vpx/vp8/encoder/tokenize.c
Paul Wilkins a99a2c3667 Name space clean up.
Preparation for project restructuring.
Added vp9_ prefix on some function names that have global scope.
Added static declaration on some that dont.

Change-Id: If072f78b4300e8c17cfeed82c5d17b59946dcc5e
2012-10-29 14:44:10 +00:00

872 lines
28 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "onyx_int.h"
#include "tokenize.h"
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/pred_common.h"
#include "vp8/common/seg_common.h"
#include "vp8/common/entropy.h"
/* Global event counters used for accumulating statistics across several
compressions, then generating context.c = initial stats. */
#ifdef ENTROPY_STATS
INT64 context_counters[BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS];
INT64 hybrid_context_counters[BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS];
INT64 context_counters_8x8[BLOCK_TYPES_8X8] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS];
INT64 hybrid_context_counters_8x8[BLOCK_TYPES_8X8] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS];
INT64 context_counters_16x16[BLOCK_TYPES_16X16] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS];
INT64 hybrid_context_counters_16x16[BLOCK_TYPES_16X16] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS];
extern unsigned int tree_update_hist[BLOCK_TYPES][COEF_BANDS]
[PREV_COEF_CONTEXTS][ENTROPY_NODES][2];
extern unsigned int hybrid_tree_update_hist[BLOCK_TYPES][COEF_BANDS]
[PREV_COEF_CONTEXTS][ENTROPY_NODES][2];
extern unsigned int tree_update_hist_8x8[BLOCK_TYPES_8X8][COEF_BANDS]
[PREV_COEF_CONTEXTS][ENTROPY_NODES] [2];
extern unsigned int hybrid_tree_update_hist_8x8[BLOCK_TYPES_8X8][COEF_BANDS]
[PREV_COEF_CONTEXTS][ENTROPY_NODES] [2];
extern unsigned int tree_update_hist_16x16[BLOCK_TYPES_16X16][COEF_BANDS]
[PREV_COEF_CONTEXTS][ENTROPY_NODES] [2];
extern unsigned int hybrid_tree_update_hist_16x16[BLOCK_TYPES_16X16][COEF_BANDS]
[PREV_COEF_CONTEXTS][ENTROPY_NODES] [2];
#endif /* ENTROPY_STATS */
void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run);
void vp8_fix_contexts(MACROBLOCKD *xd);
static TOKENVALUE dct_value_tokens[DCT_MAX_VALUE * 2];
const TOKENVALUE *vp8_dct_value_tokens_ptr;
static int dct_value_cost[DCT_MAX_VALUE * 2];
const int *vp8_dct_value_cost_ptr;
static void fill_value_tokens() {
TOKENVALUE *const t = dct_value_tokens + DCT_MAX_VALUE;
vp8_extra_bit_struct *const e = vp8_extra_bits;
int i = -DCT_MAX_VALUE;
int sign = 1;
do {
if (!i)
sign = 0;
{
const int a = sign ? -i : i;
int eb = sign;
if (a > 4) {
int j = 4;
while (++j < 11 && e[j].base_val <= a) {}
t[i].Token = --j;
eb |= (a - e[j].base_val) << 1;
} else
t[i].Token = a;
t[i].Extra = eb;
}
// initialize the cost for extra bits for all possible coefficient value.
{
int cost = 0;
vp8_extra_bit_struct *p = vp8_extra_bits + t[i].Token;
if (p->base_val) {
const int extra = t[i].Extra;
const int Length = p->Len;
if (Length)
cost += vp8_treed_cost(p->tree, p->prob, extra >> 1, Length);
cost += vp8_cost_bit(vp8_prob_half, extra & 1); /* sign */
dct_value_cost[i + DCT_MAX_VALUE] = cost;
}
}
} while (++i < DCT_MAX_VALUE);
vp8_dct_value_tokens_ptr = dct_value_tokens + DCT_MAX_VALUE;
vp8_dct_value_cost_ptr = dct_value_cost + DCT_MAX_VALUE;
}
static void tokenize_b(VP8_COMP *cpi,
MACROBLOCKD *xd,
const BLOCKD * const b,
TOKENEXTRA **tp,
PLANE_TYPE type,
ENTROPY_CONTEXT *a,
ENTROPY_CONTEXT *l,
TX_SIZE tx_size,
int dry_run) {
int pt; /* near block/prev token context index */
int c = (type == PLANE_TYPE_Y_NO_DC) ? 1 : 0;
const int eob = b->eob; /* one beyond last nonzero coeff */
TOKENEXTRA *t = *tp; /* store tokens starting here */
const short *qcoeff_ptr = b->qcoeff;
int seg_eob;
int segment_id = xd->mode_info_context->mbmi.segment_id;
const int *bands, *scan;
unsigned int (*counts)[COEF_BANDS][PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS];
vp8_prob (*probs)[COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES];
const TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ?
get_tx_type(xd, b) : DCT_DCT;
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
switch (tx_size) {
default:
case TX_4X4:
seg_eob = 16;
bands = vp8_coef_bands;
scan = vp8_default_zig_zag1d;
if (tx_type != DCT_DCT) {
counts = cpi->hybrid_coef_counts;
probs = cpi->common.fc.hybrid_coef_probs;
if (tx_type == ADST_DCT) {
scan = vp8_row_scan;
} else if (tx_type == DCT_ADST) {
scan = vp8_col_scan;
}
} else {
counts = cpi->coef_counts;
probs = cpi->common.fc.coef_probs;
}
break;
case TX_8X8:
if (type == PLANE_TYPE_Y2) {
seg_eob = 4;
bands = vp8_coef_bands;
scan = vp8_default_zig_zag1d;
} else {
seg_eob = 64;
bands = vp8_coef_bands_8x8;
scan = vp8_default_zig_zag1d_8x8;
}
if (tx_type != DCT_DCT) {
counts = cpi->hybrid_coef_counts_8x8;
probs = cpi->common.fc.hybrid_coef_probs_8x8;
} else {
counts = cpi->coef_counts_8x8;
probs = cpi->common.fc.coef_probs_8x8;
}
break;
case TX_16X16:
seg_eob = 256;
bands = vp8_coef_bands_16x16;
scan = vp8_default_zig_zag1d_16x16;
if (tx_type != DCT_DCT) {
counts = cpi->hybrid_coef_counts_16x16;
probs = cpi->common.fc.hybrid_coef_probs_16x16;
} else {
counts = cpi->coef_counts_16x16;
probs = cpi->common.fc.coef_probs_16x16;
}
break;
}
if (segfeature_active(xd, segment_id, SEG_LVL_EOB))
seg_eob = get_segdata(xd, segment_id, SEG_LVL_EOB);
do {
const int band = bands[c];
int token;
if (c < eob) {
const int rc = scan[c];
const int v = qcoeff_ptr[rc];
assert(-DCT_MAX_VALUE <= v && v < DCT_MAX_VALUE);
t->Extra = vp8_dct_value_tokens_ptr[v].Extra;
token = vp8_dct_value_tokens_ptr[v].Token;
} else {
token = DCT_EOB_TOKEN;
}
t->Token = token;
t->context_tree = probs[type][band][pt];
t->skip_eob_node = (pt == 0) && ((band > 0 && type != PLANE_TYPE_Y_NO_DC) ||
(band > 1 && type == PLANE_TYPE_Y_NO_DC));
assert(vp8_coef_encodings[t->Token].Len - t->skip_eob_node > 0);
if (!dry_run) {
++counts[type][band][pt][token];
}
pt = vp8_prev_token_class[token];
++t;
} while (c < eob && ++c < seg_eob);
*tp = t;
*a = *l = (c != !type); /* 0 <-> all coeff data is zero */
}
int mby_is_skippable_4x4(MACROBLOCKD *xd, int has_y2_block) {
int skip = 1;
int i = 0;
if (has_y2_block) {
for (i = 0; i < 16; i++)
skip &= (xd->block[i].eob < 2);
skip &= (!xd->block[24].eob);
} else {
for (i = 0; i < 16; i++)
skip &= (!xd->block[i].eob);
}
return skip;
}
int mbuv_is_skippable_4x4(MACROBLOCKD *xd) {
int skip = 1;
int i;
for (i = 16; i < 24; i++)
skip &= (!xd->block[i].eob);
return skip;
}
int mb_is_skippable_4x4(MACROBLOCKD *xd, int has_y2_block) {
return (mby_is_skippable_4x4(xd, has_y2_block) &
mbuv_is_skippable_4x4(xd));
}
int mby_is_skippable_8x8(MACROBLOCKD *xd, int has_y2_block) {
int skip = 1;
int i = 0;
if (has_y2_block) {
for (i = 0; i < 16; i += 4)
skip &= (xd->block[i].eob < 2);
skip &= (!xd->block[24].eob);
} else {
for (i = 0; i < 16; i += 4)
skip &= (!xd->block[i].eob);
}
return skip;
}
int mbuv_is_skippable_8x8(MACROBLOCKD *xd) {
return (!xd->block[16].eob) & (!xd->block[20].eob);
}
int mb_is_skippable_8x8(MACROBLOCKD *xd, int has_y2_block) {
return (mby_is_skippable_8x8(xd, has_y2_block) &
mbuv_is_skippable_8x8(xd));
}
int mb_is_skippable_8x8_4x4uv(MACROBLOCKD *xd, int has_y2_block) {
return (mby_is_skippable_8x8(xd, has_y2_block) &
mbuv_is_skippable_4x4(xd));
}
int mby_is_skippable_16x16(MACROBLOCKD *xd) {
int skip = 1;
//skip &= (xd->block[0].eob < 2); // I think this should be commented? No second order == DC must be coded
//skip &= (xd->block[0].eob < 1);
//skip &= (!xd->block[24].eob);
skip &= !xd->block[0].eob;
return skip;
}
int mb_is_skippable_16x16(MACROBLOCKD *xd) {
return (mby_is_skippable_16x16(xd) & mbuv_is_skippable_8x8(xd));
}
void vp8_tokenize_mb(VP8_COMP *cpi,
MACROBLOCKD *xd,
TOKENEXTRA **t,
int dry_run) {
PLANE_TYPE plane_type;
int has_y2_block;
int b;
int tx_size = xd->mode_info_context->mbmi.txfm_size;
int mb_skip_context = vp9_get_pred_context(&cpi->common, xd, PRED_MBSKIP);
TOKENEXTRA *t_backup = *t;
ENTROPY_CONTEXT * A = (ENTROPY_CONTEXT *) xd->above_context;
ENTROPY_CONTEXT * L = (ENTROPY_CONTEXT *) xd->left_context;
// If the MB is going to be skipped because of a segment level flag
// exclude this from the skip count stats used to calculate the
// transmitted skip probability;
int skip_inc;
int segment_id = xd->mode_info_context->mbmi.segment_id;
if (!segfeature_active(xd, segment_id, SEG_LVL_EOB) ||
(get_segdata(xd, segment_id, SEG_LVL_EOB) != 0)) {
skip_inc = 1;
} else
skip_inc = 0;
has_y2_block = (tx_size != TX_16X16
&& xd->mode_info_context->mbmi.mode != B_PRED
&& xd->mode_info_context->mbmi.mode != I8X8_PRED
&& xd->mode_info_context->mbmi.mode != SPLITMV);
switch (tx_size) {
case TX_16X16:
xd->mode_info_context->mbmi.mb_skip_coeff = mb_is_skippable_16x16(xd);
break;
case TX_8X8:
if (xd->mode_info_context->mbmi.mode == I8X8_PRED ||
xd->mode_info_context->mbmi.mode == SPLITMV)
xd->mode_info_context->mbmi.mb_skip_coeff = mb_is_skippable_8x8_4x4uv(xd, 0);
else
xd->mode_info_context->mbmi.mb_skip_coeff = mb_is_skippable_8x8(xd, has_y2_block);
break;
default:
xd->mode_info_context->mbmi.mb_skip_coeff = mb_is_skippable_4x4(xd, has_y2_block);
break;
}
if (xd->mode_info_context->mbmi.mb_skip_coeff) {
if (!dry_run)
cpi->skip_true_count[mb_skip_context] += skip_inc;
if (!cpi->common.mb_no_coeff_skip) {
vp8_stuff_mb(cpi, xd, t, dry_run);
} else {
vp8_fix_contexts(xd);
}
if (dry_run)
*t = t_backup;
return;
}
if (!dry_run)
cpi->skip_false_count[mb_skip_context] += skip_inc;
if (has_y2_block) {
if (tx_size == TX_8X8) {
tokenize_b(cpi, xd, xd->block + 24, t, PLANE_TYPE_Y2,
A + vp8_block2above_8x8[24], L + vp8_block2left_8x8[24],
TX_8X8, dry_run);
} else {
tokenize_b(cpi, xd, xd->block + 24, t, PLANE_TYPE_Y2,
A + vp8_block2above[24], L + vp8_block2left[24],
TX_4X4, dry_run);
}
plane_type = PLANE_TYPE_Y_NO_DC;
} else
plane_type = PLANE_TYPE_Y_WITH_DC;
if (tx_size == TX_16X16) {
tokenize_b(cpi, xd, xd->block, t, PLANE_TYPE_Y_WITH_DC,
A, L, TX_16X16, dry_run);
A[1] = A[2] = A[3] = A[0];
L[1] = L[2] = L[3] = L[0];
for (b = 16; b < 24; b += 4) {
tokenize_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV,
A + vp8_block2above_8x8[b], L + vp8_block2left_8x8[b],
TX_8X8, dry_run);
A[vp8_block2above_8x8[b] + 1] = A[vp8_block2above_8x8[b]];
L[vp8_block2left_8x8[b] + 1] = L[vp8_block2left_8x8[b]];
}
vpx_memset(&A[8], 0, sizeof(A[8]));
vpx_memset(&L[8], 0, sizeof(L[8]));
} else if (tx_size == TX_8X8) {
for (b = 0; b < 16; b += 4) {
tokenize_b(cpi, xd, xd->block + b, t, plane_type,
A + vp8_block2above_8x8[b], L + vp8_block2left_8x8[b],
TX_8X8, dry_run);
A[vp8_block2above_8x8[b] + 1] = A[vp8_block2above_8x8[b]];
L[vp8_block2left_8x8[b] + 1] = L[vp8_block2left_8x8[b]];
}
if (xd->mode_info_context->mbmi.mode == I8X8_PRED ||
xd->mode_info_context->mbmi.mode == SPLITMV) {
for (b = 16; b < 24; b++) {
tokenize_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV,
A + vp8_block2above[b], L + vp8_block2left[b],
TX_4X4, dry_run);
}
} else {
for (b = 16; b < 24; b += 4) {
tokenize_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV,
A + vp8_block2above_8x8[b], L + vp8_block2left_8x8[b],
TX_8X8, dry_run);
A[vp8_block2above_8x8[b] + 1] = A[vp8_block2above_8x8[b]];
L[vp8_block2left_8x8[b] + 1] = L[vp8_block2left_8x8[b]];
}
}
} else {
for (b = 0; b < 16; b++) {
tokenize_b(cpi, xd, xd->block + b, t, plane_type,
A + vp8_block2above[b], L + vp8_block2left[b],
TX_4X4, dry_run);
}
for (b = 16; b < 24; b++) {
tokenize_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV,
A + vp8_block2above[b], L + vp8_block2left[b],
TX_4X4, dry_run);
}
}
if (dry_run)
*t = t_backup;
}
#ifdef ENTROPY_STATS
void init_context_counters(void) {
FILE *f = fopen("context.bin", "rb");
if (!f) {
vpx_memset(context_counters, 0, sizeof(context_counters));
vpx_memset(context_counters_8x8, 0, sizeof(context_counters_8x8));
vpx_memset(context_counters_16x16, 0, sizeof(context_counters_16x16));
} else {
fread(context_counters, sizeof(context_counters), 1, f);
fread(context_counters_8x8, sizeof(context_counters_8x8), 1, f);
fread(context_counters_16x16, sizeof(context_counters_16x16), 1, f);
fclose(f);
}
f = fopen("treeupdate.bin", "rb");
if (!f) {
vpx_memset(tree_update_hist, 0, sizeof(tree_update_hist));
vpx_memset(tree_update_hist_8x8, 0, sizeof(tree_update_hist_8x8));
vpx_memset(tree_update_hist_16x16, 0, sizeof(tree_update_hist_16x16));
} else {
fread(tree_update_hist, sizeof(tree_update_hist), 1, f);
fread(tree_update_hist_8x8, sizeof(tree_update_hist_8x8), 1, f);
fread(tree_update_hist_16x16, sizeof(tree_update_hist_16x16), 1, f);
fclose(f);
}
}
void print_context_counters() {
int type, band, pt, t;
FILE *f = fopen("context.c", "w");
fprintf(f, "#include \"entropy.h\"\n");
fprintf(f, "\n/* *** GENERATED FILE: DO NOT EDIT *** */\n\n");
fprintf(f, "static const unsigned int\n"
"vp8_default_coef_counts[BLOCK_TYPES]\n"
" [COEF_BANDS]\n"
" [PREV_COEF_CONTEXTS]\n"
" [MAX_ENTROPY_TOKENS]={\n");
# define Comma( X) (X? ",":"")
type = 0;
do {
fprintf(f, "%s\n { /* block Type %d */", Comma(type), type);
band = 0;
do {
fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band);
pt = 0;
do {
fprintf(f, "%s\n {", Comma(pt));
t = 0;
do {
const INT64 x = context_counters [type] [band] [pt] [t];
const int y = (int) x;
assert(x == (INT64) y); /* no overflow handling yet */
fprintf(f, "%s %d", Comma(t), y);
} while (++t < MAX_ENTROPY_TOKENS);
fprintf(f, "}");
} while (++pt < PREV_COEF_CONTEXTS);
fprintf(f, "\n }");
} while (++band < COEF_BANDS);
fprintf(f, "\n }");
} while (++type < BLOCK_TYPES);
fprintf(f, "\n};\n");
fprintf(f, "static const unsigned int\nvp8_default_coef_counts_8x8"
"[BLOCK_TYPES_8X8] [COEF_BANDS]"
"[PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS] = {");
type = 0;
do {
fprintf(f, "%s\n { /* block Type %d */", Comma(type), type);
band = 0;
do {
fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band);
pt = 0;
do {
fprintf(f, "%s\n {", Comma(pt));
t = 0;
do {
const INT64 x = context_counters_8x8 [type] [band] [pt] [t];
const int y = (int) x;
assert(x == (INT64) y); /* no overflow handling yet */
fprintf(f, "%s %d", Comma(t), y);
} while (++t < MAX_ENTROPY_TOKENS);
fprintf(f, "}");
} while (++pt < PREV_COEF_CONTEXTS);
fprintf(f, "\n }");
} while (++band < COEF_BANDS);
fprintf(f, "\n }");
} while (++type < BLOCK_TYPES_8X8);
fprintf(f, "\n};\n");
fprintf(f, "static const unsigned int\nvp8_default_coef_counts_16x16"
"[BLOCK_TYPES_16X16] [COEF_BANDS]"
"[PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS] = {");
type = 0;
do {
fprintf(f, "%s\n { /* block Type %d */", Comma(type), type);
band = 0;
do {
fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band);
pt = 0;
do {
fprintf(f, "%s\n {", Comma(pt));
t = 0;
do {
const INT64 x = context_counters_16x16 [type] [band] [pt] [t];
const int y = (int) x;
assert(x == (INT64) y); /* no overflow handling yet */
fprintf(f, "%s %d", Comma(t), y);
} while (++t < MAX_ENTROPY_TOKENS);
fprintf(f, "}");
} while (++pt < PREV_COEF_CONTEXTS);
fprintf(f, "\n }");
} while (++band < COEF_BANDS);
fprintf(f, "\n }");
} while (++type < BLOCK_TYPES_16X16);
fprintf(f, "\n};\n");
fprintf(f, "static const vp8_prob\n"
"vp8_default_coef_probs[BLOCK_TYPES] [COEF_BANDS] \n"
"[PREV_COEF_CONTEXTS] [ENTROPY_NODES] = {");
type = 0;
do {
fprintf(f, "%s\n { /* block Type %d */", Comma(type), type);
band = 0;
do {
fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band);
pt = 0;
do {
unsigned int branch_ct [ENTROPY_NODES] [2];
unsigned int coef_counts[MAX_ENTROPY_TOKENS];
vp8_prob coef_probs[ENTROPY_NODES];
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
coef_counts[t] = context_counters [type] [band] [pt] [t];
vp8_tree_probs_from_distribution(
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
coef_probs, branch_ct, coef_counts, 256, 1);
fprintf(f, "%s\n {", Comma(pt));
t = 0;
do {
fprintf(f, "%s %d", Comma(t), coef_probs[t]);
} while (++t < ENTROPY_NODES);
fprintf(f, "}");
} while (++pt < PREV_COEF_CONTEXTS);
fprintf(f, "\n }");
} while (++band < COEF_BANDS);
fprintf(f, "\n }");
} while (++type < BLOCK_TYPES);
fprintf(f, "\n};\n");
fprintf(f, "static const vp8_prob\n"
"vp8_default_coef_probs_8x8[BLOCK_TYPES_8X8] [COEF_BANDS]\n"
"[PREV_COEF_CONTEXTS] [ENTROPY_NODES] = {");
type = 0;
do {
fprintf(f, "%s\n { /* block Type %d */", Comma(type), type);
band = 0;
do {
fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band);
pt = 0;
do {
unsigned int branch_ct [ENTROPY_NODES] [2];
unsigned int coef_counts[MAX_ENTROPY_TOKENS];
vp8_prob coef_probs[ENTROPY_NODES];
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
coef_counts[t] = context_counters_8x8[type] [band] [pt] [t];
vp8_tree_probs_from_distribution(
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
coef_probs, branch_ct, coef_counts, 256, 1);
fprintf(f, "%s\n {", Comma(pt));
t = 0;
do {
fprintf(f, "%s %d", Comma(t), coef_probs[t]);
} while (++t < ENTROPY_NODES);
fprintf(f, "}");
} while (++pt < PREV_COEF_CONTEXTS);
fprintf(f, "\n }");
} while (++band < COEF_BANDS);
fprintf(f, "\n }");
} while (++type < BLOCK_TYPES_8X8);
fprintf(f, "\n};\n");
fprintf(f, "static const vp8_prob\n"
"vp8_default_coef_probs_16x16[BLOCK_TYPES_16X16] [COEF_BANDS]\n"
"[PREV_COEF_CONTEXTS] [ENTROPY_NODES] = {");
type = 0;
do {
fprintf(f, "%s\n { /* block Type %d */", Comma(type), type);
band = 0;
do {
fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band);
pt = 0;
do {
unsigned int branch_ct [ENTROPY_NODES] [2];
unsigned int coef_counts[MAX_ENTROPY_TOKENS];
vp8_prob coef_probs[ENTROPY_NODES];
for (t = 0; t < MAX_ENTROPY_TOKENS; ++t)
coef_counts[t] = context_counters_16x16[type] [band] [pt] [t];
vp8_tree_probs_from_distribution(
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
coef_probs, branch_ct, coef_counts, 256, 1);
fprintf(f, "%s\n {", Comma(pt));
t = 0;
do {
fprintf(f, "%s %d", Comma(t), coef_probs[t]);
} while (++t < ENTROPY_NODES);
fprintf(f, "}");
} while (++pt < PREV_COEF_CONTEXTS);
fprintf(f, "\n }");
} while (++band < COEF_BANDS);
fprintf(f, "\n }");
} while (++type < BLOCK_TYPES_16X16);
fprintf(f, "\n};\n");
fclose(f);
f = fopen("context.bin", "wb");
fwrite(context_counters, sizeof(context_counters), 1, f);
fwrite(context_counters_8x8, sizeof(context_counters_8x8), 1, f);
fwrite(context_counters_16x16, sizeof(context_counters_16x16), 1, f);
fclose(f);
}
#endif
void vp8_tokenize_initialize() {
fill_value_tokens();
}
static __inline void stuff_b(VP8_COMP *cpi,
MACROBLOCKD *xd,
const BLOCKD * const b,
TOKENEXTRA **tp,
PLANE_TYPE type,
ENTROPY_CONTEXT *a,
ENTROPY_CONTEXT *l,
TX_SIZE tx_size,
int dry_run) {
const int *bands;
unsigned int (*counts)[COEF_BANDS][PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS];
vp8_prob (*probs)[COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES];
int pt, band;
TOKENEXTRA *t = *tp;
const TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ?
get_tx_type(xd, b) : DCT_DCT;
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
switch (tx_size) {
default:
case TX_4X4:
bands = vp8_coef_bands;
if (tx_type != DCT_DCT) {
counts = cpi->hybrid_coef_counts;
probs = cpi->common.fc.hybrid_coef_probs;
} else {
counts = cpi->coef_counts;
probs = cpi->common.fc.coef_probs;
}
break;
case TX_8X8:
bands = vp8_coef_bands_8x8;
if (tx_type != DCT_DCT) {
counts = cpi->hybrid_coef_counts_8x8;
probs = cpi->common.fc.hybrid_coef_probs_8x8;
} else {
counts = cpi->coef_counts_8x8;
probs = cpi->common.fc.coef_probs_8x8;
}
break;
case TX_16X16:
bands = vp8_coef_bands_16x16;
if (tx_type != DCT_DCT) {
counts = cpi->hybrid_coef_counts_16x16;
probs = cpi->common.fc.hybrid_coef_probs_16x16;
} else {
counts = cpi->coef_counts_16x16;
probs = cpi->common.fc.coef_probs_16x16;
}
break;
}
band = bands[(type == PLANE_TYPE_Y_NO_DC) ? 1 : 0];
t->Token = DCT_EOB_TOKEN;
t->context_tree = probs[type][band][pt];
t->skip_eob_node = 0;
++t;
*tp = t;
*a = *l = 0;
if (!dry_run) {
++counts[type][band][pt][DCT_EOB_TOKEN];
}
}
static void vp8_stuff_mb_8x8(VP8_COMP *cpi, MACROBLOCKD *xd,
TOKENEXTRA **t, int dry_run) {
ENTROPY_CONTEXT *A = (ENTROPY_CONTEXT *)xd->above_context;
ENTROPY_CONTEXT *L = (ENTROPY_CONTEXT *)xd->left_context;
PLANE_TYPE plane_type;
int b;
const int has_y2_block = (xd->mode_info_context->mbmi.mode != B_PRED &&
xd->mode_info_context->mbmi.mode != I8X8_PRED &&
xd->mode_info_context->mbmi.mode != SPLITMV);
if (has_y2_block) {
stuff_b(cpi, xd, xd->block + 24, t, PLANE_TYPE_Y2,
A + vp8_block2above_8x8[24], L + vp8_block2left_8x8[24],
TX_8X8, dry_run);
plane_type = PLANE_TYPE_Y_NO_DC;
} else {
plane_type = PLANE_TYPE_Y_WITH_DC;
}
for (b = 0; b < 16; b += 4) {
stuff_b(cpi, xd, xd->block + b, t, plane_type, A + vp8_block2above_8x8[b],
L + vp8_block2left_8x8[b], TX_8X8, dry_run);
A[vp8_block2above_8x8[b] + 1] = A[vp8_block2above_8x8[b]];
L[vp8_block2left_8x8[b] + 1] = L[vp8_block2left_8x8[b]];
}
for (b = 16; b < 24; b += 4) {
stuff_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV,
A + vp8_block2above_8x8[b], L + vp8_block2left_8x8[b],
TX_8X8, dry_run);
A[vp8_block2above_8x8[b] + 1] = A[vp8_block2above_8x8[b]];
L[vp8_block2left_8x8[b] + 1] = L[vp8_block2left_8x8[b]];
}
}
static void vp8_stuff_mb_16x16(VP8_COMP *cpi, MACROBLOCKD *xd,
TOKENEXTRA **t, int dry_run) {
ENTROPY_CONTEXT * A = (ENTROPY_CONTEXT *)xd->above_context;
ENTROPY_CONTEXT * L = (ENTROPY_CONTEXT *)xd->left_context;
int b;
stuff_b(cpi, xd, xd->block, t, PLANE_TYPE_Y_WITH_DC, A, L, TX_16X16, dry_run);
A[1] = A[2] = A[3] = A[0];
L[1] = L[2] = L[3] = L[0];
for (b = 16; b < 24; b += 4) {
stuff_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV, A + vp8_block2above[b],
L + vp8_block2above_8x8[b], TX_8X8, dry_run);
A[vp8_block2above_8x8[b] + 1] = A[vp8_block2above_8x8[b]];
L[vp8_block2left_8x8[b] + 1] = L[vp8_block2left_8x8[b]];
}
vpx_memset(&A[8], 0, sizeof(A[8]));
vpx_memset(&L[8], 0, sizeof(L[8]));
}
static void vp8_stuff_mb_4x4(VP8_COMP *cpi, MACROBLOCKD *xd,
TOKENEXTRA **t, int dry_run) {
ENTROPY_CONTEXT *A = (ENTROPY_CONTEXT *)xd->above_context;
ENTROPY_CONTEXT *L = (ENTROPY_CONTEXT *)xd->left_context;
int b;
PLANE_TYPE plane_type;
const int has_y2_block = (xd->mode_info_context->mbmi.mode != B_PRED &&
xd->mode_info_context->mbmi.mode != I8X8_PRED &&
xd->mode_info_context->mbmi.mode != SPLITMV);
if (has_y2_block) {
stuff_b(cpi, xd, xd->block + 24, t, PLANE_TYPE_Y2, A + vp8_block2above[24],
L + vp8_block2left[24], TX_4X4, dry_run);
plane_type = PLANE_TYPE_Y_NO_DC;
} else {
plane_type = PLANE_TYPE_Y_WITH_DC;
}
for (b = 0; b < 16; b++)
stuff_b(cpi, xd, xd->block + b, t, plane_type, A + vp8_block2above[b],
L + vp8_block2left[b], TX_4X4, dry_run);
for (b = 16; b < 24; b++)
stuff_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV, A + vp8_block2above[b],
L + vp8_block2left[b], TX_4X4, dry_run);
}
static void vp8_stuff_mb_8x8_4x4uv(VP8_COMP *cpi, MACROBLOCKD *xd,
TOKENEXTRA **t, int dry_run) {
ENTROPY_CONTEXT *A = (ENTROPY_CONTEXT *)xd->above_context;
ENTROPY_CONTEXT *L = (ENTROPY_CONTEXT *)xd->left_context;
int b;
for (b = 0; b < 16; b += 4) {
stuff_b(cpi, xd, xd->block + b, t, PLANE_TYPE_Y_WITH_DC,
A + vp8_block2above_8x8[b], L + vp8_block2left_8x8[b],
TX_8X8, dry_run);
A[vp8_block2above_8x8[b] + 1] = A[vp8_block2above_8x8[b]];
L[vp8_block2left_8x8[b] + 1] = L[vp8_block2left_8x8[b]];
}
for (b = 16; b < 24; b++)
stuff_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV, A + vp8_block2above[b],
L + vp8_block2left[b], TX_4X4, dry_run);
}
void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) {
TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size;
TOKENEXTRA * const t_backup = *t;
if (tx_size == TX_16X16) {
vp8_stuff_mb_16x16(cpi, xd, t, dry_run);
} else if (tx_size == TX_8X8) {
if (xd->mode_info_context->mbmi.mode == I8X8_PRED ||
xd->mode_info_context->mbmi.mode == SPLITMV) {
vp8_stuff_mb_8x8_4x4uv(cpi, xd, t, dry_run);
} else {
vp8_stuff_mb_8x8(cpi, xd, t, dry_run);
}
} else {
vp8_stuff_mb_4x4(cpi, xd, t, dry_run);
}
if (dry_run) {
*t = t_backup;
}
}
void vp8_fix_contexts(MACROBLOCKD *xd) {
/* Clear entropy contexts for Y2 blocks */
if ((xd->mode_info_context->mbmi.mode != B_PRED
&& xd->mode_info_context->mbmi.mode != I8X8_PRED
&& xd->mode_info_context->mbmi.mode != SPLITMV)
|| xd->mode_info_context->mbmi.txfm_size == TX_16X16
) {
vpx_memset(xd->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memset(xd->left_context, 0, sizeof(ENTROPY_CONTEXT_PLANES));
} else {
vpx_memset(xd->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) - 1);
vpx_memset(xd->left_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) - 1);
}
}