ba1a6619b3
A previous commit 76feb965
made the vp8_mode_context adaptive on a frame
frame basis, this commit further made the coding context adaptive to two
frame types separately. Tests on derf set showed a further small gain on
all metrics: avg psnr 0.10%, glb psnr: 0.11%, ssim: 0.08%
http://www.corp.google.com/~yaowu/no_crawl/newNearMode_1209.html
Change-Id: I7b3e32ec8729de1903d14a3f1213f1624b78cdee
2466 lines
74 KiB
C
2466 lines
74 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include "vp8/common/header.h"
|
|
#include "encodemv.h"
|
|
#include "vp8/common/entropymode.h"
|
|
#include "vp8/common/findnearmv.h"
|
|
#include "mcomp.h"
|
|
#include "vp8/common/systemdependent.h"
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <limits.h>
|
|
#include "vp8/common/pragmas.h"
|
|
#include "vpx/vpx_encoder.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "bitstream.h"
|
|
|
|
#include "defaultcoefcounts.h"
|
|
|
|
//#if CONFIG_SEGFEATURES
|
|
#include "vp8/common/seg_common.h"
|
|
|
|
const int vp8cx_base_skip_false_prob[128] =
|
|
{
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255,
|
|
251, 248, 244, 240, 236, 232, 229, 225,
|
|
221, 217, 213, 208, 204, 199, 194, 190,
|
|
187, 183, 179, 175, 172, 168, 164, 160,
|
|
157, 153, 149, 145, 142, 138, 134, 130,
|
|
127, 124, 120, 117, 114, 110, 107, 104,
|
|
101, 98, 95, 92, 89, 86, 83, 80,
|
|
77, 74, 71, 68, 65, 62, 59, 56,
|
|
53, 50, 47, 44, 41, 38, 35, 32,
|
|
30, 28, 26, 24, 22, 20, 18, 16,
|
|
};
|
|
|
|
#if defined(SECTIONBITS_OUTPUT)
|
|
unsigned __int64 Sectionbits[500];
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
int intra_mode_stats[10][10][10];
|
|
static unsigned int tree_update_hist [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES] [2];
|
|
#if CONFIG_T8X8
|
|
static unsigned int tree_update_hist_8x8 [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES] [2];
|
|
#endif
|
|
|
|
extern unsigned int active_section;
|
|
#endif
|
|
|
|
#ifdef MODE_STATS
|
|
int count_mb_seg[4] = { 0, 0, 0, 0 };
|
|
#endif
|
|
|
|
|
|
static void update_mode(
|
|
vp8_writer *const w,
|
|
int n,
|
|
vp8_token tok [/* n */],
|
|
vp8_tree tree,
|
|
vp8_prob Pnew [/* n-1 */],
|
|
vp8_prob Pcur [/* n-1 */],
|
|
unsigned int bct [/* n-1 */] [2],
|
|
const unsigned int num_events[/* n */]
|
|
)
|
|
{
|
|
unsigned int new_b = 0, old_b = 0;
|
|
int i = 0;
|
|
|
|
vp8_tree_probs_from_distribution(
|
|
n--, tok, tree,
|
|
Pnew, bct, num_events,
|
|
256, 1
|
|
);
|
|
|
|
do
|
|
{
|
|
new_b += vp8_cost_branch(bct[i], Pnew[i]);
|
|
old_b += vp8_cost_branch(bct[i], Pcur[i]);
|
|
}
|
|
while (++i < n);
|
|
|
|
if (new_b + (n << 8) < old_b)
|
|
{
|
|
int i = 0;
|
|
|
|
vp8_write_bit(w, 1);
|
|
|
|
do
|
|
{
|
|
const vp8_prob p = Pnew[i];
|
|
|
|
vp8_write_literal(w, Pcur[i] = p ? p : 1, 8);
|
|
}
|
|
while (++i < n);
|
|
}
|
|
else
|
|
vp8_write_bit(w, 0);
|
|
}
|
|
|
|
static void update_mbintra_mode_probs(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *const x = & cpi->common;
|
|
|
|
vp8_writer *const w = & cpi->bc;
|
|
|
|
{
|
|
vp8_prob Pnew [VP8_YMODES-1];
|
|
unsigned int bct [VP8_YMODES-1] [2];
|
|
|
|
update_mode(
|
|
w, VP8_YMODES, vp8_ymode_encodings, vp8_ymode_tree,
|
|
Pnew, x->fc.ymode_prob, bct, (unsigned int *)cpi->ymode_count
|
|
);
|
|
}
|
|
{
|
|
vp8_prob Pnew [VP8_UV_MODES-1];
|
|
unsigned int bct [VP8_UV_MODES-1] [2];
|
|
|
|
update_mode(
|
|
w, VP8_UV_MODES, vp8_uv_mode_encodings, vp8_uv_mode_tree,
|
|
Pnew, x->fc.uv_mode_prob, bct, (unsigned int *)cpi->uv_mode_count
|
|
);
|
|
}
|
|
}
|
|
|
|
static void write_ymode(vp8_writer *bc, int m, const vp8_prob *p)
|
|
{
|
|
vp8_write_token(bc, vp8_ymode_tree, p, vp8_ymode_encodings + m);
|
|
}
|
|
|
|
static void kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p)
|
|
{
|
|
vp8_write_token(bc, vp8_kf_ymode_tree, p, vp8_kf_ymode_encodings + m);
|
|
}
|
|
|
|
static void write_i8x8_mode(vp8_writer *bc, int m, const vp8_prob *p)
|
|
{
|
|
vp8_write_token(bc,vp8_i8x8_mode_tree, p, vp8_i8x8_mode_encodings + m);
|
|
}
|
|
|
|
static void write_uv_mode(vp8_writer *bc, int m, const vp8_prob *p)
|
|
{
|
|
vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_uv_mode_encodings + m);
|
|
}
|
|
|
|
|
|
static void write_bmode(vp8_writer *bc, int m, const vp8_prob *p)
|
|
{
|
|
vp8_write_token(bc, vp8_bmode_tree, p, vp8_bmode_encodings + m);
|
|
}
|
|
|
|
static void write_split(vp8_writer *bc, int x)
|
|
{
|
|
vp8_write_token(
|
|
bc, vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + x
|
|
);
|
|
}
|
|
|
|
static void pack_tokens_c(vp8_writer *w, const TOKENEXTRA *p, int xcount)
|
|
{
|
|
const TOKENEXTRA *const stop = p + xcount;
|
|
unsigned int split;
|
|
unsigned int shift;
|
|
int count = w->count;
|
|
unsigned int range = w->range;
|
|
unsigned int lowvalue = w->lowvalue;
|
|
|
|
while (p < stop)
|
|
{
|
|
const int t = p->Token;
|
|
vp8_token *const a = vp8_coef_encodings + t;
|
|
const vp8_extra_bit_struct *const b = vp8_extra_bits + t;
|
|
int i = 0;
|
|
const unsigned char *pp = p->context_tree;
|
|
int v = a->value;
|
|
int n = a->Len;
|
|
|
|
if (p->skip_eob_node)
|
|
{
|
|
n--;
|
|
i = 2;
|
|
}
|
|
|
|
do
|
|
{
|
|
const int bb = (v >> --n) & 1;
|
|
split = 1 + (((range - 1) * pp[i>>1]) >> 8);
|
|
i = vp8_coef_tree[i+bb];
|
|
|
|
if (bb)
|
|
{
|
|
lowvalue += split;
|
|
range = range - split;
|
|
}
|
|
else
|
|
{
|
|
range = split;
|
|
}
|
|
|
|
shift = vp8_norm[range];
|
|
range <<= shift;
|
|
count += shift;
|
|
|
|
if (count >= 0)
|
|
{
|
|
int offset = shift - count;
|
|
|
|
if ((lowvalue << (offset - 1)) & 0x80000000)
|
|
{
|
|
int x = w->pos - 1;
|
|
|
|
while (x >= 0 && w->buffer[x] == 0xff)
|
|
{
|
|
w->buffer[x] = (unsigned char)0;
|
|
x--;
|
|
}
|
|
|
|
w->buffer[x] += 1;
|
|
}
|
|
|
|
w->buffer[w->pos++] = (lowvalue >> (24 - offset));
|
|
lowvalue <<= offset;
|
|
shift = count;
|
|
lowvalue &= 0xffffff;
|
|
count -= 8 ;
|
|
}
|
|
|
|
lowvalue <<= shift;
|
|
}
|
|
while (n);
|
|
|
|
|
|
if (b->base_val)
|
|
{
|
|
const int e = p->Extra, L = b->Len;
|
|
|
|
if (L)
|
|
{
|
|
const unsigned char *pp = b->prob;
|
|
int v = e >> 1;
|
|
int n = L; /* number of bits in v, assumed nonzero */
|
|
int i = 0;
|
|
|
|
do
|
|
{
|
|
const int bb = (v >> --n) & 1;
|
|
split = 1 + (((range - 1) * pp[i>>1]) >> 8);
|
|
i = b->tree[i+bb];
|
|
|
|
if (bb)
|
|
{
|
|
lowvalue += split;
|
|
range = range - split;
|
|
}
|
|
else
|
|
{
|
|
range = split;
|
|
}
|
|
|
|
shift = vp8_norm[range];
|
|
range <<= shift;
|
|
count += shift;
|
|
|
|
if (count >= 0)
|
|
{
|
|
int offset = shift - count;
|
|
|
|
if ((lowvalue << (offset - 1)) & 0x80000000)
|
|
{
|
|
int x = w->pos - 1;
|
|
|
|
while (x >= 0 && w->buffer[x] == 0xff)
|
|
{
|
|
w->buffer[x] = (unsigned char)0;
|
|
x--;
|
|
}
|
|
|
|
w->buffer[x] += 1;
|
|
}
|
|
|
|
w->buffer[w->pos++] = (lowvalue >> (24 - offset));
|
|
lowvalue <<= offset;
|
|
shift = count;
|
|
lowvalue &= 0xffffff;
|
|
count -= 8 ;
|
|
}
|
|
|
|
lowvalue <<= shift;
|
|
}
|
|
while (n);
|
|
}
|
|
|
|
|
|
{
|
|
|
|
split = (range + 1) >> 1;
|
|
|
|
if (e & 1)
|
|
{
|
|
lowvalue += split;
|
|
range = range - split;
|
|
}
|
|
else
|
|
{
|
|
range = split;
|
|
}
|
|
|
|
range <<= 1;
|
|
|
|
if ((lowvalue & 0x80000000))
|
|
{
|
|
int x = w->pos - 1;
|
|
|
|
while (x >= 0 && w->buffer[x] == 0xff)
|
|
{
|
|
w->buffer[x] = (unsigned char)0;
|
|
x--;
|
|
}
|
|
|
|
w->buffer[x] += 1;
|
|
|
|
}
|
|
|
|
lowvalue <<= 1;
|
|
|
|
if (!++count)
|
|
{
|
|
count = -8;
|
|
w->buffer[w->pos++] = (lowvalue >> 24);
|
|
lowvalue &= 0xffffff;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
++p;
|
|
}
|
|
|
|
w->count = count;
|
|
w->lowvalue = lowvalue;
|
|
w->range = range;
|
|
|
|
}
|
|
|
|
static void write_partition_size(unsigned char *cx_data, int size)
|
|
{
|
|
signed char csize;
|
|
|
|
csize = size & 0xff;
|
|
*cx_data = csize;
|
|
csize = (size >> 8) & 0xff;
|
|
*(cx_data + 1) = csize;
|
|
csize = (size >> 16) & 0xff;
|
|
*(cx_data + 2) = csize;
|
|
|
|
}
|
|
|
|
static void pack_tokens_into_partitions_c(VP8_COMP *cpi, unsigned char *cx_data, int num_part, int *size)
|
|
{
|
|
|
|
int i;
|
|
unsigned char *ptr = cx_data;
|
|
unsigned int shift;
|
|
vp8_writer *w = &cpi->bc2;
|
|
*size = 3 * (num_part - 1);
|
|
cpi->partition_sz[0] += *size;
|
|
ptr = cx_data + (*size);
|
|
|
|
for (i = 0; i < num_part; i++)
|
|
{
|
|
vp8_start_encode(w, ptr);
|
|
{
|
|
unsigned int split;
|
|
int count = w->count;
|
|
unsigned int range = w->range;
|
|
unsigned int lowvalue = w->lowvalue;
|
|
int mb_row;
|
|
|
|
for (mb_row = i; mb_row < cpi->common.mb_rows; mb_row += num_part)
|
|
{
|
|
TOKENEXTRA *p = cpi->tplist[mb_row].start;
|
|
TOKENEXTRA *stop = cpi->tplist[mb_row].stop;
|
|
|
|
while (p < stop)
|
|
{
|
|
const int t = p->Token;
|
|
vp8_token *const a = vp8_coef_encodings + t;
|
|
const vp8_extra_bit_struct *const b = vp8_extra_bits + t;
|
|
int i = 0;
|
|
const unsigned char *pp = p->context_tree;
|
|
int v = a->value;
|
|
int n = a->Len;
|
|
|
|
if (p->skip_eob_node)
|
|
{
|
|
n--;
|
|
i = 2;
|
|
}
|
|
|
|
do
|
|
{
|
|
const int bb = (v >> --n) & 1;
|
|
split = 1 + (((range - 1) * pp[i>>1]) >> 8);
|
|
i = vp8_coef_tree[i+bb];
|
|
|
|
if (bb)
|
|
{
|
|
lowvalue += split;
|
|
range = range - split;
|
|
}
|
|
else
|
|
{
|
|
range = split;
|
|
}
|
|
|
|
shift = vp8_norm[range];
|
|
range <<= shift;
|
|
count += shift;
|
|
|
|
if (count >= 0)
|
|
{
|
|
int offset = shift - count;
|
|
|
|
if ((lowvalue << (offset - 1)) & 0x80000000)
|
|
{
|
|
int x = w->pos - 1;
|
|
|
|
while (x >= 0 && w->buffer[x] == 0xff)
|
|
{
|
|
w->buffer[x] = (unsigned char)0;
|
|
x--;
|
|
}
|
|
|
|
w->buffer[x] += 1;
|
|
}
|
|
|
|
w->buffer[w->pos++] = (lowvalue >> (24 - offset));
|
|
lowvalue <<= offset;
|
|
shift = count;
|
|
lowvalue &= 0xffffff;
|
|
count -= 8 ;
|
|
}
|
|
|
|
lowvalue <<= shift;
|
|
}
|
|
while (n);
|
|
|
|
|
|
if (b->base_val)
|
|
{
|
|
const int e = p->Extra, L = b->Len;
|
|
|
|
if (L)
|
|
{
|
|
const unsigned char *pp = b->prob;
|
|
int v = e >> 1;
|
|
int n = L; /* number of bits in v, assumed nonzero */
|
|
int i = 0;
|
|
|
|
do
|
|
{
|
|
const int bb = (v >> --n) & 1;
|
|
split = 1 + (((range - 1) * pp[i>>1]) >> 8);
|
|
i = b->tree[i+bb];
|
|
|
|
if (bb)
|
|
{
|
|
lowvalue += split;
|
|
range = range - split;
|
|
}
|
|
else
|
|
{
|
|
range = split;
|
|
}
|
|
|
|
shift = vp8_norm[range];
|
|
range <<= shift;
|
|
count += shift;
|
|
|
|
if (count >= 0)
|
|
{
|
|
int offset = shift - count;
|
|
|
|
if ((lowvalue << (offset - 1)) & 0x80000000)
|
|
{
|
|
int x = w->pos - 1;
|
|
|
|
while (x >= 0 && w->buffer[x] == 0xff)
|
|
{
|
|
w->buffer[x] = (unsigned char)0;
|
|
x--;
|
|
}
|
|
|
|
w->buffer[x] += 1;
|
|
}
|
|
|
|
w->buffer[w->pos++] = (lowvalue >> (24 - offset));
|
|
lowvalue <<= offset;
|
|
shift = count;
|
|
lowvalue &= 0xffffff;
|
|
count -= 8 ;
|
|
}
|
|
|
|
lowvalue <<= shift;
|
|
}
|
|
while (n);
|
|
}
|
|
|
|
{
|
|
split = (range + 1) >> 1;
|
|
|
|
if (e & 1)
|
|
{
|
|
lowvalue += split;
|
|
range = range - split;
|
|
}
|
|
else
|
|
{
|
|
range = split;
|
|
}
|
|
|
|
range <<= 1;
|
|
|
|
if ((lowvalue & 0x80000000))
|
|
{
|
|
int x = w->pos - 1;
|
|
|
|
while (x >= 0 && w->buffer[x] == 0xff)
|
|
{
|
|
w->buffer[x] = (unsigned char)0;
|
|
x--;
|
|
}
|
|
|
|
w->buffer[x] += 1;
|
|
|
|
}
|
|
|
|
lowvalue <<= 1;
|
|
|
|
if (!++count)
|
|
{
|
|
count = -8;
|
|
w->buffer[w->pos++] = (lowvalue >> 24);
|
|
lowvalue &= 0xffffff;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
++p;
|
|
}
|
|
}
|
|
|
|
w->count = count;
|
|
w->lowvalue = lowvalue;
|
|
w->range = range;
|
|
|
|
}
|
|
|
|
vp8_stop_encode(w);
|
|
*size += w->pos;
|
|
|
|
/* The first partition size is set earlier */
|
|
cpi->partition_sz[i + 1] = w->pos;
|
|
|
|
if (i < (num_part - 1))
|
|
{
|
|
write_partition_size(cx_data, w->pos);
|
|
cx_data += 3;
|
|
ptr += w->pos;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void pack_mb_row_tokens_c(VP8_COMP *cpi, vp8_writer *w)
|
|
{
|
|
|
|
unsigned int split;
|
|
int count = w->count;
|
|
unsigned int range = w->range;
|
|
unsigned int lowvalue = w->lowvalue;
|
|
unsigned int shift;
|
|
int mb_row;
|
|
|
|
for (mb_row = 0; mb_row < cpi->common.mb_rows; mb_row++)
|
|
{
|
|
TOKENEXTRA *p = cpi->tplist[mb_row].start;
|
|
TOKENEXTRA *stop = cpi->tplist[mb_row].stop;
|
|
|
|
while (p < stop)
|
|
{
|
|
const int t = p->Token;
|
|
vp8_token *const a = vp8_coef_encodings + t;
|
|
const vp8_extra_bit_struct *const b = vp8_extra_bits + t;
|
|
int i = 0;
|
|
const unsigned char *pp = p->context_tree;
|
|
int v = a->value;
|
|
int n = a->Len;
|
|
|
|
if (p->skip_eob_node)
|
|
{
|
|
n--;
|
|
i = 2;
|
|
}
|
|
|
|
do
|
|
{
|
|
const int bb = (v >> --n) & 1;
|
|
split = 1 + (((range - 1) * pp[i>>1]) >> 8);
|
|
i = vp8_coef_tree[i+bb];
|
|
|
|
if (bb)
|
|
{
|
|
lowvalue += split;
|
|
range = range - split;
|
|
}
|
|
else
|
|
{
|
|
range = split;
|
|
}
|
|
|
|
shift = vp8_norm[range];
|
|
range <<= shift;
|
|
count += shift;
|
|
|
|
if (count >= 0)
|
|
{
|
|
int offset = shift - count;
|
|
|
|
if ((lowvalue << (offset - 1)) & 0x80000000)
|
|
{
|
|
int x = w->pos - 1;
|
|
|
|
while (x >= 0 && w->buffer[x] == 0xff)
|
|
{
|
|
w->buffer[x] = (unsigned char)0;
|
|
x--;
|
|
}
|
|
|
|
w->buffer[x] += 1;
|
|
}
|
|
|
|
w->buffer[w->pos++] = (lowvalue >> (24 - offset));
|
|
lowvalue <<= offset;
|
|
shift = count;
|
|
lowvalue &= 0xffffff;
|
|
count -= 8 ;
|
|
}
|
|
|
|
lowvalue <<= shift;
|
|
}
|
|
while (n);
|
|
|
|
|
|
if (b->base_val)
|
|
{
|
|
const int e = p->Extra, L = b->Len;
|
|
|
|
if (L)
|
|
{
|
|
const unsigned char *pp = b->prob;
|
|
int v = e >> 1;
|
|
int n = L; /* number of bits in v, assumed nonzero */
|
|
int i = 0;
|
|
|
|
do
|
|
{
|
|
const int bb = (v >> --n) & 1;
|
|
split = 1 + (((range - 1) * pp[i>>1]) >> 8);
|
|
i = b->tree[i+bb];
|
|
|
|
if (bb)
|
|
{
|
|
lowvalue += split;
|
|
range = range - split;
|
|
}
|
|
else
|
|
{
|
|
range = split;
|
|
}
|
|
|
|
shift = vp8_norm[range];
|
|
range <<= shift;
|
|
count += shift;
|
|
|
|
if (count >= 0)
|
|
{
|
|
int offset = shift - count;
|
|
|
|
if ((lowvalue << (offset - 1)) & 0x80000000)
|
|
{
|
|
int x = w->pos - 1;
|
|
|
|
while (x >= 0 && w->buffer[x] == 0xff)
|
|
{
|
|
w->buffer[x] = (unsigned char)0;
|
|
x--;
|
|
}
|
|
|
|
w->buffer[x] += 1;
|
|
}
|
|
|
|
w->buffer[w->pos++] = (lowvalue >> (24 - offset));
|
|
lowvalue <<= offset;
|
|
shift = count;
|
|
lowvalue &= 0xffffff;
|
|
count -= 8 ;
|
|
}
|
|
|
|
lowvalue <<= shift;
|
|
}
|
|
while (n);
|
|
}
|
|
|
|
{
|
|
split = (range + 1) >> 1;
|
|
|
|
if (e & 1)
|
|
{
|
|
lowvalue += split;
|
|
range = range - split;
|
|
}
|
|
else
|
|
{
|
|
range = split;
|
|
}
|
|
|
|
range <<= 1;
|
|
|
|
if ((lowvalue & 0x80000000))
|
|
{
|
|
int x = w->pos - 1;
|
|
|
|
while (x >= 0 && w->buffer[x] == 0xff)
|
|
{
|
|
w->buffer[x] = (unsigned char)0;
|
|
x--;
|
|
}
|
|
|
|
w->buffer[x] += 1;
|
|
|
|
}
|
|
|
|
lowvalue <<= 1;
|
|
|
|
if (!++count)
|
|
{
|
|
count = -8;
|
|
w->buffer[w->pos++] = (lowvalue >> 24);
|
|
lowvalue &= 0xffffff;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
++p;
|
|
}
|
|
}
|
|
|
|
w->count = count;
|
|
w->lowvalue = lowvalue;
|
|
w->range = range;
|
|
|
|
}
|
|
|
|
static void write_mv_ref
|
|
(
|
|
vp8_writer *w, MB_PREDICTION_MODE m, const vp8_prob *p
|
|
)
|
|
{
|
|
#if CONFIG_DEBUG
|
|
assert(NEARESTMV <= m && m <= SPLITMV);
|
|
#endif
|
|
vp8_write_token(w, vp8_mv_ref_tree, p,
|
|
vp8_mv_ref_encoding_array - NEARESTMV + m);
|
|
}
|
|
|
|
static void write_sub_mv_ref
|
|
(
|
|
vp8_writer *w, B_PREDICTION_MODE m, const vp8_prob *p
|
|
)
|
|
{
|
|
#if CONFIG_DEBUG
|
|
assert(LEFT4X4 <= m && m <= NEW4X4);
|
|
#endif
|
|
vp8_write_token(w, vp8_sub_mv_ref_tree, p,
|
|
vp8_sub_mv_ref_encoding_array - LEFT4X4 + m);
|
|
}
|
|
|
|
static void write_mv
|
|
(
|
|
vp8_writer *w, const MV *mv, const int_mv *ref, const MV_CONTEXT *mvc
|
|
)
|
|
{
|
|
MV e;
|
|
e.row = mv->row - ref->as_mv.row;
|
|
e.col = mv->col - ref->as_mv.col;
|
|
|
|
vp8_encode_motion_vector(w, &e, mvc);
|
|
}
|
|
|
|
// This function writes the current macro block's segnment id to the bitstream
|
|
// It should only be called if a segment map update is indicated.
|
|
static void write_mb_segid(vp8_writer *w,
|
|
const MB_MODE_INFO *mi, const MACROBLOCKD *x)
|
|
{
|
|
// Encode the MB segment id.
|
|
if (x->segmentation_enabled && x->update_mb_segmentation_map)
|
|
{
|
|
switch (mi->segment_id)
|
|
{
|
|
case 0:
|
|
vp8_write(w, 0, x->mb_segment_tree_probs[0]);
|
|
vp8_write(w, 0, x->mb_segment_tree_probs[1]);
|
|
break;
|
|
case 1:
|
|
vp8_write(w, 0, x->mb_segment_tree_probs[0]);
|
|
vp8_write(w, 1, x->mb_segment_tree_probs[1]);
|
|
break;
|
|
case 2:
|
|
vp8_write(w, 1, x->mb_segment_tree_probs[0]);
|
|
vp8_write(w, 0, x->mb_segment_tree_probs[2]);
|
|
break;
|
|
case 3:
|
|
vp8_write(w, 1, x->mb_segment_tree_probs[0]);
|
|
vp8_write(w, 1, x->mb_segment_tree_probs[2]);
|
|
break;
|
|
|
|
// TRAP.. This should not happen
|
|
default:
|
|
vp8_write(w, 0, x->mb_segment_tree_probs[0]);
|
|
vp8_write(w, 0, x->mb_segment_tree_probs[1]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function encodes the reference frame
|
|
static void encode_ref_frame( vp8_writer *const w,
|
|
MACROBLOCKD *xd,
|
|
int segment_id,
|
|
MV_REFERENCE_FRAME rf,
|
|
int prob_intra_coded,
|
|
int prob_last_coded,
|
|
int prob_gf_coded )
|
|
{
|
|
int seg_ref_active;
|
|
//#if CONFIG_SEGFEATURES
|
|
seg_ref_active = segfeature_active( xd,
|
|
segment_id,
|
|
SEG_LVL_REF_FRAME );
|
|
|
|
// No segment features or segment reference frame feature is disabled
|
|
if ( !seg_ref_active )
|
|
{
|
|
if (rf == INTRA_FRAME)
|
|
{
|
|
vp8_write(w, 0, prob_intra_coded);
|
|
}
|
|
else /* inter coded */
|
|
{
|
|
vp8_write(w, 1, prob_intra_coded);
|
|
|
|
if (rf == LAST_FRAME)
|
|
{
|
|
vp8_write(w, 0, prob_last_coded);
|
|
}
|
|
else
|
|
{
|
|
vp8_write(w, 1, prob_last_coded);
|
|
vp8_write(w, (rf == GOLDEN_FRAME) ? 0 : 1, prob_gf_coded);
|
|
}
|
|
}
|
|
}
|
|
//#if CONFIG_SEGFEATURES
|
|
else
|
|
{
|
|
if (rf == INTRA_FRAME)
|
|
{
|
|
// This MB intra coded. If inter also allowed we must code
|
|
// an explicit inter/intra flag.
|
|
if ( check_segref_inter( xd, segment_id ) )
|
|
vp8_write(w, 0, prob_intra_coded);
|
|
}
|
|
else /* inter coded */
|
|
{
|
|
// If intra also allowed we must code an explicit intra/inter flag.
|
|
if ( check_segref( xd, segment_id, INTRA_FRAME ) )
|
|
vp8_write(w, 1, prob_intra_coded);
|
|
|
|
if (rf == LAST_FRAME)
|
|
{
|
|
// If GOLDEN or ALTREF allowed we must code explicit flag.
|
|
if ( check_segref( xd, segment_id, GOLDEN_FRAME ) ||
|
|
check_segref( xd, segment_id, ALTREF_FRAME ) )
|
|
{
|
|
vp8_write(w, 0, prob_last_coded);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// if LAST is allowed we must code explicit flag
|
|
if ( check_segref( xd, segment_id, LAST_FRAME ) )
|
|
{
|
|
vp8_write(w, 1, prob_last_coded);
|
|
}
|
|
|
|
// if GOLDEN and ALTREF allowed we must code an explicit flag
|
|
if ( check_segref( xd, segment_id, GOLDEN_FRAME ) &&
|
|
check_segref( xd, segment_id, ALTREF_FRAME ) )
|
|
{
|
|
vp8_write(w, (rf == GOLDEN_FRAME) ? 0 : 1, prob_gf_coded);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pack_inter_mode_mvs(VP8_COMP *const cpi)
|
|
{
|
|
VP8_COMMON *const pc = & cpi->common;
|
|
vp8_writer *const w = & cpi->bc;
|
|
const MV_CONTEXT *mvc = pc->fc.mvc;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
|
|
int i;
|
|
int pred_context;
|
|
int index = 0;
|
|
|
|
const int *const rfct = cpi->count_mb_ref_frame_usage;
|
|
const int rf_intra = rfct[INTRA_FRAME];
|
|
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
|
|
|
|
MODE_INFO *m = pc->mi;
|
|
#if CONFIG_NEWNEAR
|
|
MODE_INFO *prev_m = pc->prev_mi;
|
|
#endif
|
|
|
|
const int mis = pc->mode_info_stride;
|
|
int mb_row = -1;
|
|
|
|
int prob_last_coded;
|
|
int prob_gf_coded;
|
|
int prob_skip_false = 0;
|
|
#if CONFIG_DUALPRED
|
|
int prob_dual_pred[3];
|
|
#endif /* CONFIG_DUALPRED */
|
|
|
|
cpi->mb.partition_info = cpi->mb.pi;
|
|
|
|
// Calculate the probabilities to be used to code the reference frame
|
|
// based on actual useage this frame
|
|
//#if CONFIG_SEGFEATURES
|
|
cpi->prob_intra_coded = (rf_intra + rf_inter)
|
|
? rf_intra * 255 / (rf_intra + rf_inter) : 1;
|
|
|
|
if (!cpi->prob_intra_coded)
|
|
cpi->prob_intra_coded = 1;
|
|
|
|
prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
|
|
|
|
if (!prob_last_coded)
|
|
prob_last_coded = 1;
|
|
|
|
prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
|
|
? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
|
|
|
|
if (!prob_gf_coded)
|
|
prob_gf_coded = 1;
|
|
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 1;
|
|
#endif
|
|
|
|
if (pc->mb_no_coeff_skip)
|
|
{
|
|
// Divide by 0 check. 0 case possible with segment features
|
|
if ( (cpi->skip_false_count + cpi->skip_true_count) )
|
|
{
|
|
prob_skip_false = cpi->skip_false_count * 256 /
|
|
(cpi->skip_false_count + cpi->skip_true_count);
|
|
|
|
if (prob_skip_false <= 1)
|
|
prob_skip_false = 1;
|
|
|
|
if (prob_skip_false > 255)
|
|
prob_skip_false = 255;
|
|
}
|
|
else
|
|
prob_skip_false = 255;
|
|
|
|
cpi->prob_skip_false = prob_skip_false;
|
|
vp8_write_literal(w, prob_skip_false, 8);
|
|
}
|
|
|
|
vp8_write_literal(w, cpi->prob_intra_coded, 8);
|
|
vp8_write_literal(w, prob_last_coded, 8);
|
|
vp8_write_literal(w, prob_gf_coded, 8);
|
|
|
|
#if CONFIG_DUALPRED
|
|
if (cpi->common.dual_pred_mode == HYBRID_PREDICTION)
|
|
{
|
|
vp8_write(w, 1, 128);
|
|
vp8_write(w, 1, 128);
|
|
for (i = 0; i < 3; i++) {
|
|
if (cpi->single_pred_count[i] + cpi->dual_pred_count[i])
|
|
{
|
|
prob_dual_pred[i] = cpi->single_pred_count[i] * 256 /
|
|
(cpi->single_pred_count[i] + cpi->dual_pred_count[i]);
|
|
if (prob_dual_pred[i] < 1)
|
|
prob_dual_pred[i] = 1;
|
|
else if (prob_dual_pred[i] > 255)
|
|
prob_dual_pred[i] = 255;
|
|
}
|
|
else
|
|
{
|
|
prob_dual_pred[i] = 128;
|
|
}
|
|
vp8_write_literal(w, prob_dual_pred[i], 8);
|
|
}
|
|
}
|
|
else if (cpi->common.dual_pred_mode == SINGLE_PREDICTION_ONLY)
|
|
{
|
|
vp8_write(w, 0, 128);
|
|
}
|
|
else /* dual prediction only */
|
|
{
|
|
vp8_write(w, 1, 128);
|
|
vp8_write(w, 0, 128);
|
|
}
|
|
#endif /* CONFIG_DUALPRED */
|
|
|
|
update_mbintra_mode_probs(cpi);
|
|
|
|
vp8_write_mvprobs(cpi);
|
|
|
|
while (++mb_row < pc->mb_rows)
|
|
{
|
|
int mb_col = -1;
|
|
|
|
while (++mb_col < pc->mb_cols)
|
|
{
|
|
const MB_MODE_INFO *const mi = & m->mbmi;
|
|
const MV_REFERENCE_FRAME rf = mi->ref_frame;
|
|
const MB_PREDICTION_MODE mode = mi->mode;
|
|
const int segment_id = mi->segment_id;
|
|
|
|
// Distance of Mb to the various image edges.
|
|
// These specified to 8th pel as they are always compared to MV values that are in 1/8th pel units
|
|
xd->mb_to_left_edge = -((mb_col * 16) << 3);
|
|
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
|
|
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
|
|
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
|
|
|
|
// Make sure the MacroBlockD mode info pointer is set correctly
|
|
xd->mode_info_context = m;
|
|
#if CONFIG_NEWNEAR
|
|
xd->prev_mode_info_context = prev_m;
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 9;
|
|
#endif
|
|
|
|
if (cpi->mb.e_mbd.update_mb_segmentation_map)
|
|
{
|
|
// Is temporal coding of the segment map enabled
|
|
if (xd->temporal_update)
|
|
{
|
|
// Look at whether neighbours were successfully predicted
|
|
// to create a context for the seg_id_predicted flag.
|
|
pred_context = 0;
|
|
if (mb_col != 0)
|
|
pred_context += (m-1)->mbmi.seg_id_predicted;
|
|
if (mb_row != 0)
|
|
pred_context += (m-pc->mb_cols)->mbmi.seg_id_predicted;
|
|
|
|
// Code the prediction flag for this mb
|
|
vp8_write( w, m->mbmi.seg_id_predicted,
|
|
xd->mb_segment_pred_probs[pred_context]);
|
|
|
|
// If the mbs segment id was not predicted code explicitly
|
|
if (!m->mbmi.seg_id_predicted)
|
|
write_mb_segid(w, mi, &cpi->mb.e_mbd);
|
|
}
|
|
else
|
|
{
|
|
// Normal undpredicted coding
|
|
write_mb_segid(w, mi, &cpi->mb.e_mbd);
|
|
}
|
|
index++;
|
|
}
|
|
|
|
//#if CONFIG_SEGFEATURES
|
|
if ( pc->mb_no_coeff_skip &&
|
|
( !segfeature_active( xd, segment_id, SEG_LVL_EOB ) ||
|
|
( get_segdata( xd, segment_id, SEG_LVL_EOB ) != 0 ) ) )
|
|
{
|
|
vp8_encode_bool(w, mi->mb_skip_coeff, prob_skip_false);
|
|
}
|
|
|
|
// Encode the reference frame.
|
|
encode_ref_frame( w, xd, segment_id, rf,
|
|
cpi->prob_intra_coded,
|
|
prob_last_coded, prob_gf_coded );
|
|
|
|
if (rf == INTRA_FRAME)
|
|
{
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 6;
|
|
#endif
|
|
|
|
//#if CONFIG_SEGFEATURES
|
|
if ( !segfeature_active( xd, segment_id, SEG_LVL_MODE ) )
|
|
write_ymode(w, mode, pc->fc.ymode_prob);
|
|
|
|
if (mode == B_PRED)
|
|
{
|
|
int j = 0;
|
|
|
|
do
|
|
write_bmode(w, m->bmi[j].as_mode, pc->fc.bmode_prob);
|
|
while (++j < 16);
|
|
}
|
|
if(mode == I8X8_PRED)
|
|
{
|
|
write_i8x8_mode(w, m->bmi[0].as_mode, pc->i8x8_mode_prob);
|
|
write_i8x8_mode(w, m->bmi[2].as_mode, pc->i8x8_mode_prob);
|
|
write_i8x8_mode(w, m->bmi[8].as_mode, pc->i8x8_mode_prob);
|
|
write_i8x8_mode(w, m->bmi[10].as_mode, pc->i8x8_mode_prob);
|
|
}
|
|
else
|
|
write_uv_mode(w, mi->uv_mode, pc->fc.uv_mode_prob);
|
|
}
|
|
else
|
|
{
|
|
int_mv best_mv;
|
|
int ct[4];
|
|
|
|
vp8_prob mv_ref_p [VP8_MVREFS-1];
|
|
|
|
{
|
|
int_mv n1, n2;
|
|
|
|
vp8_find_near_mvs(xd, m,
|
|
#if CONFIG_NEWNEAR
|
|
prev_m,
|
|
#endif
|
|
&n1, &n2, &best_mv, ct, rf, cpi->common.ref_frame_sign_bias);
|
|
vp8_mv_ref_probs(&cpi->common, mv_ref_p, ct);
|
|
|
|
|
|
#ifdef ENTROPY_STATS
|
|
accum_mv_refs(mode, ct);
|
|
#endif
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 3;
|
|
#endif
|
|
|
|
//#if CONFIG_SEGFEATURES
|
|
// Is the segment coding of reference frame enabled
|
|
if ( !segfeature_active( xd, segment_id, SEG_LVL_MODE ) )
|
|
{
|
|
write_mv_ref(w, mode, mv_ref_p);
|
|
#if CONFIG_NEWNEAR
|
|
vp8_accum_mv_refs(&cpi->common, mode, ct);
|
|
#endif
|
|
}
|
|
|
|
{
|
|
switch (mode) /* new, split require MVs */
|
|
{
|
|
case NEWMV:
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 5;
|
|
#endif
|
|
|
|
write_mv(w, &mi->mv.as_mv, &best_mv, mvc);
|
|
#if CONFIG_DUALPRED
|
|
if (cpi->common.dual_pred_mode == HYBRID_PREDICTION)
|
|
{
|
|
int t = m[-mis].mbmi.second_ref_frame != INTRA_FRAME;
|
|
int l = m[-1 ].mbmi.second_ref_frame != INTRA_FRAME;
|
|
vp8_write(w, mi->second_ref_frame != INTRA_FRAME,
|
|
prob_dual_pred[t + l]);
|
|
}
|
|
if (mi->second_ref_frame)
|
|
{
|
|
const int second_rf = mi->second_ref_frame;
|
|
int_mv n1, n2;
|
|
int ct[4];
|
|
vp8_find_near_mvs(xd, m,
|
|
#if CONFIG_NEWNEAR
|
|
prev_m,
|
|
#endif
|
|
&n1, &n2, &best_mv,
|
|
ct, second_rf,
|
|
cpi->common.ref_frame_sign_bias);
|
|
write_mv(w, &mi->second_mv.as_mv, &best_mv, mvc);
|
|
}
|
|
#endif /* CONFIG_DUALPRED */
|
|
break;
|
|
case SPLITMV:
|
|
{
|
|
int j = 0;
|
|
|
|
#ifdef MODE_STATS
|
|
++count_mb_seg [mi->partitioning];
|
|
#endif
|
|
|
|
write_split(w, mi->partitioning);
|
|
|
|
do
|
|
{
|
|
B_PREDICTION_MODE blockmode;
|
|
int_mv blockmv;
|
|
const int *const L = vp8_mbsplits [mi->partitioning];
|
|
int k = -1; /* first block in subset j */
|
|
int mv_contz;
|
|
int_mv leftmv, abovemv;
|
|
|
|
blockmode = cpi->mb.partition_info->bmi[j].mode;
|
|
blockmv = cpi->mb.partition_info->bmi[j].mv;
|
|
#if CONFIG_DEBUG
|
|
while (j != L[++k])
|
|
if (k >= 16)
|
|
assert(0);
|
|
#else
|
|
while (j != L[++k]);
|
|
#endif
|
|
leftmv.as_int = left_block_mv(m, k);
|
|
abovemv.as_int = above_block_mv(m, k, mis);
|
|
mv_contz = vp8_mv_cont(&leftmv, &abovemv);
|
|
|
|
write_sub_mv_ref(w, blockmode, vp8_sub_mv_ref_prob2 [mv_contz]);
|
|
|
|
if (blockmode == NEW4X4)
|
|
{
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 11;
|
|
#endif
|
|
write_mv(w, &blockmv.as_mv, &best_mv, (const MV_CONTEXT *) mvc);
|
|
}
|
|
}
|
|
while (++j < cpi->mb.partition_info->count);
|
|
}
|
|
break;
|
|
default:
|
|
#if CONFIG_DUALPRED
|
|
if (cpi->common.dual_pred_mode == HYBRID_PREDICTION)
|
|
{
|
|
int t = m[-mis].mbmi.second_ref_frame != INTRA_FRAME;
|
|
int l = m[-1 ].mbmi.second_ref_frame != INTRA_FRAME;
|
|
vp8_write(w, mi->second_ref_frame != INTRA_FRAME,
|
|
prob_dual_pred[t + l]);
|
|
}
|
|
#endif /* CONFIG_DUALPRED */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
++m;
|
|
#if CONFIG_NEWNEAR
|
|
++prev_m;
|
|
assert((prev_m-cpi->common.prev_mip)==(m-cpi->common.mip));
|
|
assert((prev_m-cpi->common.prev_mi)==(m-cpi->common.mi));
|
|
#endif
|
|
|
|
cpi->mb.partition_info++;
|
|
}
|
|
|
|
++m; /* skip L prediction border */
|
|
#if CONFIG_NEWNEAR
|
|
++prev_m;
|
|
#endif
|
|
cpi->mb.partition_info++;
|
|
}
|
|
|
|
#if CONFIG_DUALPRED
|
|
if (cpi->common.dual_pred_mode == HYBRID_PREDICTION)
|
|
{
|
|
cpi->prob_dualpred[0] = (prob_dual_pred[0] + cpi->prob_dualpred[0] + 1) >> 1;
|
|
cpi->prob_dualpred[1] = (prob_dual_pred[1] + cpi->prob_dualpred[1] + 1) >> 1;
|
|
cpi->prob_dualpred[2] = (prob_dual_pred[2] + cpi->prob_dualpred[2] + 1) >> 1;
|
|
}
|
|
#endif /* CONFIG_DUALPRED */
|
|
}
|
|
|
|
|
|
static void write_kfmodes(VP8_COMP *cpi)
|
|
{
|
|
vp8_writer *const bc = & cpi->bc;
|
|
const VP8_COMMON *const c = & cpi->common;
|
|
/* const */
|
|
MODE_INFO *m = c->mi;
|
|
int i;
|
|
int index = 0;
|
|
int mb_row = -1;
|
|
int prob_skip_false = 0;
|
|
|
|
//#if CONFIG_SEGFEATURES
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
|
|
if (c->mb_no_coeff_skip)
|
|
{
|
|
// Divide by 0 check. 0 case possible with segment features
|
|
if ( (cpi->skip_false_count + cpi->skip_true_count) )
|
|
{
|
|
prob_skip_false = cpi->skip_false_count * 256 /
|
|
(cpi->skip_false_count + cpi->skip_true_count);
|
|
|
|
if (prob_skip_false <= 1)
|
|
prob_skip_false = 1;
|
|
|
|
if (prob_skip_false > 255)
|
|
prob_skip_false = 255;
|
|
}
|
|
else
|
|
prob_skip_false = 255;
|
|
|
|
cpi->prob_skip_false = prob_skip_false;
|
|
vp8_write_literal(bc, prob_skip_false, 8);
|
|
}
|
|
|
|
#if CONFIG_QIMODE
|
|
if(!c->kf_ymode_probs_update)
|
|
{
|
|
vp8_write_literal(bc, c->kf_ymode_probs_index, 3);
|
|
}
|
|
#endif
|
|
|
|
while (++mb_row < c->mb_rows)
|
|
{
|
|
int mb_col = -1;
|
|
|
|
while (++mb_col < c->mb_cols)
|
|
{
|
|
const int ym = m->mbmi.mode;
|
|
int segment_id = m->mbmi.segment_id;
|
|
|
|
if (cpi->mb.e_mbd.update_mb_segmentation_map)
|
|
{
|
|
index++;
|
|
write_mb_segid(bc, &m->mbmi, &cpi->mb.e_mbd);
|
|
}
|
|
|
|
//#if CONFIG_SEGFEATURES
|
|
if ( c->mb_no_coeff_skip &&
|
|
( !segfeature_active( xd, segment_id, SEG_LVL_EOB ) ||
|
|
(get_segdata( xd, segment_id, SEG_LVL_EOB ) != 0) ) )
|
|
{
|
|
vp8_encode_bool(bc, m->mbmi.mb_skip_coeff, prob_skip_false);
|
|
}
|
|
#if CONFIG_QIMODE
|
|
kfwrite_ymode(bc, ym, c->kf_ymode_prob[c->kf_ymode_probs_index]);
|
|
#else
|
|
kfwrite_ymode(bc, ym, c->kf_ymode_prob);
|
|
#endif
|
|
if (ym == B_PRED)
|
|
{
|
|
const int mis = c->mode_info_stride;
|
|
int i = 0;
|
|
|
|
do
|
|
{
|
|
const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
|
|
const B_PREDICTION_MODE L = left_block_mode(m, i);
|
|
const int bm = m->bmi[i].as_mode;
|
|
|
|
#ifdef ENTROPY_STATS
|
|
++intra_mode_stats [A] [L] [bm];
|
|
#endif
|
|
|
|
write_bmode(bc, bm, c->kf_bmode_prob [A] [L]);
|
|
}
|
|
while (++i < 16);
|
|
}
|
|
if(ym == I8X8_PRED)
|
|
{
|
|
write_i8x8_mode(bc, m->bmi[0].as_mode, c->i8x8_mode_prob);
|
|
write_i8x8_mode(bc, m->bmi[2].as_mode, c->i8x8_mode_prob);
|
|
write_i8x8_mode(bc, m->bmi[8].as_mode, c->i8x8_mode_prob);
|
|
write_i8x8_mode(bc, m->bmi[10].as_mode, c->i8x8_mode_prob);
|
|
m++;
|
|
}
|
|
else
|
|
#if CONFIG_UVINTRA
|
|
write_uv_mode(bc, (m++)->mbmi.uv_mode, c->kf_uv_mode_prob[ym]);
|
|
#else
|
|
write_uv_mode(bc, (m++)->mbmi.uv_mode, c->kf_uv_mode_prob);
|
|
#endif
|
|
}
|
|
//printf("\n");
|
|
m++; // skip L prediction border
|
|
}
|
|
}
|
|
|
|
/* This function is used for debugging probability trees. */
|
|
static void print_prob_tree(vp8_prob
|
|
coef_probs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES])
|
|
{
|
|
/* print coef probability tree */
|
|
int i,j,k,l;
|
|
FILE* f = fopen("enc_tree_probs.txt", "a");
|
|
fprintf(f, "{\n");
|
|
for (i = 0; i < BLOCK_TYPES; i++)
|
|
{
|
|
fprintf(f, " {\n");
|
|
for (j = 0; j < COEF_BANDS; j++)
|
|
{
|
|
fprintf(f, " {\n");
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
|
|
{
|
|
fprintf(f, " {");
|
|
for (l = 0; l < ENTROPY_NODES; l++)
|
|
{
|
|
fprintf(f, "%3u, ",
|
|
(unsigned int)(coef_probs [i][j][k][l]));
|
|
}
|
|
fprintf(f, " }\n");
|
|
}
|
|
fprintf(f, " }\n");
|
|
}
|
|
fprintf(f, " }\n");
|
|
}
|
|
fprintf(f, "}\n");
|
|
fclose(f);
|
|
}
|
|
|
|
static void sum_probs_over_prev_coef_context(
|
|
const unsigned int probs[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS],
|
|
unsigned int* out)
|
|
{
|
|
int i, j;
|
|
for (i=0; i < MAX_ENTROPY_TOKENS; ++i)
|
|
{
|
|
for (j=0; j < PREV_COEF_CONTEXTS; ++j)
|
|
{
|
|
const int tmp = out[i];
|
|
out[i] += probs[j][i];
|
|
/* check for wrap */
|
|
if (out[i] < tmp)
|
|
out[i] = UINT_MAX;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int prob_update_savings(const unsigned int *ct,
|
|
const vp8_prob oldp, const vp8_prob newp,
|
|
const vp8_prob upd)
|
|
{
|
|
const int old_b = vp8_cost_branch(ct, oldp);
|
|
const int new_b = vp8_cost_branch(ct, newp);
|
|
const int update_b = 8 +
|
|
((vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8);
|
|
|
|
return old_b - new_b - update_b;
|
|
}
|
|
|
|
static int independent_coef_context_savings(VP8_COMP *cpi)
|
|
{
|
|
int savings = 0;
|
|
int i = 0;
|
|
do
|
|
{
|
|
int j = 0;
|
|
do
|
|
{
|
|
int k = 0;
|
|
unsigned int prev_coef_count_sum[MAX_ENTROPY_TOKENS] = {0};
|
|
int prev_coef_savings[MAX_ENTROPY_TOKENS] = {0};
|
|
/* Calculate new probabilities given the constraint that
|
|
* they must be equal over the prev coef contexts
|
|
*/
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
{
|
|
/* Reset to default probabilities at key frames */
|
|
sum_probs_over_prev_coef_context(default_coef_counts[i][j],
|
|
prev_coef_count_sum);
|
|
}
|
|
else
|
|
{
|
|
sum_probs_over_prev_coef_context(cpi->coef_counts[i][j],
|
|
prev_coef_count_sum);
|
|
}
|
|
do
|
|
{
|
|
/* at every context */
|
|
|
|
/* calc probs and branch cts for this frame only */
|
|
//vp8_prob new_p [ENTROPY_NODES];
|
|
//unsigned int branch_ct [ENTROPY_NODES] [2];
|
|
|
|
int t = 0; /* token/prob index */
|
|
|
|
vp8_tree_probs_from_distribution(
|
|
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
|
|
cpi->frame_coef_probs[i][j][k],
|
|
cpi->frame_branch_ct [i][j][k],
|
|
prev_coef_count_sum,
|
|
256, 1);
|
|
|
|
do
|
|
{
|
|
const unsigned int *ct = cpi->frame_branch_ct [i][j][k][t];
|
|
const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
|
|
const vp8_prob oldp = cpi->common.fc.coef_probs [i][j][k][t];
|
|
const vp8_prob upd = vp8_coef_update_probs [i][j][k][t];
|
|
const int s = prob_update_savings(ct, oldp, newp, upd);
|
|
|
|
if (cpi->common.frame_type != KEY_FRAME ||
|
|
(cpi->common.frame_type == KEY_FRAME && newp != oldp))
|
|
prev_coef_savings[t] += s;
|
|
}
|
|
while (++t < ENTROPY_NODES);
|
|
}
|
|
while (++k < PREV_COEF_CONTEXTS);
|
|
k = 0;
|
|
do
|
|
{
|
|
/* We only update probabilities if we can save bits, except
|
|
* for key frames where we have to update all probabilities
|
|
* to get the equal probabilities across the prev coef
|
|
* contexts.
|
|
*/
|
|
if (prev_coef_savings[k] > 0 ||
|
|
cpi->common.frame_type == KEY_FRAME)
|
|
savings += prev_coef_savings[k];
|
|
}
|
|
while (++k < ENTROPY_NODES);
|
|
}
|
|
while (++j < COEF_BANDS);
|
|
}
|
|
while (++i < BLOCK_TYPES);
|
|
return savings;
|
|
}
|
|
|
|
static int default_coef_context_savings(VP8_COMP *cpi)
|
|
{
|
|
int savings = 0;
|
|
int i = 0;
|
|
do
|
|
{
|
|
int j = 0;
|
|
do
|
|
{
|
|
int k = 0;
|
|
do
|
|
{
|
|
/* at every context */
|
|
|
|
/* calc probs and branch cts for this frame only */
|
|
//vp8_prob new_p [ENTROPY_NODES];
|
|
//unsigned int branch_ct [ENTROPY_NODES] [2];
|
|
|
|
int t = 0; /* token/prob index */
|
|
|
|
|
|
vp8_tree_probs_from_distribution(
|
|
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
|
|
cpi->frame_coef_probs [i][j][k],
|
|
cpi->frame_branch_ct [i][j][k],
|
|
cpi->coef_counts [i][j][k],
|
|
256, 1
|
|
);
|
|
|
|
do
|
|
{
|
|
const unsigned int *ct = cpi->frame_branch_ct [i][j][k][t];
|
|
const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
|
|
const vp8_prob oldp = cpi->common.fc.coef_probs [i][j][k][t];
|
|
const vp8_prob upd = vp8_coef_update_probs [i][j][k][t];
|
|
const int s = prob_update_savings(ct, oldp, newp, upd);
|
|
|
|
if (s > 0)
|
|
{
|
|
savings += s;
|
|
}
|
|
}
|
|
while (++t < ENTROPY_NODES);
|
|
}
|
|
while (++k < PREV_COEF_CONTEXTS);
|
|
}
|
|
while (++j < COEF_BANDS);
|
|
}
|
|
while (++i < BLOCK_TYPES);
|
|
return savings;
|
|
}
|
|
|
|
int vp8_estimate_entropy_savings(VP8_COMP *cpi)
|
|
{
|
|
int savings = 0;
|
|
int i=0;
|
|
|
|
const int *const rfct = cpi->count_mb_ref_frame_usage;
|
|
const int rf_intra = rfct[INTRA_FRAME];
|
|
const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
|
|
int new_intra, new_last, gf_last, oldtotal, newtotal;
|
|
int ref_frame_cost[MAX_REF_FRAMES];
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
if (cpi->common.frame_type != KEY_FRAME)
|
|
{
|
|
//#if CONFIG_SEGFEATURES
|
|
new_intra = (rf_intra + rf_inter)
|
|
? rf_intra * 255 / (rf_intra + rf_inter) : 1;
|
|
|
|
if (!new_intra)
|
|
new_intra = 1;
|
|
|
|
new_last = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
|
|
|
|
gf_last = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
|
|
? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
|
|
|
|
// new costs
|
|
ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(new_intra);
|
|
ref_frame_cost[LAST_FRAME] = vp8_cost_one(new_intra)
|
|
+ vp8_cost_zero(new_last);
|
|
ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(new_intra)
|
|
+ vp8_cost_one(new_last)
|
|
+ vp8_cost_zero(gf_last);
|
|
ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(new_intra)
|
|
+ vp8_cost_one(new_last)
|
|
+ vp8_cost_one(gf_last);
|
|
|
|
newtotal =
|
|
rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] +
|
|
rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] +
|
|
rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] +
|
|
rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME];
|
|
|
|
|
|
// old costs
|
|
ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(cpi->prob_intra_coded);
|
|
ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
|
|
+ vp8_cost_zero(cpi->prob_last_coded);
|
|
ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
|
|
+ vp8_cost_one(cpi->prob_last_coded)
|
|
+ vp8_cost_zero(cpi->prob_gf_coded);
|
|
ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
|
|
+ vp8_cost_one(cpi->prob_last_coded)
|
|
+ vp8_cost_one(cpi->prob_gf_coded);
|
|
|
|
oldtotal =
|
|
rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] +
|
|
rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] +
|
|
rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] +
|
|
rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME];
|
|
|
|
savings += (oldtotal - newtotal) / 256;
|
|
}
|
|
|
|
|
|
if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
|
|
savings += independent_coef_context_savings(cpi);
|
|
else
|
|
savings += default_coef_context_savings(cpi);
|
|
|
|
|
|
#if CONFIG_T8X8
|
|
i = 0;
|
|
do
|
|
{
|
|
int j = 0;
|
|
|
|
do
|
|
{
|
|
int k = 0;
|
|
|
|
do
|
|
{
|
|
/* at every context */
|
|
|
|
/* calc probs and branch cts for this frame only */
|
|
//vp8_prob new_p [ENTROPY_NODES];
|
|
//unsigned int branch_ct [ENTROPY_NODES] [2];
|
|
|
|
int t = 0; /* token/prob index */
|
|
|
|
vp8_tree_probs_from_distribution(
|
|
MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
|
|
cpi->frame_coef_probs_8x8 [i][j][k], cpi->frame_branch_ct_8x8 [i][j][k], cpi->coef_counts_8x8 [i][j][k],
|
|
256, 1
|
|
);
|
|
|
|
do
|
|
{
|
|
const unsigned int *ct = cpi->frame_branch_ct_8x8 [i][j][k][t];
|
|
const vp8_prob newp = cpi->frame_coef_probs_8x8 [i][j][k][t];
|
|
|
|
const vp8_prob old = cpi->common.fc.coef_probs_8x8 [i][j][k][t];
|
|
const vp8_prob upd = vp8_coef_update_probs_8x8 [i][j][k][t];
|
|
|
|
const int old_b = vp8_cost_branch(ct, old);
|
|
const int new_b = vp8_cost_branch(ct, newp);
|
|
|
|
const int update_b = 8 +
|
|
((vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8);
|
|
|
|
const int s = old_b - new_b - update_b;
|
|
|
|
if (s > 0)
|
|
savings += s;
|
|
|
|
|
|
}
|
|
while (++t < MAX_ENTROPY_TOKENS - 1);
|
|
|
|
|
|
}
|
|
while (++k < PREV_COEF_CONTEXTS);
|
|
}
|
|
while (++j < COEF_BANDS);
|
|
}
|
|
while (++i < BLOCK_TYPES);
|
|
#endif
|
|
|
|
|
|
return savings;
|
|
}
|
|
|
|
static void update_coef_probs(VP8_COMP *cpi)
|
|
{
|
|
int i = 0;
|
|
vp8_writer *const w = & cpi->bc;
|
|
int savings = 0;
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
do
|
|
{
|
|
int j = 0;
|
|
|
|
do
|
|
{
|
|
int k = 0;
|
|
int prev_coef_savings[ENTROPY_NODES] = {0};
|
|
if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
|
|
{
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; ++k)
|
|
{
|
|
int t; /* token/prob index */
|
|
for (t = 0; t < ENTROPY_NODES; ++t)
|
|
{
|
|
const unsigned int *ct = cpi->frame_branch_ct [i][j]
|
|
[k][t];
|
|
const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t];
|
|
const vp8_prob oldp = cpi->common.fc.coef_probs[i][j]
|
|
[k][t];
|
|
const vp8_prob upd = vp8_coef_update_probs[i][j][k][t];
|
|
|
|
prev_coef_savings[t] +=
|
|
prob_update_savings(ct, oldp, newp, upd);
|
|
}
|
|
}
|
|
k = 0;
|
|
}
|
|
do
|
|
{
|
|
//note: use result from vp8_estimate_entropy_savings, so no need to call vp8_tree_probs_from_distribution here.
|
|
/* at every context */
|
|
|
|
/* calc probs and branch cts for this frame only */
|
|
//vp8_prob new_p [ENTROPY_NODES];
|
|
//unsigned int branch_ct [ENTROPY_NODES] [2];
|
|
|
|
int t = 0; /* token/prob index */
|
|
|
|
//vp8_tree_probs_from_distribution(
|
|
// MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
|
|
// new_p, branch_ct, (unsigned int *)cpi->coef_counts [i][j][k],
|
|
// 256, 1
|
|
// );
|
|
|
|
do
|
|
{
|
|
const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
|
|
|
|
vp8_prob *Pold = cpi->common.fc.coef_probs [i][j][k] + t;
|
|
const vp8_prob upd = vp8_coef_update_probs [i][j][k][t];
|
|
|
|
int s = prev_coef_savings[t];
|
|
int u = 0;
|
|
|
|
if (!(cpi->oxcf.error_resilient_mode &
|
|
VPX_ERROR_RESILIENT_PARTITIONS))
|
|
{
|
|
s = prob_update_savings(
|
|
cpi->frame_branch_ct [i][j][k][t],
|
|
*Pold, newp, upd);
|
|
}
|
|
|
|
if (s > 0)
|
|
u = 1;
|
|
|
|
/* Force updates on key frames if the new is different,
|
|
* so that we can be sure we end up with equal probabilities
|
|
* over the prev coef contexts.
|
|
*/
|
|
if ((cpi->oxcf.error_resilient_mode &
|
|
VPX_ERROR_RESILIENT_PARTITIONS) &&
|
|
cpi->common.frame_type == KEY_FRAME && newp != *Pold)
|
|
u = 1;
|
|
|
|
vp8_write(w, u, upd);
|
|
|
|
|
|
#ifdef ENTROPY_STATS
|
|
++ tree_update_hist [i][j][k][t] [u];
|
|
#endif
|
|
|
|
if (u)
|
|
{
|
|
/* send/use new probability */
|
|
|
|
*Pold = newp;
|
|
vp8_write_literal(w, newp, 8);
|
|
|
|
savings += s;
|
|
|
|
}
|
|
|
|
}
|
|
while (++t < ENTROPY_NODES);
|
|
|
|
/* Accum token counts for generation of default statistics */
|
|
#ifdef ENTROPY_STATS
|
|
t = 0;
|
|
|
|
do
|
|
{
|
|
context_counters [i][j][k][t] += cpi->coef_counts [i][j][k][t];
|
|
}
|
|
while (++t < MAX_ENTROPY_TOKENS);
|
|
|
|
#endif
|
|
|
|
}
|
|
while (++k < PREV_COEF_CONTEXTS);
|
|
}
|
|
while (++j < COEF_BANDS);
|
|
}
|
|
while (++i < BLOCK_TYPES);
|
|
|
|
#if CONFIG_T8X8
|
|
i = 0;
|
|
do
|
|
{
|
|
int j = 0;
|
|
|
|
do
|
|
{
|
|
int k = 0;
|
|
|
|
do
|
|
{
|
|
//note: use result from vp8_estimate_entropy_savings, so no need to call vp8_tree_probs_from_distribution here.
|
|
/* at every context */
|
|
|
|
/* calc probs and branch cts for this frame only */
|
|
//vp8_prob new_p [ENTROPY_NODES];
|
|
//unsigned int branch_ct [ENTROPY_NODES] [2];
|
|
|
|
int t = 0; /* token/prob index */
|
|
|
|
//vp8_tree_probs_from_distribution(
|
|
// MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
|
|
// new_p, branch_ct, (unsigned int *)cpi->coef_counts [i][j][k],
|
|
// 256, 1
|
|
// );
|
|
|
|
do
|
|
{
|
|
const unsigned int *ct = cpi->frame_branch_ct_8x8 [i][j][k][t];
|
|
const vp8_prob newp = cpi->frame_coef_probs_8x8 [i][j][k][t];
|
|
|
|
vp8_prob *Pold = cpi->common.fc.coef_probs_8x8 [i][j][k] + t;
|
|
const vp8_prob old = *Pold;
|
|
const vp8_prob upd = vp8_coef_update_probs_8x8 [i][j][k][t];
|
|
|
|
const int old_b = vp8_cost_branch(ct, old);
|
|
const int new_b = vp8_cost_branch(ct, newp);
|
|
|
|
const int update_b = 8 +
|
|
((vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8);
|
|
|
|
const int s = old_b - new_b - update_b;
|
|
const int u = s > 0 ? 1 : 0;
|
|
|
|
vp8_write(w, u, upd);
|
|
|
|
|
|
#ifdef ENTROPY_STATS
|
|
++ tree_update_hist_8x8 [i][j][k][t] [u];
|
|
#endif
|
|
|
|
if (u)
|
|
{
|
|
/* send/use new probability */
|
|
|
|
*Pold = newp;
|
|
vp8_write_literal(w, newp, 8);
|
|
|
|
savings += s;
|
|
|
|
}
|
|
|
|
}
|
|
while (++t < MAX_ENTROPY_TOKENS - 1);
|
|
|
|
/* Accum token counts for generation of default statistics */
|
|
#ifdef ENTROPY_STATS
|
|
t = 0;
|
|
|
|
do
|
|
{
|
|
context_counters_8x8 [i][j][k][t] += cpi->coef_counts_8x8 [i][j][k][t];
|
|
}
|
|
while (++t < MAX_ENTROPY_TOKENS);
|
|
|
|
#endif
|
|
|
|
}
|
|
while (++k < PREV_COEF_CONTEXTS);
|
|
}
|
|
while (++j < COEF_BANDS);
|
|
}
|
|
while (++i < BLOCK_TYPES);
|
|
#endif
|
|
|
|
}
|
|
#ifdef PACKET_TESTING
|
|
FILE *vpxlogc = 0;
|
|
#endif
|
|
|
|
static void put_delta_q(vp8_writer *bc, int delta_q)
|
|
{
|
|
if (delta_q != 0)
|
|
{
|
|
vp8_write_bit(bc, 1);
|
|
vp8_write_literal(bc, abs(delta_q), 4);
|
|
|
|
if (delta_q < 0)
|
|
vp8_write_bit(bc, 1);
|
|
else
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
else
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
#if CONFIG_QIMODE
|
|
extern const unsigned int kf_y_mode_cts[8][VP8_YMODES];
|
|
static void decide_kf_ymode_entropy(VP8_COMP *cpi)
|
|
{
|
|
|
|
int mode_cost[MB_MODE_COUNT];
|
|
int cost;
|
|
int bestcost = INT_MAX;
|
|
int bestindex = 0;
|
|
int i, j;
|
|
|
|
for(i=0; i<8; i++)
|
|
{
|
|
vp8_cost_tokens(mode_cost, cpi->common.kf_ymode_prob[i], vp8_kf_ymode_tree);
|
|
cost = 0;
|
|
for(j=0;j<VP8_YMODES;j++)
|
|
{
|
|
cost += mode_cost[j] * cpi->ymode_count[j];
|
|
}
|
|
if(cost < bestcost)
|
|
{
|
|
bestindex = i;
|
|
bestcost = cost;
|
|
}
|
|
}
|
|
cpi->common.kf_ymode_probs_index = bestindex;
|
|
|
|
}
|
|
#endif
|
|
|
|
void vp8_pack_bitstream(VP8_COMP *cpi, unsigned char *dest, unsigned long *size)
|
|
{
|
|
int i, j;
|
|
VP8_HEADER oh;
|
|
VP8_COMMON *const pc = & cpi->common;
|
|
vp8_writer *const bc = & cpi->bc;
|
|
MACROBLOCKD *const xd = & cpi->mb.e_mbd;
|
|
int extra_bytes_packed = 0;
|
|
|
|
unsigned char *cx_data = dest;
|
|
const int *mb_feature_data_bits;
|
|
|
|
oh.show_frame = (int) pc->show_frame;
|
|
oh.type = (int)pc->frame_type;
|
|
oh.version = pc->version;
|
|
oh.first_partition_length_in_bytes = 0;
|
|
|
|
cx_data += 3;
|
|
|
|
#if defined(SECTIONBITS_OUTPUT)
|
|
Sectionbits[active_section = 1] += sizeof(VP8_HEADER) * 8 * 256;
|
|
#endif
|
|
|
|
//vp8_kf_default_bmode_probs() is called in vp8_setup_key_frame() once for each
|
|
//K frame before encode frame. pc->kf_bmode_prob doesn't get changed anywhere
|
|
//else. No need to call it again here. --yw
|
|
//vp8_kf_default_bmode_probs( pc->kf_bmode_prob);
|
|
|
|
// every keyframe send startcode, width, height, scale factor, clamp and color type
|
|
if (oh.type == KEY_FRAME)
|
|
{
|
|
int v;
|
|
|
|
// Start / synch code
|
|
cx_data[0] = 0x9D;
|
|
cx_data[1] = 0x01;
|
|
cx_data[2] = 0x2a;
|
|
|
|
v = (pc->horiz_scale << 14) | pc->Width;
|
|
cx_data[3] = v;
|
|
cx_data[4] = v >> 8;
|
|
|
|
v = (pc->vert_scale << 14) | pc->Height;
|
|
cx_data[5] = v;
|
|
cx_data[6] = v >> 8;
|
|
|
|
extra_bytes_packed = 7;
|
|
cx_data += extra_bytes_packed ;
|
|
|
|
vp8_start_encode(bc, cx_data);
|
|
|
|
// signal clr type
|
|
vp8_write_bit(bc, pc->clr_type);
|
|
vp8_write_bit(bc, pc->clamp_type);
|
|
|
|
}
|
|
else
|
|
vp8_start_encode(bc, cx_data);
|
|
|
|
// Signal whether or not Segmentation is enabled
|
|
vp8_write_bit(bc, (xd->segmentation_enabled) ? 1 : 0);
|
|
|
|
// Indicate which features are enabled
|
|
if (xd->segmentation_enabled)
|
|
{
|
|
// Indicate whether or not the segmentation map is being updated.
|
|
vp8_write_bit(bc, (xd->update_mb_segmentation_map) ? 1 : 0);
|
|
|
|
// If it is, then indicate the method that will be used.
|
|
if ( xd->update_mb_segmentation_map )
|
|
vp8_write_bit(bc, (xd->temporal_update) ? 1:0);
|
|
|
|
vp8_write_bit(bc, (xd->update_mb_segmentation_data) ? 1 : 0);
|
|
|
|
if (xd->update_mb_segmentation_data)
|
|
{
|
|
signed char Data;
|
|
|
|
vp8_write_bit(bc, (xd->mb_segement_abs_delta) ? 1 : 0);
|
|
|
|
//#if CONFIG_SEGFEATURES
|
|
// For each segments id...
|
|
for (i = 0; i < MAX_MB_SEGMENTS; i++)
|
|
{
|
|
// For each segmentation codable feature...
|
|
for (j = 0; j < SEG_LVL_MAX; j++)
|
|
{
|
|
Data = get_segdata( xd, i, j );
|
|
|
|
//#if CONFIG_SEGFEATURES
|
|
// If the feature is enabled...
|
|
if ( segfeature_active( xd, i, j ) )
|
|
{
|
|
vp8_write_bit(bc, 1);
|
|
|
|
//#if CONFIG_SEGFEATURES
|
|
// Is the segment data signed..
|
|
if ( is_segfeature_signed(j) )
|
|
{
|
|
// Encode the relevant feature data
|
|
if (Data < 0)
|
|
{
|
|
Data = - Data;
|
|
vp8_write_literal(bc, Data,
|
|
seg_feature_data_bits(j));
|
|
vp8_write_bit(bc, 1);
|
|
}
|
|
else
|
|
{
|
|
vp8_write_literal(bc, Data,
|
|
seg_feature_data_bits(j));
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
}
|
|
// Unsigned data element so no sign bit needed
|
|
else
|
|
vp8_write_literal(bc, Data,
|
|
seg_feature_data_bits(j));
|
|
}
|
|
else
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (xd->update_mb_segmentation_map)
|
|
{
|
|
// Send the tree probabilities used to decode unpredicted
|
|
// macro-block segments
|
|
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
|
|
{
|
|
int Data = xd->mb_segment_tree_probs[i];
|
|
|
|
if (Data != 255)
|
|
{
|
|
vp8_write_bit(bc, 1);
|
|
vp8_write_literal(bc, Data, 8);
|
|
}
|
|
else
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
|
|
// If predictive coding of segment map is enabled send the
|
|
// prediction probabilities.
|
|
if ( xd->temporal_update )
|
|
{
|
|
for (i = 0; i < SEGMENT_PREDICTION_PROBS; i++)
|
|
{
|
|
int Data = xd->mb_segment_pred_probs[i];
|
|
|
|
if (Data != 255)
|
|
{
|
|
vp8_write_bit(bc, 1);
|
|
vp8_write_literal(bc, Data, 8);
|
|
}
|
|
else
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Code to determine whether or not to update the scan order.
|
|
vp8_write_bit(bc, pc->filter_type);
|
|
vp8_write_literal(bc, pc->filter_level, 6);
|
|
vp8_write_literal(bc, pc->sharpness_level, 3);
|
|
|
|
// Write out loop filter deltas applied at the MB level based on mode or ref frame (if they are enabled).
|
|
vp8_write_bit(bc, (xd->mode_ref_lf_delta_enabled) ? 1 : 0);
|
|
|
|
if (xd->mode_ref_lf_delta_enabled)
|
|
{
|
|
// Do the deltas need to be updated
|
|
int send_update = xd->mode_ref_lf_delta_update
|
|
|| cpi->oxcf.error_resilient_mode;
|
|
|
|
vp8_write_bit(bc, send_update);
|
|
if (send_update)
|
|
{
|
|
int Data;
|
|
|
|
// Send update
|
|
for (i = 0; i < MAX_REF_LF_DELTAS; i++)
|
|
{
|
|
Data = xd->ref_lf_deltas[i];
|
|
|
|
// Frame level data
|
|
if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i]
|
|
|| cpi->oxcf.error_resilient_mode)
|
|
{
|
|
xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i];
|
|
vp8_write_bit(bc, 1);
|
|
|
|
if (Data > 0)
|
|
{
|
|
vp8_write_literal(bc, (Data & 0x3F), 6);
|
|
vp8_write_bit(bc, 0); // sign
|
|
}
|
|
else
|
|
{
|
|
Data = -Data;
|
|
vp8_write_literal(bc, (Data & 0x3F), 6);
|
|
vp8_write_bit(bc, 1); // sign
|
|
}
|
|
}
|
|
else
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
|
|
// Send update
|
|
for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
|
|
{
|
|
Data = xd->mode_lf_deltas[i];
|
|
|
|
if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i]
|
|
|| cpi->oxcf.error_resilient_mode)
|
|
{
|
|
xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i];
|
|
vp8_write_bit(bc, 1);
|
|
|
|
if (Data > 0)
|
|
{
|
|
vp8_write_literal(bc, (Data & 0x3F), 6);
|
|
vp8_write_bit(bc, 0); // sign
|
|
}
|
|
else
|
|
{
|
|
Data = -Data;
|
|
vp8_write_literal(bc, (Data & 0x3F), 6);
|
|
vp8_write_bit(bc, 1); // sign
|
|
}
|
|
}
|
|
else
|
|
vp8_write_bit(bc, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
//signal here is multi token partition is enabled
|
|
vp8_write_literal(bc, pc->multi_token_partition, 2);
|
|
|
|
// Frame Qbaseline quantizer index
|
|
vp8_write_literal(bc, pc->base_qindex, 7);
|
|
|
|
// Transmit Dc, Second order and Uv quantizer delta information
|
|
put_delta_q(bc, pc->y1dc_delta_q);
|
|
put_delta_q(bc, pc->y2dc_delta_q);
|
|
put_delta_q(bc, pc->y2ac_delta_q);
|
|
put_delta_q(bc, pc->uvdc_delta_q);
|
|
put_delta_q(bc, pc->uvac_delta_q);
|
|
|
|
// When there is a key frame all reference buffers are updated using the new key frame
|
|
if (pc->frame_type != KEY_FRAME)
|
|
{
|
|
// Should the GF or ARF be updated using the transmitted frame or buffer
|
|
vp8_write_bit(bc, pc->refresh_golden_frame);
|
|
vp8_write_bit(bc, pc->refresh_alt_ref_frame);
|
|
|
|
// If not being updated from current frame should either GF or ARF be updated from another buffer
|
|
if (!pc->refresh_golden_frame)
|
|
vp8_write_literal(bc, pc->copy_buffer_to_gf, 2);
|
|
|
|
if (!pc->refresh_alt_ref_frame)
|
|
vp8_write_literal(bc, pc->copy_buffer_to_arf, 2);
|
|
|
|
// Indicate reference frame sign bias for Golden and ARF frames (always 0 for last frame buffer)
|
|
vp8_write_bit(bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]);
|
|
vp8_write_bit(bc, pc->ref_frame_sign_bias[ALTREF_FRAME]);
|
|
}
|
|
|
|
if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
|
|
{
|
|
if (pc->frame_type == KEY_FRAME)
|
|
pc->refresh_entropy_probs = 1;
|
|
else
|
|
pc->refresh_entropy_probs = 0;
|
|
}
|
|
|
|
vp8_write_bit(bc, pc->refresh_entropy_probs);
|
|
|
|
if (pc->frame_type != KEY_FRAME)
|
|
vp8_write_bit(bc, pc->refresh_last_frame);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
|
|
if (pc->frame_type == INTER_FRAME)
|
|
active_section = 0;
|
|
else
|
|
active_section = 7;
|
|
|
|
#endif
|
|
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
update_coef_probs(cpi);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 2;
|
|
#endif
|
|
|
|
// Write out the mb_no_coeff_skip flag
|
|
vp8_write_bit(bc, pc->mb_no_coeff_skip);
|
|
|
|
if (pc->frame_type == KEY_FRAME)
|
|
{
|
|
#if CONFIG_QIMODE
|
|
decide_kf_ymode_entropy(cpi);
|
|
#endif
|
|
write_kfmodes(cpi);
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 8;
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
pack_inter_mode_mvs(cpi);
|
|
|
|
#if CONFIG_NEWNEAR
|
|
vp8_update_mode_context(&cpi->common);
|
|
#endif
|
|
|
|
#ifdef ENTROPY_STATS
|
|
active_section = 1;
|
|
#endif
|
|
}
|
|
|
|
vp8_stop_encode(bc);
|
|
|
|
oh.first_partition_length_in_bytes = cpi->bc.pos;
|
|
|
|
/* update frame tag */
|
|
{
|
|
int v = (oh.first_partition_length_in_bytes << 5) |
|
|
(oh.show_frame << 4) |
|
|
(oh.version << 1) |
|
|
oh.type;
|
|
|
|
dest[0] = v;
|
|
dest[1] = v >> 8;
|
|
dest[2] = v >> 16;
|
|
}
|
|
|
|
*size = VP8_HEADER_SIZE + extra_bytes_packed + cpi->bc.pos;
|
|
cpi->partition_sz[0] = *size;
|
|
|
|
if (pc->multi_token_partition != ONE_PARTITION)
|
|
{
|
|
int num_part;
|
|
int asize;
|
|
num_part = 1 << pc->multi_token_partition;
|
|
|
|
pack_tokens_into_partitions(cpi, cx_data + bc->pos, num_part, &asize);
|
|
|
|
*size += asize;
|
|
}
|
|
else
|
|
{
|
|
vp8_start_encode(&cpi->bc2, cx_data + bc->pos);
|
|
|
|
#if CONFIG_MULTITHREAD
|
|
if (cpi->b_multi_threaded)
|
|
pack_mb_row_tokens(cpi, &cpi->bc2);
|
|
else
|
|
#endif
|
|
pack_tokens(&cpi->bc2, cpi->tok, cpi->tok_count);
|
|
|
|
vp8_stop_encode(&cpi->bc2);
|
|
|
|
*size += cpi->bc2.pos;
|
|
cpi->partition_sz[1] = cpi->bc2.pos;
|
|
}
|
|
}
|
|
|
|
#ifdef ENTROPY_STATS
|
|
void print_tree_update_probs()
|
|
{
|
|
int i, j, k, l;
|
|
FILE *f = fopen("context.c", "a");
|
|
int Sum;
|
|
fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
|
|
fprintf(f, "const vp8_prob tree_update_probs[BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES] = {\n");
|
|
|
|
for (i = 0; i < BLOCK_TYPES; i++)
|
|
{
|
|
fprintf(f, " { \n");
|
|
|
|
for (j = 0; j < COEF_BANDS; j++)
|
|
{
|
|
fprintf(f, " {\n");
|
|
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
|
|
{
|
|
fprintf(f, " {");
|
|
|
|
for (l = 0; l < ENTROPY_NODES; l++)
|
|
{
|
|
Sum = tree_update_hist[i][j][k][l][0] + tree_update_hist[i][j][k][l][1];
|
|
|
|
if (Sum > 0)
|
|
{
|
|
if (((tree_update_hist[i][j][k][l][0] * 255) / Sum) > 0)
|
|
fprintf(f, "%3ld, ", (tree_update_hist[i][j][k][l][0] * 255) / Sum);
|
|
else
|
|
fprintf(f, "%3ld, ", 1);
|
|
}
|
|
else
|
|
fprintf(f, "%3ld, ", 128);
|
|
}
|
|
|
|
fprintf(f, "},\n");
|
|
}
|
|
|
|
fprintf(f, " },\n");
|
|
}
|
|
|
|
fprintf(f, " },\n");
|
|
}
|
|
|
|
fprintf(f, "};\n");
|
|
|
|
#if CONFIG_T8X8
|
|
fprintf(f, "const vp8_prob tree_update_probs_8x8[BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES] = {\n");
|
|
|
|
for (i = 0; i < BLOCK_TYPES; i++)
|
|
{
|
|
fprintf(f, " { \n");
|
|
|
|
for (j = 0; j < COEF_BANDS; j++)
|
|
{
|
|
fprintf(f, " {\n");
|
|
|
|
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
|
|
{
|
|
fprintf(f, " {");
|
|
|
|
for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++)
|
|
{
|
|
Sum = tree_update_hist_8x8[i][j][k][l][0] + tree_update_hist_8x8[i][j][k][l][1];
|
|
|
|
if (Sum > 0)
|
|
{
|
|
if (((tree_update_hist_8x8[i][j][k][l][0] * 255) / Sum) > 0)
|
|
fprintf(f, "%3ld, ", (tree_update_hist_8x8[i][j][k][l][0] * 255) / Sum);
|
|
else
|
|
fprintf(f, "%3ld, ", 1);
|
|
}
|
|
else
|
|
fprintf(f, "%3ld, ", 128);
|
|
}
|
|
|
|
fprintf(f, "},\n");
|
|
}
|
|
|
|
fprintf(f, " },\n");
|
|
}
|
|
|
|
fprintf(f, " },\n");
|
|
}
|
|
#endif
|
|
fclose(f);
|
|
}
|
|
#endif
|