vpx/vp9/common/vp9_blockd.h
Dmitry Kovalev ba41e9d459 Adding RefBuffer struct.
Adding RefBuffer to simplify reference buffer management. The struct has a
pointer to image data and scale factors relative to the current frame.

Change-Id: If38eb1491ff687cc11428aee339f3e052e2c5d9e
2014-01-03 15:21:55 -08:00

469 lines
14 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP9_COMMON_VP9_BLOCKD_H_
#define VP9_COMMON_VP9_BLOCKD_H_
#include "./vpx_config.h"
#include "vpx_ports/mem.h"
#include "vpx_scale/yv12config.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_common_data.h"
#include "vp9/common/vp9_enums.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_mv.h"
#include "vp9/common/vp9_scale.h"
#include "vp9/common/vp9_seg_common.h"
#define BLOCK_SIZE_GROUPS 4
#define MBSKIP_CONTEXTS 3
#define INTER_MODE_CONTEXTS 7
/* Segment Feature Masks */
#define MAX_MV_REF_CANDIDATES 2
#define INTRA_INTER_CONTEXTS 4
#define COMP_INTER_CONTEXTS 5
#define REF_CONTEXTS 5
typedef enum {
PLANE_TYPE_Y = 0,
PLANE_TYPE_UV = 1,
PLANE_TYPES
} PLANE_TYPE;
typedef char ENTROPY_CONTEXT;
typedef char PARTITION_CONTEXT;
static INLINE int combine_entropy_contexts(ENTROPY_CONTEXT a,
ENTROPY_CONTEXT b) {
return (a != 0) + (b != 0);
}
typedef enum {
KEY_FRAME = 0,
INTER_FRAME = 1,
FRAME_TYPES,
} FRAME_TYPE;
typedef enum {
DC_PRED, // Average of above and left pixels
V_PRED, // Vertical
H_PRED, // Horizontal
D45_PRED, // Directional 45 deg = round(arctan(1/1) * 180/pi)
D135_PRED, // Directional 135 deg = 180 - 45
D117_PRED, // Directional 117 deg = 180 - 63
D153_PRED, // Directional 153 deg = 180 - 27
D207_PRED, // Directional 207 deg = 180 + 27
D63_PRED, // Directional 63 deg = round(arctan(2/1) * 180/pi)
TM_PRED, // True-motion
NEARESTMV,
NEARMV,
ZEROMV,
NEWMV,
MB_MODE_COUNT
} MB_PREDICTION_MODE;
static INLINE int is_inter_mode(MB_PREDICTION_MODE mode) {
return mode >= NEARESTMV && mode <= NEWMV;
}
#define INTRA_MODES (TM_PRED + 1)
#define INTER_MODES (1 + NEWMV - NEARESTMV)
#define INTER_OFFSET(mode) ((mode) - NEARESTMV)
/* For keyframes, intra block modes are predicted by the (already decoded)
modes for the Y blocks to the left and above us; for interframes, there
is a single probability table. */
typedef struct {
MB_PREDICTION_MODE as_mode;
int_mv as_mv[2]; // first, second inter predictor motion vectors
} b_mode_info;
typedef enum {
NONE = -1,
INTRA_FRAME = 0,
LAST_FRAME = 1,
GOLDEN_FRAME = 2,
ALTREF_FRAME = 3,
MAX_REF_FRAMES = 4
} MV_REFERENCE_FRAME;
static INLINE int b_width_log2(BLOCK_SIZE sb_type) {
return b_width_log2_lookup[sb_type];
}
static INLINE int b_height_log2(BLOCK_SIZE sb_type) {
return b_height_log2_lookup[sb_type];
}
static INLINE int mi_width_log2(BLOCK_SIZE sb_type) {
return mi_width_log2_lookup[sb_type];
}
static INLINE int mi_height_log2(BLOCK_SIZE sb_type) {
return mi_height_log2_lookup[sb_type];
}
// This structure now relates to 8x8 block regions.
typedef struct {
MB_PREDICTION_MODE mode, uv_mode;
MV_REFERENCE_FRAME ref_frame[2];
TX_SIZE tx_size;
int_mv mv[2]; // for each reference frame used
int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES];
int_mv best_mv[2];
uint8_t mode_context[MAX_REF_FRAMES];
unsigned char skip_coeff; // 0=need to decode coeffs, 1=no coefficients
unsigned char segment_id; // Segment id for this block.
// Flags used for prediction status of various bit-stream signals
unsigned char seg_id_predicted;
INTERPOLATION_TYPE interp_filter;
BLOCK_SIZE sb_type;
} MB_MODE_INFO;
typedef struct {
MB_MODE_INFO mbmi;
b_mode_info bmi[4];
} MODE_INFO;
static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
return mbmi->ref_frame[0] > INTRA_FRAME;
}
static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
return mbmi->ref_frame[1] > INTRA_FRAME;
}
static MB_PREDICTION_MODE left_block_mode(const MODE_INFO *cur_mi,
const MODE_INFO *left_mi, int b) {
if (b == 0 || b == 2) {
if (!left_mi || is_inter_block(&left_mi->mbmi))
return DC_PRED;
return left_mi->mbmi.sb_type < BLOCK_8X8 ? left_mi->bmi[b + 1].as_mode
: left_mi->mbmi.mode;
} else {
assert(b == 1 || b == 3);
return cur_mi->bmi[b - 1].as_mode;
}
}
static MB_PREDICTION_MODE above_block_mode(const MODE_INFO *cur_mi,
const MODE_INFO *above_mi, int b) {
if (b == 0 || b == 1) {
if (!above_mi || is_inter_block(&above_mi->mbmi))
return DC_PRED;
return above_mi->mbmi.sb_type < BLOCK_8X8 ? above_mi->bmi[b + 2].as_mode
: above_mi->mbmi.mode;
} else {
assert(b == 2 || b == 3);
return cur_mi->bmi[b - 2].as_mode;
}
}
enum mv_precision {
MV_PRECISION_Q3,
MV_PRECISION_Q4
};
#if CONFIG_ALPHA
enum { MAX_MB_PLANE = 4 };
#else
enum { MAX_MB_PLANE = 3 };
#endif
struct buf_2d {
uint8_t *buf;
int stride;
};
struct macroblockd_plane {
int16_t *dqcoeff;
PLANE_TYPE plane_type;
int subsampling_x;
int subsampling_y;
struct buf_2d dst;
struct buf_2d pre[2];
int16_t *dequant;
ENTROPY_CONTEXT *above_context;
ENTROPY_CONTEXT *left_context;
};
#define BLOCK_OFFSET(x, i) ((x) + (i) * 16)
typedef struct RefBuffer {
// TODO(dkovalev): idx is not really required and should be removed, now it
// is used in vp9_onyxd_if.c
int idx;
YV12_BUFFER_CONFIG *buf;
struct scale_factors sf;
} RefBuffer;
typedef struct macroblockd {
struct macroblockd_plane plane[MAX_MB_PLANE];
MODE_INFO *last_mi;
int mode_info_stride;
// A NULL indicates that the 8x8 is not part of the image
MODE_INFO **mi_8x8;
MODE_INFO **prev_mi_8x8;
MODE_INFO *mi_stream;
int up_available;
int left_available;
/* Distance of MB away from frame edges */
int mb_to_left_edge;
int mb_to_right_edge;
int mb_to_top_edge;
int mb_to_bottom_edge;
/* pointers to reference frames */
RefBuffer *block_refs[2];
/* pointer to current frame */
const YV12_BUFFER_CONFIG *cur_buf;
int lossless;
/* Inverse transform function pointers. */
void (*itxm_add)(const int16_t *input, uint8_t *dest, int stride, int eob);
struct subpix_fn_table subpix;
int corrupted;
/* Y,U,V,(A) */
ENTROPY_CONTEXT *above_context[MAX_MB_PLANE];
ENTROPY_CONTEXT left_context[MAX_MB_PLANE][16];
PARTITION_CONTEXT *above_seg_context;
PARTITION_CONTEXT left_seg_context[8];
} MACROBLOCKD;
static BLOCK_SIZE get_subsize(BLOCK_SIZE bsize, PARTITION_TYPE partition) {
const BLOCK_SIZE subsize = subsize_lookup[partition][bsize];
assert(subsize < BLOCK_SIZES);
return subsize;
}
extern const TX_TYPE mode2txfm_map[MB_MODE_COUNT];
static INLINE TX_TYPE get_tx_type_4x4(PLANE_TYPE plane_type,
const MACROBLOCKD *xd, int ib) {
const MODE_INFO *const mi = xd->mi_8x8[0];
const MB_MODE_INFO *const mbmi = &mi->mbmi;
if (plane_type != PLANE_TYPE_Y || xd->lossless || is_inter_block(mbmi))
return DCT_DCT;
return mode2txfm_map[mbmi->sb_type < BLOCK_8X8 ? mi->bmi[ib].as_mode
: mbmi->mode];
}
static INLINE TX_TYPE get_tx_type_8x8(PLANE_TYPE plane_type,
const MACROBLOCKD *xd) {
return plane_type == PLANE_TYPE_Y ? mode2txfm_map[xd->mi_8x8[0]->mbmi.mode]
: DCT_DCT;
}
static INLINE TX_TYPE get_tx_type_16x16(PLANE_TYPE plane_type,
const MACROBLOCKD *xd) {
return plane_type == PLANE_TYPE_Y ? mode2txfm_map[xd->mi_8x8[0]->mbmi.mode]
: DCT_DCT;
}
static void setup_block_dptrs(MACROBLOCKD *xd, int ss_x, int ss_y) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].plane_type = i ? PLANE_TYPE_UV : PLANE_TYPE_Y;
xd->plane[i].subsampling_x = i ? ss_x : 0;
xd->plane[i].subsampling_y = i ? ss_y : 0;
}
#if CONFIG_ALPHA
// TODO(jkoleszar): Using the Y w/h for now
xd->plane[3].plane_type = PLANE_TYPE_Y;
xd->plane[3].subsampling_x = 0;
xd->plane[3].subsampling_y = 0;
#endif
}
static TX_SIZE get_uv_tx_size_impl(TX_SIZE y_tx_size, BLOCK_SIZE bsize) {
if (bsize < BLOCK_8X8) {
return TX_4X4;
} else {
// TODO(dkovalev): Assuming YUV420 (ss_x == 1, ss_y == 1)
const BLOCK_SIZE plane_bsize = ss_size_lookup[bsize][1][1];
return MIN(y_tx_size, max_txsize_lookup[plane_bsize]);
}
}
static TX_SIZE get_uv_tx_size(const MB_MODE_INFO *mbmi) {
return get_uv_tx_size_impl(mbmi->tx_size, mbmi->sb_type);
}
static BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
const struct macroblockd_plane *pd) {
BLOCK_SIZE bs = ss_size_lookup[bsize][pd->subsampling_x][pd->subsampling_y];
assert(bs < BLOCK_SIZES);
return bs;
}
typedef void (*foreach_transformed_block_visitor)(int plane, int block,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size,
void *arg);
static INLINE void foreach_transformed_block_in_plane(
const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane,
foreach_transformed_block_visitor visit, void *arg) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const MB_MODE_INFO* mbmi = &xd->mi_8x8[0]->mbmi;
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// transform size varies per plane, look it up in a common way.
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi)
: mbmi->tx_size;
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int step = 1 << (tx_size << 1);
int i;
// If mb_to_right_edge is < 0 we are in a situation in which
// the current block size extends into the UMV and we won't
// visit the sub blocks that are wholly within the UMV.
if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0) {
int r, c;
int max_blocks_wide = num_4x4_w;
int max_blocks_high = num_4x4_h;
// xd->mb_to_right_edge is in units of pixels * 8. This converts
// it to 4x4 block sizes.
if (xd->mb_to_right_edge < 0)
max_blocks_wide += (xd->mb_to_right_edge >> (5 + pd->subsampling_x));
if (xd->mb_to_bottom_edge < 0)
max_blocks_high += (xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
i = 0;
// Unlike the normal case - in here we have to keep track of the
// row and column of the blocks we use so that we know if we are in
// the unrestricted motion border.
for (r = 0; r < num_4x4_h; r += (1 << tx_size)) {
for (c = 0; c < num_4x4_w; c += (1 << tx_size)) {
if (r < max_blocks_high && c < max_blocks_wide)
visit(plane, i, plane_bsize, tx_size, arg);
i += step;
}
}
} else {
for (i = 0; i < num_4x4_w * num_4x4_h; i += step)
visit(plane, i, plane_bsize, tx_size, arg);
}
}
static INLINE void foreach_transformed_block(
const MACROBLOCKD* const xd, BLOCK_SIZE bsize,
foreach_transformed_block_visitor visit, void *arg) {
int plane;
for (plane = 0; plane < MAX_MB_PLANE; plane++)
foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg);
}
static INLINE void foreach_transformed_block_uv(
const MACROBLOCKD* const xd, BLOCK_SIZE bsize,
foreach_transformed_block_visitor visit, void *arg) {
int plane;
for (plane = 1; plane < MAX_MB_PLANE; plane++)
foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg);
}
static void txfrm_block_to_raster_xy(BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, int block,
int *x, int *y) {
const int bwl = b_width_log2(plane_bsize);
const int tx_cols_log2 = bwl - tx_size;
const int tx_cols = 1 << tx_cols_log2;
const int raster_mb = block >> (tx_size << 1);
*x = (raster_mb & (tx_cols - 1)) << tx_size;
*y = (raster_mb >> tx_cols_log2) << tx_size;
}
static void set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
int has_eob, int aoff, int loff) {
ENTROPY_CONTEXT *const a = pd->above_context + aoff;
ENTROPY_CONTEXT *const l = pd->left_context + loff;
const int tx_size_in_blocks = 1 << tx_size;
// above
if (has_eob && xd->mb_to_right_edge < 0) {
int i;
const int blocks_wide = num_4x4_blocks_wide_lookup[plane_bsize] +
(xd->mb_to_right_edge >> (5 + pd->subsampling_x));
int above_contexts = tx_size_in_blocks;
if (above_contexts + aoff > blocks_wide)
above_contexts = blocks_wide - aoff;
for (i = 0; i < above_contexts; ++i)
a[i] = has_eob;
for (i = above_contexts; i < tx_size_in_blocks; ++i)
a[i] = 0;
} else {
vpx_memset(a, has_eob, sizeof(ENTROPY_CONTEXT) * tx_size_in_blocks);
}
// left
if (has_eob && xd->mb_to_bottom_edge < 0) {
int i;
const int blocks_high = num_4x4_blocks_high_lookup[plane_bsize] +
(xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
int left_contexts = tx_size_in_blocks;
if (left_contexts + loff > blocks_high)
left_contexts = blocks_high - loff;
for (i = 0; i < left_contexts; ++i)
l[i] = has_eob;
for (i = left_contexts; i < tx_size_in_blocks; ++i)
l[i] = 0;
} else {
vpx_memset(l, has_eob, sizeof(ENTROPY_CONTEXT) * tx_size_in_blocks);
}
}
static int get_tx_eob(const struct segmentation *seg, int segment_id,
TX_SIZE tx_size) {
const int eob_max = 16 << (tx_size << 1);
return vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP) ? 0 : eob_max;
}
#endif // VP9_COMMON_VP9_BLOCKD_H_