear_system_state(); //__asm emms;
#if CONFIG_PRED_FILTER
// Update prediction filter on/off probability based on
// selection made for the current frame
if (cm->frame_type != KEY_FRAME)
update_pred_filt_prob( cpi );
#endif
// Dummy pack of the bitstream using up to date stats to get an
// accurate estimate of output frame size to determine if we need
// to recode.
vp8_save_coding_context(cpi);
cpi->dummy_packing = 1;
vp8_pack_bitstream(cpi, dest, size);
cpi->projected_frame_size = (*size) << 3;
vp8_restore_coding_context(cpi);
if (frame_over_shoot_limit == 0)
frame_over_shoot_limit = 1;
active_worst_qchanged = FALSE;
// Special case handling for forced key frames
if ( (cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced )
{
int last_q = Q;
int kf_err = vp8_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx],
IF_RTCD(&cpi->rtcd.variance));
int high_err_target = cpi->ambient_err;
int low_err_target = (cpi->ambient_err >> 1);
// Prevent possible divide by zero error below for perfect KF
kf_err += (!kf_err);
// The key frame is not good enough or we can afford
// to make it better without undue risk of popping.
if ( ( (kf_err > high_err_target) &&
(cpi->projected_frame_size <= frame_over_shoot_limit) ) ||
( (kf_err > low_err_target) &&
(cpi->projected_frame_size <= frame_under_shoot_limit) ) )
{
// Lower q_high
q_high = (Q > q_low) ? (Q - 1) : q_low;
// Adjust Q
Q = (Q * high_err_target) / kf_err;
if ( Q < ((q_high + q_low) >> 1))
Q = (q_high + q_low) >> 1;
}
// The key frame is much better than the previous frame
else if ( (kf_err < low_err_target) &&
(cpi->projected_frame_size >= frame_under_shoot_limit) )
{
// Raise q_low
q_low = (Q < q_high) ? (Q + 1) : q_high;
// Adjust Q
Q = (Q * low_err_target) / kf_err;
if ( Q > ((q_high + q_low + 1) >> 1))
Q = (q_high + q_low + 1) >> 1;
}
// Clamp Q to upper and lower limits:
if (Q > q_high)
Q = q_high;
else if (Q < q_low)
Q = q_low;
Loop = ((Q != last_q)) ? TRUE : FALSE;
}
// Is the projected frame size out of range and are we allowed to attempt to recode.
else if ( recode_loop_test( cpi,
frame_over_shoot_limit, frame_under_shoot_limit,
Q, top_index, bottom_index ) )
{
int last_q = Q;
int Retries = 0;
// Frame size out of permitted range:
// Update correction factor & compute new Q to try...
// Frame is too large
if (cpi->projected_frame_size > cpi->this_frame_target)
{
q_low = (Q < q_high) ? (Q + 1) : q_high; // Raise Qlow as to at least the current value
if (cpi->zbin_over_quant > 0) // If we are using over quant do the same for zbin_oq_low
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
if ( undershoot_seen || (loop_count > 1) )
{
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 1);
Q = (q_high + q_low + 1) / 2;
// Adjust cpi->zbin_over_quant (only allowed when Q is max)
if (Q < MAXQ)
cpi->zbin_over_quant = 0;
else
{
zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high;
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
}
}
else
{
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
while (((Q < q_low) || (cpi->zbin_over_quant < zbin_oq_low)) && (Retries < 10))
{
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
Retries ++;
}
}
overshoot_seen = TRUE;
}
// Frame is too small
else
{
if (cpi->zbin_over_quant == 0)
q_high = (Q > q_low) ? (Q - 1) : q_low; // Lower q_high if not using over quant
else // else lower zbin_oq_high
zbin_oq_high = (cpi->zbin_over_quant > zbin_oq_low) ? (cpi->zbin_over_quant - 1) : zbin_oq_low;
if ( overshoot_seen || (loop_count > 1) )
{
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 1);
Q = (q_high + q_low) / 2;
// Adjust cpi->zbin_over_quant (only allowed when Q is max)
if (Q < MAXQ)
cpi->zbin_over_quant = 0;
else
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
}
else
{
// Update rate_correction_factor unless cpi->active_worst_quality has changed.
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
// Special case reset for qlow for constrained quality.
// This should only trigger where there is very substantial
// undershoot on a frame and the auto cq level is above
// the user passsed in value.
if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < q_low) )
{
q_low = Q;
}
while (((Q > q_high) || (cpi->zbin_over_quant > zbin_oq_high)) && (Retries < 10))
{
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
Retries ++;
}
}
undershoot_seen = TRUE;
}
// Clamp Q to upper and lower limits:
if (Q > q_high)
Q = q_high;
else if (Q < q_low)
Q = q_low;
// Clamp cpi->zbin_over_quant
cpi->zbin_over_quant = (cpi->zbin_over_quant < zbin_oq_low) ? zbin_oq_low : (cpi->zbin_over_quant > zbin_oq_high) ? zbin_oq_high : cpi->zbin_over_quant;
//Loop = ((Q != last_q) || (last_zbin_oq != cpi->zbin_over_quant)) ? TRUE : FALSE;
Loop = ((Q != last_q)) ? TRUE : FALSE;
last_zbin_oq = cpi->zbin_over_quant;
}
else
Loop = FALSE;
if (cpi->is_src_frame_alt_ref)
Loop = FALSE;
#if CONFIG_ENHANCED_INTERP
if (Loop == FALSE && cm->frame_type != KEY_FRAME && sf->search_best_filter)
{
if (mcomp_filter_index < mcomp_filters)
{
INT64 err = vp8_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx],
IF_RTCD(&cpi->rtcd.variance));
INT64 rate = cpi->projected_frame_size << 8;
mcomp_filter_cost[mcomp_filter_index] =
(RDCOST(cpi->RDMULT, cpi->RDDIV, rate, err));
mcomp_filter_index++;
if (mcomp_filter_index < mcomp_filters)
{
cm->mcomp_filter_type = mcomp_filters_to_search[mcomp_filter_index];
loop_count = -1;
Loop = TRUE;
}
else
{
int f;
INT64 best_cost = mcomp_filter_cost[0];
int mcomp_best_filter = mcomp_filters_to_search[0];
for (f = 1; f < mcomp_filters; f++)
{
if (mcomp_filter_cost[f] < best_cost)
{
mcomp_best_filter = mcomp_filters_to_search[f];
best_cost = mcomp_filter_cost[f];
}
}
if (mcomp_best_filter != mcomp_filters_to_search[mcomp_filters-1])
{
loop_count = -1;
Loop = TRUE;
cm->mcomp_filter_type = mcomp_best_filter;
}
/*
printf(" best filter = %d, ( ", mcomp_best_filter);
for (f=0;f<mcomp_filters; f++) printf("%d ", mcomp_filter_cost[f]);
printf(")\n");
*/
}
#if RESET_FOREACH_FILTER
if (Loop == TRUE)
{
overshoot_seen = FALSE;
undershoot_seen = FALSE;
zbin_oq_low = zbin_oq_low0;
zbin_oq_high = zbin_oq_high0;
q_low = q_low0;
q_high = q_high0;
Q = Q0;
cpi->zbin_over_quant = last_zbin_oq = last_zbin_oq0;
cpi->rate_correction_factor = rate_correction_factor0;
cpi->gf_rate_correction_factor = gf_rate_correction_factor0;
cpi->active_best_quality = active_best_quality0;
cpi->active_worst_quality = active_worst_quality0;
}
#endif
}
}
#endif
if (Loop == TRUE)
{
loop_count++;
#if CONFIG_INTERNAL_STATS
cpi->tot_recode_hits++;
#endif
}
}
while (Loop == TRUE);
// Special case code to reduce pulsing when key frames are forced at a
// fixed interval. Note the reconstruction error if it is the frame before
// the force key frame
if ( cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0) )
{
cpi->ambient_err = vp8_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx],
IF_RTCD(&cpi->rtcd.variance));
}
// This frame's MVs are saved and will be used in next frame's MV
// prediction. Last frame has one more line(add to bottom) and one
// more column(add to right) than cm->mip. The edge elements are
// initialized to 0.
if(cm->show_frame) //do not save for altref frame
{
int mb_row;
int mb_col;
MODE_INFO *tmp = cm->mip;
if(cm->frame_type != KEY_FRAME)
{
for (mb_row = 0; mb_row < cm->mb_rows+1; mb_row ++)
{
for (mb_col = 0; mb_col < cm->mb_cols+1; mb_col ++)
{
if(tmp->mbmi.ref_frame != INTRA_FRAME)
cpi->lfmv[mb_col + mb_row*(cm->mode_info_stride+1)].as_int = tmp->mbmi.mv.as_int;
cpi->lf_ref_frame_sign_bias[mb_col + mb_row*(cm->mode_info_stride+1)] = cm->ref_frame_sign_bias[tmp->mbmi.ref_frame];
cpi->lf_ref_frame[mb_col + mb_row*(cm->mode_info_stride+1)] = tmp->mbmi.ref_frame;
tmp++;
}
}
}
}
// Update the GF useage maps.
// This is done after completing the compression of a frame when all modes
// etc. are finalized but before loop filter
vp8_update_gf_useage_maps(cpi, cm, &cpi->mb);
if (cm->frame_type == KEY_FRAME)
cm->refresh_last_frame = 1;
#if 0
{
FILE *f = fopen("gfactive.stt", "a");
fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame);
fclose(f);
}
#endif
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
#if WRITE_RECON_BUFFER
if(cm->show_frame)
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame);
else
write_cx_frame_to_file(cm->frame_to_show,
cm->current_video_frame+1000);
#endif
// Pick the loop filter level for the frame.
loopfilter_frame(cpi, cm);
// build the bitstream
cpi->dummy_packing = 0;
vp8_pack_bitstream(cpi, dest, size);
#if CONFIG_PRED_FILTER
// Select the prediction filtering mode to use for the
// next frame based on the current frame selections
if(cm->frame_type != KEY_FRAME)
select_pred_filter_mode (cpi);
#endif
update_reference_frames(cm);
#if CONFIG_ADAPTIVE_ENTROPY
vp8_copy(cpi->common.fc.coef_counts, cpi->coef_counts);
vp8_copy(cpi->common.fc.coef_counts_8x8, cpi->coef_counts_8x8);
vp8_adapt_coef_probs(&cpi->common);
if (cpi->common.frame_type != KEY_FRAME)
{
vp8_copy(cpi->common.fc.ymode_counts, cpi->ymode_count);
vp8_copy(cpi->common.fc.uv_mode_counts, cpi->y_uv_mode_count);
vp8_copy(cpi->common.fc.bmode_counts, cpi->bmode_count);
vp8_copy(cpi->common.fc.i8x8_mode_counts, cpi->i8x8_mode_count);
vp8_copy(cpi->common.fc.sub_mv_ref_counts, cpi->sub_mv_ref_count);
vp8_copy(cpi->common.fc.mbsplit_counts, cpi->mbsplit_count);
vp8_adapt_mode_probs(&cpi->common);
vp8_copy(cpi->common.fc.MVcount, cpi->MVcount);
#if CONFIG_HIGH_PRECISION_MV
vp8_copy(cpi->common.fc.MVcount_hp, cpi->MVcount_hp);
#endif
vp8_adapt_mv_probs(&cpi->common);
vp8_update_mode_context(&cpi->common);
}
#endif /* CONFIG_ADAPTIVE_ENTROPY */
/* Move storing frame_type out of the above loop since it is also
* needed in motion search besides loopfilter */
cm->last_frame_type = cm->frame_type;
// Keep a copy of the size estimate used in the loop
loop_size_estimate = cpi->projected_frame_size;
// Update rate control heuristics
cpi->total_byte_count += (*size);
cpi->projected_frame_size = (*size) << 3;
if (!active_worst_qchanged)
vp8_update_rate_correction_factors(cpi, 2);
cpi->last_q[cm->frame_type] = cm->base_qindex;
// Keep record of last boosted (KF/KF/ARF) Q value.
// If the current frame is coded at a lower Q then we also update it.
// If all mbs in this group are skipped only update if the Q value is
// better than that already stored.
// This is used to help set quality in forced key frames to reduce popping
if ( (cm->base_qindex < cpi->last_boosted_qindex) ||
( (cpi->static_mb_pct < 100) &&
( (cm->frame_type == KEY_FRAME) ||
cm->refresh_alt_ref_frame ||
(cm->refresh_golden_frame && !cpi->is_src_frame_alt_ref) ) ) )
{
cpi->last_boosted_qindex = cm->base_qindex;
}
if (cm->frame_type == KEY_FRAME)
{
vp8_adjust_key_frame_context(cpi);
}
// Keep a record of ambient average Q.
if (cm->frame_type != KEY_FRAME)
cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
// Keep a record from which we can calculate the average Q excluding GF updates and key frames
if ((cm->frame_type != KEY_FRAME) && !cm->refresh_golden_frame && !cm->refresh_alt_ref_frame)
{
cpi->ni_frames++;
cpi->tot_q += vp8_convert_qindex_to_q(Q);
cpi->avg_q = cpi->tot_q / (double)cpi->ni_frames;
// Calculate the average Q for normal inter frames (not key or GFU
// frames).
cpi->ni_tot_qi += Q;
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
}
// Update the buffer level variable.
// Non-viewable frames are a special case and are treated as pure overhead.
if ( !cm->show_frame )
cpi->bits_off_target -= cpi->projected_frame_size;
else
cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
// Clip the buffer level at the maximum buffer size
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size)
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
// Rolling monitors of whether we are over or underspending used to help regulate min and Max Q in two pass.
cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
cpi->rolling_actual_bits = ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
cpi->long_rolling_target_bits = ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
cpi->long_rolling_actual_bits = ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / 32;
// Actual bits spent
cpi->total_actual_bits += cpi->projected_frame_size;
// Debug stats
cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size);
cpi->buffer_level = cpi->bits_off_target;
// Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames
if (cm->frame_type == KEY_FRAME)
{
cpi->twopass.kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
if (cpi->twopass.kf_group_bits < 0)
cpi->twopass.kf_group_bits = 0 ;
}
else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame)
{
cpi->twopass.gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size;
if (cpi->twopass.gf_group_bits < 0)
cpi->twopass.gf_group_bits = 0 ;
}
// Update the skip mb flag probabilities based on the distribution seen
// in this frame.
update_base_skip_probs( cpi );
#if 0//1 && CONFIG_INTERNAL_STATS
{
FILE *f = fopen("tmp.stt", "a");
int recon_err;
vp8_clear_system_state(); //__asm emms;
recon_err = vp8_calc_ss_err(cpi->Source,
&cm->yv12_fb[cm->new_fb_idx],
IF_RTCD(&cpi->rtcd.variance));
if (cpi->twopass.total_left_stats->coded_error != 0.0)
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d"
"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f"
"%6d %5d %5d %5d %8d %8.2f %10d %10.3f"
"%10.3f %8d %10d %10d %10d\n",
cpi->common.current_video_frame, cpi->this_frame_target,
cpi->projected_frame_size, loop_size_estimate,
(cpi->projected_frame_size - cpi->this_frame_target),
(int)cpi->total_target_vs_actual,
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
(int)cpi->total_actual_bits,
vp8_convert_qindex_to_q(cm->base_qindex),
(double)vp8_dc_quant(cm->base_qindex,0)/4.0,
vp8_convert_qindex_to_q(cpi->active_best_quality),
vp8_convert_qindex_to_q(cpi->active_worst_quality),
cpi->avg_q,
vp8_convert_qindex_to_q(cpi->ni_av_qi),
vp8_convert_qindex_to_q(cpi->cq_target_quality),
cpi->zbin_over_quant,
//cpi->avg_frame_qindex, cpi->zbin_over_quant,
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
(int)cpi->twopass.bits_left,
cpi->twopass.total_left_stats->coded_error,
(double)cpi->twopass.bits_left /
cpi->twopass.total_left_stats->coded_error,
cpi->tot_recode_hits, recon_err, cpi->kf_boost,
cpi->kf_zeromotion_pct);
else
fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d"
"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f"
"%6d %5d %5d %5d %8d %8.2f %10d %10.3f"
"%8d %10d %10d %10d\n",
cpi->common.current_video_frame,
cpi->this_frame_target, cpi->projected_frame_size,
loop_size_estimate,
(cpi->projected_frame_size - cpi->this_frame_target),
(int)cpi->total_target_vs_actual,
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
(int)cpi->total_actual_bits,
vp8_convert_qindex_to_q(cm->base_qindex),
(double)vp8_dc_quant(cm->base_qindex,0)/4.0,
vp8_convert_qindex_to_q(cpi->active_best_quality),
vp8_convert_qindex_to_q(cpi->active_worst_quality),
cpi->avg_q,
vp8_convert_qindex_to_q(cpi->ni_av_qi),
vp8_convert_qindex_to_q(cpi->cq_target_quality),
cpi->zbin_over_quant,
//cpi->avg_frame_qindex, cpi->zbin_over_quant,
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
(int)cpi->twopass.bits_left,
cpi->twopass.total_left_stats->coded_error,
cpi->tot_recode_hits, recon_err, cpi->kf_boost,
cpi->kf_zeromotion_pct);
fclose(f);
if ( 0 )
{
FILE *fmodes = fopen("Modes.stt", "a");
int i;
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
cpi->common.current_video_frame,
cm->frame_type, cm->refresh_golden_frame,
cm->refresh_alt_ref_frame);
for (i = 0; i < MAX_MODES; i++)
fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]);
fprintf(fmodes, "\n");
fclose(fmodes);
}
}
#endif
#if 0
// Debug stats for segment feature experiments.
print_seg_map(cpi);
#endif
// If this was a kf or Gf note the Q
if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || cm->refresh_alt_ref_frame)
cm->last_kf_gf_q = cm->base_qindex;
if (cm->refresh_golden_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN;
if (cm->refresh_alt_ref_frame == 1)
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
else
cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF;
if (cm->refresh_last_frame & cm->refresh_golden_frame) // both refreshed
cpi->gold_is_last = 1;
else if (cm->refresh_last_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other
cpi->gold_is_last = 0;
if (cm->refresh_last_frame & cm->refresh_alt_ref_frame) // both refreshed
cpi->alt_is_last = 1;
else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame) // 1 refreshed but not the other
cpi->alt_is_last = 0;
if (cm->refresh_alt_ref_frame & cm->refresh_golden_frame) // both refreshed
cpi->gold_is_alt = 1;
else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other
cpi->gold_is_alt = 0;
cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG;
if (cpi->gold_is_last)
cpi->ref_frame_flags &= ~VP8_GOLD_FLAG;
if (cpi->alt_is_last)
cpi->ref_frame_flags &= ~VP8_ALT_FLAG;
if (cpi->gold_is_alt)
cpi->ref_frame_flags &= ~VP8_ALT_FLAG;
if (cpi->oxcf.play_alternate && cm->refresh_alt_ref_frame && (cm->frame_type != KEY_FRAME))
// Update the alternate reference frame stats as appropriate.
update_alt_ref_frame_stats(cpi);
else
// Update the Golden frame stats as appropriate.
update_golden_frame_stats(cpi);
if (cm->frame_type == KEY_FRAME)
{
// Tell the caller that the frame was coded as a key frame
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
// As this frame is a key frame the next defaults to an inter frame.
cm->frame_type = INTER_FRAME;
}
else
{
*frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY;
}
// Clear the one shot update flags for segmentation map and mode/ref loop filter deltas.
xd->update_mb_segmentation_map = 0;
xd->update_mb_segmentation_data = 0;
xd->mode_ref_lf_delta_update = 0;
// Dont increment frame counters if this was an altref buffer update not a real frame
if (cm->show_frame)
{
cm->current_video_frame++;
cpi->frames_since_key++;
}
// reset to normal state now that we are done.
#if 0
{
char filename[512];
FILE *recon_file;
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
recon_file = fopen(filename, "wb");
fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc,
cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file);
fclose(recon_file);
}
#endif
#ifdef OUTPUT_YUV_REC
vp8_write_yuv_rec_frame(cm);
#endif
if(cm->show_frame)
{
vpx_memcpy(cm->prev_mip, cm->mip,
(cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO));
}
else
{
vpx_memset(cm->prev_mip, 0,
(cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO));
}
}
static void Pass2Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags)
{
if (!cpi->common.refresh_alt_ref_frame)
vp8_second_pass(cpi);
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
cpi->twopass.bits_left -= 8 * *size;
if (!cpi->common.refresh_alt_ref_frame)
{
double lower_bounds_min_rate = FRAME_OVERHEAD_BITS*cpi->oxcf.frame_rate;
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth
*cpi->oxcf.two_pass_vbrmin_section / 100);
if (two_pass_min_rate < lower_bounds_min_rate)
two_pass_min_rate = lower_bounds_min_rate;
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->oxcf.frame_rate);
}
}
//For ARM NEON, d8-d15 are callee-saved registers, and need to be saved by us.
#if HAVE_ARMV7
extern void vp8_push_neon(int64_t *store);
extern void vp8_pop_neon(int64_t *store);
#endif
int vp8_receive_raw_frame(VP8_PTR ptr, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, int64_t time_stamp, int64_t end_time)
{
#if HAVE_ARMV7
int64_t store_reg[8];
#endif
VP8_COMP *cpi = (VP8_COMP *) ptr;
VP8_COMMON *cm = &cpi->common;
struct vpx_usec_timer timer;
int res = 0;
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_push_neon(store_reg);
}
#endif
vpx_usec_timer_start(&timer);
if(vp8_lookahead_push(cpi->lookahead, sd, time_stamp, end_time,
frame_flags, cpi->active_map_enabled ? cpi->active_map : NULL))
res = -1;
cm->clr_type = sd->clrtype;
vpx_usec_timer_mark(&timer);
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_pop_neon(store_reg);
}
#endif
return res;
}
static int frame_is_reference(const VP8_COMP *cpi)
{
const VP8_COMMON *cm = &cpi->common;
const MACROBLOCKD *xd = &cpi->mb.e_mbd;
return cm->frame_type == KEY_FRAME || cm->refresh_last_frame
|| cm->refresh_golden_frame || cm->refresh_alt_ref_frame
|| cm->copy_buffer_to_gf || cm->copy_buffer_to_arf
|| cm->refresh_entropy_probs
|| xd->mode_ref_lf_delta_update
|| xd->update_mb_segmentation_map || xd->update_mb_segmentation_data;
}
int vp8_get_compressed_data(VP8_PTR ptr, unsigned int *frame_flags, unsigned long *size, unsigned char *dest, int64_t *time_stamp, int64_t *time_end, int flush)
{
#if HAVE_ARMV7
int64_t store_reg[8];
#endif
VP8_COMP *cpi = (VP8_COMP *) ptr;
VP8_COMMON *cm = &cpi->common;
struct vpx_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
if (!cpi)
return -1;
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_push_neon(store_reg);
}
#endif
vpx_usec_timer_start(&cmptimer);
cpi->source = NULL;
#if CONFIG_HIGH_PRECISION_MV
cpi->mb.e_mbd.allow_high_precision_mv = ALTREF_HIGH_PRECISION_MV;
#endif
// Should we code an alternate reference frame
if (cpi->oxcf.play_alternate &&
cpi->source_alt_ref_pending)
{
if ((cpi->source = vp8_lookahead_peek(cpi->lookahead,
cpi->frames_till_gf_update_due)))
{
cpi->alt_ref_source = cpi->source;
if (cpi->oxcf.arnr_max_frames > 0)
{
vp8_temporal_filter_prepare_c(cpi,
cpi->frames_till_gf_update_due);
force_src_buffer = &cpi->alt_ref_buffer;
}
cm->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due;
cm->refresh_alt_ref_frame = 1;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 0;
cm->show_frame = 0;
cpi->source_alt_ref_pending = FALSE; // Clear Pending altf Ref flag.
cpi->is_src_frame_alt_ref = 0;
}
}
if (!cpi->source)
{
if ((cpi->source = vp8_lookahead_pop(cpi->lookahead, flush)))
{
cm->show_frame = 1;
cpi->is_src_frame_alt_ref = cpi->alt_ref_source
&& (cpi->source == cpi->alt_ref_source);
if(cpi->is_src_frame_alt_ref)
cpi->alt_ref_source = NULL;
}
}
if (cpi->source)
{
cpi->un_scaled_source =
cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img;
*time_stamp = cpi->source->ts_start;
*time_end = cpi->source->ts_end;
*frame_flags = cpi->source->flags;
}
else
{
*size = 0;
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done)
{
vp8_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
}
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_pop_neon(store_reg);
}
#endif
return -1;
}
if (cpi->source->ts_start < cpi->first_time_stamp_ever)
{
cpi->first_time_stamp_ever = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
}
// adjust frame rates based on timestamps given
if (!cm->refresh_alt_ref_frame)
{
int64_t this_duration;
int step = 0;
if (cpi->source->ts_start == cpi->first_time_stamp_ever)
{
this_duration = cpi->source->ts_end - cpi->source->ts_start;
step = 1;
}
else
{
int64_t last_duration;
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
last_duration = cpi->last_end_time_stamp_seen
- cpi->last_time_stamp_seen;
// do a step update if the duration changes by 10%
if (last_duration)
step = ((this_duration - last_duration) * 10 / last_duration);
}
if (this_duration)
{
if (step)
vp8_new_frame_rate(cpi, 10000000.0 / this_duration);
else
{
double avg_duration, interval;
/* Average this frame's rate into the last second's average
* frame rate. If we haven't seen 1 second yet, then average
* over the whole interval seen.
*/
interval = cpi->source->ts_end - cpi->first_time_stamp_ever;
if(interval > 10000000.0)
interval = 10000000;
avg_duration = 10000000.0 / cpi->oxcf.frame_rate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
vp8_new_frame_rate(cpi, 10000000.0 / avg_duration);
}
}
cpi->last_time_stamp_seen = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
}
// start with a 0 size frame
*size = 0;
// Clear down mmx registers
vp8_clear_system_state(); //__asm emms;
cm->frame_type = INTER_FRAME;
cm->frame_flags = *frame_flags;
#if 0
if (cm->refresh_alt_ref_frame)
{
//cm->refresh_golden_frame = 1;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 0;
}
else
{
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
}
#endif
/* find a free buffer for the new frame */
{
int i = 0;
for(; i < NUM_YV12_BUFFERS; i++)
{
if(!cm->yv12_fb[i].flags)
{
cm->new_fb_idx = i;
break;
}
}
assert(i < NUM_YV12_BUFFERS );
}
if (cpi->pass == 1)
{
Pass1Encode(cpi, size, dest, frame_flags);
}
else if (cpi->pass == 2)
{
Pass2Encode(cpi, size, dest, frame_flags);
}
else
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
if(cm->refresh_entropy_probs)
{
if(cm->refresh_alt_ref_frame)
vpx_memcpy(&cm->lfc_a, &cm->fc, sizeof(cm->fc));
else
vpx_memcpy(&cm->lfc, &cm->fc, sizeof(cm->fc));
}
// if its a dropped frame honor the requests on subsequent frames
if (*size > 0)
{
cpi->droppable = !frame_is_reference(cpi);
// return to normal state
cm->refresh_entropy_probs = 1;
cm->refresh_alt_ref_frame = 0;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
cm->frame_type = INTER_FRAME;
}
vpx_usec_timer_mark(&cmptimer);
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame)
{
generate_psnr_packet(cpi);
}
#if CONFIG_INTERNAL_STATS
if (cpi->pass != 1)
{
cpi->bytes += *size;
if (cm->show_frame)
{
cpi->count ++;
if (cpi->b_calculate_psnr)
{
double ye,ue,ve;
double frame_psnr;
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
int y_samples = orig->y_height * orig->y_width ;
int uv_samples = orig->uv_height * orig->uv_width ;
int t_samples = y_samples + 2 * uv_samples;
int64_t sq_error;
ye = calc_plane_error(orig->y_buffer, orig->y_stride,
recon->y_buffer, recon->y_stride, orig->y_width, orig->y_height,
IF_RTCD(&cpi->rtcd.variance));
ue = calc_plane_error(orig->u_buffer, orig->uv_stride,
recon->u_buffer, recon->uv_stride, orig->uv_width, orig->uv_height,
IF_RTCD(&cpi->rtcd.variance));
ve = calc_plane_error(orig->v_buffer, orig->uv_stride,
recon->v_buffer, recon->uv_stride, orig->uv_width, orig->uv_height,
IF_RTCD(&cpi->rtcd.variance));
sq_error = ye + ue + ve;
frame_psnr = vp8_mse2psnr(t_samples, 255.0, sq_error);
cpi->total_y += vp8_mse2psnr(y_samples, 255.0, ye);
cpi->total_u += vp8_mse2psnr(uv_samples, 255.0, ue);
cpi->total_v += vp8_mse2psnr(uv_samples, 255.0, ve);
cpi->total_sq_error += sq_error;
cpi->total += frame_psnr;
{
double frame_psnr2, frame_ssim2 = 0;
double weight = 0;
vp8_deblock(cm->frame_to_show, &cm->post_proc_buffer, cm->filter_level * 10 / 6, 1, 0, IF_RTCD(&cm->rtcd.postproc));
vp8_clear_system_state();
ye = calc_plane_error(orig->y_buffer, orig->y_stride,
pp->y_buffer, pp->y_stride, orig->y_width, orig->y_height,
IF_RTCD(&cpi->rtcd.variance));
ue = calc_plane_error(orig->u_buffer, orig->uv_stride,
pp->u_buffer, pp->uv_stride, orig->uv_width, orig->uv_height,
IF_RTCD(&cpi->rtcd.variance));
ve = calc_plane_error(orig->v_buffer, orig->uv_stride,
pp->v_buffer, pp->uv_stride, orig->uv_width, orig->uv_height,
IF_RTCD(&cpi->rtcd.variance));
sq_error = ye + ue + ve;
frame_psnr2 = vp8_mse2psnr(t_samples, 255.0, sq_error);
cpi->totalp_y += vp8_mse2psnr(y_samples, 255.0, ye);
cpi->totalp_u += vp8_mse2psnr(uv_samples, 255.0, ue);
cpi->totalp_v += vp8_mse2psnr(uv_samples, 255.0, ve);
cpi->total_sq_error2 += sq_error;
cpi->totalp += frame_psnr2;
frame_ssim2 = vp8_calc_ssim(cpi->Source,
&cm->post_proc_buffer, 1, &weight,
IF_RTCD(&cpi->rtcd.variance));
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
#if 0
{
FILE *f = fopen("q_used.stt", "a");
fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n",
cpi->common.current_video_frame,y2, u2, v2,
frame_psnr2, frame_ssim2);
fclose(f);
}
#endif
}
}
if (cpi->b_calculate_ssimg)
{
double y, u, v, frame_all;
frame_all = vp8_calc_ssimg(cpi->Source, cm->frame_to_show,
&y, &u, &v, IF_RTCD(&cpi->rtcd.variance));
cpi->total_ssimg_y += y;
cpi->total_ssimg_u += u;
cpi->total_ssimg_v += v;
cpi->total_ssimg_all += frame_all;
}
}
}
#endif
#if HAVE_ARMV7
#if CONFIG_RUNTIME_CPU_DETECT
if (cm->rtcd.flags & HAS_NEON)
#endif
{
vp8_pop_neon(store_reg);
}
#endif
return 0;
}
int vp8_get_preview_raw_frame(VP8_PTR comp, YV12_BUFFER_CONFIG *dest, vp8_ppflags_t *flags)
{
VP8_COMP *cpi = (VP8_COMP *) comp;
if (cpi->common.refresh_alt_ref_frame)
return -1;
else
{
int ret;
#if CONFIG_POSTPROC
ret = vp8_post_proc_frame(&cpi->common, dest, flags);
#else
if (cpi->common.frame_to_show)
{
*dest = *cpi->common.frame_to_show;
dest->y_width = cpi->common.Width;
dest->y_height = cpi->common.Height;
dest->uv_height = cpi->common.Height / 2;
ret = 0;
}
else
{
ret = -1;
}
#endif //!CONFIG_POSTPROC
vp8_clear_system_state();
return ret;
}
}
int vp8_set_roimap(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[4], int delta_lf[4], unsigned int threshold[4])
{
VP8_COMP *cpi = (VP8_COMP *) comp;
signed char feature_data[SEG_LVL_MAX][MAX_MB_SEGMENTS];
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int i;
if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols)
return -1;
if (!map)
{
vp8_disable_segmentation((VP8_PTR)cpi);
return 0;
}
// Set the segmentation Map
vp8_set_segmentation_map((VP8_PTR)cpi, map);
// Activate segmentation.
vp8_enable_segmentation((VP8_PTR)cpi);
// Set up the quant segment data
feature_data[SEG_LVL_ALT_Q][0] = delta_q[0];
feature_data[SEG_LVL_ALT_Q][1] = delta_q[1];
feature_data[SEG_LVL_ALT_Q][2] = delta_q[2];
feature_data[SEG_LVL_ALT_Q][3] = delta_q[3];
// Set up the loop segment data s
feature_data[SEG_LVL_ALT_LF][0] = delta_lf[0];
feature_data[SEG_LVL_ALT_LF][1] = delta_lf[1];
feature_data[SEG_LVL_ALT_LF][2] = delta_lf[2];
feature_data[SEG_LVL_ALT_LF][3] = delta_lf[3];
cpi->segment_encode_breakout[0] = threshold[0];
cpi->segment_encode_breakout[1] = threshold[1];
cpi->segment_encode_breakout[2] = threshold[2];
cpi->segment_encode_breakout[3] = threshold[3];
// Enable the loop and quant changes in the feature mask
for ( i = 0; i < 4; i++ )
{
if (delta_q[i])
enable_segfeature(xd, i, SEG_LVL_ALT_Q);
else
disable_segfeature(xd, i, SEG_LVL_ALT_Q);
if (delta_lf[i])
enable_segfeature(xd, i, SEG_LVL_ALT_LF);
else
disable_segfeature(xd, i, SEG_LVL_ALT_LF);
}
// Initialise the feature data structure
// SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1
vp8_set_segment_data((VP8_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA);
return 0;
}
int vp8_set_active_map(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols)
{
VP8_COMP *cpi = (VP8_COMP *) comp;
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols)
{
if (map)
{
vpx_memcpy(cpi->active_map, map, rows * cols);
cpi->active_map_enabled = 1;
}
else
cpi->active_map_enabled = 0;
return 0;
}
else
{
//cpi->active_map_enabled = 0;
return -1 ;
}
}
int vp8_set_internal_size(VP8_PTR comp, VPX_SCALING horiz_mode, VPX_SCALING vert_mode)
{
VP8_COMP *cpi = (VP8_COMP *) comp;
if (horiz_mode <= ONETWO)
cpi->common.horiz_scale = horiz_mode;
else
return -1;
if (vert_mode <= ONETWO)
cpi->common.vert_scale = vert_mode;
else
return -1;
return 0;
}
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd)
{
int i, j;
int Total = 0;
unsigned char *src = source->y_buffer;
unsigned char *dst = dest->y_buffer;
(void)rtcd;
// Loop through the Y plane raw and reconstruction data summing (square differences)
for (i = 0; i < source->y_height; i += 16)
{
for (j = 0; j < source->y_width; j += 16)
{
unsigned int sse;
Total += VARIANCE_INVOKE(rtcd, mse16x16)(src + j, source->y_stride, dst + j, dest->y_stride, &sse);
}
src += 16 * source->y_stride;
dst += 16 * dest->y_stride;
}
return Total;
}
int vp8_get_quantizer(VP8_PTR c)
{
VP8_COMP *cpi = (VP8_COMP *) c;
return cpi->common.base_qindex;
}